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I.7 While it is necessary, it is not sufficient to verify that ranA is closed under vector
addition and scalar multiplication since ranA is not, offhand, a subset of a ls. On the other
hand, there is no call for defining the vector operations on ranA since they are already
defined on all of U . Verification is needed and is straightforward. E.g., A0 can serve as
the neutral element since, for all Ax ∈ ranA, Ax + A0 = A(x + 0) = Ax, while, for every
Ax ∈ ranA, A(−x) = −Ax can serve as the inverse since Ax + A(−x) = A(x − x) = A0.
Etc.

I.11 (a) the cylinder spanned by two disks, radius 1, center 0 and center (1,1) ; (b)
the octahedron with vertices (0,0), (1,0), (2,1), (2,2), (1,3), (0,3), (-1,2), (-1,1); (c) union
of [0 . . 1]2 shifted by (-1,-1) with that shifted by (-2,-2).

I.16 The main work here is to prove that X is finitely generated, i.e., has a basis,
hence has dimension. The slick way to prove this is to observe that the collection of all
1-1 column maps into X is not empty: it contains the unique linear map from IF0 to X .
By (12)Lemma, dim Y is a (finite) upper bound on the number of columns in any 1-1
column map into X ⊆ Y , therefore, there is a 1-1 column into X with a maximal number
of columns. Any such V must be a basis for X , by remark following (8)Lemma. Thus
dim X = #V ≤ dimY . If now X 6= Y , then there exists y ∈ Y \X , hence, by (8)Lemma,
[V, y] is 1-1 into Y , hence, by (12)Lemma, dimX = #V < #V + 1 ≤ dim Y .

I.20 With X := Π2(IR
2), the set S := {p ∈ X : p T = 0} is the kernel of the lm

A : X → IRT : p 7→ p T .

Since T lies on some straight line, there is some nontrivial vector n normal to that
straight line, and then, with a ∈ T , ℓ : x 7→ nt(x − a) is a linear polynomial that vanishes
on that line (and nowhere else). It follows that the map f 7→ fℓ (:= pointwise product
fℓ : x 7→ f(x)ℓ(x)) carries Π1(IR

2) into S. Since it is also linear and 1-1, we get dimS ≥
dim Π1(IR

2) = 3.

On the other hand, with m some 2-vector not parallel to n, ℓt : x 7→ mt(x − a) is a
linear polynomial that, assuming a ∈ T , vanishes at a but at no other point in T . Since
the (pointwise) product of any two of these is in X and #T = 4, it follows that ranA
contains the vectors (×, 0, 0,×), (0,×, 0,×), and (0, 0,×,×) where × stands for something
nonzero, hence dim ranA ≥ 3, while dimdom A = dimΠ2(IR

2) = 6.

So, with the Dimension Formula,

3 ≤ dim S = dimker A = dimdom A − dim ranA ≤ 3,

showing dim S = 3 (and also that dim ranA = 3).

I.21 ΛtV = 1 implies that V is 1-1, i.e., its columns are linearly independent. If∑
j ciλi = 0 (with λi := δ0D

i−1), then ct = ct1 = ct(ΛtV ) = (ctΛt)V = 0V = 0, hence
λ1, . . . , λm must be linearly independent, too.
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I.23 You are taught to differentiate polynomials in exactly one way: write the polyno-
mial as a linear combination of powers, then apply the rule D()j = j()j−1 to the individual
powers, multiply by the power coefficients, then sum.

This is exactly the statement that D Πk
= V AV −1, with V = [()0, ()1, . . . , ()k] :

IFk+1 → Πk, and A = [0, e1, 2e2, . . . , kek] ∈ IF(k+1)×(k+1).
I.28 This is a throw-away since it only tests whether you actually read the notes.

Since n = dim ranA = rankA, we know that A = V Λt with V ∈ L(IFn, U) 1-1. Since
A′ = ΛV ′ with Λ ∈ L(IFn, X ′) and rankA′ = rankA = n, it follows that ΛV ′ is a minimal
factorization for A′, hence also Λ must be 1-1.

Of course, starting from scratch, since dim ranA = n, there is a basis V ∈ L(IFn, ranA),
hence A = V Λt with Λt := V −1A onto since, necessarily, V = AW for some W , and so
ΛtW = V −1AW = 1.

I.29 For λi = δ1/i, i ∈ IN, ker δ0 ⊇ ∩i kerλi (since f(0) = limi→∞ f(1/i) for every
f ∈ C([0 . . 1])). Yet, for any n,

∏
i<n(· − 1/i) ∈ ∩i<n kerλi\ ker δ0, hence δ0 6∈ ran[λi : i ∈

IN].
I.30 ‘⇒’: By (23)Proposition, V is 1-1, as is Λ since then also A′ = ΛV ′ is minimal,

therefore Λt is onto.
‘⇐’: Let n := #V . Since Λt is onto, ranA = V (IFn) = ranV , and, since V is 1-1, V

is a basis for ranV = ranA, hence A = V Λt is minimal, by (23)Proposition.
I.31 Let Λ be a basis for L,hence L⊥ = kerΛt and, by (31)Lemma, ran Λ = ⊥ ker Λt,

i.e., ⊥(L⊥) = L. H.P.(29) gives example with ⊥(L⊥) much greater than L.
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