I.7 While it is necessary, it is not sufficient to verify that \(\text{ran}\ A \) is closed under vector addition and scalar multiplication since \(\text{ran}\ A \) is not, offhand, a subset of a \(\Lambda \). On the other hand, there is no call for defining the vector operations on \(\text{ran}\ A \) since they are already defined on all of \(U \). Verification is needed and is straightforward. E.g., \(A0 \) can serve as the neutral element since, for all \(Ax \in \text{ran}\ A \), \(Ax + A0 = A(x + 0) = Ax \), while, for every \(Ax \in \text{ran}\ A \), \(A(-x) = -Ax \) can serve as the inverse since \(Ax + A(-x) = A(x - x) = A0 \). Etc.

I.11 (a) the cylinder spanned by two disks, radius 1, center 0 and center \((1,1)\); (b) the octahedron with vertices \((0,0)\), \((1,0)\), \((2,1)\), \((2,2)\), \((1,3)\), \((0,3)\), \((-1,2)\), \((-1,1)\); (c) union of \([0\ldots1]^2\) shifted by \((-1,-1)\) with that shifted by \((-2,-2)\).

I.16 The main work here is to prove that \(X \) is finitely generated, i.e., has a basis, hence has dimension. The slick way to prove this is to observe that the collection of all 1-1 column maps into \(X \) is not empty: it contains the unique linear map from \(\Pi^0 \) to \(X \). By (12)Lemma, \(\dim Y \) is a (finite) upper bound on the number of columns in any 1-1 column map into \(X \subseteq Y \), therefore, there is a 1-1 column into \(X \) with a maximal number of columns. Any such \(V \) must be a basis for \(X \), by remark following (8)Lemma. Thus \(\dim X = \#V \leq \dim Y \). If now \(X \neq Y \), then there exists \(y \in Y \setminus X \), hence, by (8)Lemma, \([V,y] \) is 1-1 into \(Y \), hence, by (12)Lemma, \(\dim X = \#V < \#V + 1 \leq \dim Y \).

I.20 With \(X := \Pi_2(\mathbb{R}^2) \), the set \(S := \{ p \in X : p|_T = 0 \} \) is the kernel of the lm \(A : X \to \mathbb{R}^T : p \mapsto p|_T \).

Since \(T \) lies on some straight line, there is some nontrivial vector \(n \) normal to that straight line, and then, with \(a \in T \), \(\ell : x \mapsto n^t(x - a) \) is a linear polynomial that vanishes on that line (and nowhere else). It follows that the map \(f \mapsto f\ell \) (\(:= \) pointwise product \(f\ell : x \mapsto f(x)\ell(x) \)) carries \(\Pi_1(\mathbb{R}^2) \) into \(S \). Since it is also linear and 1-1, we get \(\dim S \geq \dim \Pi_1(\mathbb{R}^2) = 3 \).

On the other hand, with \(m \) some 2-vector not parallel to \(n \), \(\ell_m : x \mapsto m^t(x - a) \) is a linear polynomial that, assuming \(a \in T \), vanishes at \(a \) but at no other point in \(T \). Since the (pointwise) product of any two of these is in \(X \) and \(\#T = 4 \), it follows that \(\text{ran}\ A \) contains the vectors \((x,0,0,\times),(0,x,0,\times),\) and \((0,0,\times,\times)\) where \(\times \) stands for something nonzero, hence \(\dim \text{ran}\ A \geq 3 \), while \(\dim \text{dom}\ A = \dim \Pi_2(\mathbb{R}^2) = 6 \).

So, with the Dimension Formula,

\[3 \leq \dim S = \dim \ker A = \dim \text{dom}\ A - \dim \text{ran}\ A \leq 3, \]

showing \(\dim S = 3 \) (and also that \(\dim \text{ran}\ A = 3 \)).

I.21 \(\Lambda^tV = 1 \) implies that \(V \) is 1-1, i.e., its columns are linearly independent. If \(\sum_j c_i\lambda_i = 0 \) (with \(\lambda : = \delta_0D^{i-1} \)), then \(c^t1 = c^t(\Lambda^tV) = (c^t\Lambda^t)V = 0V = 0 \), hence \(\lambda_1,\ldots,\lambda_m \) must be linearly independent, too.
I.23 You are taught to differentiate polynomials in exactly one way: write the polynomial as a linear combination of powers, then apply the rule $D(j) = j(j-1)$ to the individual powers, multiply by the power coefficients, then sum.

This is exactly the statement that $D_{\Pi_k} = VAV^{-1}$, with $V = [(0, 1, \ldots, k)] : \mathbb{F}^{k+1} \to \Pi_k$, and $A = [0, e1, 2e2, \ldots, kek] \in \mathbb{F}^{(k+1)\times(k+1)}$.

I.28 This is a throw-away since it only tests whether you actually read the notes. Since $n = \dim \text{ran} A = \text{rank} A$, we know that $A = VA^t$ with $V \in L(\mathbb{F}^n, U)$ 1-1. Since $A' = AV'$ with $A \in L(\mathbb{F}^n, X)$ and $\text{rank} A' = \text{rank} A = n$, it follows that AV' is a minimal factorization for A', hence also A must be 1-1.

Of course, starting from scratch, since $\dim \text{ran} A = n$, there is a basis $V \in L(\mathbb{F}^n, \text{ran} A)$ hence $A = VA^t$ with $A^t := V^{-1}A$ onto since, necessarily, $V = AW$ for some W, and so $A^tW = V^{-1}AW = 1$.

I.29 For $\lambda_i = \delta_{1,i}$, $i \in \mathbb{N}$, $\ker \delta_0 \supseteq \cap_i \ker \lambda_i$ (since $f(0) = \lim_{i \to \infty} f(1/i)$ for every $f \in C([0, 1])$). Yet, for any n, $\prod_{i < n} (-1/i) \in \cap_i \ker \lambda_i \setminus \ker \delta_0$, hence $\delta_0 \notin \text{ran}[\lambda_i : i \in \mathbb{N}]$.

I.30 $'\Rightarrow'$: By (23)Proposition, V is 1-1, as is A since then also $A' = AV'$ is minimal, therefore A^t is onto.

$'\Leftarrow'$: Let $n := \#V$. Since A^t is onto, $\text{ran} A = V(\mathbb{F}^n) = \text{ran} V$, and, since V is 1-1, V is a basis for $V = \text{ran} A$, hence $A = VA^t$ is minimal, by (23)Proposition.

I.31 Let Λ be a basis for L, hence $L^\perp = \ker \Lambda^t$ and, by (31)Lemma, $\text{ran} \Lambda = \perp \ker \Lambda^t$, i.e., $\perp(L^\perp) = L$. H.P.(29) gives example with $\perp(L^\perp)$ much greater than L.

©2002 Carl de Boor