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CS717 Spring 06

Prof. Amos Ron

Comments on Assignment #11

Problem 1. Let Φ := (φj)
∞
j=1 be a subset of a Hilbert space X, and let Ψ = (ψj)

∞
j=1 be a

complete orthonormal basis for X (an Hs which has a complete orthonormal basis is called
separable.) Consider the following two properties of Φ:

Property 1. There exists a map A ∈ bL(X) which maps X 1-1 onto itself, and maps
Ψ 1-1 onto Φ: φj = Aψj, j = 1, 2, . . ..

Property 2. The map

T ∗ := T ∗
Φ : X → ℓ2(Φ) : x 7→ (〈x, φ〉)φ∈Φ

is well-defined, 1-1 and onto (and hence invertible by the OMT). In particular, there exist
two positive constants C1, C2 such that

C1‖x‖ ≤ ‖T ∗x‖ℓ2 ≤ C2‖x‖, x ∈ X.

(a) Prove that Property 1 implies Property 2. (The two properties are actually equiv-
alent. Each defines the notion of a Riesz basis).

Proof: Property 1 implies Property 2: A is bounded 1-1. Since it is onto,
it has a closed, hence complete, range. Therefore, it is boundedly invertible, by virtue of
the OMT. This implies that the dual map A∗ is also bounded, 1-1, onto and boundedly
invertible. Now, 〈x,Aψ〉 = 〈A∗x, ψ〉, and hence T ∗

Φ = T ∗
ΨA

∗. Since Ψ is o.n., T ∗
Ψ is

bounded, boundedly invertible, 1-1 and onto. Consequently, T ∗
Φ has all these requisite

properties, too.

(b) Prove also that, given a Riesz basis Φ (defined by Property 1), there exists another

Riesz basis Φ̃ = (φ̃j)
∞
j=1 such that, for every x ∈ X, the series

∞∑

j=1

〈x, φj〉 φ̃j

converges to x.

Proof: Define: φ̃j := (A∗)−1ψj , ψj ∈ Ψ. Now, for every x ∈ X ,

x = (A∗)−1(A∗x) = A∗−1(
∑

ψ∈Ψ

〈A∗x, ψ〉ψ) = (
∑

ψ∈Ψ

〈x,Aψ〉A∗−1ψ).

Here, we expanded A∗x in the o.n. Ψ (2nd equality), and used the convergence of the
summation in X and the continuity of A∗−1 (3rd equality).

Φ̃ is Riesz, since A∗−1 has all the requisite properties that are stipulated in Property
1.
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Note: the order of the basis elements in a Riesz basis is immaterial. The convergence

is valid regardless of any ordering. This is in stark contrast with the weaker notion of a

Schauder basis.

Problem 2. Let X, Y be two Hilbert spaces. Recall that a map A ∈ L(X, Y ) is called
unitary if ‖Ax‖ = ‖x‖, for every x ∈ X.

(a) Give a non-constructive proof that a unitary map is left invertible, i.e., that there
exists C ∈ bL(Y,X) such that CA = 1. Do this part by showing first that A is 1-1 and has
closed range.

Proof: If A has indeed, closed range Z, then the range Z is Hilbert, too. If A is
also 1-1 then the OMT guarantees the boundedness of A−1 ∈ L(Z,X). Thus, we only need
to show that A is 1-1 and has a closed range. The fact that A is 1-1 is trivial. The closed
range is also quite simple: If (Axn)n converges in Y , then it is Cauchy. Since A is unitary
(xn)n is Cauchy. Since X is Hilbert, (xn)n converges, say to x. Since A is continuous,
(Axn)n converges to Ax, hence ranA is closed.

(b) Give a constructive proof that a unitary map is invertible by showing that A∗A = 1.
Hint: use the definition of A∗ in ips: A∗y in the linear functional in X∗ = X that satisfies

〈x,A∗y〉 := 〈Ax, y〉, x ∈ X.

Then prove that 〈(1 − A∗A)x, x〉 = 0, for every x ∈ X. Then try to conclude that 〈(1 −
A∗A)x, x′〉 = 0, for every x.x′ ∈ X.

Proof: 〈(1 − A∗A)x, x〉 = 〈x, x〉 − 〈Ax,Ax〉 = 0, since A is unitary. Now, let
x, y be arbitrary, C := 1 − A∗A. First, we have C∗ = C, since 〈A∗Ax, y〉 = 〈Ax,Ay〉 =
〈x,A∗Ay〉 = 〈(A∗A)∗x, y〉. Then

0 = 〈C(x+ y), x+ y〉 = 〈Cx, x〉 + 〈Cy, y〉+ 〈Cx, y〉 + 〈Cy, x〉.
The first two summands equal 0, and since 〈Cy, x〉 = 〈y, C∗x〉 = 〈y, Cx〉, we conclude that
Re〈Cx, y〉 = 0. Choosing y := Cx, shows that Cx = 0, hence C = 0, hence 1 = A∗A, as
claimed.

Problem 3. Let A be a unitary map as in Problem 2.
(a) Show that AA∗ is the orthogonal projector of Y onto ranA. From that, derive a

necessary and sufficient condition for AA∗ to the identity.
Proof: From Problem 2, A∗A = 1, hence (AA∗)(AA∗) = A(A∗A)A∗ = AA∗.

Thus, C := AA∗ is a projector. As in Problem 2, C∗ = C. To prove that C is orthogonal,
we need to prove that kerC ⊥ ranC. This is true since, if y ∈ kerC, then

〈Cx, y〉 = 〈x, Cy〉 = 0.

To prove that ranC = ranA it is sufficient to show that kerC = kerA∗. Obviously,
kerC ⊃ kerA∗. Now, if y ∈ kerC, then

0 = 〈y, Cy〉 = 〈A∗y, A∗y〉,
hence A∗y = 0.

Now, AA∗ = 1 iff the projector in onto the entire space. Since the range of the
projector is ranA the condition we need is ranA = Y .
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(b) Recall that a set Φ = (φj)
∞
j=1 of an Hs is a tight frame if the map

T ∗ : X → ℓ2(Φ) : x 7→ (〈x, φ〉)φ∈Φ

is unitary. Show that for x ∈ X the sequence T ∗x has minimal norm among all sequences
a ∈ ℓ2(Φ) that satisfy

x =
∑

φ∈Φ

a(φ)φ. (1)

Hint: Take A := T ∗ in (a), and compute explicitly A∗. Then use the result in (a). Your
proof should show that the sum in (1) converges in X regardless of the order of the elements
in Φ.

Proof: With A := T ∗, we know that A is unitary. Fix f ∈ Φ and define δ ∈ ℓ2(Φ)
to be the sequence that assumes the value 1 at f and 0 elsewhere. Then, for x ∈ X ,

〈A∗δ, x〉 = 〈δ, Ax〉 = 〈f, x〉.

This shows that A∗δ = f , hence, by linearity, that

A∗a =
∑

φ∈Φ

a(φ)φ.

Now, if x = A∗a for some x ∈ X and a ∈ ℓ2(Φ), then, by (a), Ax = (AA∗)a is the
orthogonal projection of a on ranA, hence ‖Ax‖ ≤ ‖a‖.

Problem 4. Recall that a compactly supported w ∈ L2(IR) has m vanishing moments if

∫

IR

w(t)p(t) dt = 0,

for every polynomial p ∈ Πm−1. Recall that we proved in class that if suppw ⊂ [A,B], and
if f ∈ C(m)([A,B]), then

|〈f, w〉| ≤ 1

m!
‖Dmf‖L∞([A,B])‖w‖(B − A)m+1/2.

Now, assume that f ∈ C(m)(IR), and, in addition, supp f ⊂ [0, 1]. Assume also that
suppw = [−A,A] for some integer A > 0, that ‖w‖ = 1, and that w is bounded (and that,
as before, w has m vanishing moments). Recall that, for j, k ∈ ZZ, wj,k is defined by

wj,k : t 7→ 2j/2w(2jt− k).

For every fixed j ∈ ZZ, provide an estimate on the ℓ2(ZZ)-norm of the sequence

k 7→ 〈f, wj,k〉.
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I.e., estimate (
∑
k∈ZZ |〈f, wj,k〉|2)1/2. Hint: consider separately the case of j < 0 and the

case j ≥ 0.
Proof: For j ≥ 0, the support of wj,k intersect [0, 1] only if −A < k < 2j+A. Also,

‖wj,k‖ = ‖w‖ = 1. The estimate above implies that, with C :=
‖Dmf‖L∞(IR)

m!
(2A)

2m+1
,

A2
j :=

∞∑

k=−∞

|〈f, wj,k〉|2 ≤
2j+A−1∑

k=−A+1

‖Dmf‖L∞(IR)

m!

(
2A

2j

)2m+1

= C (2j + 2A− 1) 2−(2m+1)j.

For j ≥ log2(A). we can estimate

Aj ≤ 2
√
C2−mj .

So, while the number of non-zero entries grows exponentially with j, the total “energy”
Aj decays exponentially with j!

For j < 0, there are 2A values of k for which suppwj,k overlaps with [0, 1]. We can
estimate 〈wj,k, f〉 for each such k by ‖wj,k‖L∞‖f‖L1([0,1]). Setting

K := ‖w‖L∞‖f‖L1([0,1]),

we know that K is finite, since w is bounded. We also know that ‖wj,k‖L∞ = 2j/2‖w‖.
The final bound in this case is then

Aj ≤
√

2AK2j/2.

This also goes to zero exponentially fast (as j → −∞), but not as nearly as fast as the
other case.

Bonus: Let’s see that the wavelet representation of f is sparse. For n > 0, let’s try
to estimate the number N(n) of wavelet coefficients 〈f, wj,k〉 whose modulus is ≥ 2−n. We
expect this number to grow exponentially with n, i.e., to be behave like const2nα. We are

interested in finding the parameter α, which can be fetched by computing lim sup
log2(N(n))

n .
The limsup above does not depend on A, C and K so, for convenience, we chose K = C = 1
and A = 1/2.

For j ≥ 0, |〈wj,k, f〉| ≤ 2−(m+.5)j. Hence, if j > n/(m+ .5), all the wavelet coefficients
are too small. The total number of wavelet coefficients 〈wj,k, f〉, j ≥ 0, that need to
be counted is about 2n/(m+.5) (why?). For j < 0, the wavelet coefficients fall below the
threshold once j < −2n. The total number here is about 2n (should be 2A × 2n, but we
assume 2A = 1). This number is negligible compared to the first one. So, α = 1/(m+ .5)
here. Everything depends on the vanishing moments (and the smoothness of f)!
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