II.31 if \(x \) has no Cauchy subsequence, then all Cauchy sequences in \(X := \{ x_n : n \in \mathbb{N} \} \) converge (indeed, if \(y : \mathbb{N} \to X : n \mapsto y_n \) is Cauchy, then, with \(m : \mathbb{N} \to \mathbb{N} : n \mapsto \min \{ r : y_n = x_r \} \), we cannot have \(\sup_n m(n) = \infty \) since then there would be a strictly increasing \(p : \mathbb{N} \to \mathbb{N} \) so that \(m \circ p \) is strictly increasing (e.g., for all \(n \) choose \(p(n+1) \) to be the smallest \(r \) for which \(m(r) > p(n) \)), hence \(n \mapsto y_{p(n)} = x_{m(p(n))} \) would be a subsequence of both \(y \) and \(x \), hence both a Cauchy sequence and not a Cauchy sequence; thus \(m \) is bounded, therefore \(\text{ran} \ y \) is finite, hence the nonincreasing sequence \(n \mapsto \text{diam} \ y_{\geq n} \) can have at most finitely many jumps, and, as it converges to zero, it must be identically zero from some point on, i.e., \(y \) must be eventually constant, hence converges trivially), i.e., \(X \) is complete, hence compact, hence \((x_n) \) has convergent subsequences after all.

The standard proof: Construct that Cauchy subsequence as follows: Since \(X \) is totally bounded, it can be covered by finitely many balls of radius \(r \), whatever \(r > 0 \) might be, hence, any subsequence of it, since it has \(\text{infinitely} \) many entries, has a subsequence that lies entirely in some ball of radius \(r \). Apply this as follows: With \(x^0 \) the original sequence, pick, for \(k = 1, 2, 3, \ldots \), a strictly increasing \(p^k : \mathbb{N} \to \mathbb{N} \) so that \(x^{n_k} = x_{p^k(n)} \) has all its terms in a ball of radius \(1/k \). Then \(n \mapsto x^n = x_{p^n(p^{n-1}(\ldots p^1(n))\ldots)} \) is a subsequence of \(x \) with \(\text{diam} \ y_{\geq n} \leq 2/n \) for all \(n \), hence \(y \) is Cauchy.

III.4 (i) \(x \mapsto d(x, Y) \) is nonnegative. (ii) \(d(0x, Y) = d(0, Y) = 0 = 0d(x, Y) \) since \(0 \in Y \); also, for \(\alpha \neq 0 \), \(Y/\alpha = Y \), hence \(d(\alpha x, Y) = d(\alpha x, \alpha Y)/\alpha = d(\alpha x, \alpha Y) = |\alpha|d(x, Y) \), by scale-invariance of norm metric, thus \(x \mapsto d(x, Y) \) is positive homogeneous. (iii) \(d(x + z, Y) = \inf_{y,y' \in Y} \| x + z - y - y' \| \leq \inf_{y,y' \in Y} \| x - y \| + \| z - y' \| = \inf_{y \in Y} \| x - y \| + \inf_{y' \in Y} \| z - y' \| = d(x, Y) + d(z, Y) \) (the second-last equality since \(y, y' \) range independently over \(Y \)), hence \(x \mapsto d(x, Y) \) is subadditive.

By H.P.1, \(X/Y \) is nls with respect to \(\langle x \rangle \mapsto d(x, Y) \) in case \(Y = \ker d(\cdot, Y) \), i.e., in case \(Y = Y^- \). Conversely, if \(\langle x \rangle \mapsto d(x, Y) \) is a norm, then, in particular, \(x \in Y^- \) implies \(d(x, Y) = 0 \) implies \(\| \langle x \rangle \| = 0 \) implies \(\langle x \rangle = 0 \), i.e., \(x \in Y \), i.e., \(Y \) is closed.

III.10 If \(A \in bL(X, Y) \) is bounded below and onto, then it is 1-1 and onto, hence invertible, and, as mentioned in the notes, the assumed lower bound provides a bound for \(A^{-1} \), i.e., \(A^{-1} \) is bounded, hence continuous, hence, by (II.7), its inverse, i.e., \(A \), carries open sets to open sets.

III.11 Since \(Y = \text{tar} \ A \) is ms, sufficient to prove that \(\text{ran} \ A \) is sequentially closed, i.e., that \(y = \lim_{n \to \infty} Ax_n \) implies that \(y \in \text{ran} \ A \). For this, since \(c := \inf_{x} \| Ax \|/\| x \| > 0 \), have \(\text{diam}(x_{>n}) \leq (1/c) \text{diam}(Ax_{>n}) \to 0 \) as \(n \to \infty \) since \((Ax_n) \), being convergent, is Cauchy. Since \(X \) is complete, this implies that \(x := \lim_{n \to \infty} x_n \) is a well-defined element of \(X \), and, by the continuity of \(A \), \(Ax = \lim_{n \to \infty} Ax_n = y \). In particular, \(y \in \text{ran} \ A \).

III.13 Since \(Y \) is closed lss of \(X \), H.P.(4) states that \(X/Y \) is nls with respect to the norm \(\| \langle x \rangle \| := d(x, Y) \), and, with respect to this norm, the quotient map \(\langle \cdot \rangle : X \to X/Y \) is continuous (since it is linear and bounded, in fact \(\| \langle \cdot \rangle \| \leq 1 \)). Since \(Y + Z \) is the inverse
image, under this continuous map, of the set \(\langle (Z) \rangle \), and this set is a finite-dimensional lss of \(X/Y = \text{tar} \langle \rangle \), hence closed (by H.P. (12)), \(Y + Z \) itself is closed.

III.17 \(A \neq 0 \) implies that \(X \neq \text{ker} A \). Hence \(\| A \| = \sup_{x \in X} \frac{\| Ax \|}{\| x \|} = \sup_{x \in X} \frac{\| A(x-y) \|}{\| x-y \|} = \sup_{x \in X} \frac{\| A \|}{\inf_{y \in \text{ker} A} \| x-y \|} = \sup_{x \in X} \frac{\| A \|}{d(x, \text{ker} A)} = \sup_{x \in X} \frac{\| A \|}{\| x \|} = \| A \|.

III.20 Since \(\lim_{n \to \infty} A_n = A \), there is \(m \) so that \(A_{m-1} \) is in \(B_r(A) \) with \(r := 1/\| A^{-1} \| \), hence \(A_n \) is boundedly invertible for all \(n > m \), by (17)Proposition, with \(A_n^{-1} = (A^{-1} A_n)^{-1} A^{-1} \), and \(\| (A^{-1} A_n)^{-1} \| \leq 1/(1 - \| A^{-1} (A - A_n) \|) \to 1 \) as \(n \to \infty \), hence \(\lim \sup_n \| A_n^{-1} \| \leq \| A^{-1} \| \). In particular, \(A_n^{-1} \) is bounded uniformly in \(n \) for large \(n \).

\(A - Q^{-1} = A^{-1} (Q - A) Q^{-1} \) (multiply out), hence \(\| A - Q \| \to 0 \) implies \(\| Q^{-1} \| \) is eventually bounded, and therefore also \(\| A - Q^{-1} \| \to 0 \).

IV.1 If \(P \) denotes the map in question, then \(P = [y/\lambda y] \circ \lambda \), while \(\lambda [y/\lambda y] = 1 \). Hence \(P \) is the linear projector with \(\text{ran} P = \text{ran} [y] \) and \(\text{ran} P' = \text{ran} [\lambda] \), i.e., its interpolation functionals are of the form \(\alpha \lambda \) for \(\alpha \in \mathbb{F} \).

IV.2 The inequality is a consequence of the definition of \(\| \lambda \| \).

\(H(\lambda, \lambda k) = k + \ker \lambda \), and \(B_r(x) = B_r(x-k) \), and, for any two subsets \(M \) and \(N \) of \(X \), \(M \cap (N+k) = k + (M-k) \cap N \). Therefore, with \(y := x-k \), the given condition is equivalent to

(i) \(B_{\| y \|} (y) \cap \ker \lambda \neq \{ \} = B_{\| y \|} (y) \cap \ker \lambda \).

This condition implies that, for some \(u \in \ker \lambda \), \(\| y-u \| = \| y \| \) while, for all \(z \in \ker \lambda \), \(\| y-z \| \geq \| y \| \), hence \(\inf_{z \in \ker \lambda} \| y-z \| = \| y \| \), therefore (since \(0 \in \ker \lambda \))

(ii) \(0 \) is a ba to \(y \) from \(\ker \lambda \).

This, in turn, implies (i) (since it says that \(0 \in B_{\| y \|} (y) \cap \ker \lambda \) and that \(\| y-z \| \geq \| y \| \) for all \(z \in \ker \lambda \)). Finally, (ii) is equivalent to \(|\lambda(y)| = \| \lambda \| \| y \| \), by (12)Corollary.

IV.6 \(|\sum_{u \in U} a(u) f(u)\| \leq \sum_{u \in U} |a(u)| \| f(u)\| \leq \| a \|_1 \| f \|_\infty \) hence \(\| \sum_{u \in U} a(u) f(u) \| \leq \| a \|_1 \) regardless of whether or not \(U \) is finite.

For finite \(U \), get equality by choosing \(f = \sum_{u \in U} \text{signum} \ a(u) l_u \), with \(l_p := t \mapsto (1-d(t,p)/s)_+ \) (which is continuous as the composition of continuous maps \(t \mapsto d(t,p), t \mapsto 1-t/s, t \mapsto t_+ \) for positive \(s \), with \(s \) chosen so that \(0 < s < \min\{d(u,w)/2 : u, w \in U, w \neq u \} \) (that minimum is indeed positive since \(U \) is finite), therefore \(\| f \|_\infty = 1 \).

For nonfinite \(U \), \(\sum_{u \in U} a(u) f(u) \) is the norm-limit of \(\sum_{u \in W} a(u) f(u) \) with \(W \) finite subsets of \(U \) (since \(\| a \|_1 < \infty \)), hence its norm is still \(\| a \|_1 \).

©2002 Carl de Boor