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X. Linearization and Newton’s Method

** linearization **

X, Y nls’s, f:GC X =Y. Giveny €Y, find z € G s.t. fz =1y. Since there is no
assumption about f being linear, we might as well assume that y = 0.

Since the only equations we can solve numerically are linear equations, the solution
of the equation fz = 0 is found by solving (the first few in) a sequence of linear equations.
The typical step is this: With zp a guess for z, pick a linear map A = A, so that

fx e~ fzo+ Az — 2p) for z ~ 2z

and solve the linear equation
fzo+ Alx —2z9) =0

instead. Its solution, z1, may be closer to z than zj is, and further improvement is possible
by repetition of this process. This leads to the iteration

Znt+1 = L'zp, n=20,1,2,...
with T the (usually nonlinear) map given by the rule
Tr:=x— (A) ' fa.

The choice of A, for given z is, of course, crucial for the convergence of the sequence (z,)
of iterates to z.

There is, in effect, only one technique for proving such convergence, and that is by
contraction, i.e., by showing that 7" is a proper contraction on some nbhd of z (see (I1.21)).
We'll discuss variants of that argument below.

*¥* differentiation **

The best known scheme and model for all others is to choose A, in such a way that
the affine function
x— fu+ Ay(z —u)

touches f at u, i.e., so that
(1) Ifz = (fu+ Au(z —w) || = o(l|lz — ul)).

Here, x is meant to vary over some open nbhd of u. Note that, if also the affine function
fu+ C(- — u) touches f at u, then

I(C = Au)(z = u)| = o[l — ul)),

hence ||C' — A, || = 0. This shows that A, is uniquely defined by the touching condition (1).
There is, of course, no guarantee that such a linear map A, exists. But, if fu+ C(- — u)
touches f at u for some C' € bL(X,Y), then we write

C=Df(u)

and call this map the (Fréchet-)derivative of f at .
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164 X. Linearization and Newton’s Method

** examples **

If f is a bounded affine map, ie., f : z +— y + Cx for some C € bL(X,Y), then
Df(u) =C for all u € X.

If X =R", Y = R", then Df(u) € R™*", ie., Df(u) is a matrix, called the
Jacobian of f at u. If f € C)(G,IR™) for some open domain G, then Df(u) exists for
all v € G and depends continuously on u there.

In particular, if Y = IR, i.e., if f is a real-valued function of n variables, then D f(u)
(if it exists) is a linear functional, called the gradient of f at uw and often denoted by
Vf(u). Ifhe X and g: IR — IR :t+— f(u+th), then ¢’(0) = Vf(u)h.

More generally, if D f(u) exists, then

(f(u+th) = fu)/t = (f(u+th) — fu)/t — Df(u)h+Df(u)h,

Iho(t) /1
hence
g'(0) = D f(u)h,
with

g:R—=Y :t— f(u+th).

But ¢'(0) may well exist even though D f(u) does not. This leads to the weaker notion of
the directional (or, Gateaux) derivative

Dif(u) = lim (f(u-+ th) — fu)/t
and this equals ¢’(0+). f is Gateaux-differentiable at wu if Dy, f(u) exists for all h € X.
In any case, h — Dy, f(u) is positive homogeneous, and f — Dy, f(u) is linear.

If D f(u) exists, then, as just remarked, Dy, f(u) = D f(u)h. In particular, h — Dy, f(u)
is then a bounded linear map. This makes it easy to come up with maps f that have all
directional derivatives at a point, yet fail to be Fréchet-differentiable there. For example,
the map f : X — R : © — [a]| has Dyf(0) = [/l all & (since (0 + ¢h] — 0] /¢ = [In]);
but the resulting map h — Dy, f(0) = ||h]| obviously is not linear. On the other hand, if
h +— Dy, f(u) is a bounded linear map, then it provides the only possible candidate for the
Fréchet-derivative, and so assists in the latter’s construction.

For example, consider the map

f:C™a.. b - Cla..b]:x— (t — F(t,z(t),...,(D™z)(t)))

with F € CW(IR™*?). Then

f(u+ sh) — fu(t) _ F(t,u(t) + sh(t),...,D™u(t) + sD™h(t)) — F(t,u(t),..., D™u(t))
— (sh(t)DaF + - -+ sD"™h(t) Dy o F + O(s|[hl|lwpr(s|h]]))) /s
m—+2

— Z D;F(t,u(t),...,D™u(t)) D’ "2h(t) + o(s|h|?).
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Linearization 165

Hence, (f(u + sh) — fu)/s approaches

m—+2

Dpf(u) =Y DjF(u(:),...,D™u(-)) D' ?h,

J=2

as s — 0, and this convergence is uniform in ||h||. Also, Dy, f(u) is linear in h, and bounded
with respect to ||h||. This implies that

Df(u)= > D;jF(-u(-),...,D™u(-)) D’ 2,

a linear m-th order OD operator.

** basic rules for Fréchet and Gateaux derivative **
The Fréchet-derivative shares all the basic properties of a derivative familiar from
elementary Calculus. In particular, D f(u) is linear in f and satisfies the chain rule:

D(gf)(u) = Dg(fu)Df(u).

Further, if D f(u) exists, then f is continuous at u, since

[fz = full < |fz = fu—Df(u)(x —u)| +[|Df(u)(z —u)l| = Oz = ul).

ollz—ull)

This shows that f is even Lipschitz continuous, with (local) Lipschitz constant ~ ||D f(u)]|.

H.P.(1) Prove: (i) (If f is Gateaux-differentiable at w, then) h +— Dy, f(u) is positive homogeneous.
(ii) f — Dpf(u) is linear (as a map on the linear space of all maps on some nls X into the same nls
Y and Gateaux-differentiable at w). (iii) chainrule: (If f is Fréchet-differentiable at w and g is Fréchet-
differentiable at f(u), then) D(g o f)(u) = Dg(fu)Df(u). (iv) product rule: (If f and g are scalar-valued
and Gateaux-differentiable at w and fg: u — f(u)g(u), then) Dy (fg)(u) = Dy f(u)g(u) + f(u)Dpg(u).

** meanvalue estimates **

On the other hand, already for functions into IR?, we no longer have the customary
mean value theorem, i.e., fy — fx usually does not equal Df(£)(y — x) no matter how we
choose ¢ € [z ..y]. For example, for f: IR — R* : t — (t2,13), we get Df(t) = [2t 3t?],

hence (1,1) = f1 — f0 . Df(t)(1 — 0) would imply the contradictory statements ¢t = 1/2
and t = (1/3)1/2,
Nevertheless, one obtains even for f: X — Y with X,Y nls’s, the usual

(2) Meanvalue Estimate.

(3) Ifz = fyll <sup [|Df([z . yDllllz -y

with the aid of HB: By (IV.27)HB, one can find A € Sy« so that
Ify = fall = A(fy = fx) = g(1) — g(0) = Dg(6), for some 6 € [0.. 1],
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166 X. Linearization and Newton’s Method

with g: [0..1] = IR : ¢t +— Af(z + t(y — x)), hence
Dg(0) = ADf(z +0(y — x))(y — =) < [IM[[|1Df (2 + 0@y — 2))llly — =,

and this proves (3) since || A|| = 1.
If you are comfortable with vector-valued (hence with map-valued) integration, then
(3) can be obtained directly by

fy— fo= / Df(z +tly —2))dt (y — z) < / |Df( +t(y — o)) dt |y — ]

< sup [|Df([z ..yl ly — x|

H.P.(2) Let A be a boundedly invertible Im from the nls X to the nls Y, let K be a convex subset of X,
and let f : K — Y be Fréchet differentiable. Prove that the map (A— f): K - Y : 2z — Ax — f(x) is 1-1 in

case Sup, ¢ g |A=IDf(2)| < 1.
We can improve this estimate in case D f has some smoothness, as follows.

(4) Lemma. Ifu+— D f(u) is continuous on some convex set N with modulus of continuity
w, 1.e.,

Hy,ze N} [[Df(y) = Df(2)ll < w(lly — =),
then

1
V{z,y € N} Ef(z,y) = fy— (fo+ Df(2)(y — 2)) S/O w(tlly — ) dt [ly — =],
In particular,
K
1By (@ )l < 5 lly — =]

in case D f is Lipschitz continuous on N with constant K.

Proof: Let A be a Ifl of norm 1 that takes on its norm on the vector E¢(x,y), and
consider again the function g : [0..1] =Y :t — Af(z +t(y — z)). Now

1
0

1
Ay — Mz =g(1) - g(0) = / Dy(t)dt = / ADf(x + ty — 2))(y — x) dt,

hence

1Es(z,9)] = A(fy — (fz + Df(2)(y — z))

- / MDS (x + tly — ©)) — Df () }(y — o) dt

1 1
< / IMlw(tly — )y — = dt = / wtly —al)dt lly —all. O

This argument, too, can be simplified if you are willing to use map-valued integration, as

follows:
1

fy—fz—Df(x)(y—a)= [ (Df(x+tly—=x))—Df(z))dt(y—z)

1

< | wos(tlly —z]) dt ly — =[],

S— S—
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Newton’s method 167

Newton’s method

Assume that the map f : X — Y (for which we seek z € X s.t. fz = 0) is contin-
uously Fréchet-differentiable at z, i.e., f is Fréchet-differentiable in some nbhd N of z
and ||[(Df)(x) = (Df)(2)|| < wps(|]Jz — z||) for some modulus of continuity wpys. Then, for
x € N, we compute a (better?) approximation y to z by dropping all higher order terms
from the expansion

0= fz= fx+ Df(x)(z —x) + higher order terms,
i.e., by solving
(5) 0=fz+Df(z)(? - =)
thus getting the (improved?) approximation
y=x+h=x—Df(x)""fa.

Then

y—z=a—z-Df(a)" (f— Jz) = D) (Df(2) - / Df(z+ (o~ 2)s)ds) (z - 2).

But

1 1
Df(x) - / Df(z + (x — 2)s) ds = / (Df(x) — Df(= + (& — 2)s)) ds < 2wpy ([l — 2]).
0 0
Hence, altogether,
ly — 2|l < [IDf(z)~ | 2wp (|l — 2Dz — 2]

This assumes that D f(x) is boundedly invertible, as it would have to be for any sufficiently
small neighborhood N’ of z since we assume that D f is continuous at z, provided we assume
that D f(z) is boundedly invertible. But, in that case, we can choose N’ C N small enough
so that also sup,c - [|Df(x) 7| =: | Df(N')7|| < co. Therefore, for z € N, the solution
y of the linear system (5) satisfies

ly = 2l < IDF(N)) " 2wps(lz = 2Dl — 2] == 0.

r—z

This implies the existence of r > 0 so that the Newton map
T:zw—2—Df(x) ' fx
carries B,.(z) into itself, and
Hg <1} Wz € B(2)} ||z — Tl < qflz — x|
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168 X. Linearization and Newton’s Method

Hence, the Newton iteration, started “sufficiently close to” z (i.e., in B,(z)), stays in B,.(z)
and converges at least linearly to z.

Note that continuity of x — D f(x) at z is only used to conclude the uniform existence
of Df(x)~! for all x near z. This could have been concluded from the continuity at any
nearby point. In other words, continuity of x — D f(x) at x = z implies that f maps some
nbhd of z 1-1 onto a nbhd of 0. In fact, the same is then true for any ¢ sufficiently close
to f in the sense that

lgz = fzll + [[Dg(z) — Df(x)| <1 Vz e N".

Under the assumption that f is continuously Fréchet-differentiable at the solution z,
the more general iteration function

Tx =x— Al fx

also generates a sequence converging to z, as long as A, stays close enough to Df(z).
Precisely, with y := T'x, we have

0=fr+ A.(y—x)

while (with E¢(z,2) := f(2) — f(z) — Df(x)(z — =) as in (4)Lemma)

0=fz=foe+ A (z—x)+ <Df(x) —Am)(z —x) + Ef(x, 2),

therefore

0=A,(z—y) + (Df(:c) - Ax)(z —2) + By(z,2).
Consequently

z—y=—-A" ((Df(x) - Am>(z — )+ Ef(z,2))
or

lz = yll < IAZH (1D (2) — Aol + wps (2 — 2) 12 — =|l.

Here, the expression multiplying ||z —z|| can be made small on some nontrivial ball around

z by ensuring that that ball is small enough so that D f(x) is close to Df(z), as long as
also A, is chosen close enough to Df(z).

The well-known “quadratic convergence”, though, is obtained only if A, —
Df(z), i.e., essentially only for Newton’s method, and this needs further smoothness as-
sumptions. E.g., for Newton’s method, the assumption that = — Df(x) is Lipschitz
continuous in a nbhd of z is sufficient, since the above combined with (4)Lemma gives the
following

(6) Proposition. If z+— D f(x) is Lipschitz continuous in some convex neighborhood N
of z, with constant K, then ||z — Tz| < ||[Df(N)"(K/2)||z — x|

In practice, though, it is tough to come up with estimates for w and/or | Df(N)7}|
and/or K since they are likely to hold only locally, near the solution, and we don’t know
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Newton’s method 169

the solution in the first place. The real value of the analysis is to demonstrate that
Newton’s method converges quadratically. This is a condition that can be checked for
the Newton iterates computed. In fact, it constitutes a very important check. For, the
Fréchet derivative is not easy to get right (by hand), and any mistake in the D f(x) is sure
to kill the quadratic convergence, leaving you, usually, with linear convergence. Hence,
once you detect linear convergence, it is time to check your formula or program for D f(z).
This leaves open the question of how to get close, i.e., how to obtain a ‘sufficiently
close’ initial guess. In a way, it is reasonable for this to be a problem since there may be
many solutions, hence by picking an initial guess we are picking a particular solution.

** a posteriori error estimates **

This finishes the standard local convergence theory for Newton’s method and its vari-
ants. There is an elaborate theory, associated with the name of Kantorovich, to allow
the conclusion of convergence from numerical evidence computed in the first Newton step.
This includes a proof that the given map f has a zero near the initial guess. The idea is a
generalization of the well known univariate observation that a continuously differentiable
f for which Tx := 2 — D f(x)~! fz lies close to 2 must have a zero near z in case f doesn’t
curve too much, e.g., if D f is Lipschitz continuous with a sufficiently small constant K.

** infinite-dim. problems also need discretization **

When the underlying Bs X is infinite-dimensional, then linearization (i.e., Newton’s
method and its variants) is only half the battle since the linear systems to be solved will in
general be infinite-dimensional. Discretization, i.e., reduction to an approximate linear
problem in finitely many unknowns, needs to be used. Of course, one could also discretize
the original problem and thereby obtain right away a finite-dimensional problem, but now
that problem is nonlinear in general, hence must be linearized, e.g., by Newton’s method.
When the discretization is done by projection, then it doesn’t matter in which order we
do this: The Newton equation

Df(x)h = —fx

for the correction A to the current guess x, when projected by P becomes
P(Df(z)h) = P(=fx)

with A to be found in some finite-dimensional F', assumed from now on to be ran P for
simplicity, while the Newton equation for the projected equation Pfx =0 for xz € F' is

D(Pf)(x)h = —Pfz,

with h again sought in F'. But, for any bounded lm P, D(Pf)(z) = PD f(x) (as you should
verify!). It is usually easier, though, to carry out the details by linearizing (symbolically,
e.g., using Maple) f itself, and then solving the resulting linear problem by projection. A
proof of convergence of such a double iteration requires some uniformity of f. Typically,
the problem of solving fx = 0 for x can be rewritten as a fixed point equation

T =gz,
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170 X. Linearization and Newton’s Method

and, in some nbhd N of the sought-for solution z, g is Fréchet-differentiable, with Dg(x)
compact uniformly for x € N. Further,
Eg(z,y) := gy — gz — Dg(z)(y — z) < w(lly — z[Dlly — z|

for some modulus of continuity w that depends only on the nbhd N. Finally, 1 — Dg(z)
should be bounded and bounded below uniformly for x € N. If also P := P,, = 1, then,
1 — PDg(z) is boundedly invertible for all sufficiently large n, hence the Newton iteration
step

y=Tz:=z— (1 - PDg(x)) ' (x — Pgx)

can be carried out for any x sufficiently close to z and the resulting approximation y
satisfies
lzp =yl < const w(|[zp — z[))]|zp — |

with zp the unique solution in N of the projected equation x = Pgz.
All of this you should (and could by now) verify!

** example: solving a second-order non-linear ode by collocation **
Consider the second-order non-linear ode

D?*z=12/2-2(D2)* on[0..1]; 2(0)*=1, z(1)=1.5

to be solved for some z € X := C?[0..1]. This means that we are trying to find a zero
of the map

(7) F:CP0..1]-RxC[0..1] xR:z— (2(0)>—1,gz,z(1) — 1.5),

with
gr = D*x +2(Dx)? — x/2.

We try to solve this problem by collocation. This means that we look for a zero of
the (non)linear map

Az (2(0)2 =1, (g2)(t2), . ., (g2)(tnr), z(1) — 1.5) € R™

in some n-dimensional Iss F' of X, hoping that, for an appropriate choice of the collocation
points to,...,t,—1 in [0.. 1], A is 1-1 on a suitable part of some such F.

From the earlier example, we read off that the Fréchet derivative of g is the linear
map

Dg(x) : h — D*h + 4(Dx)Dh — h/2,

while z +— x(t) is linear, hence its own Fréchet derivative. Therefore (by the chain rule),
DA(z) : h— (2z(0)h(0), ..., (Dg(z)h)(t;),...,h(1)).

Thus, with x our current guess for the solution of A? = 0 in F, Newton’s method would
provide the improved(?) guess y := = + h, with h € F solving the linear problem

(8) (DA)(z)h = —Ax.
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Now note that, in this derivation, we made no use of the fact that we are seeking a

solution in F', nor did we pay particular attention to the collocation points. In fact, for
the map f (see (7)) for which we are trying to find a zero, we have

(Df)(z) : h— (22(0)h(0), Dg(x)h, h(1)).

This means that, with x our current guess for the solution z of f? = 0, Newton’s method
would provide the improved(?) guess y := x + h, with h solving the linear problem

(Df)(@)h = —fx,
i.e., the linear second order ordinary boundary value problem
D?h +4(Dx)Dh — h/2 = —gx on [0..1], 2z(0)h(0) =1—2(0)%, h(1) = 1.5 — z(1).

If we now try to solve this ode problem by collocation at the points to,...,t,_1 with h € F,
we are back at (8), provided our current guess x is also in F.

** implicit function theorem **

There is no time to go into these theories. Instead, I bring quickly an important
application of the contraction map idea and Newton’s method, viz. the

]

Yot 0

Zo

(9) Figure. The Implicit Function Theorem
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172 X. Linearization and Newton’s Method

(10) Implicit Function Theorem. X,Y,Z Bs’s, f : X xY — Z, f(xo,y0) = 0, f
continuous on N := B, (x¢) x Bs(yo) for some r,s > 0. Further, ¥{y € Bs(yo)} f(-,y) is
Fréchet-differentiable on B,.(x(), and the resulting map (x,y) — Df(-,y)(x) is continuous
at (xo,yo). Also, A :== Df(-,y0)(xo) is boundedly invertible. Then, for some 1’ s’ > 0,
and for all y € By (yp), the equation

flz,y) =0
has exactly one solution x = x(y) in B,(xg), and the resulting map

By (yo) — X 1y 2(y)
1S continuous.

Proof: To be specific, take the norm on X x Y to be (z,y) — max{||z|, ||y||}
The equation f(z,y) = 0 is equivalent to the fixed point equation

T= T(may) =T A_lf(xay)'

Its iteration function, T'(-,y), is a strict contraction near zy and uniformly so for y near
Yo since, by assumption,

DT(-,y)(z) =1- A'Df(y)(x)

is a continuous function of (z,y) € N, and DT(+,y0)(zo) = 0. Precisely, this implies that,
for some 7’ > 0 and some q < 1, || DT'(-,y)(x)|| < ¢ on B,/ (xg,y0). Thus V{(z,y), (z',y) €

By (zo0,90)}
1T (2", y) = T(x,y)|| <sup |[DT(,y)([z.. 2Dz —=| < qllz” — 2],

by the Meanvalue estimate. This shows that T'(-,y) is a strict contraction on B, (xq)
uniformly in y € B,/(yp). It remains to show that 7'(-,y) maps some closed subset of
B,/ (x) into itself. For this, observe that

IT(2,y) — 2ol < T(x,y) = T(xo, )l + [T (x0,) = woll
< qllz = woll + (=g

for all y € By (yo) for some positive s’ < 7’ so choosable since T is continuous and
T(zo,y0) = xo. For any such y, T(-,y) is a proper contraction on B, (z¢) into B, (xq),
hence has a unique fixed point there. Call this fixed point x(y). Then

lz(y) — =)l = 1T (x(y), y) — T(x(y), 4"
< IT(x(y),y) = T(@(), ¥ + |T(=(y),y') — T(x(), )| -

<qllz(y)—z(y")|l

Therefore .
z(y) — z(y)|| < 1quT(:ﬂ(y),y) —T(z(y), )|l

which implies the continuity of y — z(y) even if we only know that T'(z(y), -) is continuous.
O
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H.P.(3) Prove the following stronger version of the Implicit Function Theorem which merely assumes the
existence of an approximate inverse for D f(-,y)(z) uniformly in (z,y): Let X,Y,Z be Bs’s, r,s > 0, f : N :=
B (x0) x Bs(yo) — Z continuous, f(zo,yo) = 0. Assume further that (i) sup{||Df(-,y)(2)| : (z,y) € N} < oo;
(ii) for some boundedly invertible A € bL(X, Z), sup{||1 — A™'Df(-,y)(=)| : (z,y) € N} < 1. Then there
exists r’, s’ > 0 and exactly one function g : B,/ (yo) — B,/ (x0), necessarily continuous, so that g(yo) = o
and f(g(y),y) = 0 for all y € B,/ (yo).

H.P.(4) Prove the following Inverse Function Theorem: If X, Y are Bs’s and f : X — Y is Fréchet-
differentiable in some nbhd of some z € X and Df(z) is boundedly invertible, then there is some nbhd N of z
that is mapped by f 1-1 onto some nbhd of f(z), and the corresponding f~! is Fréchet differentiable on f(N).

Basic subjects not covered

Details of the representation of C(T)* by functions of bounded variation.
Brouwer and Schauder fixed point theorems.

Discretization of functional equations.

Stability of difference schemes for PDEs.

In addition, there is the whole richness of nonlinear functional analysis.
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