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VIII. Compact perturbations of the identity

This is the first of several chapters in which the basic knowledge accumulated in the
preceding chapters is used for the analysis of various numerical procedures.

Projection methods

The (Rayleigh-)Ritz method consists in minimizing the quadratic functional

Φλ : x 7→ ‖x‖2
A − 2 Re λx

over a sufficiently large lss F of the ips X. The minimizer f is the representer of the linear
functional λ F with respect to the inner product 〈, 〉A := 〈·, A·〉, hence an approximation
to the solution u of the Euler equation

A? = y

associated with Φλ, in which 〈·, y〉 = λ. In fact, f is the best approximation to u from F
wrto the A-norm, hence computable by interpolation, since it solves the LIP

? ∈ F, u−? ⊥A F.

This means that the interpolation functionals are of the special form

vcA = 〈v,A·〉, v ∈ F.

Galerkin noticed that this procedure is capable of vast generalization. There is really
no reason to insist that A be positive definite, i.e., that 〈, 〉A be an inner product. We can
use this LIP even when A is just any old lm. The price we pay for this is that we cannot
be sure any more that the LIP is correct.

Further generalizations were offered by others to the point that interpolation is now
a standard approach to solving functional equations of all kinds. The idea is this: Let
A ∈ L(X,Y ). To approximate the solution u of the equation

A? = y,

pick some V ∈ L(IFn,X) and some Λ ∈ L(IFn, Y ′) and look for f ∈ F := ranV that solves

ΛtA? = Λty.

In other words, we approximate the solution u by an interpolant, i.e., by the solution to
the LIP(ranV, ran A′Λ), making use of the fact that we are given y, i.e., Au, hence can
compute (A′λ)u = (λA)u for any particular λ we care to (at least in principle), hence may
try to match that information.
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134 VIII. Compact perturbations of the identity

** examples **

(1) ODE-Example Consider the m-th order ODE

Au := Dmu −
∑
j<m

ajD
ju = y,

for which a solution u is sought in X := C(m)[a . . b] ∩ kerMt, with Mt ∈ bL(C(m−1), IRm)
the data map that specifies the m (homogeneous) side conditions needed to select a unique
solution from the m-dimensional solution set available for the ODE in C(m)[a . . b]. Then
Y = C[a . . b] is an appropriate choice. Let F be some n-dimensional lss of X.

In collocation, one chooses Λt : f 7→ f U for some n-set U in [a . . b]. In effect, the
approximation f from F is chosen so as to satisfy the ODE exactly at the points of U .

In Galerkin’s method, ran Λ consists of the lfl’s

x 7→
∫ b

a

z(t)x(t) dt, all z ∈ F.

This means that the residual y − Af is made orthogonal to F .
In the least-squares method, one uses the lfl’s

x 7→
∫ b

a

(Az)(t)x(t) dt, all z ∈ F

instead. This means that the residual is minimized (over F ) in the L2 sense.
In the moment method, one uses the linear functionals

x 7→
∫ b

a

tjx(t) dt, j = 0, . . . , n − 1,

thereby making the first n moments of the residual equal to zero. etc.

** residual reduction **
These methods are also called “residual reduction methods”, since they can be

viewed as an attempt to make the residual zero in a certain sense. Precisely, the residual
is made to vanish on certain lfl’s.

These methods are also called projection methods. This is not because they are
based on interpolation, i.e., the approximation f to u is given as f = Pu, with P the
lprojector given by F and L := ran A′Λ. Rather, they got this name since f is sought as
the solution in F of the projected equation QAf = Qy, with Q any l.projector on Y
whose interpolation functionals are ranΛ.

** analysis by perturbation from a simple case **
In each instance, one has to settle the correctness of the LIP, bound the resulting

projector in suitable norms and then leave it to Lebesgue’s Inequality and Approximation
Theory to provide a priori error bounds. Correctness and norm bounds are usually ob-
tained for a very simple instance A0 of A. The general A is treated as a perturbation of
the simple A0, under the assumption that A − A0 is “small” in some sense.
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Compact linear maps 135

In the simplest case, one tries to use A0
−1 as an approximate inverse for A. This

requires, practically speaking, (cf. (III.15)Prop.) that

‖A − A0‖ < 1/‖A0
−1‖,

hence has only limited applicability. As it turns out, it is often sufficient to assume that
A − A0 be compact, without any assumption on the norm of A − A0.

Compact linear maps

(2) Definition. K ∈ L(X,Y ) is compact (or, completely continuous, or better but
unconventional, totally bounded) := K carries bounded sets to totally bounded sets,
i.e., KB is totally bounded. I denote the collection of all compact linear maps from X to
Y by

cL(X,Y ).

In particular, a compact lm is bounded. While this definition makes sense in more
general topological spaces, we restrict attention to nls’s X,Y .

** examples **
Any bounded finite-rank lm is compact (since any bounded set in a finite dimensional

ls is totally bounded).
The (norm) limit K of any sequence (Kn) of compact lm’s is compact. Indeed, KB ⊆

(K −Kn)B + KnB, and, for r > 0, can choose n so that (K −Kn)B ⊆ Br/2 and, for that
n, can choose a finite r/2-net for KnB.

In particular, all (norm) limits of bounded finite-rank lm’s are compact, i.e., compact
maps are the only maps uniformly (i.e., norm-) approximable by finite-rank maps, hence
their importance in Numerical Analysis.
H.P.(1) Prove that, if k ∈ C(R × T ) for R, T compact in IRn and 1 ≤ p ≤ ∞, then K : Lp(T ) → C(R) :

f 7→
∫

T
k(·, t)f(t) dt is compact.

Any finite linear combination of compact maps is compact, i.e., cL(X,Y ) is a lss of
L(X,Y ). If K is compact and A is bounded, then AK and KA are compact. (In particular,
cL(X) is a (closed) two-sided ideal in bL(X).)

** compactness and convergence **
The compactness of a map is used to force convergence or improve the mode of con-

vergence: If (xn) is a bounded sequence, then, by compactness of K, (Kxn) is a totally
bounded sequence, hence (cf. H.P.(II.31)) has a Cauchy subsequence. Consequently, if Y
is complete, then some subsequence of (Kxn) converges. This fact is usually used in the
following form:

(3) Proposition (AGTASMAT). If K ∈ cL(X,Y ) with Y a Bs, and (xn) is bounded,
then, After Going To A Subsequence, May Assume That (Kxn) converges.

We also use the following consequence of the fact (cf. H.P.(V.3)) that bounded strong
convergence is uniform on totally bounded sets:
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136 VIII. Compact perturbations of the identity

(4) Proposition. K compact, (An) bounded and An
s−−→ A =⇒ AnK → AK.

H.P.(2) Give an example of K compact, (An) bounded and An
s−−→ A for which KAn fails to converge (in

norm) to KA. (Hint: Perhaps An ∈ bL(X, IR) and K = 1 will do it?)

(5) Corollary. If bL(X) contains an approximate identity, then K ∈ bL(X) is compact
iff it is the (norm) limit of finite-rank maps.

An equivalent definition of compact lm involves weak convergence (cf. Chapter V).

(6) Proposition. A compact map into a Bs carries weakly convergent sequences to norm
convergent ones, i.e., K ∈ cL(X,Y ) with Y Bs, and xn

w−−→ x =⇒ limKxn = Kx.

Proof: By (V.10)Corollary to Uniform Boundedness Principle, (xn) is bounded,
hence, AGTASMAT (i.e., by (3)), every subsequence of (Kxn) has limit points. If y is
such a limit point, i.e., y = lim Kxm(n), then ∀{µ ∈ Y ∗} µy = limµKxm(n) = µKx (since
µK ∈ X∗), hence y = Kx is the only limit point. Thus Kx = lim Kxn, by H.P.(II.25)(ii).

** K compact =⇒ dual of K compact **

(7) Proposition. K ∈ bL(X,Y ). K compact =⇒ K∗ compact.

Proof: We have to show that K∗BY ∗ = BY ∗K is totally bounded (with BY ∗ the
unit ball for Y ∗). This is equivalent to showing that (BY ∗K) B is totally bounded (in
the Bs b(B) of all bounded functions on B := unit ball in X). Since any ε-net U KB for
(BY ∗) KB provides the ε-net UK B for (BY ∗K) B , it is sufficient to show that (BY ∗) KB

is totally bounded. Since K is compact, KB is totally bounded, hence, by (II.40)Lemma
(essence of Arzela-Ascoli), it is sufficient to show that BY ∗ is bounded and equicontinuous
on KB. But BY ∗ is bounded and equicontinuous on any bounded set.

H.P.(3) Let K ∈ cL(X, Y ), 1-1, and set E := K−1 ∈ L(ran K, X). Prove:
(i) if E is bounded, then dim X < ∞.

(ii) For all totally bounded T with 0 6∈ T− and T− complete, ‖E KT ‖ := supy∈KT ‖Ey‖/‖y‖ < ∞.

** regularization **
The fact that a compact map turns bounded sets into totally bounded ones has its

flip side, in that an equation K? = y with K compact is troublesome, for the following
reason. Even if K is invertible, it cannot be boundedly invertible unless its domain is
finite-dimensional (cf. H.P.(3)). Hence, such an equation cannot be solved stably, i.e., it is
ill posed.

Nevertheless, people trying to solve real problems find themselves confronted with ill
posed problems, and, in this unhappy situation, ‘solve’ such a problem numerically by
converting it into a stable equation. This means that, instead of solving K? = y, they
solve (K − α)? = y for some α > 0 (such equations are well-posed as the discussion below
will make clear). This approach (and similar ones) is called regularization, an idea first
pushed by Tykhonov. The situation is further complicated by the fact that y may only
be known approximately. Thus, if the computed solution, xc, satisfies (K − α)? = yc,
then the error, x − xc, satisfies (K − α)(x − xc) = y − yc − αx, or, ‖x − xc‖ ≤ ‖(K −
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Compact perturbation of the identity 137

α)−1‖(‖y − yc‖ + α‖x‖). As α → 0, ‖(K − α)−1‖ → ∞, while, when α → ∞, then
‖xc‖ → 0, hence ‖x − xc‖ → ‖x‖. There is, therefore, for given ‖y − yc‖, some optimal α,
but its determination is not trivial; also, even with this optimal α in hand, the computed
solution may have little in common with the (only theoretically defined) ‘exact’ solution.

A straightforward approach would be to recognize explicitly that the equation K? = y
fails to define its solution in any practical sense, hence to seek additional conditions (e.g.,
a certain smoothness, the smallness of certain seminorms, the vanishing of certain linear
functionals, etc.) that, together with the equation K? = y, pin down a particular element
stably. Regularization is certainly a particularly simple version of this approach, as long
as it is understood in this way.

Compact perturbation of the identity

A compact perturbation of the identity is a map of the form 1 − K with K
compact.

Such maps occur naturally in integral equations of the second kind:

f −
∫

T

k(·, t)f(t) dt = g,

which is to be solved for f ∈ C(T ), given g ∈ C(T ) and k ∈ C(T 2). (Of the second
kind, since it involves the unknown function f in two places, as opposed to the first kind
integral equation ∫

T

k(·, t)f(t) dt = g

in which the unknown function appears only once; a silly but standard nomenclature
sanctified by long use.) As already noted, first-kind equations are hard to solve.

** spectrum of a compact map **
Compact perturbations of the identity also occur in the study of the spectrum of a

compact map K, i.e., in studying z ∈ C for which z −K is not boundedly invertible. For,
if z 6= 0, then z − K is invertible iff 1 − K/z is, while K/z is compact iff K is. In this
connection:

(8) Proposition. K compact =⇒ dim ker(1 − K) < ∞.

Proof: K = 1 on ker(1 − K), hence Bker(1−K) is totally bounded, hence
dim(ker(1 − K)) < ∞, by H.P.(III.16).

(9) Proposition. X Bs and K ∈ cL(X) =⇒ ran(1 − K) closed.

Proof: With N := ker(1 − K), ran(1 − K) is the range of the linear map C :=
(1−K)| : X/N → X : 〈x〉 7→ (1−K)x, hence is closed in case C is bounded below. In the
contrary case, infx ‖Cx‖/d(x,N) = 0, hence there is (xn) in X with ‖〈xn〉‖ = d(xn, N) = 1
and lim ‖xn − Kxn‖ = 0. Without loss of generality, (xn) is bounded, AGTASMAT
y := limn Kxn exists, hence xn → y and therefore d(y,N) = 1, yet (1−K)y = 0, which is
nonsense.
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138 VIII. Compact perturbations of the identity

(10) Fredholm Alternative. X Bs, K ∈ cL(X), A := 1 − K. Then

A 1-1 ⇐⇒ A onto.

Proof: ‘⇐=’, i.e. suppose A onto. Then, if x ∈ kerAn\ kerAn−1, there is y s.t.
Ay = x, i.e., y ∈ kerAn+1\ kerAn. Hence, if A is not 1-1, then there is x ∈ kerA\0,
and then (kerAn) is a strictly increasing sequence of closed lss’s. By (III.7)Riesz’ Lemma,
∀{r > 0, n} ∃{xn ∈ B ∩ ker An} d(xn, ker An−1) > 1 − r. Hence, for m < n,

‖Kxn − Kxm‖ = ‖xn − (Axn + xm − Axm)‖ > 1 − r

(since Axn, xm, Axm are all in ker An−1), showing that (Kxn) is not totally bounded, even
though K is compact and (xn) is bounded.

‘=⇒’, i.e., suppose A 1-1. Since ranA is closed by (9)Prop., we can conclude that
Ã := A ran A is boundedly invertible (by (V.16)Cor.2), hence ∀{λ ∈ X∗} λ = µA with
µ := λ(Ã)−1 ∈ X∗, therefore A∗ is onto. Now, since K∗ is compact (by (7)Prop.), the first
part of the proof implies that A∗ is 1-1, hence, since ranA is closed, we conclude (from
H.P.(IV.14)(i)) that ranA = X, i.e., A is onto.

H.P.(4) Adjust the preceding argument to prove that Kyn = znyn, with ‖yn‖ = 1, n = 1, 2, . . ., and
(zn) a sequence of distinct points in IF, implies lim zn = 0. (Hint: Prove first that Yn := ran[y1, y2, . . . , yn],
n = 1, 2, . . . is a strictly increasing sequence and that (zn − K)Yn ⊂ Yn−1.)

H.P.(5) Adjust the preceding argument to prove the following more complete version of the Fredholm

Alternative: For K ∈ cL(X) and z ∈ IF\0, there exists n ∈ IN so that ker(z − K)n = ker(z − K)n+r for all
r ∈ IN. Hence, if X is a Bs, then X = ker(z − K)n+̇ ran(z − K)n. (Hint: H.P.(I.35))

For example, the second kind integral equation

f −
∫

T

k(·, t)f(t) dt = g

with k ∈ C(T 2) has a (unique) solution f ∈ C(T ) for every g ∈ C(T ) iff it has only the
trivial solution f = 0 when g = 0, and, in that case, f depends continuously on g, by
(V.18)OMT.
H.P.(6) Prove the full Fredholm Alternative: If X is Bs, and K ∈ cL(X), then (ran(1 − K) is closed
and) both ker(1 − K) and ker(1 − K∗) have the same finite dimension. (Hint: H.P.(I.35).)

We are now prepared for

The standard compact perturbation argument

Assume that X is a Bs, K ∈ cL(X), and A := 1 − K 1-1 or onto, hence boundedly
invertible. To approximate the solution of the equation

(1 − K)? = g

(for given g ∈ X), we pick a finite-dimensional lss F and a corresponding finite-dimensional
lss L of X∗ s.t. LIP(F,L) is correct, hence gives rise to a bounded lprojector P . Consider
the projected equation:

find f ∈ F s.t. L ⊥ (1 − K)f − g.
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The standard compact perturbation argument 139

Since L ⊥ h iff Ph = 0, this is equivalent to

(11) find f ∈ F s.t. P (1 − K)f = Pg.

Now an adjustment: If f ∈ F , then Pf = f , hence we infer from (11) that

(12) (1 − PK)f = Pg.

Conversely, an f satisfying (12) can be written f = Pg + PKf ∈ ranP = F , hence
Pf = f , and therefore also P (1−K)f = Pg for such an f . This shows that (11) and (12)
are equivalent. It is more convenient to consider (12) since it gives the projected equation
in a form rather more close to the original problem.

Now assume that P = Pn with Pn
s−−→ 1. Since X is Bs, this implies that (Pn) is

bounded (by (V.7)UBP). Therefore, since K is compact, we conclude from (4)Prop. that
PnK → K, hence 1 − PnK → 1 − K. Since 1 − K is boundedly invertible, this makes
(1 − K)−1 an approximate inverse for 1 − PnK for all sufficiently large n, hence implies
that, for all n sufficiently large, 1−PnK is invertible, and ‖(1−PnK)−1‖ → ‖(1−K)−1‖.

In other words, if P = Pn with Pn
s−−→ 1, and n sufficiently large, then the projected

equation (12) has a unique solution fP which, in terms of the solution f of the original
problem, can be written as

fP = (1 − PK)−1Pg = (1 − PK)−1P (1 − K)f.

Since P (1 − K) = P − 1 + 1 − PK, this can also be written

fP =
(
(1 − PK)−1(P − 1) + 1

)
f

or

(13) f − fP = (1 − PK)−1(1 − P )f,

and this goes to 0 with ‖f − Pf‖. Note the resulting error estimate

‖f − fP ‖ ≤ ‖(1 − PK)−1‖‖f − Pf‖ ∼ ‖(1 − K)−1‖‖f − Pf‖
which bounds the error f − fP in the approximate solution fP in terms of the error in the
interpolant Pf .

** example: second kind Fredholm integral equation **
A typical example might be the second kind Fredholm integral equation

(1 − K)f := f −
∫ b

a

k(·, t)f(t) dt = g,

with k a (piecewise) continuous kernel. A typical choice for F might be the space Π0
1,∆ of

continuous piecewise linear functions with vertices at the points of the partition ∆ : a =
t0 < · · · < tn = b (and nowhere else). Choosing Λt : f 7→ (f(ti) : i = 0, . . . , n) results
in the correct LIP(F, ran Λ) whose corresponding lprojector P is broken line interpolation
at the ti, hence ‖P‖ = 1 and P s−−→ 1 on X := C[a . . b] as |∆| := max∆ti → 0. Since
d(f, F ) = O(|∆|2) for all smooth f (see (IV.11)Example), this provides a second order
approximation to the solution of the integral equation, in case ∆ is uniform.
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140 VIII. Compact perturbations of the identity

Quadrature methods and uniform compactness

** Nystrom’s method **
Compactness is also of great help in analyzing quadrature (and other) methods for

second kind integral equations which are not projection methods.
A standard numerical method for the solution of the second kind equation

(14) (1 − K)f := f −
∫ b

a

k(·, t)f(t) dt = g

makes use of quadrature rules
λU :=

∑
u∈U

w(u)δu,

with U some finite subset of [a . . b] and w ∈ IRU an appropriate weight vector, to approx-
imate the integral. This leads to the (simpler) equation

(14U ) (1 − KU )fU := fU −
∑
u∈U

k(·, u)w(u)fU (u) = g.

On evaluating both sides on U , we obtain the finite square linear system

(14UU ) fU (v) −
∑
u∈U

k(v, u)w(u)fU (u) = g(v), all v ∈ U,

for the vector fU |U , and this system is uniquely solvable if and only if (1−KU ) is invertible.
For, once fU |U satisfies (14UU ), then fU , given by

fU := g +
∑
u∈U

k(·, u)w(u)fU (u)

satisfies (14U ). This is Nystrom’s method.

** use better approximate inverses **
This leaves the question of the invertibility of 1 − KU . In the case of projection

methods, we were able to settle this question of invertibility of 1−PK =: 1−K̃ by showing
that (1 − K)−1 can serve as an approximate inverse for it. Precisely, since P := Pn

s−−→ 1
and K is compact, K̃ = PK converges uniformly to K, therefore

(15) E = 1 − (1 − K)−1(1 − K̃) = (1 − K)−1(1 − K − 1 + K̃) = (1 − K)−1(K̃ − K)

eventually becomes < 1 in norm. By contrast, for quadrature methods, we cannot get
uniform convergence to K, even if, as one of course assumes, λU

s−−→ ∫ · . The best one
can conclude is that, therefore (see below), KU

s−−→ K. In fact, it can be shown that
lim inf ‖K −KU‖ ≥ 2‖K‖, so that uniform convergence is out of the question. There is an
ingenious, involved way in the Russian literature (e.g., Krasnoselski et al.) to interpret the
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quadrature method after all as a projection method and so make use of the earlier analy-
sis. But, there is a very simple direct approach (now associated with the name Anselone
and the terminus technicus collectively compact), which started with Brakhage’s ob-
servation that there might be more suitable approximate inverses available. Specifically,
since

(1 − K)−1 = (1 − K)−1(1 − K + K) = 1 + (1 − K)−1K,

he proposed using 1 + (1 − K)−1K̃ as an approximate inverse for (1 − K̃). One computes

(16)

E = 1 − (1 + (1 − K)−1K̃)(1 − K̃) = (1 − K)−1
(
1 − K −(1 − K + K̃)(1 − K̃)︸ ︷︷ ︸

−(1−K)+(1−K)K̃−K̃(1−K̃)

)

= (1 − K)−1(K̃ − K)K̃.

This looks just like (15), but with the crucial difference that now (K̃ − K)K̃ needs to
be small in norm, and this can be deduced from the pointwise convergence K̃ s−−→ K if
K̃ is compact, as is the case. Well, actually, we are in a slightly tricky situation in that
the totally bounded set K̃B on which we do get uniform convergence of K̃ to K changes
with K̃. This can be handled, though, for our case K̃ = KU because it can be shown (see
below) that K := {KU} is uniformly compact, i.e., KB := ∪A∈KAB is totally bounded.
Anselone has coined the term collectively compact for this useful property. With this,
K̃ = KU

u−−→ K even on KB, hence ‖(KU − K)KU‖ → 0.

** uniformly compact strongly convergent perturbations of 1 **
Once this is recognized, it is possible to prove results concerning uniformly compact

approximations Kn to K without explicit reference to an approximate inverse, with the
concomitant loss of the a posteriori error bound provided by such approximate inverse.
Here is a sample:

(17) (Anselone’s Theorem). X Bs, (Kn) in bL(X), uniformly compact, Kn
s−−→ K

compact. Then,

1 − K is boundedly invertible ⇐⇒ lim sup n‖(1 − Kn)−1‖ < ∞.

Further, when one or the other of these conditions holds, then (1−Kn)−1 s−−→ (1−K)−1.

Here, having lim sup ‖(1 − Kn)−1‖ finite means that 1 − Kn is invertible for all suffi-
ciently large n and these inverses are bounded uniformly in n.

I give the proof to show that it is really a standard argument.
For any compact K on a Bs, having 1 − K boundedly invertible is equivalent, by

(10)FA and (V.18)OMT, to having 1− K 1-1. Hence the conclusion of the theorem reads

1 − K is 1-1 ⇐⇒ lim inf n→∞ inf ‖(1 − Kn)S‖ > 0

(with S := ∂B the unit sphere and inf ‖Z‖ := inf{‖z‖ : z ∈ Z}).
‘=⇒’ If not lim infn inf ‖(1−Kn)S‖ > 0, then ∃{(xn) in S} lim inf ‖(1−Kn)xn‖ = 0.

AGTASMAT lim(1−Kn)xn = 0. Since, by the uniform compactness of (Kn), (Knxn) lies
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in a totally bounded set, AGTASMAT lim Knxn = x∞ for some x∞ ∈ X, therefore also
lim xn = x∞, hence ‖x∞‖ = 1. By H.P.(V.3), bounded pointwise convergence is uniform
on totally bounded sets while {xn : n ∈ IN+} is totally bounded; hence Kx∞ = lim Kxn =
lim Knxn. This shows that (1 − K)x∞ = lim(xn − Knxn) = 0, i.e., 1 − K fails to be 1-1.

‘⇐=’ For every x ∈ S, ‖(1−K)x‖ = limn ‖(1−Kn)x‖ while ‖(1−Kn)x‖ ≥ inf ‖(1−
Kn)S‖, hence inf ‖(1−K)S‖ ≥ lim inf ‖(1−Kn)S‖. (This argument only uses the strong
convergence.)

** back to Nystrom **

(18) Corollary. Assume that (14) has only the trivial solution when g = 0, and that
the “kernel” k is continuous. If λU

s−−→ ∫ · , then {KU} is compact uniformly in U , and
KU

s−−→ K, hence (14U ) or (14UU ) is uniquely solvable for all sufficiently fine U , and the
corresponding solution fU converges to the unique solution of (14).

Proof: Let I := [a . . b], and consider, for given λ ∈ (C[a . . b])∗, the map Kλ given
on C[a . . b] by the rule

Kλf : s 7→ λ(k(s, ·)f).

For example, K = K∫ b

a
·, while KU = KλU

.

Since k is continuous, the family k(I, ·) := {k(s, ·) : s ∈ I} is bounded and equicon-
tinuous, hence totally bounded in C(I), by (II.38)Arzela-Ascoli, hence so is the family
k(I, ·)f for any fixed f ∈ C(I). Consequently, λ s−−→ µ implies that λ u−−→ µ on k(I, ·)f for
any particular f ∈ C(I), therefore that Kλ

s−−→ Kµ. In particular, KU
s−−→ K.

Further, ‖Kλf‖ ≤ ‖λ‖‖k‖‖f‖, and

|(Kλf)(s) − (Kλf)(t)| ≤ ‖λ‖‖k(s, ·)f − k(t, ·)f‖ ≤ ‖λ‖ωk(|s − t|)‖f‖,
showing that ωKλf ≤ ‖λ‖‖f‖ωk. By (II.38)Arzela-Ascoli, this implies that KλB is totally
bounded, hence Kλ is compact, uniformly in ‖λ‖. In particular, K = K∫

· is compact.

Since λU
s−−→ ∫ ·, hence supU ‖λU‖ < ∞, this also shows that {KU} is uniformly compact.

Thus, by (17)Anselone’s theorem, (1 − KU )−1 exists for all sufficiently fine U , and
(1 − KU )−1 s−−→ (1 − K)−1.

The hypotheses of this corollary can be relaxed to deal with less smooth kernels,
making sure only that the required equicontinuity is preserved.

(19) Example The typical weakening uses the fact that |Kf(s) − Kf(s′)| ≤∫ |k(s, t) − k(s′, t)|dt ‖f‖∞, hence

ωKB ≤ ωk,L1 : h 7→ sup
|s−s′|<h

‖k(s, ·) − k(s′, ·)‖1.

In particular, ωKB(0+) = 0 (i.e., equicontinuity of KB) is easily proved if k is Green’s
function, hence (see (22) below)

k(s, t) =
{

kl(s, t), s < t;
kr(s, t), s > t,
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with both kl and kr in C(I × I). In this case,

|k(s, t) − k(s′, t)| ≤



ωkl
(|s − s′|), s < s′ < t;

‖kl − kr‖∞, s < t < s′;
ωkr

(|s − s′|), t < s < s′.

Therefore,

‖k(s, ·) − k(s′, ·)‖1 ≤ |b − a|max{ωkl
(|s − s′|), ωkr

(|s − s′|)} + ‖kl − kr‖∞ |s − s′|,

hence
ωKB ≤ ω := |b − a|max{ωkl

, ωkr
} + ‖kl − kr‖∞()1,

and evidently ω(0+) = 0.
Further weakening can be achieved because of the fact that the typical quadrature rule

is of the form λU =
∫

PU ·, and PU need not just be some standard interpolation scheme,
nor need it even converge strongly to 1; after all, we only need that

∫
PU · s−−→ ∫ ·.

The iterated projection method

Uniform compactness also helps to explain the success of the iterated projection
method for solving the second kind integral equation

(1 − K)f := f −
∫ b

a

k(·, t)f(t) dt = g.

In this method, the solution fP of the projected equation (1 − PK)fP = Pg is improved
(so one hopes and often finds to be the case) by the standard iteration for second kind
equations, i.e., by constructing

h := g + KfP .

Why should h be better than fP ? Well, h − KfP = g, while Ph = Pg + PKfP = fP .
Therefore, h satisfies the equation

h − KPh = g.

This looks just like the equation for fP except that K is approximated by KP rather than
by PK (and Pg is replaced by g). At first sight, this doesn’t look like an improvement at
all, since we already know from H.P.(2) that KP need not converge uniformly to K even
if P := Pn

s−−→ 1. But, if Pn
s−−→ 1 and r := sup ‖Pn‖ < ∞, then KPn

s−−→ K and (KPn)
is uniformly compact (since KPnB ⊆ KBr = rKB), hence (17)Anselone’s Theorem gives

lim sup ‖(1 − KPn)−1‖ < ∞ and h n→∞−−−−−→ f.

Actually, more is true. Apply the identity (cf. H.P.(III.19))

A−1 − C−1 = A−1(C − A)C−1 = C−1(C − A)A−1
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to the error f − h. This gives

f − h =(1 − K)−1g − (1 − KP )−1g

=(1 − KP )−1
(
1 − KP − (1 − K)

)
(1 − K)−1g

=(1 − KP )−1K(1 − P )f.

This looks just like the error formula

(13) f − fP = (1 − PK)−1(1 − P )f

with one important difference: The interpolation error (1 − P )f now appears with the
map K applied to it. This allows at times the conclusion that the error f −h is of higher
order than the error f − fP , since 1 − P = (1 − P )2, hence

‖K(1 − P )f‖ ≤ ‖K(1 − P )‖‖(1 − P )f‖,

and it may happen that ‖K(1 − P )‖ → 0.
To see why this might be so, assume, specifically, that the underlying nls is X =

C[a . . b]. Then, any λ : f 7→ ∫ b

a
ϕf with ϕ ∈ L1 is in X∗, and ‖λ‖ = ‖w‖1. Therefore, in

this case,
‖K(1 − P )‖ = sup

t
‖δtK(1 − P )‖ ≤ sup

t
d(δtK,L)‖1 − P‖,

with d(δtK,L) = d1(δtK,L) the distance in the L1-norm, of the function k(t, ·) (which
represents δtK) from the space of representers of the elements of L := ran P ′, and this may
be small uniformly in t because the functions k(t, ·) may be smooth uniformly in t, hence,
if also the elements of L are smooth, in the sense that they are given (or representable) as
integration against nice functions, we could expect that d(δtK,L) is small uniformly in t.

** example: Galerkin’s method... **
Take P to be L2-approximation from F (hence the projection method in question

would be Galerkin’s method). Then

Pf =
∫ b

a

p(·, s)f(s) ds,

with p(t, s) :=
∑

i ui(t)λi(s), and (ui) some basis for F and (λi) the corresponding dual
basis for L = F . Then, taking the underlying nls to be C[a. . b], hence using the max-norm
to measure function size,

d(δtK,L) = inf
c
‖k(t, ·) −

∑
i

c(i)λi‖1,

and we would expect this to be small uniformly in t provided k is uniformly smooth and
the function family L = F has some approximation power.
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** ...using broken lines **
Specifically, consider Galerkin’s method using F := Π0

1,∆, i.e., continuous broken lines
on some partition ∆ := (ti)n

0 of [a . . b]. Then L is (integration against elements of) F ,
hence, for ϕ ∈ C(2),

d(
∫ b

a

ϕ·, L) ≤ |a − b|d∞(ϕ,F ) ≤ const|∆|2‖D2ϕ‖∞,

with |∆| := max∆ti. Therefore, if k ∈ C(2)[a . . b]2, we get that

‖K(1 − P )‖ = sup
t

d(δtK,L) ≥ |a − b| sup
t

d∞(k(t, ·),Π0
1,∆) ≤ const|∆|2.

This implies that ‖f − h‖∞ = O(|∆|4) (in case f ∈ C(2)[a . . b]) while the best we can say
for fP is that ‖f − fP ‖∞ = O(|∆|2).
** splitting **

Consider now the more general case of finding u ∈ X for which

Au = g

with A ∈ bL(X,Y ), X,Y Bs’s, and g ∈ Y given. Suppose that we seek to solve this
equation by projection, seeking

un ∈ Un s.t. Ln ⊥ Aun − g,

with Un ⊆ X, Ln ⊆ Y ∗. This means that we are considering the LIP(AUn, Ln). The
standard way to carry out the analysis is to split A into N , with M boundedly invertible
and so that the LIP(MUn, Ln) is “easily” analyzable. If such an analysis succeeds in
showing that, for all sufficiently large n, LIP(MUn, Ln) is correct and that the resulting
projectors Pn converge boundedly and strongly to 1, then we can conclude the same for
the original LIP(AUn, Ln) provided NM−1 is compact. For, we then are, in effect, solving
(1 − K)? = g, with K := NM−1 ∈ bL(Y ) compact, by projecting it, i.e., by considering
Pn(1 − K)? = Png.

** example: m-th order linear ODE **
The m-th order ODE

(20) Au := (Dm −
∑
j<m

ajD
j)u = g ∈ C[a . . b] =: Y

is to be solved for u ∈ X := C(m)[a . . b] ∩ ker Mt, with Mt ∈ bL(C(m−1)[a . . b], IRm) 1-1
on ker A and supported on {a, b} (for simplicity). Here, Dm is the proper candidate for
the “easy” map M if we assume, for simplicity, that Mt is 1-1 on Π<m = kerDm (as a
map on all of C(m)[a . . b]). Then T := (Mt

Π<m
)−1Mt is a lprojector (the linear projector

given by Π<m and ranM), and

(21) u = Tu +
∫ b

a

G(·, t)Dmu(t) dt, all u ∈ C(m)[a . . b].

example: m-th order linear ODE c©2002 Carl de Boor
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Here, Green’s function G is obtained in the form

(22) G(·, t) := (1 − T )(· − t)m−1
+ /(m − 1)!,

as can be seen by applying 1 − T to both sides of the Taylor identity

(23) u =
∑
j<m

(Dju)(a)(· − a)j/j! +
∫ b

a

(· − t)m−1
+ (Dmu)(t) dt/(m − 1)!.

H.P.(7) Prove (21), (22).

This allows us to rewrite (20) in terms of f := Dmu as

f −
∫ b

a

k(·, t)f(t) dt = g with k(·, t) :=
∑
j<m

ajD
jG(·, t).

This kernel is only piecewise continuous (if am−1 6= 0), but the continuity is uniform since
the pieces all come from the same finite-dimensional lss of C[a . . b]. This is enough to
conclude (cf. (19)Example) that the corresponding map

K : C[a . . b] → C[a . . b] : f 7→
∫ b

a

k(·, t)f(t) dt

is compact, and the earlier analysis is applicable.
If the side conditions are not homogeneous, it is always possible to modify the problem

(by solving for u−v instead of for u, for an appropriate v) so as to make the side conditions
homogeneous. If Mt fails to be 1-1 on Π<m, a slight variant has to be played. In this variant,
X := C(m)[a . . b], and one considers

C : X → Y := C[a . . b] × IRm : u 7→ (Au,Mtu),

and the problem to be solved is to find u ∈ X so that Cu = y for given y ∈ Y . Now a
suitable M is

M : X → Y : u 7→ (Dmu, u(a), . . . , (Dm−1u)(a))

and M−1 is given by (23), i.e., by the Taylor identity. The compact map K is again
NM−1, with N := M − C, of course. Its compactness is seen as before; after all, we have
only added something finite-dimensional to the earlier construction.
H.P.(8) Prove the compactness of the map K = NM−1 defined in the preceding paragraph.

** superconvergence **
The idea of iterated projection methods does not work so well when solving a differ-

ential equation since, in that case, the “kernel” k fails to be smooth. In fact, k (cf. (22))
can be expected to be only piecewise smooth. Yet the same idea does work there (in fact
came from there), if looked at properly.
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Recall that the approximation uQ from U to the solution u of the mth order ODE
(20) is constructed in the form

uQ =
∫ b

a

G(·, s)fQ(s) ds

with fQ = Qf the interpolant to f := Dmu from F := DmU using the interpolation
functionals L(1 − K). This means that

u − uQ =
∫ b

a

G(·, s)(f − fQ)(s) ds,

with L(1 − K) ⊥ f − fQ. Therefore

u(t) − uQ(t) =
∫ b

a

(
G(t, s) − p(t, s)

)
(f − fQ)(s) ds

with p(t, ·) any representer of an element of L(1−K). Now G(t, ·) is only piecewise smooth,
precisely, in C(m−2), with a jump discontinuity in its (m − 1)st derivative across t. This
means that it is often possible to choose p(t, ·) so that ‖G(t, ·) − p(t, ·)‖ = O(|∆|m) when
using for U piecewise polynomial functions on some partition ∆. In fact, if t is one of the
partition points, then even

‖G(t, ·) − p(t, ·)‖1 = O(|∆|m+r)

is possible for some r > 0. This is called superconvergence.

** PDEs are much tougher **
For PDEs, the same arguments are applied sometimes. But it becomes less interesting

there since the role of Dm, i.e., of the essential and simple part, is now played by many
different operators, and it isn’t so simple any more to establish correctness of even the
simple LIP or its stability and convergence. Also, superconvergence is harder to achieve
since the singularity of Green’s function is usually much more subtle than just a jump
in some derivative, hence the approximating space is much less likely to model certain
sections of Green’s function accurately.

PDEs are much tougher c©2002 Carl de Boor


