
Introduction Algorithm Proof: The Gory Details Experiments Discussion

Being Robust (in High Dimensions) Can Be
Practical

Paper by Diakonikolas et. al.
ICML 2017

Anant Gupta
agupta225@wisc.edu

Surya Teja Chavali
chavali2@wisc.edu

Muni Sreenivas Pydi
pydi@wisc.edu

Shantanu Gupta
sgupta226@wisc.edu

Diakonikolas et al.

Being Robust Can Be Practical 1 / 64



Introduction Algorithm Proof: The Gory Details Experiments Discussion

Introduction

Diakonikolas et al.

Being Robust Can Be Practical 2 / 64



Introduction Algorithm Proof: The Gory Details Experiments Discussion

Problem Definition: Robust Mean and Covariance
estimation

Given a polynomial number of samples from a
high-dimensional Gaussian N (µ,Σ), where an adversary
has arbitrarily corrupted an ε-fraction, find a set of
parameters N ′(µ̂, Σ̂) that satisfy dTV (N ,N ′) ≤ Õ(ε).
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Recap: Low Dimension with noise

For low dimensions, median is robust, efficient, computationally
tractable.
As we saw in class, median has:

1 Minimax asymptotic bias O(ε)

2 Asymptotic variance O( 1n ) =⇒ sample complexity 1
ε2

3 Computational complexity O(n)
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Recap: High Dimension with no noise

Sample mean is asymptotically normal:

1 Asymptotic variance O
(
I
n

)
=⇒ sample complexity O(d)

2 Computational complexity O(nd) (Polynomial in n and d)

Error guarantee increases with dimension as
√
d
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Goal: High Dimension with noise

We want an estimator that is:

1 Robust: Error bound Õ(ε)

2 Sample efficient: Sample complexity Õ( d
ε2

)

The Tukey median (1960) achieves these goals.

But it has computational complexity O
(
nd−1 + n log n

)
-

exponential in d . . .
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Other approaches that don’t work well in high dimensions

Generalizations of the median to higher dimensions:

1 Coordinate-wise median

2 Geometric median

Both of these have error bounds O(ε
√
d).

(curse of dimensionality)
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Related Work

Robustly learn µ∗ given ε-corrupted from N (µ∗, I ): Error vs
computational complexity trade-off:

Algorithm Error Guarantee Poly-Time?

Tukey Median O(ε) No
Tournament O(ε) No

Geometric Median O(ε
√
d) Yes

Pruning O(ε
√
d) Yes

LRV’16 O(ε
√

log d) Yes

Filter O(ε
√

log (1/ε)) Yes

All these algorithms are sample efficient.
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Contamination Model

The paper considers the following contamination model:

X1,X2, ...,Xm
iid∼ D,D ∈ D

Adversary changes arbitrarily an ε-fraction
↓

Y1,Y2, ...,Ym
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Contamination Model: contd

Generalization of Huber’s model

1 Subsumes Huber

2 Allows both insertions and deletions

3 Adversary allowed to inspect data, i.e. corrupted data is not
i.i.d.
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Main Result: Mean estimation for Sub-Gaussian
Distribution

Theorem (3.1)

If

G Sub-Gaussian on Rd , ν = Θ(1), mean µG , covariance I

S is an ε-corrupted set of samples with |S | = Ω̃(d/ε2)

Then there exists an efficient algorithm that outputs µ̂ with prob.
1− τ s.t.

‖µ̂− µG‖2 = O(ε
√

log(1/ε)).
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Main Result: Mean estimation for Bounded Second
Moment

Theorem (3.2)

If

P distribution on Rd , mean µP , covariance ΣP � σ2I
S is an ε-corrupted set of samples with |S | = Θ̃(d/ε)

Then there exists an efficient algorithm that outputs µ̂ with prob.
1− τ s.t.

‖µ̂− µP‖2 ≤ O(
√
εσ).
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Main Result: Covariance Estimation

Theorem (3.3)

If

G ∼ N (0,Σ) in d dimensions

S is an ε-corrupted set of samples with |S | = Ω̃(d2/ε2)

Then there exists an efficient algorithm that outputs Σ̂ with prob.
1− τ s.t.

‖I − Σ−1/2Σ̂Σ−1/2‖F = O(ε log(1/ε)).
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A Summary of the Results

All results with probability 1− τ :

Theorem 3.1 Theorem 3.2 Theorem 3.3

Distribution
Sub-Gaussian
Known Cov.

Bounded
Covariance Gaussian

Target µG µP Σ

Error ‖µ̂− µG‖2 ‖µ̂− µP‖2 ‖I − Σ−1/2Σ̂Σ−1/2‖F
Error Bound O(ε

√
log(1/ε)) O(

√
εσ) O (ε log(1/ε))

#(samples) Ω̃(d/ε2) Θ̃(d/ε) Ω̃(d2/ε2)

Table: Summarizing the error bounds and sample complexity of the three
proposed algorithms
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Algorithm
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Corrupted Data
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Phase-1 Algorithm: Naive Pruning
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NaivePrune: Getting a (Nearly) Good Set

Algorithm 1 Naive Pruning

1: function NaivePrune(X1, . . . ,XN)
2: For i , j = 1, . . . ,N, define δi ,j = ‖Xi − Xj‖2.
3: for i = 1, . . . , j do
4: Let Ai = {j ∈ [N] : δi ,j > Ω(

√
d log(N/τ))}

5: if |Ai | > 2εN then
6: Remove Xi from the set.

7: return the pruned set of samples.

Fact

With high probability, NaivePrune removes no uncorrupted

points, and for all Xi that remain, ‖Xi − µ‖2 ≤ O
(√

d log(N/τ)
)

.
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We’re still not in good shape!
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The Filter (Meta-) Algorithm

Algorithm 2 Filter-based mean estimation

1: Input: ε-corrupted sample set S , Thres(ε), Tail(T , d , ε, δ, τ), δ(ε, s)
2: Compute the sample mean µS′ = EX∈uS′ [X ]
3: Compute the sample covariance matrix Σ
4: Compute approximations for the largest absolute eigenvalue of Σ,
λ∗ := ‖Σ‖2, and the associated unit eigenvector v∗.

5: if ‖Σ‖2 ≤ Thres(ε) then
6: return µS′ .

7: Let δ = δ(ε, ‖Σ‖2).
8: Find T > 0 such that

Pr
X∈uS′

[
|v∗ · (X − µS′)| > T + δ

]
> Tail(T , d , ε, δ, τ).

9: return {x ∈ S ′ : |v∗ · (x − µS′)| ≤ T + δ}.
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The Sub-Gaussian Case: Good Sets

Definition (Good Sets)

If G is a Sub-Gaussian distribution on Rd with parameter
ν = Θ(1), covariance I , and S is a sample drawn from G , then S
is said to be a “good” set, if

(i) ‖x − µG‖2 ≤ O(
√
d log(|S |/τ)) for all x ∈ S .

(ii) ∀v ,T , such that ‖v‖2 = 1 and T ∈ R,∣∣∣∣ Pr
X∈uS

[v · (x − µG ) ≥ T ]− Pr
X∼G

[v · (x − µG ) ≥ T ]

∣∣∣∣ ≤ 8 exp(−T 2
/2ν) + 8

ε

T̃ 2
.

(iii) ‖µS − µG‖2 ≤ ε.
(iv) ‖MS − I‖2 ≤ ε.
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Instantiating the Sub-Gaussian Case

1 Sub-Gaussian(ν) Distribution, Σ = I .
Thres(ε) = O(ε log 1/ε)

Comes from deleted points

Tail(T , d , ε, δ, τ) = 8 exp(−T 2/2ν) + 8 ε
T̃ 2

1 Sub-Gaussian
2 Translate bound from true distribution to empirical

δ(ε, s) = 3
√
ε(s − 1)

Captures the error in sample mean:
〈
v∗, µG − µS′

〉
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Instantiations

1 Sub-Gaussian(ν) Distribution, Σ = I .
Thres(ε) = O(ε log 1/ε)
Tail(T , d , ε, δ, τ) = 8 exp(−T 2/2ν) + 8 ε

T̃ 2

δ(ε, s) = 3
√
ε(s − 1)

2 Bounded Covariance: Σ � I .
Thres(ε) = Θ(1)
Tail = Z max{|v∗ · x − µS | : x ∈ S}

Random Threshold will throw out more bad points than good.
Z ∈ [0, 1] with PDF pZ (z) = 2z .

δ = 0

Diakonikolas et al.
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The Algorithm: Putting it all together

Firstly, apply NaivePrune to ensure that the set becomes
‘2ε-close to good’ - outliers that are too far away are removed.

Iteratively filter out bad points using Filter to reach a good
set with high probability.

Return the sample mean of the good set.
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Proof: The Gory Details
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The End Goal

Theorem (A.3)

If

G Sub-Gaussian on Rd , ν = Θ(1), mean µG , covariance I

|S | = Ω((d/ε2) poly log(d/ετ))

Then with prob. 1− τ ,

‖µ̂− µG‖2 = O(ε
√

log(1/ε)).
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Definitions

1 Sub-Gaussian: (tails decay faster than Gaussian)

PrX∼P [|v · (X − µ)| ≥ T ] ≤ exp(−T 2/2ν), (‖v‖2 = 1)

2 Let S be the set given as input, and S ′ be the output.

3 Define ∆(S ,S ′) = |S\S ′|+|S ′\S |
|S |

4 By definition, ∃ sets E (‘entering’) and L(‘leaving’) such that
S ′ = (S \ L) ∪ E

5 Note that ∆(S ,S ′) = |E |+|L|
|S|

Diakonikolas et al.
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Definitions

µS = 1
|S |
∑
X∈S

X Clean Sample mean

µS
′

= 1
|S ′|

∑
X∈S ′

X Sample mean

Σ = 1
|S ′|

∑
X∈S ′

(X − µS ′)(X − µS ′)T Sample covariance

MS ′ = 1
|S ′|

∑
X∈S ′

(X − µG )(X − µG )T Modified sample

covariance

Diakonikolas et al.
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Definitions

µS = 1
|S |
∑
X∈S

X

µL = 1
|S |
∑
X∈L

X

µE = 1
|S|
∑
X∈E

X

MS = 1
|S |

∑
X∈S ′

[(X − µG )(X − µG )T ],

ML = 1
|L|
∑
X∈L

[(X − µG )(X − µG )T ],

ME = 1
|E |
∑
X∈E

[(X − µG )(X − µG )T ].
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The Good Set

Lemma (A.5)

If

G sub-gaussian on Rd , ν = Θ(1), covariance I

|S | = Ω((d/ε2) poly log(d/ετ))

Then with prob. 1− τ , S is a “good” set, i.e.

(i) ‖x − µG‖2 ≤ O(
√
d log(|S |/τ)) for all x ∈ S.

(ii)

∣∣∣∣ Pr
X∈uS

[v · (x − µG ) ≥ T ]− Pr
X∼G

[v · (x − µG ) ≥ T ]

∣∣∣∣ ≤ Õ(ε) .

(iii) ‖µS − µG‖2 ≤ ε.
(iv) ‖MS − I‖2 ≤ ε.
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If Algorithm Filter works, then Theorem (A.3) is true

Proposition (A.7)

If

G sub-gaussian on Rd , ν = Θ(1), covariance I

S is (ε, τ)-good set; ∆(S ,S ′) ≤ 2ε
S is uncorrupted, S ′ is ε-uncorrupted

For any x , y ∈ S ′, ‖x − y‖2 ≤ O(
√
d log(d/ετ))

Consequence of NaivePrune

Then, the algorithm Filter returns one of these:

(i) A mean vector µ̂ such that ‖µ̂− µG‖2 = O(ε
√

log(1/ε)).

(ii) A multiset S ′′ ⊆ S ′ such that ∆(S , S ′′) ≤ ∆(S ,S ′)− ε/α,

where α
def
= d log(d/ετ) log(d log( d

ετ )).
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Algorithm Filter

Algorithm 3 Filter-Sub-Gaussian-Unknown-Mean (S ′, ε, τ)

1: Input: S ′ such that there exists (ε, τ)-good S with ∆(S ,S ′) ≤ 2ε
2: Output: S ′′ or µ̂ satisfying Proposition (A.7)

3: Compute µS′ = EX∈uS′ [X ] and Σ = EX∈uS′

[
(X − µS′)(X − µS′)T

]
4: Compute the largest absolute eigenvalue of Σ − I , λ∗ := ‖Σ − I‖2,

and the associated unit eigenvector v∗.
5: if ‖Σ− I‖2 ≤ O(ε log(1/ε)), then return µS′ .

6: Let δ := 3
√
ε‖Σ− I‖2. Find T > 0 such that

Pr
X∈uS′

[
|v∗ · (X − µS′)| > T + δ

]
> 8 exp(−T 2/2ν)+8

ε

T 2 log
(
d log( d

ετ )
) .

7: return the multiset S ′′ = {x ∈ S ′ : |v∗ · (x − µS′)| ≤ T + δ}.
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Proof of Correctness of Algorithm Filter

Need to prove:

1 Small spectral norm: If ‖Σ− I‖2 ≤ O
(
ε log

(
1
ε

))
, then

‖µS ′ − µG‖2 = O

(
ε

√
log

(
1

ε

))
.

2 Large spectral norm: If ‖Σ− I‖2 > Ω
(
ε log

(
1
ε

))
, then

∃ a threshold T that is used for filtering, such that

Pr
X∈uS′

[
|v∗ · (X − µS′)| > T + δ

]
> 8e

−T2

2ν + 8
ε

T̃ 2
.

The algorithm makes progress, i.e. S ′′ satisfies

∆(S ,S ′′) ≤ ∆(S ,S ′)− ε/α
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Proof of Correctness of Algorithm Filter

Key Result:
Σ− I ≈ (|E |/|S ′|)ME

Intuition: The errors approximately align in the direction of
leading eigenvector of Σ− I .
Proof: By definition,

Σ− I = (MS ′ − I )︸ ︷︷ ︸
≈ |E ||S′|ME

(A)

− (µS
′ − µG )︸ ︷︷ ︸

≈ |E ||S′| (µ
E−µG )

(B)

(µS
′ − µG )T

︸ ︷︷ ︸
‖µE−µG‖22≤‖ME‖2

(Matrix-norm identity)

∴ Σ− I = (|E |/|S ′|)ME + O(ε log(1/ε)) + O(ε2‖ME‖2)
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Proof of Correctness of Algorithm Filter

Proof of matrix-norm identity: ‖ME‖2 ≥ ‖µE − µG‖22∑
(x − µG )(x − µG )

T

=
∑

(x − µE )(x − µE )
T

+
∑

(µE − µG )(µE − µG )
T

ME = ΣE︸︷︷︸
�0

+ (µE − µG )(µE − µG )T︸ ︷︷ ︸
�0

‖ME‖2 ≥ ‖µE − µG‖22
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Proof of Correctness of Algorithm Filter

Proof of (A): MS ′ − I = |E |
|S ′|ME + O

(
ε log 1

ε

)

Let x̃ = x − µG . Recall that S ′ = (S\L) ∪ E .

∑
X∈S ′

x̃ x̃T =
∑
X∈S

x̃ x̃T −
∑
X∈L

x̃ x̃T +
∑
X∈E

x̃ x̃T

|S ′|MS ′ = |S |MS − |L|ML + |E |ME

MS ′ =
|S |
|S ′|︸︷︷︸
1

MS︸︷︷︸
I+O(ε)

− |L|
|S ′|︸︷︷︸
ε

ML︸︷︷︸
O(log 1

ε
)

+
|E |
|S ′|

ME

∴ MS ′ − I = εME + O

(
ε log

1

ε

)
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|S ′|MS ′ = |S |MS − |L|ML + |E |ME

MS ′ =
|S |
|S ′|︸︷︷︸
1

MS︸︷︷︸
I+O(ε)

− |L|
|S ′|︸︷︷︸
ε

ML︸︷︷︸
O(log 1

ε
)

+
|E |
|S ′|

ME

∴ MS ′ − I = εME + O

(
ε log

1

ε

)
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Proof of Correctness of Algorithm Filter

Proof of (B): (µS
′ − µG ) = |E |

|S ′|(µ
E − µG ) + O

(
ε log 1

ε

)

Recall that x̃ = x − µG and S ′ = (S\L) ∪ E .

S ′ = (S\L) ∪ E∑
X∈S ′

x̃ =
∑
X∈S

x̃ −
∑
X∈L

x̃ +
∑
X∈E

x̃

|S ′|(µS ′ − µG ) = |S |(µS − µG )− |L|(µL − µG ) + |E |(µE − µG )

(µS
′ − µG ) =

|S |
|S ′|︸︷︷︸
1

(µS − µG )︸ ︷︷ ︸
O(ε)

− |L|
|S ′|︸︷︷︸
ε

(µL − µG )︸ ︷︷ ︸
‖µL−µG‖22≤‖ML‖2

+
|E |
|S ′|

(µE − µG )

∴ (µS
′ − µG ) = ε(µE − µG ) + O

(
ε
√

log (1/ε)
)
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Proof of Correctness of Algorithm Filter

Combining (A) and (B), we get:

Σ− I = εME + O(ε log(1/ε))

(Key Result)
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Proof of Correctness of Alg. Filter: Small Spectral Norm

Step 5. if ‖Σ− I‖2 ≤ O(ε log(1/ε)), return µS
′
.

To Prove: ‖µS ′ − µG‖2 ≤ O
(
ε
√

log (1/ε)
)

Proof:

‖µS ′ − µG‖2

≤ ε‖µE − µG‖2 + O
(
ε
√

log (1/ε)
)

Follows from (B)

≤ ε
√
‖ME‖2 + O

(
ε
√

log (1/ε)
)
, from matrix-norm identity

=
√
ε‖Σ− I‖2 + O

(
ε
√

log (1/ε)
)

, from key result

= O
(
ε
√

log (1/ε)
)

Diakonikolas et al.

Being Robust Can Be Practical 40 / 64



Introduction Algorithm Proof: The Gory Details Experiments Discussion

Proof of Correctness of Alg. Filter: Small Spectral Norm

Step 5. if ‖Σ− I‖2 ≤ O(ε log(1/ε)), return µS
′
.

To Prove: ‖µS ′ − µG‖2 ≤ O
(
ε
√

log (1/ε)
)

Proof:

‖µS ′ − µG‖2

≤ ε‖µE − µG‖2 + O
(
ε
√

log (1/ε)
)

Follows from (B)

≤ ε
√
‖ME‖2 + O

(
ε
√

log (1/ε)
)
, from matrix-norm identity

=
√
ε‖Σ− I‖2 + O

(
ε
√

log (1/ε)
)

, from key result

= O
(
ε
√

log (1/ε)
)

Diakonikolas et al.

Being Robust Can Be Practical 40 / 64



Introduction Algorithm Proof: The Gory Details Experiments Discussion

Proof of Correctness of Alg. Filter: Small Spectral Norm

Step 5. if ‖Σ− I‖2 ≤ O(ε log(1/ε)), return µS
′
.

To Prove: ‖µS ′ − µG‖2 ≤ O
(
ε
√

log (1/ε)
)

Proof:

‖µS ′ − µG‖2

≤ ε‖µE − µG‖2 + O
(
ε
√

log (1/ε)
)

Follows from (B)

≤ ε
√
‖ME‖2 + O

(
ε
√

log (1/ε)
)
, from matrix-norm identity

=
√
ε‖Σ− I‖2 + O

(
ε
√

log (1/ε)
)
, from key result

= O
(
ε
√

log (1/ε)
)

Diakonikolas et al.

Being Robust Can Be Practical 40 / 64



Introduction Algorithm Proof: The Gory Details Experiments Discussion

Proof of Correctness of Alg. Filter: Large Spectral Norm

Step 6. if ‖Σ− I‖2 ≥ Ω(ε log(1ε ))), then:
Find T > 0 such that following tail bound is violated

Pr
X∈uS ′

[
|v∗ · (X − µS ′)| > T + δ

]
> Tail(T , d , ε, τ).

(i.e. at least Tail(T , d , ε, τ)-fraction of points fall outside
threshold)

Step 7. reject x ∈ S ′ that fall outside threshold
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Proof of Correctness of Alg. Filter: Large Spectral Norm

if ‖Σ− I‖2 ≥ Ω(ε log(1ε ))), return S ′′.
To Prove:

1 A “violation” threshold T for Step 6 exists
=⇒ allows “many” total points (Ω(ε/α)) to be rejected

2 Using T , Filter rejects “few” good points O(ε/α)

3 Filter rejects more bad points than good and makes progress:

∆(S ,S ′′) ≤ ∆(S ,S ′)− 2ε/α

where S ′′ = S ′\{rejected points},
α = d log(d/ετ) log(d log( d

ετ ))
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Proof of Correctness of Alg. Filter: Large Spectral Norm

1 A threshold T exists

Proof ouline:

1 Suppose not.

2 Then S ′ satisfies the sub-gaussian tail bound:

Pr
X∈uS ′

[
|v∗ · (X − µS ′)| > T + δ/2

]
≤ 8 exp(−T 2/2ν) + 8

ε

T̃ 2
.

3 Then ‖Σ− I‖2 ≤ O(ε log(1ε )). Contradiction.
Therefore T exists and:

|E \ E ′|︸ ︷︷ ︸
#bad points rejected

+ |L′ \ L|︸ ︷︷ ︸
#good points rejected

≥ 8ε|S ′|/T̃ 2

≥ 4ε|S |/T̃ 2
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Proof of Correctness of Alg. Filter: Large Spectral Norm

2 Filter rejects at most
(

2 exp(−T 2/2ν) + ε/T̃ 2
)

-fraction from

S ∩ S ′

Proof:
Points in S satisfy the “goodness” tail bound:

Pr
X∈uS

[|w · (X − µS ′)| > T + ‖µS ′ − µG‖2] ≤ 2 exp(−T 2/2ν) +
ε

T̃ 2
.

Therefore, |L′ \ L|︸ ︷︷ ︸
#good points rejected

< ε|S |/T̃ 2
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Proof of Correctness of Alg. Filter: Large Spectral Norm

3 Filter rejects more bad points than good and makes progress:

∆(S , S ′′) ≤ ∆(S ,S ′)− 2ε/α

Proof:

∆(S ,S ′)−∆(S ,S ′′) =

#bad points rejected︷ ︸︸ ︷
|E \ E ′| −

#good points rejected︷ ︸︸ ︷
|L′ \ L|

|S |

=
(|E \ E ′|+ |L′ \ L|)− 2|L′ \ L|

|S |
≥ 2ε/T̃ 2 (Follows from above)

≥ 2ε/α

T = O(
√
d log (d/ετ)), since all points in S ′ satisfy

‖x − µS ′‖2 ≤ O(
√
d log (d/ετ)) (Consequence of NaivePrune).
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

A sketch of what just happened

1 If norm of covariance is
small, µ is close to µ̂.
Algorithm terminates.

2 If not, direction of largest
eigenvalue gives a
discriminatory tail bound.

3 Threshold ensures that we
reject more bad points
than good and make
progress at certain rate.

4 Algorithm terminates
before or when all bad
points are rejected.
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Experiments
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Estimating a N (µ, I) Gaussian (known covariance)

Set ε = 0.1

# dimensions (d) from 100 to 400, in steps of 50

(1 - ε)-fraction samples ∼ N (µ, I)
µ is the all-ones vector

ε-fraction from noise distribution: described in next slide

n = 10d
ε2

samples = Õ
(
d
ε2

)
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Estimating a N (µ, I) Gaussian: Noise Model

N =
1

2
Π1 +

1

2
Π2

where

Π1: every coordinate is 0 or 1 with probability 1/2

Π2: product distribution of:

First coordinate 0 or 12 with probability 1/2
Second coordinate -2 or 0 with probability 1/2
All other coordinates 0
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Mean Estimation under Identity Covariance

Figure: Mean estimation error with identity covariance matrix
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Mean Estimation under (scaled) Identity Covariance

Figure: C = 0.5I
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Mean Estimation under (scaled) Identity Covariance

Figure: C = 2I
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Trying non-identity covariances: Diagonal covariance

Figure: C = diag(rand(d,1))
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Trying non-identity covariances: Diagonal covariance

Figure: C = 2 * diag(rand(d,1))
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Trying non-identity covariances: Rotated covariance

Figure: [Q,R]=qr(rand(d,d));
C=Q∗diag(rand(d,1))∗Q′;
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Trying non-identity covariances: Rotated covariance

Figure: [Q,R]=qr(rand(d,d));
C=Q∗2∗diag(rand(d,1))∗Q′;
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Additional experiments

Estimating the covariance matrix:

Synthetic data

Isotropic: N (0, I)
Spiked: N (0, I + 100e1e

T
1 )

(Noisy) 20-dimensional projection of data from “Genes mirror
geography within Europe” (Nature, 2008)

2D PCA projection should recover map of Europe, as in
original work

Not enough time to cover these, unfortunately. . .
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

But pretty pictures!

Figure: Covariance estimation error assuming isotropic covariance
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Extension to robust PCA (images from the paper)

(a) (b)

(c)

Figure: Recovering geographic structure of 2D projection in the presence
of noise
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Discussion

Diakonikolas et al.
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Introduction Algorithm Proof: The Gory Details Experiments Discussion

Some Questions

1 Paper considers two kinds of covariance matrices: fully known
(I) and bounded-second-moment (� I)

Room for exploring more restricted families of covariance
matrices? Tridiagonal, perhaps?
The main goal appears to be to show Σ− C ≈ εME , combined
with a nice tail bound to guarantee not throwing away inliers.
Low-rank case (“Robust PCA?”) covered by a coming paper in
the presentation schedule. . .

2 Theorem 3.1 algorithm seems very sensitive to the scale
parameter. Can we make it work with a bounded σ
assumption, or better, unknown σ?
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Contamination Model Space

The adversary can be thought of as a stochastic process

C (y1, y2, . . . ym|x1, x2, . . . xm)

which gives rise to a marginal distribution

M (y1, y2, . . . ym)

Questions/Conjectures:

1 If the original data is an i.i.d. sample from P,

dTV

(
M (y1, y2, . . . ym) ,

m∏
i=1

P(yi )

)
≤ Õ((d + m)ε)?

2 Õ(ε)?

3 If the marginal of each yi is Qi , then
dTV (P(yi ),Qi (yi )) ≤ Õ(ε)
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≤ Õ((d + m)ε)?
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Cases not covered by DKK et. al.

Extend algorithm for Covariance Estimation to Sub-Gaussian
from Gaussian.

Can estimate parameters of Gaussian with unknown mean and
covariance. What happens in the Sub-Gaussian case?

Need to estimate covariance using the above, and adjust tail
bounds for error in estimation of covariance - specifically the δ
term
Potentially a worse error bound.
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Thank You!
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