Being Robust (in High Dimensions) Can Be Practical

Paper by Diakonikolas et. al. ICML 2017

Anant Gupta agupta2250wisc.edu

Muni Sreenivas Pydi pydi@wisc.edu Surya Teja Chavali chavali2@wisc.edu

Shantanu Gupta sgupta226@wisc.edu

Diakonikolas et al.

Being Robust Can Be Practical

Introduction	Proof: The Gory Details	Discussion

Introduction

Diakonikolas et al.

Being Robust Can Be Practical

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Problem Definition: Robust Mean and Covariance estimation

Given a polynomial number of samples from a high-dimensional Gaussian $\mathcal{N}(\mu, \Sigma)$, where an adversary has arbitrarily corrupted an ε -fraction, find a set of parameters $\mathcal{N}'(\widehat{\mu}, \widehat{\Sigma})$ that satisfy $d_{TV}(\mathcal{N}, \mathcal{N}') \leq \widetilde{O}(\varepsilon)$.

▲□▶▲圖▶▲臣▶▲臣▶ 臣 めんゆ

Being Robust Can Be Practical

Diakonikolas et al

Recap: Low Dimension with noise

For low dimensions, median is robust, efficient, computationally tractable.

As we saw in class, median has:

- **1** Minimax asymptotic bias $O(\varepsilon)$
- **2** Asymptotic variance $O(\frac{1}{n}) \implies$ sample complexity $\frac{1}{e^2}$
- **3** Computational complexity O(n)

Diakonikolas et al

▲ @ ▶ ▲ @ ▶ ▲

Recap: High Dimension with no noise

Sample mean is asymptotically normal:

- **1** Asymptotic variance $O\left(\frac{l}{n}\right) \implies$ sample complexity O(d)
- **2** Computational complexity O(nd) (Polynomial in *n* and *d*)

Error guarantee increases with dimension as \sqrt{d}

We want an estimator that is:

- **1** Robust: Error bound $ilde{O}(arepsilon)$
- **2** Sample efficient: Sample complexity $\tilde{O}(\frac{d}{\epsilon^2})$

The Tukey median (1960) achieves these goals.

< 🗗 🕨

We want an estimator that is:

- **1** Robust: Error bound $ilde{O}(arepsilon)$
- **2** Sample efficient: Sample complexity $\tilde{O}(\frac{d}{\epsilon^2})$

The Tukey median (1960) achieves these goals.

But it has computational complexity $O(n^{d-1} + n \log n)$ - **exponential** in d...

(日) (同) (三) (

Other approaches that don't work well in high dimensions

Generalizations of the median to higher dimensions:

- 1 Coordinate-wise median
- 2 Geometric median

Both of these have error bounds $O(\varepsilon \sqrt{\mathbf{d}})$.

< 17 ▶

3 →

Other approaches that don't work well in high dimensions

Generalizations of the median to higher dimensions:

- 1 Coordinate-wise median
- 2 Geometric median

Both of these have error bounds $O(\varepsilon \sqrt{\mathbf{d}})$. (curse of dimensionality)

Introduction		Proof: The Gory Details	Discussion
Related V	Vork		

Robustly learn μ^* given ε -corrupted from $\mathcal{N}(\mu^*, I)$: Error vs computational complexity trade-off:

Algorithm	Error Guarantee	Poly-Time?
Tukey Median	$O(\varepsilon)$	No
Tournament	O(arepsilon)	No
Geometric Median	$O(\varepsilon\sqrt{d})$	Yes
Pruning	$O(\varepsilon\sqrt{d})$	Yes
LRV'16	$O(\varepsilon \sqrt{\log d})$	Yes

Introduction		Proof: The Gory Details	Discussion
Related V	Vork		

Robustly learn μ^* given ε -corrupted from $\mathcal{N}(\mu^*, I)$: Error vs computational complexity trade-off:

Algorithm	Error Guarantee	Poly-Time?
Tukey Median	$O(\varepsilon)$	No
Tournament	O(arepsilon)	No
Geometric Median	$O(\varepsilon\sqrt{d})$	Yes
Pruning	$O(\varepsilon\sqrt{d})$	Yes
LRV'16	$O(\varepsilon \sqrt{\log d})$	Yes
Filter	$O(\varepsilon \sqrt{\log(1/\varepsilon)})$	Yes

All these algorithms are sample efficient.

э

(日) (同) (三) (三)

Introduction		Proof: The Gory Details	Discussion
Contamina	tion Model		

The paper considers the following contamination model:

$X_1, X_2, ..., X_m \overset{\text{iid}}{\sim} D, D \in \mathcal{D}$

Diakonikolas et al. <u>Being R</u>obust Can Be Practical 2

・ロト ・四ト ・ヨト ・ヨト

Introduction		Proof: The Gory Details	Discussion
Contaminat	tion Model		

The paper considers the following contamination model:

 $X_1, X_2, ..., X_m \stackrel{\text{iid}}{\sim} D, D \in \mathcal{D}$

Adversary changes arbitrarily an ε -fraction \downarrow $Y_1, Y_2, ..., Y_m$

- * 日 * * 個 * * 画 * * 画 * ・ 画 ・ の < ??

Diakonikolas et al.

Being Robust Can Be Practical

Contamination Model: contd

Generalization of Huber's model

1 Subsumes Huber

Contamination Model: contd

Generalization of Huber's model

- 1 Subsumes Huber
- 2 Allows both insertions and deletions

э

• • • • • • • •

∃ → < ∃</p>

Contamination Model: contd

Generalization of Huber's model

- 1 Subsumes Huber
- 2 Allows both insertions and deletions
- 3 Adversary allowed to inspect data, i.e. corrupted data is not i.i.d.

< 17 ▶

-

Main Result: Mean estimation for Sub-Gaussian Distribution

Theorem (3.1)

lf

- G Sub-Gaussian on \mathbb{R}^d , $\nu = \Theta(1)$, mean μ^G , covariance I
- S is an ε -corrupted set of samples with $|S| = \tilde{\Omega}(d/\varepsilon^2)$
- Then there exists an efficient algorithm that outputs $\widehat{\mu}$ with prob. $1-\tau$ s.t.

$$\|\widehat{\mu} - \mu^{\mathsf{G}}\|_2 = O(\varepsilon \sqrt{\log(1/\varepsilon)}).$$

・ 日 ・ ・ 画 ・ ・ 画 ・ ・ 画 ・ ・ 日 ・

Diakonikolas et al.

Being Robust Can Be Practical

Introd	luction	Algorithm	Proof: The Gory Details	Experiments	Discussi
Ma Mo	ain Result oment	t: Mean e	stimation for Bou	unded Second	
	Theorem ((3.2)			
	lf				
	P dist	tribution on	\mathbb{R}^d , mean μ^P , covaria	nce $\Sigma_P \preceq \sigma^2 I$	
	S is a	n ε -corrupte	ed set of samples with	$ S = ilde{\Theta}(d/arepsilon)$	
	Then there	e exists an e	fficient algorithm that	outputs $\widehat{\mu}$ with p	rob.
	1- au s.t.				

$$\|\widehat{\mu}-\mu^P\|_2 \leq O(\sqrt{\varepsilon}\sigma).$$

Main Result: Covariance Estimation

Theorem (3.3) If • $G \sim \mathcal{N}(0, \Sigma)$ in d dimensions • S is an ε -corrupted set of samples with $|S| = \tilde{\Omega}(d^2/\varepsilon^2)$ Then there exists an efficient algorithm that outputs $\hat{\Sigma}$ with prob. $1 - \tau$ s.t.

$$\|I - \Sigma^{-1/2}\widehat{\Sigma}\Sigma^{-1/2}\|_F = O(\varepsilon \log(1/\varepsilon)).$$

Diakonikolas et al.

Being Robust Can Be Practical

э

A Summary of the Results

All results with probability $1 - \tau$:

	Theorem 3.1	Theorem 3.2	Theorem 3.3
Distribution	Sub-Gaussian Known Cov.	Bounded Covariance	Gaussian
Target	μ _G	μ_P	Σ
Error	$\ \widehat{\mu} - \mu^{G}\ _2$	$\ \widehat{\mu} - \mu^{P}\ _{2}$	$\ I - \Sigma^{-1/2} \widehat{\Sigma} \Sigma^{-1/2} \ _{F}$
Error Bound	$O(\varepsilon\sqrt{\log(1/\varepsilon)})$	$O(\sqrt{\varepsilon}\sigma)$	$O\left(\varepsilon \log(1/\varepsilon) ight)$
#(samples)	$ ilde{\Omega}(d/arepsilon^2)$	$ ilde{\Theta}({}^d\!/{}_arepsilon)$	$ ilde{\Omega}(d^2\!/arepsilon^2)$

Table: Summarizing the error bounds and sample complexity of the three proposed algorithms

э

Algorithm	Proof: The Gory Details	Discussion

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへ⊙

	Algorithm	Proof: The Gory Details	Discussion
Corrupte	d Data		

Phase-1 Algorithm: Naive Pruning

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回 ろんの

NaivePrune: Getting a (Nearly) Good Set

Algorithm 1 Naive Pruning

- 1: function NAIVEPRUNE (X_1, \ldots, X_N)
- 2: For i, j = 1, ..., N, define $\delta_{i,j} = ||X_i X_j||_2$.
- 3: **for** i = 1, ..., j **do**
- 4: Let $A_i = \{j \in [N] : \delta_{i,j} > \Omega(\sqrt{d \log(N/\tau)})\}$
- 5: **if** $|A_i| > 2\varepsilon N$ then
- 6: Remove X_i from the set.
- 7: **return** the pruned set of samples.

Fact

With high probability, NAIVEPRUNE removes no uncorrupted points, and for all X_i that remain, $||X_i - \mu||_2 \le O\left(\sqrt{d\log(N/\tau)}\right)$.

Diakonikolas et al.

Being Robust Can Be Practical

Proof: The Gory Details

Experimer

Discussion

We're still not in good shape!

We're still not in good shape!

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

The FILTER (Meta-) Algorithm

Algorithm 2 Filter-based mean estimation

- 1: Input: ε -corrupted sample set *S*, Thres(ε), Tail($T, d, \varepsilon, \delta, \tau$), $\delta(\varepsilon, s)$
- 2: Compute the sample mean $\mu^{S'} = \mathbb{E}_{X \in _u S'}[X]$
- 3: Compute the sample covariance matrix $\boldsymbol{\Sigma}$
- 4: Compute approximations for the largest absolute eigenvalue of Σ , $\lambda^* := \|\Sigma\|_2$, and the associated unit eigenvector v^* .
- 5: if $\|\Sigma\|_2 \leq \text{Thres}(\varepsilon)$ then
- 6: return $\mu^{S'}$.
- 7: Let $\delta = \delta(\varepsilon, \|\Sigma\|_2)$.
- 8: Find T > 0 such that

$$\Pr_{X \in {}_{u}S'}\left[|v^* \cdot (X - \mu^{S'})| > T + \delta\right] > \operatorname{Tail}(T, d, \varepsilon, \delta, \tau).$$

9: return $\{x \in S' : |v^* \cdot (x - \mu^{S'})| \le T + \delta\}.$

A (1) > A (2) > A

The Sub-Gaussian Case: Good Sets

Definition (Good Sets)

If G is a Sub-Gaussian distribution on \mathbb{R}^d with parameter $\nu = \Theta(1)$, covariance I, and S is a sample drawn from G, then S is said to be a "good" set, if

(i)
$$||x - \mu^{G}||_{2} \leq O(\sqrt{d \log(|S|/\tau)})$$
 for all $x \in S$.
(ii) $\forall v, T$, such that $||v||_{2} = 1$ and $T \in \mathbb{R}$,
 $\left| \sum_{x \in u} S^{[v \cdot (x - \mu^{G}) \geq T] - \sum_{x \sim G} [v \cdot (x - \mu^{G}) \geq T]} \right| \leq 8 \exp(-T^{2}/2\nu) + 8 \frac{\varepsilon}{\overline{\tau}^{2}}$
(iii) $||\mu^{S} - \mu^{G}||_{2} \leq \varepsilon$.
(iv) $||M_{S} - I||_{2} \leq \varepsilon$.

Diakonikolas et al.

Being Robust Can Be Practical

イロト イヨト イヨト イ

Instantiating the Sub-Gaussian Case

1 Sub-Gaussian(ν) Distribution, $\Sigma = I$.

- Thres(ε) = $O(\varepsilon \log 1/\varepsilon)$
 - Comes from deleted points

Diakonikolas et al. Being Robust Can Be Practical э

Instantiating the Sub-Gaussian Case

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Instantiating the Sub-Gaussian Case

1 Sub-Gaussian(ν) Distribution, $\Sigma = I$.

• Thres(ε) = $O(\varepsilon \log 1/\varepsilon)$

Comes from deleted points

Tail
$$(T, d, \varepsilon, \delta, \tau) = 8 \exp(-T^2/2\nu) + 8 \frac{\varepsilon}{\tilde{T}^2}$$

- 1 Sub-Gaussian
- 2 Translate bound from true distribution to empirical

Diakonikolas et al.

・ロト ・回ト ・ヨト・

Instantiating the Sub-Gaussian Case

문어 문

	Algorithm	Proof: The Gory Details	Discussion
Instantia	+:		

Diakonikolas et al.

= 900

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

The Algorithm: Putting it all together

- Firstly, apply NAIVEPRUNE to ensure that the set becomes 2ε -close to good' outliers that are too far away are removed.
- Iteratively filter out bad points using FILTER to reach a good set with high probability.
- Return the sample mean of the good set.

	Proof: The Gory Details	Discussion

Proof: The Gory Details

Diakonikolas et al.

Being Robust Can Be Practical

・ロ・・聞・・思・・思・ しゅくの

The End Goal

Theorem (A.3)

lf

• G Sub-Gaussian on
$$\mathbb{R}^d$$
, $\nu = \Theta(1)$, mean μ^G , covariance I
• $|S| = \Omega((d/\varepsilon^2) \operatorname{poly} \log(d/\varepsilon\tau))$
Then with prob. $1 - \tau$,

$$\|\widehat{\mu} - \mu^{\mathsf{G}}\|_2 = O(\varepsilon \sqrt{\log(1/\varepsilon)}).$$

Diakonikolas et al.

2

・ロト ・回ト ・ヨト ・ヨト
		Proof: The Gory Details	Discussion
Definitior	าร		

5 Note that
$$\Delta(S,S') = rac{|E|+|L|}{|S|}$$

	Proof: The Gory Details	Discussion
Definitions		

•
$$\mu^{S} = \frac{1}{|S|} \sum_{X \in S} X$$
 Clean Sample mean
• $\mu^{S'} = \frac{1}{|S'|} \sum_{X \in S'} X$ Sample mean
• $\Sigma = \frac{1}{|S'|} \sum_{X \in S'} (X - \mu^{S'})(X - \mu^{S'})^{T}$ Sample covariance
• $M_{S'} = \frac{1}{|S'|} \sum_{X \in S'} (X - \mu^{G})(X - \mu^{G})^{T}$ Modified sample covariance

Diakonikolas et al.

Being Robust Can Be Practical

	Proof: The Gory Details	Discussion

Definitions

$$\mu^{S} = \frac{1}{|S|} \sum_{X \in S} X$$

$$\mu^{L} = \frac{1}{|S|} \sum_{X \in L} X$$

$$\mu^{E} = \frac{1}{|S|} \sum_{X \in E} X$$

$$M_{S} = \frac{1}{|S|} \sum_{X \in S'} [(X - \mu^{G})(X - \mu^{G})^{T}],$$

$$M_{L} = \frac{1}{|L|} \sum_{X \in L} [(X - \mu^{G})(X - \mu^{G})^{T}],$$

$$M_{E} = \frac{1}{|E|} \sum_{X \in E} [(X - \mu^{G})(X - \mu^{G})^{T}].$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへぐ

Diakonikolas et al.

			Proof: The Gory Details		Discussion
ТЬ	o Cood S	Sot			
	e Good .	bel			
	Lemma (A	5)			
		,			
	If				
	🛛 G sub	o-gaussian c	on \mathbb{R}^d , $ u = \Theta(1)$, covar	riance I	
	■ <i>S</i> =	$\Omega((d/arepsilon^2){ m p}$	oly log $(d/arepsilon au))$		
	Then with	prob. 1 –	τ, S is a "good" set, i.	е.	
	(i) ∥ <i>x</i> − ,	$\mu^{G}\ _{2} \leq O($	$\sqrt{d \log(\mathcal{S} / au)}$ for all .	$x \in S$.	
	(ii) $\begin{vmatrix} Pr \\ X \in_{u} S \end{vmatrix}$	$[\mathbf{v}\cdot(\mathbf{x}-\mu^{\mathbf{C}})]$	$F(F) \geq T] - \Pr_{X \sim G}[v \cdot (x - f)]$	$\left \mu^{G}\right \geq T] \right \leq \tilde{O}$	(arepsilon) .
	(iii) ∥µ ^S −	$-\mu^{G}\ _{2} \leq \varepsilon.$			
	(iv) <i>M_S</i> -	$-I\ _2 \leq \varepsilon.$			

三 のへで

◆□→ ◆□→ ◆三→ ◆三→

If Algorithm Filter works, then Theorem (A.3) is true

Proposition (A.7)

lf

- G sub-gaussian on \mathbb{R}^d , $\nu = \Theta(1)$, covariance I
- S is (ε, τ)-good set; Δ(S, S') ≤ 2ε
 S is uncorrupted, S' is ε-uncorrupted
- For any $x, y \in S'$, $||x y||_2 \le O(\sqrt{d \log(d/\varepsilon\tau)})$ Consequence of NaivePrune

Then, the algorithm Filter returns one of these:

where $\alpha \stackrel{\text{def}}{=} d \log(d/\varepsilon \tau) \log(d \log(\frac{d}{\varepsilon \tau})).$

Algorithm FILTER

Algorithm 3 Filter-Sub-Gaussian-Unknown-Mean (S', ε, τ)

- 1: Input: S' such that there exists (ε, τ) -good S with $\Delta(S, S') \leq 2\varepsilon$ 2: Output: S'' or $\hat{\mu}$ satisfying Proposition (A.7)
- 3: Compute $\mu^{S'} = \mathbb{E}_{X \in {}_u S'}[X]$ and $\Sigma = \mathbb{E}_{X \in {}_u S'}\left[(X \mu^{S'})(X \mu^{S'})^T\right]$
- 4: Compute the largest absolute eigenvalue of ΣI , $\lambda^* := ||\Sigma I||_2$, and the associated unit eigenvector v^* .
- 5: if $\|\Sigma I\|_2 \leq O(\varepsilon \log(1/\varepsilon))$, then return $\mu^{S'}$.
- 6: Let $\delta := 3\sqrt{\varepsilon \|\Sigma I\|_2}$. Find T > 0 such that

$$\Pr_{X \in_u S'} \left[|v^* \cdot (X - \mu^{S'})| > T + \delta \right] > 8 \exp(-T^2/2\nu) + 8 \frac{\varepsilon}{T^2 \log\left(d \log\left(\frac{d}{\varepsilon\tau}\right)\right)}.$$

7: **return** the multiset $S'' = \{x \in S' : |v^* \cdot (x - \mu^{S'})| \le T + \delta\}.$

Diakonikolas et al.

Need to prove:

1 Small spectral norm: If $\|\Sigma - I\|_2 \leq O\left(\varepsilon \log\left(\frac{1}{\varepsilon}\right)\right)$, then

$$\|\mu^{\mathcal{S}'} - \mu^{\mathcal{G}}\|_2 = O\left(\varepsilon \sqrt{\log\left(\frac{1}{\varepsilon}\right)}\right).$$

2 Large spectral norm: If $\|\Sigma - I\|_2 > \Omega\left(\varepsilon \log\left(\frac{1}{\varepsilon}\right)\right)$, then

 \blacksquare \exists a threshold T that is used for filtering, such that

$$\Pr_{X \in {}_{u}S'}\left[|v^* \cdot (X - \mu^{S'})| > T + \delta\right] > 8e^{\frac{-T^2}{2\nu}} + 8\frac{\varepsilon}{\tilde{T}^2}.$$

• The algorithm makes progress, i.e. S'' satisfies

$$\Delta(S, S'') \leq \Delta(S, S') - \varepsilon/\alpha$$

イロト イポト イヨト イヨト

Key Result:

$$\Sigma - I pprox (|E|/|S'|)M_E$$

Intuition: The errors approximately align in the direction of leading eigenvector of $\Sigma - I$. **Proof:** By definition,

$$\Sigma - I = \underbrace{(M_{S'} - I)}_{\approx \frac{|E|}{|S'|}M_E} - \underbrace{(\mu^{S'} - \mu^G)}_{(B)} (\mu^{S'} - \mu^G)^T}_{(B)}$$

$$\underbrace{(\mu^E - \mu^G)}_{(B)} (\mu^E - \mu^G)}_{(B)}$$

Diakonikolas et al.

	Proof: The Gory Details	Discussion

Proof of matrix-norm identity: $\|M_E\|_2 \ge \|\mu^E - \mu^G\|_2^2$

$$\sum (x - \mu^{G})(x - \mu^{G})^{T}$$

= $\sum (x - \mu^{E})(x - \mu^{E})^{T} + \sum (\mu^{E} - \mu^{G})(\mu^{E} - \mu^{G})^{T}$

・ロト ・四ト ・日ト ・日ト ・ 日ト

	Proof: The Gory Details	Discussion

Proof of matrix-norm identity: $\|M_E\|_2 \ge \|\mu^E - \mu^G\|_2^2$

$$\sum (x - \mu^{G})(x - \mu^{G})^{T}$$

= $\sum (x - \mu^{E})(x - \mu^{E})^{T} + \sum (\mu^{E} - \mu^{G})(\mu^{E} - \mu^{G})^{T}$

$$M_E = \underbrace{\sum_{\geq 0}}_{\geq 0} + \underbrace{(\mu^E - \mu^G)(\mu^E - \mu^G)^T}_{\geq 0}$$

$$\|M_E\|_2 \ge \|\mu^E - \mu^G\|_2^2$$

Diakonikolas et al.

Proof of (A):
$$M_{S'} - I = \frac{|E|}{|S'|}M_E + O\left(\varepsilon \log \frac{1}{\varepsilon}\right)$$

▲口と▲聞と▲臣と▲臣と 臣 めの()

Proof of (A):
$$M_{S'} - I = \frac{|E|}{|S'|}M_E + O\left(\varepsilon \log \frac{1}{\varepsilon}\right)$$

Let $\tilde{x} = x - \mu^G$. Recall that $S' = (S \setminus L) \cup E$.

- ▲ ロ ト ▲ 圖 ト ▲ 国 ト → 国 - → ○ < ○

Proof of (A):
$$M_{S'} - I = \frac{|E|}{|S'|}M_E + O\left(\varepsilon \log \frac{1}{\varepsilon}\right)$$

Let $\tilde{x} = x - \mu^G$. Recall that $S' = (S \setminus L) \cup E$.

$$\sum_{X \in S'} \tilde{x} \tilde{x}^{T} = \sum_{X \in S} \tilde{x} \tilde{x}^{T} - \sum_{X \in L} \tilde{x} \tilde{x}^{T} + \sum_{X \in E} \tilde{x} \tilde{x}^{T}$$
$$|S'|M_{S'} = |S|M_{S} - |L|M_{L} + |E|M_{E}$$
$$M_{S'} = \underbrace{\frac{|S|}{|S'|}}_{1 \to O(\varepsilon)} \underbrace{\frac{M_{S}}{|S'|}}_{\varepsilon} - \underbrace{\frac{|L|}{|S'|}}_{0(\log \frac{1}{\varepsilon})} \underbrace{\frac{M_{L}}{|S'|}}_{O(\log \frac{1}{\varepsilon})} + \frac{|E|}{|S'|}M_{E}$$
$$\therefore M_{S'} - I = \varepsilon M_{E} + O\left(\varepsilon \log \frac{1}{\varepsilon}\right)$$

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣A@

Diakonikolas et al.

Proof of (B):
$$(\mu^{S'} - \mu^G) = \frac{|E|}{|S'|} (\mu^E - \mu^G) + O\left(\varepsilon \log \frac{1}{\varepsilon}\right)$$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 = ∽のへ()

Proof of (B):
$$(\mu^{S'} - \mu^G) = \frac{|E|}{|S'|} (\mu^E - \mu^G) + O(\varepsilon \log \frac{1}{\varepsilon})$$

Recall that $\tilde{x} = x - \mu^G$ and $S' = (S \setminus L) \cup E$.

- メロト メロト メヨト メヨト 三日 - わんの

Proof of Correctness of Algorithm FILTER

Proof of (B):
$$(\mu^{S'} - \mu^G) = \frac{|E|}{|S'|} (\mu^E - \mu^G) + O(\varepsilon \log \frac{1}{\varepsilon})$$

Recall that $\tilde{x} = x - \mu^G$ and $S' = (S \setminus L) \cup E$.

$$S' = (S \setminus L) \cup E$$

$$\sum_{X \in S'} \tilde{x} = \sum_{X \in S} \tilde{x} - \sum_{X \in L} \tilde{x} + \sum_{X \in E} \tilde{x}$$

$$|S'|(\mu^{S'} - \mu^G) = |S|(\mu^S - \mu^G) - |L|(\mu^L - \mu^G) + |E|(\mu^E - \mu^G)$$

$$(\mu^{S'} - \mu^G) = \underbrace{\frac{|S|}{|S'|}}_{1} \underbrace{(\mu^S - \mu^G)}_{O(\varepsilon)} - \underbrace{\frac{|L|}{|S'|}}_{\varepsilon} \underbrace{(\mu^L - \mu^G)}_{\|\mu^L - \mu^G\|_2^2 \le \|M_L\|_2} + \frac{|E|}{|S'|}(\mu^E - \mu^G)$$

$$\therefore (\mu^{S'} - \mu^G) = \varepsilon(\mu^E - \mu^G) + O\left(\varepsilon\sqrt{\log(1/\varepsilon)}\right)$$

Diakonikolas <u>et al.</u>

Being Robust Can Be Practical

æ

・ロト ・回ト ・ヨト・

Proof of Correctness of Algorithm FILTER

Combining (A) and (B), we get:

$$\Sigma - I = \varepsilon M_E + O(\varepsilon \log(1/\varepsilon))$$

(Key Result)

Diakonikolas et al.

Being Robust Can Be Practical

문어 문

Step 5. if $\|\Sigma - I\|_2 \leq O(\varepsilon \log(1/\varepsilon))$, return $\mu^{S'}$.

- ・ロト・日下・モト・モト・ ヨー つく

Step 5. if
$$\|\Sigma - I\|_2 \leq O(\varepsilon \log(1/\varepsilon))$$
, return $\mu^{S'}$.
To Prove: $\|\mu^{S'} - \mu^G\|_2 \leq O\left(\varepsilon \sqrt{\log(1/\varepsilon)}\right)$

- ▲日本 ▲国本 ▲国本 ▲国本 ▲日本

Step 5. if
$$\|\Sigma - I\|_2 \leq O(\varepsilon \log(1/\varepsilon))$$
, return $\mu^{S'}$.
To Prove: $\|\mu^{S'} - \mu^G\|_2 \leq O\left(\varepsilon \sqrt{\log(1/\varepsilon)}\right)$
Proof:

$$\begin{split} \|\mu^{S'} - \mu^{G}\|_{2} \\ &\leq \varepsilon \|\mu^{E} - \mu^{G}\|_{2} + O\left(\varepsilon\sqrt{\log\left(1/\varepsilon\right)}\right) \text{ Follows from (B)} \\ &\leq \varepsilon\sqrt{\|M_{E}\|_{2}} + O\left(\varepsilon\sqrt{\log\left(1/\varepsilon\right)}\right), \text{ from matrix-norm identity} \\ &= \sqrt{\varepsilon}\|\Sigma - I\|_{2} + O\left(\varepsilon\sqrt{\log\left(1/\varepsilon\right)}\right), \text{ from key result} \\ &= O\left(\varepsilon\sqrt{\log\left(1/\varepsilon\right)}\right) \end{split}$$

Diakonikolas et al.

Being Robust Can Be Practical

э

Image: A math a math

Step 6. if $\|\Sigma - I\|_2 \ge \Omega(\varepsilon \log(\frac{1}{\varepsilon})))$, then: Find T > 0 such that following tail bound is violated

$$\Pr_{\boldsymbol{X} \in u} \mathsf{S}' \left[|\boldsymbol{v}^* \cdot (\boldsymbol{X} - \boldsymbol{\mu}^{\mathsf{S}'})| > T + \delta \right] > \operatorname{Tail}(T, \boldsymbol{d}, \varepsilon, \tau).$$

(i.e. at least $Tail(T, d, \varepsilon, \tau)$ -fraction of points fall outside threshold)

Step 7. reject $x \in S'$ that fall outside threshold

Diakonikolas et al.

if
$$\|\Sigma - I\|_2 \ge \Omega(\varepsilon \log(\frac{1}{\varepsilon})))$$
, return S'' .
To Prove:

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● ののの

if
$$\|\Sigma - I\|_2 \ge \Omega(\varepsilon \log(\frac{1}{\varepsilon})))$$
, return S'' .
To Prove:

1 A "violation" threshold T for Step 6 exists \implies allows "many" total points ($\Omega(\varepsilon/\alpha)$) to be rejected

if
$$\|\Sigma - I\|_2 \ge \Omega(\varepsilon \log(\frac{1}{\varepsilon})))$$
, return S'' .
To Prove:

 A "violation" threshold *T* for Step 6 exists
 ⇒ allows "many" total points (Ω(ε/α)) to be rejected
 Using *T*, Filter rejects "few" good points *O*(ε/α)

if
$$\|\Sigma - I\|_2 \ge \Omega(\varepsilon \log(\frac{1}{\varepsilon})))$$
, return S'' .
To Prove:

 A "violation" threshold *T* for Step 6 exists
 ⇒ allows "many" total points (Ω(ε/α)) to be rejected

 Using *T*, Filter rejects "few" good points O(ε/α)

 Filter rejects more bad points than good and makes progress:

$$\Delta(S, S'') \leq \Delta(S, S') - 2\varepsilon/lpha$$

where $S'' = S' \setminus \{ \text{rejected points} \},\ \alpha = d \log(d/\varepsilon\tau) \log(d \log(\frac{d}{\varepsilon\tau}))$

▲ □ ▶ ▲ 三 ▶ ▲

- 1 A threshold *T* exists
- Proof ouline:
 - Suppose not.

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わらの

1 A threshold T exists

Proof ouline:

- **1** Suppose not.
- **2** Then S' satisfies the sub-gaussian tail bound:

$$\Pr_{X \in {}_{u}S'}\left[|v^* \cdot (X - \mu^{S'})| > T + \delta/2\right] \leq 8 \exp(-T^2/2\nu) + 8\frac{\varepsilon}{\tilde{T}^2}.$$

э

< 17 >

1 A threshold T exists

Proof ouline:

Suppose not.

2 Then S' satisfies the sub-gaussian tail bound:

$$\Pr_{X \in {}_{\boldsymbol{\mathcal{U}}} S'} \left[|\mathbf{v}^* \cdot (X - \mu^{S'})| > T + \delta/2 \right] \le 8 \exp(-T^2/2\nu) + 8 \frac{\varepsilon}{\tilde{T}^2} .$$

3 Then $\|\Sigma - I\|_2 \leq O(\varepsilon \log(\frac{1}{\varepsilon}))$. Contradiction.

Diakonikolas et al.

1 A threshold T exists

Proof ouline:

Suppose not.

2 Then S' satisfies the sub-gaussian tail bound:

$$\Pr_{X \in {}_{\boldsymbol{\mathcal{U}}} S'} \left[|\boldsymbol{v}^* \cdot (\boldsymbol{X} - \boldsymbol{\mu}^{S'})| > T + \delta/2 \right] \le 8 \exp(-T^2/2\nu) + 8 \frac{\varepsilon}{\tilde{T}^2} \ .$$

3 Then $\|\Sigma - I\|_2 \le O(\varepsilon \log(\frac{1}{\varepsilon}))$. Contradiction. Therefore T exists and:

Diakonikolas et al.

1 A threshold T exists

Proof ouline:

Suppose not.

2 Then S' satisfies the sub-gaussian tail bound:

$$\Pr_{\mathsf{X} \in {}_{\boldsymbol{y}} \mathsf{S}'} \left[|\mathsf{v}^* \cdot (\mathsf{X} - \mu^{\mathsf{S}'})| > T + \delta/2 \right] \quad \leq 8 \exp(-T^2/2\nu) + 8 \frac{\varepsilon}{\tilde{T}^2} \; .$$

 3 Then ||Σ − I ||₂ ≤ O(ε log(¹/_ε)). Contradiction. Therefore T exists and:

$$\underbrace{|E \setminus E'|}_{\#\text{bad points rejected}} + \underbrace{|L' \setminus L|}_{\#\text{good points rejected}} \geq 8\varepsilon |S'| / \tilde{T}^2$$
$$\geq 4\varepsilon |S| / \tilde{T}^2$$

Diakonikolas et al.

Being Robust Can Be Practical

э

(日) (同) (三) (

2 Filter rejects at most
$$(2 \exp(-T^2/2\nu) + \varepsilon/\tilde{T}^2)$$
-fraction from $S \cap S'$

æ

・ロト ・回ト ・ヨト

2 Filter rejects at most
$$(2 \exp(-T^2/2\nu) + \varepsilon/\tilde{T}^2)$$
-fraction from $S \cap S'$

Proof: Points in *S* satisfy the "goodness" tail bound:

$$\Pr_{X \in {}_{\boldsymbol{\mathcal{U}}}\boldsymbol{\mathcal{S}}}[|\boldsymbol{w} \cdot (\boldsymbol{X} - \boldsymbol{\mu}^{\boldsymbol{\mathcal{S}}'})| > T + \|\boldsymbol{\mu}^{\boldsymbol{\mathcal{S}}'} - \boldsymbol{\mu}^{\boldsymbol{\mathcal{G}}}\|_2] \leq 2\exp(-T^2/2\nu) + \frac{\varepsilon}{\tilde{T}^2}.$$

Diakonikolas et al.

2 Filter rejects at most
$$(2 \exp(-T^2/2\nu) + \varepsilon/\tilde{T}^2)$$
-fraction from $S \cap S'$

Proof: Points in S satisfy the "goodness" tail bound:

$$\Pr_{X \in {}_{u}S}[|w \cdot (X - \mu^{S'})| > T + ||\mu^{S'} - \mu^{G}||_2] \le 2\exp(-T^2/2\nu) + \frac{\varepsilon}{\tilde{T}^2}.$$

Therefore, $\underbrace{|L' \setminus L|}_{\#\text{good points rejected}} < \varepsilon |S|/\tilde{T}^2$

Diakonikolas et al.

Being Robust Can Be Practical

э

< (17) > <

3 Filter rejects more bad points than good and makes progress:

$$\Delta(S,S'') \leq \Delta(S,S') - 2\varepsilon/lpha$$

▲口 → ▲圖 → ▲国 → ▲国 → ▲目 → ● ● ●

	Proof: The Gory Details	Discussion

3 Filter rejects more bad points than good and makes progress:

$$\Delta(S, S'') \leq \Delta(S, S') - 2\varepsilon/\alpha$$

Proof:

$$\Delta(S, S') - \Delta(S, S'') = \frac{|E \setminus E'| - |L' \setminus L|}{|S|}$$
$$= \frac{(|E \setminus E'| + |L' \setminus L|) - 2|L' \setminus L|}{|S|}$$
$$\geq 2\varepsilon/\tilde{T}^2 \text{ (Follows from above)}$$
$$\geq 2\varepsilon/\alpha$$

Diakonikolas et al.

Being Robust Can Be Practical

э

< (17) > <

.∃ ▶ . ∢

3 Filter rejects more bad points than good and makes progress:

$$\Delta(S, S'') \leq \Delta(S, S') - 2\varepsilon/\alpha$$

Proof:

$$\Delta(S, S') - \Delta(S, S'') = \frac{|E \setminus E'| - |L' \setminus L|}{|S|}$$
$$= \frac{(|E \setminus E'| + |L' \setminus L|) - 2|L' \setminus L|}{|S|}$$
$$\geq 2\varepsilon/\tilde{T}^2 \text{ (Follows from above)}$$
$$\geq 2\varepsilon/\alpha$$

 $T = O(\sqrt{d \log (d/\varepsilon\tau)}), \text{ since all points in } S' \text{ satisfy} \\ \|x - \mu^{S'}\|_2 \le O(\sqrt{d \log (d/\varepsilon\tau)}) \text{ (Consequence of NaivePrune)}.$

Diakonikolas et al.
A sketch of what just happened

- If norm of covariance is small, μ is close to μ̂. Algorithm terminates.
- If not, direction of largest eigenvalue gives a discriminatory tail bound.
- 3 Threshold ensures that we reject more bad points than good and make progress at certain rate.
- Algorithm terminates before or when all bad points are rejected.

< ∃ >

	Proof: The Gory Details	Experiments	Discussion

Experiments

Diakonikolas et al.

Being Robust Can Be Practical

ъ.

・ロト ・回ト ・ヨト ・ヨト

Estimating a $\mathcal{N}(\mu, \mathbf{I})$ Gaussian (known covariance)

- Set ε = 0.1
- # dimensions (d) from 100 to 400, in steps of 50

(1 -
$$\varepsilon$$
)-fraction samples $\sim \mathcal{N}(\mu, \mathbf{I})$

• μ is the all-ones vector

• ε -fraction from noise distribution: described in next slide

•
$$n = \frac{10d}{\varepsilon^2}$$
 samples $= \tilde{O}\left(\frac{d}{\varepsilon^2}\right)$

Diakonikolas et al.

Estimating a $\mathcal{N}(\mu, \mathbf{I})$ Gaussian: Noise Model

$$\mathsf{V} = \frac{1}{2}\mathsf{\Pi}_1 + \frac{1}{2}\mathsf{\Pi}_2$$

where

- Π_1 : every coordinate is 0 or 1 with probability 1/2
- Π₂: product distribution of:
 - First coordinate 0 or 12 with probability 1/2
 - Second coordinate -2 or 0 with probability 1/2
 - All other coordinates 0

Mean Estimation under Identity Covariance

Figure: Mean estimation error with identity covariance matrix

э

Mean Estimation under (scaled) Identity Covariance

Figure: C = 0.5I

Diakonikolas et al. Being Robust Can Be Practical

Mean Estimation under (scaled) Identity Covariance

Figure: C = 2I

Diakonikolas et al.

Trying non-identity covariances: Diagonal covariance

Figure: C = diag(rand(d,1))

Diakonikolas et al.

Trying non-identity covariances: Diagonal covariance

Figure: C = 2 * diag(rand(d,1))

Diakonikolas et al.

Trying non-identity covariances: Rotated covariance

Figure: $\begin{bmatrix} Q,R \end{bmatrix} = qr(rand(d,d));$ C = Q*diag(rand(d,1))*Q';

Diakonikolas et al.

Trying non-identity covariances: Rotated covariance

Diakonikolas et al.

		Proof: The Gory Details	Experiments	Discussion
Additional experiments				

Estimating the covariance matrix:

- Synthetic data
 - Isotropic: $\mathcal{N}(0, \mathbf{I})$
 - Spiked: $\mathcal{N}(0, \mathbf{I} + 100e_1e_1^T)$

Additional experiments

Estimating the covariance matrix:

- Synthetic data
 - Isotropic: $\mathcal{N}(0, \mathbf{I})$
 - Spiked: $\mathcal{N}(0, \mathbf{I} + 100e_1e_1^T)$
- (Noisy) 20-dimensional projection of data from "Genes mirror geography within Europe" (Nature, 2008)
 - 2D PCA projection should recover map of Europe, as in original work

▲ @ ▶ ▲ @ ▶ ▲

Estimating the covariance matrix:

- Synthetic data
 - Isotropic: $\mathcal{N}(0, \mathbf{I})$
 - Spiked: $\mathcal{N}(0, \mathbf{I} + 100e_1e_1^T)$
- (Noisy) 20-dimensional projection of data from "Genes mirror geography within Europe" (*Nature*, 2008)
 - 2D PCA projection should recover map of Europe, as in original work

Not enough time to cover these, unfortunately...

But pretty pictures!

Figure: Covariance estimation error assuming isotropic covariance

・ロト ・回ト ・ヨト

-

æ

Extension to robust PCA (images from the paper)

Figure: Recovering geographic structure of 2D projection in the presence of noise

Diakonikolas et al.

	Proof: The Gory Details	Discussion

Diakonikolas et al.

Being Robust Can Be Practical

= 990

・ロト ・四ト ・ヨト ・ヨト

- Paper considers two kinds of covariance matrices: fully known

 (I) and bounded-second-moment (≤ I)
 - Room for exploring more restricted families of covariance matrices? *Tridiagonal, perhaps*?
 - The main goal appears to be to show $\Sigma C \approx \varepsilon M_E$, combined with a nice tail bound to guarantee not throwing away inliers.
 - Low-rank case ("Robust PCA?") covered by a coming paper in the presentation schedule...

▲ □ ▶ ▲ 三 ▶ ▲

- Paper considers two kinds of covariance matrices: fully known

 (I) and bounded-second-moment (≤ I)
 - Room for exploring more restricted families of covariance matrices? *Tridiagonal, perhaps*?
 - The main goal appears to be to show $\Sigma C \approx \varepsilon M_E$, combined with a nice tail bound to guarantee not throwing away inliers.
 - Low-rank case ("Robust PCA?") covered by a coming paper in the presentation schedule...
- 2 Theorem 3.1 algorithm seems very sensitive to the scale parameter. Can we make it work with a bounded σ assumption, or better, unknown σ ?

• • • • • • • • • • • • •

$$C(y_1, y_2, \ldots, y_m | x_1, x_2, \ldots, x_m)$$

▲口×▲圖×▲国×▲国× 国 のQC

Diakonikolas et al. Being Robust Can Be Practical

$$C(y_1, y_2, \ldots y_m | x_1, x_2, \ldots x_m)$$

which gives rise to a marginal distribution

 $M(y_1, y_2, \ldots y_m)$

Diakonikolas et al. Being Robust Can Be Practical э

$$C(y_1, y_2, \ldots, y_m | x_1, x_2, \ldots, x_m)$$

which gives rise to a marginal distribution

$$M(y_1, y_2, \ldots y_m)$$

Questions/Conjectures:

1 If the original data is an i.i.d. sample from P, $d_{TV}\left(M(y_1, y_2, \dots y_m), \prod_{i=1}^m P(y_i)\right) \leq \tilde{O}((d+m)\varepsilon)?$

・ 回 ト ・ 三 ト ・

$$C(y_1, y_2, \ldots, y_m | x_1, x_2, \ldots, x_m)$$

which gives rise to a marginal distribution

$$M(y_1, y_2, \ldots y_m)$$

Questions/Conjectures:

1 If the original data is an i.i.d. sample from P, $d_{TV}\left(M(y_1, y_2, \dots, y_m), \prod_{i=1}^m P(y_i)\right) \leq \tilde{O}((d+m)\varepsilon)$? 2 $\tilde{O}(\varepsilon)$?

A (1) > A (1) > A

$$C(y_1, y_2, \ldots, y_m | x_1, x_2, \ldots, x_m)$$

which gives rise to a marginal distribution

$$M(y_1, y_2, \ldots y_m)$$

Questions/Conjectures:

 If the original data is an i.i.d. sample from P, d_{TV} (M(y₁, y₂,...y_m), ∏_{i=1}^m P(y_i)) ≤ Õ((d + m)ε)?

 Õ(ε)?
 If the marginal of each y_i is Q_i, then d_{TV} (P(y_i), Q_i(y_i)) ≤ Õ(ε)

Diakonikolas et al

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-

Cases not covered by DKK et. al.

• Extend algorithm for Covariance Estimation to Sub-Gaussian from Gaussian.

Diakonikolas et al. Being Robust Can Be Practical

Cases not covered by DKK et. al.

- Extend algorithm for Covariance Estimation to Sub-Gaussian from Gaussian.
- Can estimate parameters of Gaussian with unknown mean and covariance. *What happens in the Sub-Gaussian case?*
 - \blacksquare Need to estimate covariance using the above, and adjust tail bounds for error in estimation of covariance specifically the δ term
 - Potentially a worse error bound.

	Proof: The Gory Details	Discussion

Thank You!

Diakonikolas et al.

Being Robust Can Be Practical

2

・ロト ・回ト ・ヨト ・ヨト