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Introduction

Problem Definition: Robust Mean and Covariance

estimation

Given a polynomial number of samples from a
high-dimensional Gaussian N'(u,X), where an adversary
has arbitrarily corrupted an e-fraction, find a set of
parameters N (fi, ) that satisfy dry(N,N") < O(e).
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Introduction

Recap: Low Dimension with noise

For low dimensions, median is robust, efficient, computationally
tractable.
As we saw in class, median has:

Minimax asymptotic bias O(¢)
Asymptotic variance O(%) — sample complexity 8%

Computational complexity O(n)
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Introduction

Recap: High Dimension with no noise

Sample mean is asymptotically normal:
Asymptotic variance O (%) — sample complexity O(d)
Computational complexity O(nd) (Polynomial in n and d)
Error guarantee increases with dimension as v/d

Diakonikolas et al.

Being Robust Can Be Practical



Introduction

Goal: High Dimension

We want an estimator that is:

Robust: Error bound O(e)

Sample efficient: Sample complexity é(;%)
The Tukey median (1960) achieves these goals.
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Being Robust Can Be Practical



Introduction

Goal: High Dimension

We want an estimator that is:

Robust: Error bound O(e)

Sample efficient: Sample complexity é(;%)
The Tukey median (1960) achieves these goals.

But it has computational complexity O (n?~* + nlog n) -
exponential in d. ..

Diakonikolas et al.

Being Robust Can Be Practical



Introduction

Other approaches that don't work well in high dimensions

Generalizations of the median to higher dimensions:
Coordinate-wise median
Geometric median

Both of these have error bounds O(ev/d).
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Introduction

Other approaches that don't work well in high dimensions

Generalizations of the median to higher dimensions:
Coordinate-wise median
Geometric median

Both of these have error bounds O(ev/d). (curse of dimensionality)
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Introduction

Related Work

Robustly learn p* given e-corrupted from N (u*,1): Error vs
computational complexity trade-off:

Algorithm Error Guarantee Poly-Time?
Tukey Median O(¢) No
Tournament O(e) No
Geometric Median O(V/d) Yes
Pruning O(sV/d) Yes
LRV'16 O(ey/log d) Yes
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Introduction

Related Work

Robustly learn p* given e-corrupted from N (u*,1): Error vs
computational complexity trade-off:

Algorithm Error Guarantee Poly-Time?
Tukey Median O(¢) No
Tournament O(e) No
Geometric Median O(V/d) Yes
Pruning O(sV/d) Yes
LRV'16 O(e+/log d) Yes

FILTER O(ey/log (Y/¢)) Yes

All these algorithms are sample efficient.
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Introduction

Contamination Model

The paper considers the following contamination model:

iid

X1, X2, ..., X ~ D, D € D
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Introduction

Contamination Model

The paper considers the following contamination model:

iid

X1, X2, ..., X ~ D, D € D
Adversary changes arbitrarily an e-fraction

1
Yla Y27 ey Ym
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Introduction

Contamination Model: contd

Generalization of Huber's model
Subsumes Huber
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Introduction

Contamination Model: contd

Generalization of Huber's model
Subsumes Huber

Allows both insertions and deletions
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Introduction

Contamination Model: contd

Generalization of Huber's model
Subsumes Huber
Allows both insertions and deletions

Adversary allowed to inspect data, i.e. corrupted data is not
ii.d.
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Introduction

Main Result: Mean estimation for Sub-Gaussian

Distribution

Theorem (3.1)
If

m G Sub-Gaussian on RY, v = ©(1), mean u®, covariance |
m S is an e-corrupted set of samples with |S| = Q(d/&?)

Then there exists an efficient algorithm that outputs ji with prob.
1—7 st

72 — 1€l = O(e/log(1/e)).
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Introduction

Main Result: Mean estimation for Bounded Second

Moment

Theorem (3.2)
If

m P distribution on RY, mean uP , covariance ¥p < o2/
m S is an e-corrupted set of samples with |S| = ©(d/e)

Then there exists an efficient algorithm that outputs ji with prob.
1—7 st

17— 1®ll2 < O(Veo).

Diakonikolas et al.

Being Robust Can Be Practical



Introduction

Main Result: Covariance Estimation

Theorem (3.3)
If
m G~ N(0,X) in d dimensions
m S is an e-corrupted set of samples with |S| = Q(d?/e?)

Then there exists an efficient algorithm that outputs Y with prob.
1—17s.t

I = 255722 = O(e log(1/¢)).
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Introduction

A Summary of the Results

All results with probability 1 — 7:

Theorem 3.1 Theorem 3.2 Theorem 3.3
Sub-Gaussian Bounded
Distribution Known Couv. Covariance Gaussian
Target "G wp >
Error = nuClla | IE—pPla | 1 -2
Error Bound | O(e+/log(Y/<)) O(/e0) O (glog(Y/<))
#(samples) Q(d/22) O(9/2) Q(4/<2)

Table: Summarizing the error bounds and sample complexity of the three
proposed algorithms
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Algorithm

Diakonikolas et al.

Being Robust Can Be Practical



Algorithm

Corrupted Data
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Phase-1 Algorithm: Naive Pruning

.‘.‘.. ° 0.......
.:.Q ® .;
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Algorithm

NaivePrune: Getting a (Nearly) Good Set

Algorithm 1 Naive Pruning
1: function NAIVEPRUNE(Xy, ..., Xy)
2: Fori,j=1,..., N, define 6;; = || X; — Xj]|2.
fori=1,...,jdo
Let A = {j € [N]:4;; > Q(y/dlog(N/T))}
if |Aj| > 2¢N then
Remove X; from the set.

N gk w

return the pruned set of samples.

With high probability, NAIVEPRUNE removes no uncorrupted

Xi—pll2< 0 <\/W>-

points, and for all X; that remain,
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We're still not in good shape!

.‘.:..0 ".-.. .
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Algorithm

We're still not in good shape!

we®
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Algorithm

The FILTER (Meta-) Algorithm

Algorithm 2 Filter-based mean estimation

1:

2en

o N g

Input: e-corrupted sample set S, Thres(¢), Tail(T,d, e, 4, 7), d(¢, s)
Compute the sample mean 1% = Exe,s/[X]
Compute the sample covariance matrix x
Compute approximations for the largest absolute eigenvalue of X,
A* := ||Z||2, and the associated unit eigenvector v*.
if || X|l2 < Thres(e) then
return ;5 .
Let 6 = d(g, ||IZ]]2)-
Find T > 0 such that

* o s’ .
P {|v X —n )|>T+6] > Tail(T, d,e, 8, 7).

return {x € S’ : |v* - (x — %) < T +6}.
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The Sub-Gaussian Case: Good Sets

Definition (Good Sets)

If G is a Sub-Gaussian distribution on RY with parameter
v = ©(1), covariance /, and S is a sample drawn from G, then S
is said to be a “good” set, if

(i) [Ix — pC|l2 < O(\/dlog(|S]/7)) for all x € S.
(i) Yv, T, such that ||v|o =1 and T € R,

(Bl = ) 2 T = Pr v (x = ) 2 71| < Bep(~T2/20) + 855 -

(i) (115 — 2 <.
(iv) IMs —1]|, < e.
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Algorithm

Instantiating the Sub-Gaussian Case

Sub-Gaussian(v) Distribution, ¥ = /.
m Thres(e) = O(elog1/¢)

m Comes from deleted points
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Algorithm

Instantiating the Sub-Gaussian Case

Sub-Gaussian(v) Distribution, ¥ = /.
m Thres(e) = O(elog1/¢)
m Comes from deleted points
m Tail(T,d,s,6,7) = 8exp(—T2/2v) + 8%
Sub-Gaussian
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Algorithm

Instantiating the Sub-Gaussian Case

Sub-Gaussian(v) Distribution, ¥ = /.
m Thres(e) = O(elog1/¢)
m Comes from deleted points
m Tail(T,d,e,6,7) = 8exp(—T2/2v) + 8%
Sub-Gaussian
Translate bound from true distribution to empirical
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Algorithm

Instantiating the Sub-Gaussian Case

Sub-Gaussian(v) Distribution, ¥ = /.
m Thres(e) = O(elog1/¢)
m Comes from deleted points
m Tail(T,d,e,6,7) = 8exp(—T2/2v) + 8%
Sub-Gaussian
Translate bound from true distribution to empirical

m 0(e,s) =34y/e(s — 1)

. ’
m Captures the error in sample mean: <v*,,uG — ,us >
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Algorithm

Instantiations

Sub-Gaussian(v) Distribution, ¥ = /.
m Thres(e) = O(elog1/e)
m Tail(T,d,¢,6,7) = 8exp(—T?/2v) + 8%
m i(e,s) =3y/e(s — 1)
Bounded Covariance: ¥ < /.
m Thres(e) = ©(1)
m Tail = Zmax{|v* - x — p°| : x € S}
m Random Threshold will throw out more bad points than good.
m Z € [0,1] with PDF pz(z) = 2z.
mi=0
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Algorithm

The Algorithm: Putting it all together

m Firstly, apply NAIVEPRUNE to ensure that the set becomes
‘2e-close to good’ - outliers that are too far away are removed.

m lteratively filter out bad points using FILTER to reach a good
set with high probability.

m Return the sample mean of the good set.
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Proof: The Gory Details

Proof: The Gory Details
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Proof: The Gory Details

The End Goal

Theorem (A.3)
If

m G Sub-Gaussian on RY, v = ©(1), mean 1€, covariance |

m |S| =Q((d/e?) poly log(d/eT))
Then with prob. 1 — T,

|72 — 1€l = O(e/log(1/e)).
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Proof: The Gory Details

Definitions

Sub-Gaussian: (tails decay faster than Gaussian)

m Prxep[[v- (X = )] = T] < exp(=T2/2v), (Iv]2=1)
Let S be the set given as input, and S’ be the output.
Define A(S,S') = %

By definition, 3 sets E(‘entering’) and L(‘leaving’) such that
S'=(S\L)UE

Note that A(S, §) = [E[HH

Diakonikolas et al.
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Proof: The Gory Details

Definitions

m = \?ll X Clean Sample mean
Xes
S ﬁ Zs X Sample mean
Xes'
m Y= ﬁ ST (X = pS) (X = p®)T Sample covariance
XeS’
m Ms =g > (X —p€)(X = u®)" Modified sample
Xes!
covariance

Diakonikolas et al.
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Proof: The Gory Details

Definitions

"= KllXeSX

- ML N ﬁXeLX

"= ﬁxze:EX

= Ms =y 3 [X - nS)X = k)]
M, = ﬁXZEjL[(X — pC) (X =97,

" Me =ik S (X pO)X - 9]
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Proof: The Gory Details

The Good Set

Lemma (A.5)
If

m G sub-gaussian on RY, v = ©(1), covariance |

m |S| = Q((d/e?) poly log(d/eT))
Then with prob. 1 — 7, S is a “good” set, i.e.

(i) lIx — uC|l2 < O(y/dlog(|S|/T)) for all x € S.

(i

)
(i) 1° — 12 <.
(iv) IMs — 1], < <.

Prlv (=€) 2 TI= Priv: (x4 2 ] < 0.
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Introduction Algorithm Proof: The Gory Details Experiments

If Algorithm Filter works, then Theorem (A.3) is true

Proposition (A.7)
If
m G sub-gaussian on R?, v = ©(1), covariance |
m S is (g,7)-good set; A(S,S') < 2¢
S is uncorrupted, S’ is e-uncorrupted

m Forany x,y €S, ||x —yl|la < O(y/dlog(d/eT))
Consequence of NaivePrune

Then, the algorithm Filter returns one of these:
(i) A mean vector Ji such that ||fi — u®|l» = O(e+/log(1/¢)).
(i) A multiset S” C S’ such that A(S,5") < A(S,S') —¢/q,
where a < d log(d/eT) log(d Iog(%)).

Diakonikolas et al.
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Proof: The Gory Details

Algorithm FILTER

Algorithm 3 Filter-Sub-Gaussian-Unknown-Mean (S', ¢, 7)

1:
2: Qutput: S” or [ satisfying Proposition (A.7)

3:

4: Compute the largest absolute eigenvalue of ¥ — [, \* := || — /||,

A

T:

Input: S’ such that there exists (¢, 7)-good S with A(S,S’) < 2¢
Compute 15" = Exe,s/[X] and ¥ = Exc, s {(X — S (X - LLSI)T}

and the associated unit eigenvector v*.

if ||X — /|]2 < O(clog(1/¢)), then return ;5.

Let 6 := 3y/¢||X — I||]2. Find T > 0 such that

Pr (v (X =) > T +5| > 8exp(—T2/2v)+8 © .
XEuS “V ( a } & /2) T?log (dlog(s%))
return the multiset S” = {x € &' : |v* - (x — p°')| < T +6}.

Diakonikolas et al.
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Proof: The Gory Details

Proof of Correctness of Algorithm FILTER

Need to prove:
Small spectral norm: If [|[£ — /][> < O (clog (1)), then

E

" = pCll2 =0 (e log >

Large spectral norm: If [|[£ — /[|» > Q (clog (1)), then

6
m J a threshold T that is used for filtering, such that

Pr [\v* (X =) > T—i—(ﬂ > 86727Iz 8o
X€,S T2

m The algorithm makes progress, i.e. S satisfies

A(S,S") < A(S,S) - ¢/a

Diakonikolas et al.
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Proof: The Gory Details

Proof of Correctness of Algorithm FILTER

Key Result:
> — 1~ (|E|/|S')Me

Intuition: The errors approximately align in the direction of
leading eigenvector of & — /.
Proof: By definition,

T =(Ms =)= (= p) (1 —p®)7
—_—— ——
%%ME %%(ME—HG)

(A) (B)

[|1E =G I5<]IMe]|2
(Matrix-norm identity)

T~ 1= (|E|/IS")ME + O(c log(1/e)) + O(|| Me2)

Diakonikolas et al.

Being Robust Can Be Practical



Proof: The Gory Details

Proof of Correctness of Algorithm FILTER

Proof of matrix-norm identity: ||Mg|l2 > ||uf — €3

3 (x - u)(x - )"
=3 = iE)x = )T ST (uE = uC)(uE — )"

Diakonikolas et al.
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Proof: The Gory Details

Proof of Correctness of Algorithm FILTER

Proof of matrix-norm identity: ||Mg|l2 > ||uf — €3

3 (x - u)(x - )"
=3 = iE)x = )T ST (uE = uC)(uE — )"

E_ G2
IMell2 = [[n= = 17 I3
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Proof: The Gory Details

Proof of Correctness of Algorithm FILTER

Proof of (A): Mg/ — | = %ME + O (clog 1)
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Proof: The Gory Details

Proof of Correctness of Algorithm FILTER

Proof of (A): Mg/ — | = %ME + O (clog 1)
Let X = x — u®. Recall that S’ = (S\L) U E.
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Proof: The Gory Details

Proof of Correctness of Algorithm FILTER

Proof of (A): Mg/ — | = ||S'|\ Mg + O (clog 1)
Let X = x — u®. Recall that S’ = (S\L) U E.

Z~~T Z~~T Z~~T Z~~T

XeS’ XeSs XeL XeE
|S'|Ms: = |S|Ms — |L|M, + |E|Mg
L E
Ms,:‘s’ Ms Uy f LBy,

1S <> |9 <~ |5
\1/'//-1—0(5) \E//O(Iogg)

1
. MS/—I_EME—i—O(ang)
€

Diakonikolas et al.
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Proof: The Gory Details

Proof of Correctness of Algorithm FILTER

Proof of (B): (1% — u¢) = E(/LE — %)+ O (elogl)

Diakonikolas et al.
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Proof: The Gory Details

Proof of Correctness of Algorithm FILTER

Proof of (B): (1% — 1) = fgh(iF — 1€) + O (clog )
Recall that X = x — u® and S’ = (S\L) U E.
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Proof: The Gory Details

Proof of Correctness of Algorithm FILTER

Proof of (B): (1% — u¢) = |‘§,| (uE =€)+ 0 (clogl)
Recall that X = x — p® and S’ = (S\L) UE.
— (S\L)UE

dox=>"%->"x+> %

XeS’ XeSs XeLl XeE
1511 = 1) = S|(1® — €)= [LI(p" = u®) + | E|(uE = p€)

, S L E

(45 €)= 12h s =8y ) B )
Y 0@ T let-uCBEIMe

S =) =e(uF - p®)+0 (evlog(l/e))

Diakonikolas et al.
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Proof: The Gory Details

Proof of Correctness of Algorithm FILTER

Combining (A) and (B), we get:
Y -1 =eMg+ Oelog(1l/¢))

(Key Result)

Diakonikolas et al.
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Proof: The Gory Details

Proof of Correctness of Alg. FILTER: Small Spectral Norm

Step 5. if ||Z — /]| < O(elog(1/¢)), return >
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Proof: The Gory Details

Proof of Correctness of Alg. FILTER: Small Spectral Norm

Step 5. if ||Z — /]| < O(elog(1/¢)), return >
To Prove: ||u® — uClla < O (a/log(l/e))
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Proof: The Gory Details

Proof of Correctness of Alg. FILTER: Small Spectral Norm

Step 5. if ||Z — /]| < O(elog(1/¢)), return >

To Prove: ||u® — uClla < O (a/log(l/e))
Proof:

1% = 1€z

<el|juf —uClla+0 (6 |og(1/5)> Follows from (B)

< e\/|[Mg|l2 + O (5 Iog(l/s)) , from matrix-norm identity
e|lE=1]2+ 0O (5\/W> , from key result

=0 (E |og(1/€))

Diakonikolas et al.
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Proof: The Gory Details

Proof of Correctness of Alg. FILTER: Large Spectral Norm

Step 6. if ||Z — I]]2 > Q(clog(2))), then:
Find T > 0 such that following tail bound is violated

Pr [[v* (X — S| > T+5} > Tail(T, d, e, 7).

XeuS’

(i.e. at least Tail(T, d, e, 7)-fraction of points fall outside
threshold)

Step 7. reject x € S’ that fall outside threshold

Diakonikolas et al.
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Proof: The Gory Details

Proof of Correctness of Alg. FILTER: Large Spectral Norm

if |Z— /]2 > Q(clog(2))), return S”.
To Prove:

Diakonikolas et al.
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Proof: The Gory Details

Proof of Correctness of Alg. FILTER: Large Spectral Norm

if |Z— /]2 > Q(clog(2))), return S”.
To Prove:

A “violation” threshold T for Step 6 exists
= allows "many” total points (Q(c/a)) to be rejected

Diakonikolas et al.
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Proof: The Gory Details

Proof of Correctness of Alg. FILTER: Large Spectral Norm

if |Z— /]2 > Q(clog(2))), return S”.
To Prove:

A “violation” threshold T for Step 6 exists
= allows "many” total points (Q(c/a)) to be rejected

Using T, Filter rejects “few” good points O(e/«)
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Proof: The Gory Details

Proof of Correctness of Alg. FILTER: Large Spectral Norm

if |Z— /]2 > Q(clog(2))), return S”.
To Prove:

A “violation” threshold T for Step 6 exists
= allows "many” total points (Q(c/a)) to be rejected

Using T, Filter rejects “few” good points O(e/«)

Filter rejects more bad points than good and makes progress:
A(S,S") < A(S,S) - 2¢/a
where §” = S§'\{rejected points},
a = dlog(d/e7) log(d log(Z))

Diakonikolas et al.
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Proof: The Gory Details

Proof of Correctness of Alg. FILTER: Large Spectral Norm

1 A threshold T exists
Proof ouline:

Suppose not.
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Proof: The Gory Details

Proof of Correctness of Alg. FILTER: Large Spectral Norm

1 A threshold T exists
Proof ouline:

Suppose not.
Then S’ satisfies the sub-gaussian tail bound:

* 8 < T2 ..i
XePurS/[|v (X —p )\>T—|—5/2] < Bexp( T/21/)—i—87_2
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Proof: The Gory Details

Proof of Correctness of Alg. FILTER: Large Spectral Norm

1 A threshold T exists
Proof ouline:

Suppose not.
Then S’ satisfies the sub-gaussian tail bound:

* 8 < T2 ..i
XePurS/[|v (X —p )\>T—|—5/2] < Bexp( T/21/)—i—87_2

Then ||Z — /|2 < O(elog(1)). Contradiction.
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Proof: The Gory Details

Proof of Correctness of Alg. FILTER: Large Spectral Norm

1 A threshold T exists
Proof ouline:

Suppose not.
Then S’ satisfies the sub-gaussian tail bound:

* 8 < T2 ..i
XePurS/[|v (X —p )\>T—|—5/2] < Bexp( T/21/)—i—87_2

Then ||Z — /|2 < O(elog(1)). Contradiction.
Therefore T exists and:
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Proof: The Gory Details

Proof of Correctness of Alg. FILTER: Large Spectral Norm

1 A threshold T exists
Proof ouline:

Suppose not.
Then S’ satisfies the sub-gaussian tail bound:

* 8 < T2 ..i
XePurS/[|v (X —p )\>T—|—5/2] < Bexp( T/21/)—i—87_2

Then ||Z — /|2 < O(elog(1)). Contradiction.
Therefore T exists and:

ENE'| + L'\ L] > 8¢|S'|/T?
~— ~——
#bad points rejected  #good points rejected

> 4¢|S|/ T2

Diakonikolas et al.
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Proof: The Gory Details

Proof of Correctness of Alg. Filter: Large Spectral Norm

2 Filter rejects at most (2 exp(—T?/2v) + ¢/ 7~'2>-fraction from
sns
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Proof: The Gory Details

Proof of Correctness of Alg. Filter: Large Spectral Norm

2 Filter rejects at most (2 exp(—T?/2v) + ¢/ 7~'2>-fraction from
sns

Proof:
Points in S satisfy the “goodness” tail bound:

s’ ¢ , .
Lrollw - (X =) > T 1 =iz < 2exp(=T2/20) + =

Diakonikolas et al.
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Proof: The Gory Details

Proof of Correctness of Alg. Filter: Large Spectral Norm

2 Filter rejects at most (2 exp(—T?/2v) + ¢/ 7~'2>-fraction from
sns

Proof:
Points in S satisfy the “goodness” tail bound:

s’ ¢ , .
Lrollw - (X =) > T 1 =iz < 2exp(=T2/20) + =

Therefore, L'\ L] <elS|/T?
——

#good points rejected

Diakonikolas et al.
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Proof: The Gory Details

Proof of Correctness of Alg. Filter: Large Spectral Norm

3 Filter rejects more bad points than good and makes progress:

A(S,S") < A(S,S') — 2¢/a
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Proof: The Gory Details

Proof of Correctness of Alg. Filter: Large Spectral Norm

3 Filter rejects more bad points than good and makes progress:

A(S,S") < A(S,S') — 2¢/a

Proof:
#bad points rejected  #good points rejected
E\E L'\ L
_(ENETHENL) =2\ L]
5]
> 2¢/T? (Follows from above)
> 2/
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Proof: The Gory Details

Proof of Correctness of Alg. Filter: Large Spectral Norm

3 Filter rejects more bad points than good and makes progress:

A(S,S") < A(S,S') — 2¢/a

Proof:
#bad points rejected  #good points rejected
E\E L'\ L
_(ENETHENL) =2\ L]
5]
> 2¢/T? (Follows from above)
> 2/

T = O(\/dlog(d/eT)), since all points in S satisfy
|x — 1%'|]2 < O(y/dlog (d/e7)) (Consequence of NaivePrune).
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Proof: The Gory Details

A sketch of what just happened

Diakonikolas et al.
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L
®
[

If norm of covariance is
small, u is close to .
Algorithm terminates.

If not, direction of largest
eigenvalue gives a
discriminatory tail bound.

Threshold ensures that we
reject more bad points
than good and make
progress at certain rate.

Algorithm terminates
before or when all bad
points are rejected.



Experiments

Experiments

Diakonikolas et al.

Being Robust Can Be Practical



Experiments

Estimating a AV(u, 1) Gaussian (known covariance)

Set e =0.1
# dimensions (d) from 100 to 400, in steps of 50
(1 - &)-fraction samples ~ N(u, 1)

m 4 is the all-ones vector

e-fraction from noise distribution: described in next slide

_ 10d _A(d
m n =57 samples = O (%)

Diakonikolas et al.
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Experiments

Estimating a A(u, 1) Gaussian: Noise Model

1 1
N=-MN+ =N
o + 512
where
m [15: every coordinate is 0 or 1 with probability 1/2

m [ly: product distribution of:

m First coordinate 0 or 12 with probability 1/2
m Second coordinate -2 or 0 with probability 1/2
m All other coordinates 0

Diakonikolas et al.
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Experiments

Mean Estimation under Identity Covariance

18 T T T T T
D
161
1.4}
P
g m— Sampling Error (with noise)
[T} 1 e N @l Bruning
™~ —&— Geometric Median
" RANSAC
1 0.8¢ LRV
= Filter
Yoe S i Filter_2ndMoment
“\ —
0.4t Ny e )
0.2 1
0 X I ! T :
100 150 200 250 300 350 400
Dimension

Figure: Mean estimation error with identity covariance matrix
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Experiments

Mean Estimation under (scaled) Identity Covariance

1.5 T T T T T
D
[ -
=] = Sampling Error (with noise)
o = Naive Pruning
~ —©— Geometric Median
- v RANSAC
n .
i ot — LRV
) d "~ = Filter
< N, -
&y " Filter szr:Air:e_rlt__.
"Ny e =
Ny mn T
0 n
100 150 200 250 300 350 400

Dimension

Figure: C = 0.51
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Experiments

Mean Estimation under (scaled) Identity Covariance

18 T T T T T
e
Pt
16 P Y 4
s Y
1
14}
w12
o
2
@
L e
o 10 [omr= \_‘
o 8 = Sampling Error (with noise)
b S |——Naive Pruning \
&5 N, ;’ —8— Geometric Median y
6 ¥ RANSAC 1
—LRV

= Filter
= Filter_2ndMoment

0 T
100 150 200 250 300 350 400
Dimension

Figure: C = 2I
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Experiments

Trying non-identity covariances: Diagonal covariance

1.6 —{====5ampling Error (with noise} T T
Naive Pruning

1.4 |8 Geometric Median 1
RANSAC
LRV

12 1

==Filter
----- Filter 2ndMoment

7

Excess L2 error

0.2 L L "
100 150 200 250 300 350 400

Dimension

Figure: C = diag(rand(d,1))
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Experiments

Trying non-identity covariances: Diagonal covariance

12 T T T T T
P
J "\
L ! s, 1
10 K .,
¢ s,
I “
; \,
s
- 8F Fi Ay 1
g —r— ; "\
= e ., 4 5,
5 s —— X
N sampling Emror (with noise} | %,
T 61 e N2V Pruning N1
] —&— Geometric Median AY
o RANSAC Y
8,1 —— LRV ]
Filter
= Filter_2ndMoment
2L J
- D
Qe — —
0
100 150 200 250 300 350 400

Dimension

Figure: C = 2 * diag(rand(d,1))
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Experiments

Trying non-identity covariances: Rotated covariance

= Sampling Eror (with noise)
1.6 === Naive Pruning T T
=== Geometric Median

1.4 H RANSAC /

Excess L2 error

0.2 L L "
100 150 200 250 300 350 400

Dimension

[Q,R]=qr(rand(d,d));

Figure: C=Qxdiag(rand(d,1))xQ’;
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Trying non-identity covariances: Rotated

Diakonikolas et al.
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Excess L2 error

Experiments

covariance

14 T T T T T
=—Sampling Error (with noise)
12| |=Naive Pruning FAY ,
—@— Geometric Median FERY
RANSAC ! %
LRV I .
10 = Filter ’.’ ‘.\ 1
Filter_2ndMoment i ‘\‘
sl i \ ]
N i i}
- / %
. e ", H Y .
o e \\ i \ ]
!
N
"
at 1
2t p
e
o . :
100 150 200 250 300 350 400

Dimension

: . [Q,Rl=qr(rand(d,d));
Figure: _ Q.2 diag(rand(d 1))+ Q";



Experiments

Additional experiments

Estimating the covariance matrix:
m Synthetic data
m Isotropic: N(0,1)
m Spiked: NV(0,1+ 100ee]")
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Experiments

Additional experiments

Estimating the covariance matrix:

m Synthetic data
m Isotropic: N(0,1)
m Spiked: NV(0,1+ 100ee]")

m (Noisy) 20-dimensional projection of data from “Genes mirror

geography within Europe” (Nature, 2008)
m 2D PCA projection should recover map of Europe, as in
original work

Diakonikolas et al.
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Experiments

Additional experiments

Estimating the covariance matrix:

m Synthetic data
m Isotropic: N(0,1)
m Spiked: NV(0,1+ 100ee]")

m (Noisy) 20-dimensional projection of data from “Genes mirror

geography within Europe” (Nature, 2008)
m 2D PCA projection should recover map of Europe, as in
original work

Not enough time to cover these, unfortunately. ..
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Experiments

But pretty pictures!

1.8 T T T T T T T T

16

lar

1z

.
2
o
2 1
5 —#—Samping Error (with corruption)
o 0.8 RAMNSAC 1
2 LRV
[
n 0.6 Prune 4
s r |mm=e— Filter
2 04| 1
w
0.2 " " " " " " " "
10 20 30 40 50 60 70 80 90 100
Dimension

Figure: Covariance estimation error assuming isotropic covariance
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Experiments

Extension to robust PCA (images from the paper)

Original Data Filter Projection

The data projected onto the top two - R
directions of the original data set The data projected onto the top two
without noise directions returned by the filter

(a) (b)

Figure: Recovering geographic structure of 2D projection in the presence
of noise
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Discussion
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Discussion

Some Questions

Paper considers two kinds of covariance matrices: fully known
(1) and bounded-second-moment (=< 1)

m Room for exploring more restricted families of covariance
matrices? Tridiagonal, perhaps?

m The main goal appears to be to show ¥ — C ~ e Mg, combined
with a nice tail bound to guarantee not throwing away inliers.

m Low-rank case (“Robust PCA?") covered by a coming paper in
the presentation schedule. ..
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Discussion

Some Questions

Paper considers two kinds of covariance matrices: fully known
(1) and bounded-second-moment (=< 1)
m Room for exploring more restricted families of covariance
matrices? Tridiagonal, perhaps?
m The main goal appears to be to show ¥ — C ~ e Mg, combined
with a nice tail bound to guarantee not throwing away inliers.
m Low-rank case (“Robust PCA?") covered by a coming paper in
the presentation schedule. ..
Theorem 3.1 algorithm seems very sensitive to the scale
parameter. Can we make it work with a bounded o
assumption, or better, unknown o?
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Discussion

Contamination Model Space

The adversary can be thought of as a stochastic process

Cly1,y2, - - Ymlx1,x2, ... Xm)
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Discussion

Contamination Model Space

The adversary can be thought of as a stochastic process

Cly1,y2, - - Ymlx1,x2, ... Xm)

which gives rise to a marginal distribution

M(y17y27 .. 'ym)
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Discussion

Contamination Model Space

The adversary can be thought of as a stochastic process
C(y1, Y2y Yml|X1, X2y - - Xm)
which gives rise to a marginal distribution
M (y1,y2,.--Ym)

Questions/Conjectures:

If the original data is an i.i.d. sample from P,
dry (M(yl,yz, ) 1 P(y,-)) < O((d + m)e)?
i=1
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Discussion

Contamination Model Space

The adversary can be thought of as a stochastic process
C(y1, Y2y Yml|X1, X2y - - Xm)
which gives rise to a marginal distribution
M (y1,y2,.--Ym)

Questions/Conjectures:

If the original data is an i.i.d. sample from P,
dry (M(yl,yz, ) 1 P(y,-)) < O((d + m)e)?
i=1
O(e)?

Diakonikolas et al.

Being Robust Can Be Practical



Discussion

Contamination Model Space

The adversary can be thought of as a stochastic process
C(y1, Y2y Yml|X1, X2y - - Xm)
which gives rise to a marginal distribution
M (y1,y2,.--Ym)

Questions/Conjectures:

If the original data is an i.i.d. sample from P,
dry (M(yl,yz, ) 1 P(y,-)> < O((d + m)e)?
i=1

O(e)?
If the marginal of each Vi is Q;, then
drv (P(yi), Qi(yi)) < O(e)
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Discussion

Cases not covered by DKK et. al.

m Extend algorithm for Covariance Estimation to Sub-Gaussian
from Gaussian.
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Discussion

Cases not covered by DKK et. al.

m Extend algorithm for Covariance Estimation to Sub-Gaussian

from Gaussian.
m Can estimate parameters of Gaussian with unknown mean and
covariance. What happens in the Sub-Gaussian case?
m Need to estimate covariance using the above, and adjust tail
bounds for error in estimation of covariance - specifically the ¢

term
m Potentially a worse error bound.
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Thank You!
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