Automatic Research Summaries in DBLife

Andrew B. Goldberg, David Andrzejewski
CS 764 - Final Project

May 16, 2007

1 Introduction

The Cimple project on Community Information Management [4] is a project
with the goal of developing a software platform for the effective management of
data related to a given online community. The DBLife project [3] is a prototype
system to intended to help test and extend the ideas of the Cimple project,
focused specifically on the database research community.

In DBLife, each researcher in the database community has their own super-
homepage. This page contains information about that researcher, automatically
extracted from various sources on the web. From this page, a user can learn
about this researcher’s collaborators, recent talks, and publications. However,
there is currently no way to get an easily digestible, at-a-glance summary of
general research interests over an entire career.

Our CS 764 project uses statistical natural language processing (NLP) [8]
techniques to automatically create two types of research summaries, enabling
users to quickly and easily learn about the research of a given database re-
searcher in DBLife. The first type is a chronological summary, where the
researcher’s career is partitioned into contiguous segments of calendar years,
and those segments are then tagged with appropriate research topic labels or
keyphrases. The second type is an aggregate career summary, showing which
labels and keyphrases were most commonly attributed to the researcher over the
entire career. See Figure 1 for an example summary generated for AnHai Doan.
Note that the italicized phrases are automatically extracted keyphrases, while
the other topic labels come from a controlled topic list and are automatically
chosen based on their similarity to the author’s work.

2 Data Sources

To build research summaries, we require two data sources. Clearly, we need
data related to researchers’ work. To this end, we use the publication record of a
given researcher from their DBLP-like page in DBLife. This contains references
to the author’s publications, including the standard information like the title,
year, co-authors, and conference or journal where the work appeared. Since

AnHai Doan
Time period categories/keyphrases Overall category distribution

From 1994 to 1996 Category
data cleaning, data translation, data exchange,

« approximation and uncertainty h "
* abstracting probabilistic actions SChcr,na ma[(?hmg, record linkage
o modeling probabilistic actions data integration, heterogeneous database systems,
e decision-theoretic planning interoperability
* empirical analysis web data processing, web services, e-commerce
* sound a,bs" action relational query processing, query optimization
* constraint mass assignment framework other
From 1998 to 2001 approximation and uncertainty

metadata management, data semantics

data cleaning, data translation, data exchange,
schema matching, record linkage

data integration, heterogeneous database systems,
interoperability

relational query processing, query optimization

From 2002 to 2005

web data processing, web services, e-commerce
data integration, heterogeneous database systems,
interoperability

data cleaning, data translation, data exchange,
schema matching, record linkage

From 2006 to 2007

data cleaning, data translation, data exchange,
schema matching, record linkage

web data processing, web services, e-commerce
metadata management, data semantics

Figure 1: An automatically generated research summary for AnHai Doan.

DBLife does not collect full-text articles or abstracts, we were limited to using
only the titles of publications.

The second data source we need relates to the way we will represent re-
searchers’ topics of interest. With the goal of being able to later perform higher-
level analysis, we wanted to represent topics using a fixed set of topic labels.
(We initially experimented with using unigram, bigram, or trigram statistics to
present a researcher’s interests, but the great variety in such statistics makes
any sort of higher-level analysis extremely difficult.) Thus, in order to get topic
labels with the appropriate level of granularity (neither too specific, nor too
general), we used a controlled list of research areas within the database field
found at http://scratchpad.wikia.com/wiki/Dblife bibs. KEach research
area has a manually chosen label and set of representative publications. Each
label and corresponding set of publication titles form a category.

As discussed in the next section, at a high level, a time period in an author’s
career is matched to a category label by comparing the researcher’s publication
titles in that time period to the publication titles associated with that cate-

Fraction

0.2778

0.2222

0.1667
0.1111
0.0833
0.0833
0.0556

Once for all authors:

Build models of categories

_n
]
2

Publication titles TF-

Figure 2: Generating a model for each category.

gory. If fewer than 3 categories from the controlled list can be matched to a
given time period, additional keyphrases are extracted directly from the titles
of publications from that time period, using the TextRank algorithm [11].

3 Procedure for Building Research Summaries

An overview of the procedure for creating the research summaries is as follows:

1. For each category

Build category model

2. For each author
Segment the author’s career
For each segment
Build segment model
Find the categories which are most similar to this segment
Generate keyphrases from segment (Optional)
Build author research summary from segments
Step 1 is illustrated in Figure 2 and discussed in detail in Section 3.1, and Step 2
is depicted in Figure 3 and presented in Sections 3.2-3.6 and Section 4.
During the course of the project, various alternative approaches were ex-
plored. The method presented here was chosen based on trade-offs between the
level of detail, practicality, efficiency, and simplicity.
For example, the research summary for a single author depends only on

that author’s publication titles, our controlled list of category labels, and the
associated category models. This has the benefit of making it relatively simple

For each author:

Segment
career
Build models Find similar categories
Year1 | |— of segments and/or extract keyphrases
p— Categories
Year 2
‘ear —E—V [Keyphrases] Produce
output
Year 3 p—
— Timeline
S &
|-
Year 4 — P> Overall
— career
. — > Categories summary
.] [Keyphrases]
Year n-1 — R
Year n J— ~E > Categories
p— —] [Keyphrases]
Publication titles TF-IDF

Figure 3: Generating an author’s research summary.

and efficient to update the research summary for an author, or to add a new
author to the system. A system which incorporates co-authorship relations or
other global information may be able to exploit the additional data in some way,
but could be significantly more difficult to implement, update, or modify. For
the purposes of this project, and creating a new DBLife feature, we opted for
the simpler representation which relies only on local information with respect
to a single author.

3.1 Building Category Models

In order to determine which category labels best describe a time period in the au-
thor’s career, we need a common data representation with an easily computable
similarity measure. Tf-idf vectors [8] are a well-studied and useful represen-
tation for bag-of-words text data, with a simple distance measure, the cosine
between two vectors. Tf refers to the term frequency within a document, and
1df refers to the inverse document frequency of a term, or a quantity inversely
proportional to the number of documents containing that term. Combining
these two quantities puts more emphasis on terms which are more rare amongst
all documents, and therefore more likely to be useful for making meaningful
distinctions between documents.

For each category (a total of 47, ignoring the “other” and “unknown topic”
categories), we gather the associated publication titles. We then represent each

category as a tf-idf vector, where the tf component is based on all the titles
in a single category, and the idf is taken over all categories (making it more
like “inverse category frequency”). These tf-idf representations of each category
allow us to compare author publication titles to the titles in a given category,
and assign category labels to author time periods appropriately.

3.2 Segmenting the Author’s Career

We segment a career based on the text contained in the author’s publication
titles. We represent each year by a tf-idf vector, where tf is based on all
the publication titles in that year, and idf is over all the years (“inverse year
frequency”). To compare the similarity of two adjacent years, we use the cosine
similarity of the year tf-idf vectors.

We want the segments of the author’s career to correspond to coherent “eras”
in their careers as researchers. For example, someone may start their career
focused on query optimization, but then later they may be more active in data
integration. Ideally, our segmentation would reflect this, grouping their query
optimization years together in one segment and their data integration years
together in a different segment. Of course, real research interest transitions will
never be so abrupt or clean-cut, but this intuition roughly guides what we wish
to accomplish.

To decide which years to draw the segment boundaries between, we use
Hearst’s TextTiling algorithm [5]. For each candidate boundary, this algorithm
computes the similarity between the texts which lie within a fixed-length win-
dow immediately on either side of the boundary. Computing these boundary-
similarity scores for all possible boundaries (here we only allow boundaries be-
tween years and compare only one year on each side) gives a graph similar to
that shown in Figure 3.2. Segment boundaries are then chosen at the deepest
“valleys”, with the tallest “peaks” on either side. Intuitively, this approach tries
to make the boundary cuts between highly dissimilar segments, leaving highly
similar time periods together in the same segment. This is in agreement with
our original goals outlined above.

In order to decide how deep a valley warrants making a new segment bound-
ary, we set the similarity threshold for drawing a segment boundary based on the
mean and standard deviation of the rises and drops of cosine similarity between
all years, as in [5]. In addition, our system uses a minimum segment length of
L years for all segments except the first and last, in order to avoid an unhelpful
over-segmentation. For our example results we set L = 3.

3.3 Building Time Segment Models

Once we have our segmentation, we represent each segment as a tf-idf vector
built from all of the publications from all of the years contained within that seg-
ment. Note that these are different #f-idf vectors than used for segmentation—
there we use one vector per year, whereas now we are compressing all the years
in a particular segment down to one vector. Also, note that here we use the

similacity

o L L L L L L L
o 10 z0 £l a0 E0 L3 T EQ
wmritmrrte gap mbwr

Figure 4: Example boundary-similarity chart, from [6]. In our case, each point
on the z-axis corresponds to a year boundary (i.e., between 2006 and 2007).
The y-axis is the cosine similarity between the tf-idf vectors representing the
two years touching the boundary.

same vocabulary and idf values obtained when building category models (since
the next step is to compare segments against the categories).

3.4 Matching Categories to Segments

To make the segments understandable, we next find the categories that most
resemble the segments, and use those category labels to summarize the segment.
The controlled list of category labels should then allow a user to get quick, high-
level idea of what kind of research the author was involved with during that time
period (e.g., “data integration between 2000 and 2006”).

To determine which categories are most similar to this segment, we compare
each segment tf-idf vector to the tf-idf vectors of all 47 categories using cosine
similarity. For each segment, we then select the top K most similar categories
(for these experiments K = 3). If the similarity scores for each of these top
categories are above a certain threshold T (for these experiments 7' = .05), then
we assign that category label to the author as a “topic” result for this time
period.

3.5 Extracting Additional Keyphrases using TextRank

It may be the case that the publication titles from an author’s time period are
not similar to the publication titles from any of our categories. It may be that
the author employs an idiosyncratic publication naming style, or that the au-
thor’s primary field of research is not strictly database-related, and therefore not
well-covered by our controlled list of categories (e.g., optimization or artificial
intelligence researchers).

We obviously do not want to blindly take the top K category labels if they
are not very similar to the author’s publication titles (hence the cosine threshold

of the previous section). Therefore, if necessary because fewer than K categories
surpass the threshold, we expand the list of labels for a segment using automatic
keyphrase extraction. We accomplish this by applying the TextRank algorithm
to the author’s publication titles from this time period, and taking at least K
keyphrases (but possibly more if there are ties in scores), and assigning them
to the author as “keyphrase” results for this time period.

TextRank is a graph-based algorithm, similar in spirit to PageRank [12].
Whereas PageRank ranks Web pages with the help of the graph implied by their
hyperlink connectivity, TextRank ranks individual words with the help of the
graph implied by their positions in the text, with edges placed between words
that co-occur within some fixed-length window (we use a window of size 2).
TextRank ranks words based on their eigenvector centrality in the co-occurrence
graph, and then forms meaningful keyphrases to extract by joining high-ranking
words which co-occur as contiguous phrases in the original text (titles in our
case). For example, if the words “database” and “security” are given high scores
by TextRank for an author’s publications, and they co-occur in the phrase
“database security,” TextRank will select that as a keyphrase.

Our system uses keyphrases extracted in this way to supplement our sum-
mary of a given time period when we cannot find sufficiently good matches from
list of categories. While the TextRank-extracted keyphrases can sometimes be
author-specific or unclear, we felt they were much more informative than sim-
ply using dissimilar category labels, or nothing at all. Furthermore, since these
keyphrases may be noisier than the category labels from the control list, it may
be beneficial to allow users to edit or correct these “keyphrase” results through
a wiki interface. In addition, we could treat the user corrections as new category
labels and use the current author’s associated publications as the initial seed
documents to form the new category tf-idf vectors.

3.6 Building the Research Summary by Time Segment

The end result of the previous steps is that each author’s career is split into
contiguous time segments, and each segment is characterized by up to K cate-
gory labels and possibly K or more keyphrases. This can be represented as a
timeline of time period segments and associated labels and keyphrases, allowing
a user to get a high-level view of a researcher’s interests over time.

4 Building the Career Research Summary

We can also collapse the time period results into a single, career-wide represen-
tation. For each category label, we assign a weight equal to the number of years
spanned by all segments for which the category label was chosen as one of the
top K. We also include an extra label “other” to account for years in which
keyphrases were required. We can then build a histogram (or some other data
display) showing the weights for each category label used. In the example out-
put of Figure 1, we show the result as a normalized distribution over categories.

This career-wide summary shows which general categories were most similar to
the author’s publications over their entire career, and provides a quick snapshot
of their interests.

The final output of the system is an XML file for each author, containing
the years spanned by each segment, the labels and keyphrases associated with
each segment, and the career-wide summary statistics. The DBLife system can
then display this information to the user as needed. Also, as mentioned below,
the information in this file can also be used to supplement or enhance other
existing DBLife features.

5 Additional Applications and Future Work

With our time-period and entire-career research summaries in hand, it is pos-
sible that we could leverage these results to enhance the performance of other
aspects of DBLife. For example, the entire-career research summary labels could
be used to help populate the “Similar authors” section of a researcher’s super-
homepage. Currently this is based on relatively simple co-occurrence statistics,
but a semantically richer comparison between authors’ topic distributions could
produce more meaningful results. The entire-career representation could also
be useful in automatically selecting reviewers for publications submitted to a
conference. In addition, it would be straightforward to map one or more of a
time period’s category labels to each of the constituent publications, and use
citation statistics to determine in what areas a researcher has been most influ-
ential. Finally, our time-period results could also be used to gather statistics
across all authors to identify research trends and “hot” or “cold” topics.

During work on this project, having access to publication titles only has
been a crucial limitation. The small amount of text available in these titles
results in datasets which are simply too sparse to be handled by many inter-
esting statistical NLP models. With access to more text (e.g., abstracts), it
may be possible to exploit the generalization capabilities of latent topic models
such as Probabilistic Latent Semantic Analysis (pLSA) [7] or Latent Dirich-
let Allocation (LDA) [1]. For example, a pLSA-based segmentation scheme [2]
would be advantageous. This is because the latent topics in pLSA would al-
low our segmentation algorithm to match words as being similar by virtue of
their membership in a common latent topic, as opposed to our word-only tf-idf
representation.

Other extensions could involve trying to explicitly model the temporal evo-
lution of research interests throughout a researcher’s career [9, 10, 13]. An in-
teresting potential application for these models would be to see which research
topic transitions are most common, or to try to predict future research direc-
tions for a given author. For example, it may be the case that many researchers
begin their careers in Al, but eventually transition to more database-related
work. As mentioned above, these models would require significantly more text
to to achieve meaningful results.

Lastly, the research summaries we produce could likely benefit from commu-

nity involvement through a wiki interface. In addition to converting keyphrases
to coherent categories, users may be able to improve upon our initial segmenta-
tion or topic assignments (perhaps in a controlled fashion). Finally, it would be
interesting to try to apply machine learning techniques to learn from the user
modifications and tune the parameters of our system’s various algorithms.

6 Conclusion

We have presented a system for constructing research summaries for authors
in the DBLife project. Manual evaluations of system output suggest that sum-
mary content is generally correct and relevant. The results should allow DBLife
users to quickly determine a researcher’s primary research topics, both overall
and throughout various phases of their career. We have outlined a number of
potential applications and future enhancements to the current work, all of which
ought to further improve DBLife.

References

[1] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet
allocation. Journal of Machine Learning Research, 3:993-1022, 2003.

[2] Thorsten Brants, Francine Chen, and Ioannis Tsochantaridis. Topic-based
document segmentation with probabilistic latent semantic analysis. In
CIKM ’02: Proceedings of the eleventh international conference on Infor-
mation and knowledge management, pages 211-218, New York, NY, USA,
2002. ACM Press.

[3] Pedro DeRose, Warren Shen, Fei Chen, Yoonkyong Lee, Douglas Burdick,
AnHai Doan, and Raghu Ramakrishnan. Dblife: A community information
management platform for the database research community (demo). In
CIDR, pages 169-172, 2007.

[4] AnHai Doan, Raghu Ramakrishnan, Fei Chen, Pedro DeRose, Yoonkyong
Lee, Robert McCann, Mayssam Sayyadian, and Warren Shen. Community
information management. IEEE Data Eng. Bull., 29(1):64-72, 2006.

[6] Marti Hearst. Multi-paragraph segmentation of expository text. In $2nd.
Annual Meeting of the Association for Computational Linguistics, pages
9-16, New Mexico State University, Las Cruces, New Mexico, 1994.

[6] Marti A. Hearst and Christian Plaunt. Subtopic structuring for full-length
document access. In SIGIR ’93: Proceedings of the 16th Annual Interna-
tional ACM/SIGIR Conference, 1993.

[7] Thomas Hofmann. Probabilistic latent semantic analysis. In Proc. of Un-
certainty in Artificial Intelligence, UAI’99, Stockholm, 1999.

8]

[10]

Christopher D. Manning and Hinrich Schiitze. Foundations of Statistical
Natural Language Processing. The MIT Press, Cambridge, Massachusetts,
1999.

Qiaozhu Mei, Chao Liu, Hang Su, and Chengxiang Zhai. A probabilistic
approach to spatiotemporal theme pattern mining on weblogs. In WWW
’06: Proceedings of the 15th international conference on World Wide Web,
pages 533-542, New York, NY, USA, 2006. ACM Press.

Qiaozhu Mei and ChengXiang Zhai. Discovering evolutionary theme pat-
terns from text: an exploration of temporal text mining. In KDD ’05: Pro-
ceeding of the eleventh ACM SIGKDD international conference on Knowl-
edge discovery in data mining, pages 198-207, New York, NY, USA, 2005.
ACM Press.

Rada Mihalcea and Paul Tarau. TextRank: Bringing order into texts. In
EMNLP’04, 2004.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
PageRank citation ranking: Bringing order to the web. Technical report,
Stanford Digital Library Technologies Project, 1998.

Xuerui Wang and Andrew McCallum. Topics over time: a non-markov
continuous-time model of topical trends. In KDD ’06: Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 424-433. ACM Press, 2006.

10

