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Abstract

A major goal in biomedical text processing is the automaticaetion of pro-
tein interaction information from scientific articles orsatacts. We approach this
task with a topic-based generative model. Under the modsteaces in biomed-
ical abstracts can be generated by either an 'interactapittif they contain or
discuss interacting proteins or a 'background’ topic othiee. This structure is
implemented as a Latent Dirichlet Allocation (LDA) model.hd model struc-
ture was previously developed as part of work with Mark Cramad Jerry Zhu.
During this project, parameter inference equations andriéfgns were derived.
Future work will consist of implementation and experimétgating.

1 Introduction

Proteins are biomolecules made up of amino acids which gcawgentral role in cel-
lular biology. After water, they make up the next highestgantion of cellular weight
[8]. Interactions between proteins are very important imynwital biological pro-
cesses. Because of this, protein-protein interactiorrimé&dion can be very useful for
both biological scientists and computational systemsgihesi to analyze biological
data. This information can be found in a structured formatrimtein-protein interac-
tion databases like the Database of Interacting Proteit®)([20]. These databases are
populated by human readers who read the relevant reseaiclbsaand then enter the
interaction data into the database. This manual entry stefpe a severe bottleneck in
such a system, especially given the explosive growth of theckences literature. The
total number of articles indexed by Medline, for examples haen growing exponen-
tially, adding an average of 1800 new articles per day in 3605

This situation motivates the need for tools for assist iretkteaction protein-protein
interaction information from the scientific literature. Asarly approach by the DIP
team used discriminating words to identify Medline abds#lcat were likely to discuss
proteininteractions [7]. Human curators could then fobesrtattentions on these high-
scoring articles, yielding a more efficient use of valuahlenan time. More ambitious



systems aim to directly extract interacting pairs from teften using rule or pattern-
based approaches [4]. Our system is designed to autonhaggédact interacting pairs
using a 'bag of words’ approach with sentence-level topics.

2 Themodd

The central feature of the model is the sentence-level toygdel. Each sentence is
considered to be generated by either an ’interaction’ tapia 'background’ topic.
Each topic is associated with a different 'bag of words’ imalinial. Furthermore,
each interaction sentence is associated with exactly on@fparoteins. Words in an
interaction sentence can either be drawn from the intenaetiord bag or a 'protein
pair bag’ which contains all possible identifiers for eachte two proteins. This is
necessary because there may be multiple identifiers whiehteethe same protein.

The p value represents the probability of a sentence in the altsteing the in-
teraction topic. For each document, a npwalue is generated from a Dirichlet dis-
tribution. This allows the proportion of interacting semtes to vary between different
documents. This flexibility should be valuable for modelthg abstracts of differ-
ent types of articles, such as articles that are primarihceoned with protein-protein
interactions or those that mention them only in passingt@i The use of a multi-
nomial over latent topics whose parameters are themsebmsrgted by a Dirichlet
distribution is characteristic of the Latent Dirichlet dtlation (LDA) model [2]. The
general outline of our generative model is as follows

for each dod in our corpuC

pq =dir(a)
for each sentenceé
re =mult(pq)
t, =mult(0)
for each worck
s = berny)
if rik=0
Wk :mult(Bo)
elseifric=1
if s=0
Wy =mult(B1)
elseifs=1

Wk :pai I’(tg)

The model parameters and variables are

e 0= The protein pair selection multinomial
(6; = probability of selecting protein paty

e o = Dirichlet hyperparameter for topic selection variable



e 3= Word bags for 'interaction’ and 'background’ topics
(Bjw = probability of wordw under topicj)

e L= Probability for pair switch variable in 'interaction’ semtces
(lo=P(s=0))

e r = Topic switch variable
(r =0 means background topic= 1 means interaction topic)

e s= Pair switch variable for 'interaction’ sentences
(s= 1 means select protein, else- 0 means select from word bag)

e t = Protein pair switch variable
(specifies a pair of proteins)

e W= The observed words
(Wgek is the word in documentt, sentencé, word k)
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Figure 1: Graphical representation of the model.



3 Parameter estimation
3.1 Document likelihood

The parameters of our model aned, 3, and. The hidden variables aggt,r, ands,
and the only observed values are the actual werd3he log likelihood of a single
document can be obtained by marginalizing over the hiddealias

log(P(d10.0.B.1) = | Y 3 33 logPwidrets )
O (rety) KOS

Toste

Where/ andk are indices into sentences and words within sentencesatagly.
P(wk|re,te, Sk, B,0) uses indicator functions af, ry, andsy to model the probability
of a single word

P(w|B,t,s,r) = 1r——oBow+ Lr=—=1(Ls——oBiw + Ls——1y:t (W))
yi(w) represents the protein pair specified by the switch variable
1 weao;
W) =
"W {0 else

whereg; is the set of identifiers for the two proteins in the proteiotpin pair specified
by the index.

3.2 Corpuslikelihood

In order to determine the log likelihood of a corpswe assume the documents to
be independent of one another. This allows us to simply eltle® above equation by
summing over all training documents.

log(P(C|8,a,B, 1) = dz log(P(d]8,a, B, 1))
cC

3.3 Variational EM

To set the parameters for our model, we want to find the pasmaiues that maximize
the log likelihood of the training corpus (maximum likelinbestimation or MLE). We
cannot directly optimize by taking the derivatives withpest to the parameters and
setting them to zero, due to the presence of the hidden Vesial-urthermore, we
cannot use a standard expectation maximization (EM) apprbacause the posterior



distribution of the hidden variables in our model is intedale due to coupling issues
[3].

We overcome this problem by restricting the form of the daxyl distribution to a
family of fully factorized distributions parameterized ynew set of parameters. This
approach is known agariational inferenceand the new parameters are referred to as
thevariational parameter$6, 2]. The restricted family of fully factorized distribohs
we will use is

L
a(p,reLly, QL) = q(plv)J'| are|er)
=1

(v is the probability that, = j wherej € 0, 1. yp andy; are the parameters of the beta
distributionq(p|y).
This new distribution is the centerpiece of our variatioBM scheme. We start

by fixing the model parameters and multiplyiRgC|a, 8, B, ) by %. Just
as in standard EM, we then use Jensen’s inequality to obtainer bound on the log

likelihood by pulling aq(p, r1.L|y, @1:) term out of the log.

log(P(Cla,6,B,1)) > F(9,9)

P(C|rl:LaeaBap~)
F,G):/ LY, @) log(P(pla)P(ryL|p) ———————=
(©9) prlzlq(p lv.er1)log(P(pla) (“lp)q(p,rllev,cm:L)

)dp
(© is shorthand notation for the model paramefs a, and.)

Sinceq(p,r1.L|y,®) is a valid probability distribution and we are marginalgiover
p andry., this expression is equal to the expectation ayef the log expression.

P(C|rl:L7 ea Ba H)

a(p,rLly, erL) )

F(g,©) = Eq(log(P(p|a)P(r1.L|p)

331 E-step

We want to maximize this lower bound. First, we do a variaidfrstep and optimize
with respect to the variational parametgm@nd@;. . To do this we first must expand
out the lower bound equation, first by rewriting the log of adarct as a sum of logs,
and then by rewriting the expectation of a sum as a sum of ¢apeas.



F(9,0) = Eq(log(P(p|a)) +log(P(r1.L|p)) +10g(P(Clr1.,8,B,1)) — log(a(p,r1L |y, ¢11)))

Eq(log(P(pla))) = log(" za zlog<r<ai>>+z((ai—n(w(w—w(zvj)))
1 I J

Eq(log(P(r11|p))) Z @i (W(y) —W(Y i)
J

Eq(log(P(C|r1.,6,B,1))) = [z > tz <|OQ(P('[€|9)) +log(P(s|W)) + Z((pfjp(wdék“ﬁatéaBas))>
(€,k) teSex

J
Eq(log(a(p,rLly, @ui))) = H @ilog(n)
[

W is the digamma function, which is equal to the first derivatif the log of the gamma
function.

biai) = o (loglr (@)

Also, the above derivations calculate the expectation @faly of a Dirichlet ran-
dom variablep using this formula [2]

E(log(pa)) Za

We can now directly optimize the lower bound with respecti® Yariational pa-
rameters by simply taking their derivatives and settingrthie zero, and using La-
grange multipliers where necessary.

0
0_(; =Y(vi) - UJ(ZVJH-; ZZ;|Og(P(Wd€k|r€iat€aBaS€k)) —log(@i) + 1+,

F
gv Byi)( .+;cpa Vi) — Zv, Hr;% V)

These equations can be set to zero and used to solve for tldomal parameter
values.

@i OexpW(yi) — )+ ; Z Z Z log(P(Waek|r i, te, B, S)))

w:m+;w

We have now completed the variational E-step by findingd¢hevithin our re-
stricted family that maximizes the lower bound, assumirggrttodel parameters to be
fixed.



332 M-step

The M-step will now consist of finding the model parameteuealthat maximize the
lower bound, assuming theg distribution to be fixed. The parameters that must be
updated in this step ace 6, B, andp.

First, we will consider the case af Taking the derivative of the lower bound with
respect ta gives us

oF
a—ai:w(;m) (i) +W(vi) - Zv,

Note that the summation over allj inside the first digamma function prevents
us from setting the equation to zero and solving directlydacha;. One possible
workaround is to use the Newton-Raphson optimization ptoe The update equa-
tion for this procedure is

Opew= Ooid — Hil(aold)g(aold)

g(a) is the gradient, andi~! is the inverse of the Hessian. Generally the matrix
inversion results in QN®) complexity, but for our special case the form of the matrix
allows us to achieve a linear-time Newton-Raphson methpd[2 individual entries

in the Hessian are then given by

oF
00

=31, MY/ () — /(Y aj)
]
where M is the number training documents.

Now we must update the other model parametf andp. Because we are
again dealing with hidden variables in the formtands, we must perform another
'inner’ standard EM procedure. In order to avoid confusiwe,will refer to the inner
EM auxiliary distribution asu(t,s) and the associated lower bound@gu,©). We
formulate the EM problem in the same way as before (pullingtas) term out of the
log to get an expectation and using Jensen’s inequalityg. riéw lower bound of the
log likelihood of a documentis then

G(1.0)= (5. 5 Eulog(PIt1®) + Ioa(P(5ul)~1og(u(t9) + 5 @ loa(P Wi t-Pr. )
J

For the inner E-step, the optimal is the posterior probability of the hidden vari-
ables, which can be computed using Bayes’ Rule

P(wlt,s,B, @)P(t, 56, 1)
Z(t,s) P(Wlta S, 97 Ba K, (p)

Once theu* distribution has been computed, the updated parametersecaom-
puted by taking derivatives and setting them to 0.

u*(t’s) = P(t’S|W7 67 B7 l.l,(p) =




= —A
08 ;C(Zk) &
6 _g U,
al-ls = (f7k) Ms
G
E i log(P(Wqek|rej,te,Bi,s 1)

)

Setting these equations to zero and solving for the paramgitees us

B = u*(t)
Hs = U"(s)
BOW O Z (pf()lW::Wd[k
(£,k)

B].W O % z U S_ 11WZ:Wd[k

This inner EM procedure occurs during the M-step of our vemmeal EM scheme.
Since we are performing variational EM until convergence #re inner EM scheme
is embedded within the variational M-step, there is no neatirectly iterate the inner
EM step.

4 Conclusion and futurework

Our LDA model tries to capture the differences in the vocabulused to discuss
protein-protein interactions versus background disomsdturthermore, it models this
difference using topics selected at the sentence levek §ttould allow the model to
localize the interaction topics, and thereby enable thetifieation of the interacting
proteins.

Given a training corpus with labeled interacting protetraning could be accom-
plished by 'freezing’ sentence and protein labels duringpeeter estimation. Once
the model parameters are determined, information extnractbuld then be performed
on new abstracts by 'freezing’ all model parameters ex@eptd then retraining on the
new abstracts. Th@ values for protein-protein pairs could then be looselyrimteted
as the ’interaction strength’, allowing the identificatiofinteracting pairs.

The next step in this work is to implement these learningrtlgms and apply them
to an actual corpus. The Biomolecular Interaction DatalfgHeD) contains PubMed
reference links for its interactions, allowing the autoimateation of a training corpus
[1]. Also, we are in possession of a corpus of Escheria Cdlirabts with an index of
proteins appearing in them. This corpus could be combindd &P data to develop
another training set.
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