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Abstract

A major goal in biomedical text processing is the automatic extraction of pro-
tein interaction information from scientific articles or abstracts. We approach this
task with a topic-based generative model. Under the model, sentences in biomed-
ical abstracts can be generated by either an ’interaction’ topic if they contain or
discuss interacting proteins or a ’background’ topic otherwise. This structure is
implemented as a Latent Dirichlet Allocation (LDA) model. The model struc-
ture was previously developed as part of work with Mark Craven and Jerry Zhu.
During this project, parameter inference equations and algorithms were derived.
Future work will consist of implementation and experimental testing.

1 Introduction

Proteins are biomolecules made up of amino acids which occupy a central role in cel-
lular biology. After water, they make up the next highest proportion of cellular weight
[8]. Interactions between proteins are very important in many vital biological pro-
cesses. Because of this, protein-protein interaction information can be very useful for
both biological scientists and computational systems designed to analyze biological
data. This information can be found in a structured format inprotein-protein interac-
tion databases like the Database of Interacting Proteins (DIP) [10]. These databases are
populated by human readers who read the relevant research articles and then enter the
interaction data into the database. This manual entry step can be a severe bottleneck in
such a system, especially given the explosive growth of the biosciences literature. The
total number of articles indexed by Medline, for example, has been growing exponen-
tially, adding an average of 1800 new articles per day in 2005[5].

This situation motivates the need for tools for assist in theextraction protein-protein
interaction information from the scientific literature. Anearly approach by the DIP
team used discriminating words to identify Medline abstracts that were likely to discuss
protein interactions [7]. Human curators could then focus their attentions on these high-
scoring articles, yielding a more efficient use of valuable human time. More ambitious
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systems aim to directly extract interacting pairs from text, often using rule or pattern-
based approaches [4]. Our system is designed to automatically extract interacting pairs
using a ’bag of words’ approach with sentence-level topics.

2 The model

The central feature of the model is the sentence-level topicmodel. Each sentence is
considered to be generated by either an ’interaction’ topicor a ’background’ topic.
Each topic is associated with a different ’bag of words’ multinomial. Furthermore,
each interaction sentence is associated with exactly one pair of proteins. Words in an
interaction sentence can either be drawn from the interaction word bag or a ’protein
pair bag’ which contains all possible identifiers for each ofthe two proteins. This is
necessary because there may be multiple identifiers which refer to the same protein.

The p value represents the probability of a sentence in the abstract having the in-
teraction topic. For each document, a newp value is generated from a Dirichlet dis-
tribution. This allows the proportion of interacting sentences to vary between different
documents. This flexibility should be valuable for modelingthe abstracts of differ-
ent types of articles, such as articles that are primarily concerned with protein-protein
interactions or those that mention them only in passing (if at all). The use of a multi-
nomial over latent topics whose parameters are themselves generated by a Dirichlet
distribution is characteristic of the Latent Dirichlet Allocation (LDA) model [2]. The
general outline of our generative model is as follows

for each docd in our corpusC
pd =dir(α)

for each sentenceℓ
rℓ =mult(pd)
tℓ =mult(θ)
for each wordk

sℓk = bern(µ)
if rℓk = 0

wℓk =mult(β0)
else ifrℓk = 1

if s= 0
wℓk =mult(β1)

else ifs= 1
wℓk =pair(tℓ)

The model parameters and variables are

• θ = The protein pair selection multinomial
(θt = probability of selecting protein pairt)

• α = Dirichlet hyperparameter for topic selection variable
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• β = Word bags for ’interaction’ and ’background’ topics
(β jw = probability of wordw under topicj)

• µ= Probability for pair switch variable in ’interaction’ sentences
(µ0 = P(s= 0))

• r = Topic switch variable
(r = 0 means background topic,r = 1 means interaction topic)

• s= Pair switch variable for ’interaction’ sentences
(s= 1 means select protein, elses= 0 means select from word bag)

• t = Protein pair switch variable
(specifies a pair of proteins)

• w = The observed words
(wdℓk is the word in documentd, sentenceℓ, wordk)
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Figure 1: Graphical representation of the model.
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3 Parameter estimation

3.1 Document likelihood

The parameters of our model areα,θ,β, andµ. The hidden variables arep,t, r, ands,
and the only observed values are the actual wordsw. The log likelihood of a single
document can be obtained by marginalizing over the hidden variables

log(P(d|θ,α,β,µ)) =

Z

p
∑
ℓ

∑
(rℓ,tℓ)

∑
k

∑
s

log(P(wℓk|rℓ,tℓ,s,β))

+ log(P(rℓ|p))

+ log(P(p|α))

+ log(P(tℓ|θ))

+ log(P(s|µ))dp

Whereℓ andk are indices into sentences and words within sentences, respectively.
P(wℓk|rℓ, tℓ,sℓk,β,θ) uses indicator functions oftℓ, rℓ, andsℓk to model the probability
of a single word

P(w|β, t,s, r) = 1r==0β0w + 1r==1(1s==0β1w + 1s==1yt(w))

yt(w) represents the protein pair specified by the switch variablet.

yt(w) =

{

1 w∈ σt

0 else

whereσt is the set of identifiers for the two proteins in the protein-protein pair specified
by the indext.

3.2 Corpus likelihood

In order to determine the log likelihood of a corpusC, we assume the documents to
be independent of one another. This allows us to simply extend the above equation by
summing over all training documents.

log(P(C|θ,α,β,µ)) = ∑
d∈C

log(P(d|θ,α,β,µ))

3.3 Variational EM

To set the parameters for our model, we want to find the parameter values that maximize
the log likelihood of the training corpus (maximum likelihood estimation or MLE). We
cannot directly optimize by taking the derivatives with respect to the parameters and
setting them to zero, due to the presence of the hidden variables. Furthermore, we
cannot use a standard expectation maximization (EM) approach because the posterior
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distribution of the hidden variables in our model is intractable due to coupling issues
[3].

We overcome this problem by restricting the form of the auxiliary distribution to a
family of fully factorized distributions parameterized bya new set of parameters. This
approach is known asvariational inferenceand the new parameters are referred to as
thevariational parameters[6, 2]. The restricted family of fully factorized distributions
we will use is

q(p, r1:L|γ,φ1:L) = q(p|γ)
L

∏
ℓ=1

q(rℓ|φℓ)

φℓ j is the probability thatrℓ = j where j ∈ 0,1. γ0 andγ1 are the parameters of the beta
distributionq(p|γ).

This new distribution is the centerpiece of our variationalEM scheme. We start
by fixing the model parameters and multiplyingP(C|α,θ,β,µ) by q(p,r1:L|γ,φ1:L)

q(p,r1:L|γ,φ1:L) . Just
as in standard EM, we then use Jensen’s inequality to obtain alower bound on the log
likelihood by pulling aq(p, r1:L|γ,φ1:L) term out of the log.

log(P(C|α,θ,β,µ)) ≥ F(q,Θ)

F(q,Θ) =
Z

p
∑
r1:L

q(p, r1:L|γ,φ1:L) log(P(p|α)P(r1:L|p)
P(C|r1:L,θ,β,µ)

q(p, r1:L|γ,φ1:L)
)dp

(Θ is shorthand notation for the model parametersθ,β,α, andµ.)
Sinceq(p, r1:L|γ,φ) is a valid probability distribution and we are marginalizing over

p andr1:L, this expression is equal to the expectation overq of the log expression.

F(q,Θ) = Eq(log(P(p|α)P(r1:L|p)
P(C|r1:L,θ,β,µ)

q(p, r1:L|γ,φ1:L)
))

3.3.1 E-step

We want to maximize this lower bound. First, we do a variational E-step and optimize
with respect to the variational parametersγ andφ1:L. To do this we first must expand
out the lower bound equation, first by rewriting the log of a product as a sum of logs,
and then by rewriting the expectation of a sum as a sum of expectations.
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F(q,Θ) = Eq(log(P(p|α))+ log(P(r1:L|p))+ log(P(C|r1:L,θ,β,µ))− log(q(p, r1:L|γ,φ1:L)))

Eq(log(P(p|α))) = log(Γ(∑
i

αi))−∑
i

log(Γ(αi))+∑
i

(

(αi −1)(ψ(γi)−ψ(∑
j

γ j))

)

Eq(log(P(r1:L|p))) = ∑
(ℓ,i)

φℓi(ψ(γi)−ψ(∑
j

γ j))

Eq(log(P(C|r1:L,θ,β,µ))) = ∑
d∈C

∑
(ℓ,k)

∑
tℓsℓk

(

log(P(tℓ|θ))+ log(P(sℓk|µ))+∑
j

(φℓ jP(wdℓk|rℓ j ,tℓ,β,s))

)

Eq(log(q(p, r1:L|γ,φ1:L))) = ∑
(ℓ,i)

φℓi log(φℓi)

ψ is the digamma function, which is equal to the first derivative of the log of the gamma
function.

ψ(αi) =
∂

∂αi
(log(Γ(αi)))

Also, the above derivations calculate the expectation of the log of a Dirichlet ran-
dom variablep using this formula [2]

E(log(p|α)) = ψ(αi)−ψ(∑
j

α j)

We can now directly optimize the lower bound with respect to the variational pa-
rameters by simply taking their derivatives and setting them to zero, and using La-
grange multipliers where necessary.

∂F
∂φℓi

= ψ(γi)−ψ(∑
j

γ j)+ ∑
d∈C

∑
tℓ

∑
k

∑
sℓk

log(P(wdℓk|rℓi ,tℓ,β,sℓk))− log(φℓi)+1+ λℓ

∂F
∂γi

= ψ(γi)(αi +∑
ℓ

φℓi − γi)−ψ(∑
j

γ j)(αi +∑
ℓ

φℓi − γi)

These equations can be set to zero and used to solve for the variational parameter
values.

φℓi ∝ exp(ψ(γi)−ψ(∑
j

γ j)+ ∑
d∈C

∑
tℓ

∑
k

∑
sℓk

log(P(wdℓk|rℓi ,tℓ,β,sℓk)))

γi = αi +∑
ℓ

φℓi

We have now completed the variational E-step by finding theq∗ within our re-
stricted family that maximizes the lower bound, assuming the model parameters to be
fixed.
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3.3.2 M-step

The M-step will now consist of finding the model parameter values that maximize the
lower bound, assuming theq∗ distribution to be fixed. The parameters that must be
updated in this step areα, θ, β, andµ.

First, we will consider the case ofα. Taking the derivative of the lower bound with
respect toα gives us

∂F
∂αi

= ψ(∑
j

α j )−ψ(αi)+ ψ(γi)−ψ(∑
j

γ j)

Note that the summation over allα j inside the first digamma function prevents
us from setting the equation to zero and solving directly foreachα j . One possible
workaround is to use the Newton-Raphson optimization procedure. The update equa-
tion for this procedure is

αnew= αold −H−1(αold)g(αold)

g(α) is the gradient, andH−1 is the inverse of the Hessian. Generally the matrix
inversion results in O(N3) complexity, but for our special case the form of the matrix
allows us to achieve a linear-time Newton-Raphson method [2]. The individual entries
in the Hessian are then given by

∂F
∂αiα j

= δ(i, j)Mψ′(αi)−ψ′(∑
j

α j )

where M is the number training documents.
Now we must update the other model parametersθ,β, and µ. Because we are

again dealing with hidden variables in the form oft ands, we must perform another
’inner’ standard EM procedure. In order to avoid confusion,we will refer to the inner
EM auxiliary distribution asu(t,s) and the associated lower bound asG(u,Θ). We
formulate the EM problem in the same way as before (pulling au(t,s) term out of the
log to get an expectation and using Jensen’s inequality). The new lower bound of the
log likelihood of a document is then

G(u,Θ)= (∑
d∈C

∑
(ℓ,k)

Eu(log(P(tℓ|θ))+ log(P(sℓk|µ))− log(u(t,s))+∑
j

φℓ j log(P(wdℓk|rℓ j ,tℓ,β j ,s)))

For the inner E-step, the optimalu∗ is the posterior probability of the hidden vari-
ables, which can be computed using Bayes’ Rule

u∗(t,s) = P(t,s|w,θ,β,µ,φ) =
P(w|t,s,β,φ)P(t,s|θ,µ)

∑(t,s) P(w|t,s,θ,β,µ,φ)

Once theu∗ distribution has been computed, the updated parameters canbe com-
puted by taking derivatives and setting them to 0.
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∂G
∂θt

= ∑
d∈C

∑
(ℓ,k)

u∗(t)
θt

−λ

∂G
∂µs

= ∑
d∈C

∑
(ℓ,k)

u∗(s)
µs

−λ

∂G
∂β jw

=
∂

∂β jw
( ∑
d∈C

∑
(ℓ,k)

Eu(φℓ j log(P(wdℓk|rℓ j ,tℓ,β j ,s)))+ λ j(1−∑
w′

β jw′))

Setting these equations to zero and solving for the parameters gives us

θt = u∗(t)

µs = u∗(s)

β0w ∝ ∑
d∈C

∑
(ℓ,k)

φℓ01w==wdℓk

β1w ∝ ∑
d∈C

∑
(ℓ,k)

u∗(s= 0)φℓ11w==wdℓk

This inner EM procedure occurs during the M-step of our variational EM scheme.
Since we are performing variational EM until convergence and the inner EM scheme
is embedded within the variational M-step, there is no need to directly iterate the inner
EM step.

4 Conclusion and future work

Our LDA model tries to capture the differences in the vocabulary used to discuss
protein-protein interactions versus background discussion. Furthermore, it models this
difference using topics selected at the sentence level. This should allow the model to
localize the interaction topics, and thereby enable the identification of the interacting
proteins.

Given a training corpus with labeled interacting proteins,training could be accom-
plished by ’freezing’ sentence and protein labels during parameter estimation. Once
the model parameters are determined, information extraction could then be performed
on new abstracts by ’freezing’ all model parameters exceptθ and then retraining on the
new abstracts. Theθ values for protein-protein pairs could then be loosely interpreted
as the ’interaction strength’, allowing the identificationof interacting pairs.

The next step in this work is to implement these learning algorithms and apply them
to an actual corpus. The Biomolecular Interaction Database(BIND) contains PubMed
reference links for its interactions, allowing the automatic creation of a training corpus
[1]. Also, we are in possession of a corpus of Escheria Coli abstracts with an index of
proteins appearing in them. This corpus could be combined with DIP data to develop
another training set.
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