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1 Exponential family distributions

1.1 Formulations

Exponential family is a class of distributions that all share the following form:

p(y|η) = h(y) exp{ηTT (y)−A(η)} (1)

• η is the natural parameter, (a.k.a. exponential parameter).1 For a given
distribution (e.g. Bernoulli), η specifies all the parameters needed for that
distribution.

• T (y) is the sufficent statistic of the data (in many cases T (y) = y, in which
case the distribution is said to be in canonical form and η is referred to
as the canonical parameter).

• A(η) is the log-partition function (a.k.a. normalization factor, cumulant
generating function) which ensures that p(y|η) remains a probability dis-
tribution.

• h(y) is the non-negative base measure (in many cases it is equal to 1).

Note that since η contains all the parameters needed for a particular distri-
bution in its original form, we can express it with respect to the mean parameter
θ:

p(y|θ) = h(y) exp{η(θ)TT (y)−A(η(θ))} (2)

Examples of distributions that are exponential families: Gaussian, multion-
mial, exponential, Dirichlet, Poisson, Gamma...

Examples of distributions that are not exponential families: Cauchy, uni-
form...

Let’s see how the Bernoulli distribution can be converted into the exponential
family form:

1There is also a more general version of the exponential family form in which the natural
parameter is defined as a function over η (Dobson book, Clark and Thayer primer).
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p(y|θ) = θy(1− θ)1−y

= exp{y log θ + (1− y) log(1− θ)}

= exp{y log
θ

1− θ
+ log(1− θ)} (3)

Then we define:

• natural parameter η(θ) = log θ
1−θ

• log-partition function A(η(θ)) = log(1 + exp(η(θ))) = log(1 + θ
1−θ ) =

−log(1− θ)

• sufficient statistic T (y) = y

• base measure h(y) = 1

It is important to note that the exponential family form for a given dis-
tribution is not unique. If there are linear or affine dependencies between the
elements of the sufficient statistic then some components of η are redundant and
the representation is called over-complete. Otherwise, it is called minimal. For
example, a K-dimensional multinomial distribution can be represented by a K-
dimensional parameter vector where one parameter is redundant. Many useful
properties hold for the minimal representation only, but the over-complete one
can be more elegant notationally.

1.2 Properties

• The dimensionality of the sufficient statistic (T (x)) is equal to the number
of parameters (dimensionality of vector η). For exponential family distri-
butions exists a sufficient statistic whose dimension is independent of the
size of the sample.

• Products of exponential family distributions are exponential family distri-
butions, but unnormalized.

• Moments:

First moment: E(T (y)) = ∇ηA(η) = θ (θ is also called moment parame-
ter)

Second moment: V ar(T (y)) = ∇2
ηA(η)

• The set of values of η for which the function A(η) < +∞ is called the
natural parameter space.

• The log-partition function A(η) and its first derivative are convex, since
the second derivative is a variance and therefore always positive (useful
for MLE estimation).

• Every exponential family distribution has a conjugate prior (useful for
Bayesian estimation) w: This is because the conjugate prior when multi-
plied by the likelihood yields a posterior that is in the same family, and the
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likelihood is an exponential family distribution. The form of the conjugate
prior for the distribution in Eq. 2 is:

p(θ|τ, τ0) =
1

Z(τ, τ0)
exp{τT η(θ)− τ0A(η(θ))} (4)

2 Generalized linear models

2.1 Formulation

Generalized linear models (GLMs, not to be confused with General Linear Mod-
els) is a generalization of linear regression to response types other than Gaus-
sian, as long as the distribution of that response is a member of the exponential
family.

Let’s assume that we are trying to predict response Y (labels, counts, real
values) from a set of covariates X (features). In a linear model with parameters
β, we assume that:

E(Y (X)) = XTβ (5)

The generalization is obtained by assuming that E(Y (X)) is not identical
to the linear combination XTβ, but it is connected to it through a function
that is chosen according to the nature of Y . More formally, GLMs consist of 3
components:

• The random component (a.k.a. response variable), which is the exponen-
tial family distribution with canoncical parameter η that determines the
form of the response, e.g. Poisson for counts. Note that we need to be
able to write the exponential family distributions in its canonical form
(T (y) = y in Equation 1). For most of the exponential family distribu-
tions this is possible (a.k.a. natural exponential family) but there are cases
like the LogNormal distribution which while it belongs to the exponential
family it cannot be writen in the canonical form.

• The systematic component which specifies that the covariates X enter
the model via linear combination XTβ and since we are in the natural
exponential family of distributions they define the natural parameter η.

• The monotone and differentiable function g which connects the systematic
component with the mean parameter (θ):

g(θ) = XTβ (6)

E(Y ) = θ = g−1(XTβ) (7)

g is called the link function and its inverse the response function. Since
XTβ = η, the link function is the same as the mapping function between
the natural and the mean parameter η(θ) and response function is the
same as ∇ηA(η).

Using the above the form for logistic regression is obtained by we assuming
the Bernoulli distribution for the response variable, which has the link function:

g(θ) = η(θ) = log
θ

1− θ
(8)
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and response function:

g−1(η) =
1

1 + exp(η)
=

1

1 + exp(XTβ)
(9)

Note that one can use exponential family distributions that cannot be written
in canonical form (i.e., T (y) 6= y), thus resulting in non-canonical link functions
(Peter John MacCullagh, J. A. Nelder book), however their use is quite rare.

2.2 Estimation

The standard way of estimating the parameters of GLMs with maximum likeli-
hood estimation, in particular using the Newton-Raphson algorithm. Assuming
a dataset D = {(x1, y1), (xN , yN )} we want to find parameters β that maximize
the log-likelihood `:

`(β|D) = log

N∏
i=1

h(yi) exp{η(β)Ti yi −A(ηi)} (10)

=

N∑
i=1

log h(yi) +

N∑
i=1

{(βTxi)yi −A(ηi)} (11)

=

N∑
i=1

log h(yi) + βT
N∑
i=1

xiyi −
N∑
i=1

A(ηi) (12)

Convexity of the log-partition function A(η) guarantees global maximum.
Newton-Raphson is a general method for maximizing (minimizing) a real-valued
function `(β) by iterating:

β(t+1) ← β(t) − [H(`(β))]−1∇β`(β) (13)

If the function `(β) is a quadratic function, then the maximum can be found
in one step, as is the case with the normal distribution. The Hessian is needed
and can be expensive in cases of non-canonical link functions. Then one can use
Fisher’s scoring method which used the expected Hessian instead. Also, it is
worth mentioning that in some extensions of GLMs MCMC methods are used,
e.g. (Hannah, Blei, Powell).

3 Other uses of exponential family distributions

Fuzzy clustering/Dimensionality reduction with hamiltonian monte carlo (Heller,
Mohamed, Ghahramani)

Semi-supervised classification with variational inference (Liang)
Graphical models can be represented and solved as exponential families (Jor-

dan and Wainwright)
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