Bess Berg March 8, 2010

Linear Operators: some basics

These notes were thrown together somewhat quickly so they will surely contain typos and perhaps even some more fundamental mistakes, though hopefully not too many of the latter!

1 Definitions

- 1. The *transpose* of the $m \times n$ matrix A is denoted A^{\top} and is the $n \times m$ matrix whose rows are the columns of A (and thus whose columns are the rows of A).
- 2. The complex conjugate of $z = a + bi \in \mathbb{C}$ is $z^* = a bi$.
- 3. The adjoint of the $m \times n$ matrix A is denoted A^{\dagger} and is the transpose of the complex conjugate of A, $A^{\dagger} = A^{*\top}$.
- 4. An eigenvalue with corresponding eigenvector of the (square) matrix $A \in \mathbb{C}^{n \times n}$ is any $\lambda \in \mathbb{C}$ with non-zero $x \in \mathbb{C}^n$ that satisfy the equation $Ax = \lambda x$.
- 5. The characteristic polynomial of a matrix $A \in \mathbb{C}^{n \times n}$ is the monic (leading coefficient is 1), degree-n polynomial in λ given by $det(A-\lambda I)$. Note that setting this polynomial to zero and solving for λ gives values of λ such that the matrix $A-\lambda I$ is not invertible. For each such distinct root λ the equation $(A-\lambda I)x=0$, and thus $Ax=\lambda x$, has at least one solution x.
- 6. A unitary matrix is a square matrix with complex entries, $A \in \mathbb{C}^{n \times n}$, whose columns (and thus rows) are orthogonal unit vectors. That is, the columns of A form an orthonormal basis for $C^{n \times n}$. Note A is unitary if and only if $A^{\dagger} = A^{-1}$.
- 7. An orthogonal matrix is a square matrix with real entries, $A \in \mathbb{R}^{n \times n}$, whose columns (and thus rows) are orthogonal unit vectors. Note that an orthogonal matrix is the special case of a unitary matrix in which all entries are real. We have $A^{\top} = A^{-1}$, and the columns of A form a (real) orthonormal basis of $\mathbb{R}^{n \times n}$ (and $\mathbb{C}^{n \times n}$).

- 8. A diagonalizable matrix is a square matrix $A \in \mathbb{C}^{n \times n}$ for which there exist matrices $P, D \in \mathbb{C}^{n \times n}$ such that P is invertible, D is diagonal, and $A = PDP^{-1}$. Note that columns of P are necessarily eigenvectors of A with corresponding eigenvalues given by D.
- 9. A normal matrix is a square matrix $A \in \mathbb{C}^{n \times n}$ such that A commutes with its adjoint: $A^{\dagger}A = AA^{\dagger}$. A matrix is normal if and only if it can be diagonalized by a unitary matrix (this is known as the Spectral Theorem); equivalently, a matrix is normal if and only if its eigenvectors form a full orthogonal basis.
- 10. A Hermitian matrix is a square matrix that is self-adjoint: $A^{\dagger} = A$. Note that Hermitian matrices are special cases of normal matrices. In particular, a matrix is Hermitian if and only if it is normal and has all real eigenvalues.
- 11. A symmetric matrix is a square matrix with real entries, $A \in \mathbb{R}^{n \times n}$ such that $A^{\top} = A$. Note that A is a real-valued special case of a Hermitian (self-adjoint) matrix. Furthermore, not only does A have real eigenvalues, but one can show that the eigenvectors of A will be real too, i.e. A can be diagonalized by an orthogonal matrix.

2 Facts

Fact 1. Eigenvectors with distinct eigenvalues are linearly independent though not necessarily orthogonal.

Proof. The first part should be somewhat obvious, but in case not: Assume v and w are eigenvectors of A with distinct eigenvalues $\lambda \neq \gamma$ respectively. If v and w are linearly dependent, then there is some $\alpha \in \mathbb{C}$ such that $v = \alpha w$. Note that neither v nor w is the zero-vector, so $\alpha \neq 0$. We have $Av = \lambda v = \lambda w$; but we also have $Av = A(\alpha w) = \gamma w$, implying $\lambda w = \gamma w$ and thus $\lambda = \gamma$, a contradiction. So v and w must be linearly independent. To see that a matrix A can have non-orthogonal eigenvectors consider the matrix

$$A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array}\right)$$

which has eigenvectors $(1,0)^{\top}$ (with corresponding eigenvalue 1) and (unnormalized) $(1,1)^{\top}$ (with corresponding eigenvalue 2).

Fact 2. Every square $n \times n$ matrix has at least one eigenvector.

Proof. Let $A \in \mathbb{C}^{n \times n}$. The characteristic polynomial of A is given by $det(A - \lambda I) = 0$. This polynomial is monic (leading coefficient is 1) and has degree n. By the Fundamental Theorem of Algebra it has n complex roots (counted with multiplicities). Therefore there is at least one $\lambda \in \mathbb{C}$ such that $A - \lambda I$ is not an invertible matrix, i.e. its columns are linearly dependent. So there is some linear combination of the columns equal to 0; that is, there is an $x \in \mathbb{C}^n$ such that $(A - \lambda I)x = 0$ and thus $Ax = \lambda x$. This x is an eigenvector of A, with eigenvalue λ .

Fact 3. The geometric multiplicity of an eigenvalue is at least 1 but may be less than the algebraic multiplicity of that eigenvalue.

Proof. First some definitions. The algebraic multiplicity of an eigenvalue λ for matrix $A \in \mathbb{C}^n$ is the multiplicity of λ as a root of the characteristic polynomial of A. The geometric multiplicity of λ is the dimension of its corresponding eigenspace, which is the span of all eigenvectors of A having eigenvalue λ . We know that there is at least one eigenvector corresponding to λ , and so the dimension of the corresponding eigenspace is at least 1. To see that the geometric multiplicity may be less than the algebraic multiplicity, consider the matrix

$$A = \left(\begin{array}{cc} 1 & k \\ 0 & 1 \end{array}\right)$$

for any $k \neq 0$. A has characteristic polynomial $(1 - \lambda)^2$. The root $\lambda = 1$ has algebraic multiplicity 2, but A only has one corresponding eigenvector, $(1,0)^{\top}$.

Fact 4. Let $A \in \mathbb{C}^{n \times n}$. The following are equivalent:

- 1. A is diagonalizable.
- 2. The sum of the geometric multiplicities of the eigenvalues of A is n.
- 3. A has n linearly independent eigenvectors.

Fact 5. Every matrix $A \in \mathbb{C}^{m \times n}$ has a singular value decomposition $A = UDV^{-1}$ with unitary U and V and diagonal D; only some square matrices $A \in \mathbb{C}^{n \times n}$ may be diagonalized $A = PDP^{-1}$ for invertible P and diagonal D, and only some of these A may be diagonalized by unitary matrices.