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Linear Operators: some basics

These notes were thrown together somewhat quickly so they will surely
contain typos and perhaps even some more fundamental mistakes, though
hopefully not too many of the latter!

1 Definitions

1.

The transpose of the m x n matrix A is denoted AT and is the n x m
matrix whose rows are the columns of A (and thus whose columns are
the rows of A).

The complex conjugate of z =a +bi € Cis z* = a — bi.

The adjoint of the m x n matrix A is denoted AT and is the transpose
of the complex conjugate of A, At = A*T.

. An eigenvalue with corresponding eigenvector of the (square) matrix

A e C"™"is any A € C with non-zero x € C" that satisfy the equation
Ax = Ax.

The characteristic polynomial of a matrix A € C™*™ is the monic
(leading coefficient is 1), degree-n polynomial in A given by det(A—\I).
Note that setting this polynomial to zero and solving for A gives values
of A such that the matrix A— I is not invertible. For each such distinct
root A the equation (A — Al)z = 0, and thus Az = Az, has at least
one solution z.

A unitary matriz is a square matrix with complex entries, A € C™**",
whose columns (and thus rows) are orthogonal unit vectors. That is,
the columns of A form an orthonormal basis for C™*™. Note A is
unitary if and only if AT = A1

An orthogonal matriz is a square matrix with real entries, A € R™"*",
whose columns (and thus rows) are orthogonal unit vectors. Note that
an orthogonal matrix is the special case of a unitary matrix in which
all entries are real. We have AT = A~!, and the columns of A form a
(real) orthonormal basis of R™*™ (and C™*™).



8. A diagonalizable matriz is a square matrix A € C™**" for which there
exist matrices P, D € C™*™ such that P is invertible, D is diagonal,
and A = PDP~!. Note that columns of P are necessarily eigenvectors
of A with corresponding eigenvalues given by D.

9. A normal matriz is a square matrix A € C™*" such that A commutes
with its adjoint: AYA = AAT. A matrix is normal if and only if it can
be diagonalized by a unitary matrix (this is known as the Spectral The-
orem); equivalently, a matrix is normal if and only if its eigenvectors
form a full orthogonal basis.

10. A Hermitian matrix is a square matrix that is self-adjoint: AT = A.
Note that Hermitian matrices are special cases of normal matrices. In
particular, a matrix is Hermitian if and only if it is normal and has all
real eigenvalues.

11. A symmetric matriz is a square matrix with real entries, A € R"*"
such that AT = A. Note that A is a real-valued special case of a
Hermitian (self-adjoint) matrix. Furthermore, not only does A have
real eigenvalues, but one can show that the eigenvectors of A will be
real too, i.e. A can be diagonalized by an orthogonal matrix.

2 Facts

Fact 1. Figenvectors with distinct eigenvalues are linearly independent
though not necessarily orthogonal.

Proof. The first part should be somewhat obvious, but in case not: Assume
v and w are eigenvectors of A with distinct eigenvalues A # «y respectively.
If v and w are linearly dependent, then there is some a € C such that
v = aw. Note that neither v nor w is the zero-vector, so o # 0. We
have Av = A = Aaw; but we also have Av = A(aw) = yaw, implying
Aoaw = yow and thus A = «, a contradiction. So v and w must be linearly
independent. To see that a matrix A can have non-orthogonal eigenvectors

consider the matrix
11
=5 5)

which has eigenvectors (1,0)" (with corresponding eigenvalue 1) and (un-
normalized) (1,1)T (with corresponding eigenvalue 2).



Fact 2. FEvery square n X n matriz has at least one eigenvector.

Proof. Let A € C™™. The characteristic polynomial of A is given by
det(A — X) = 0. This polynomial is monic (leading coefficient is 1) and
has degree n. By the Fundamental Theorem of Algebra it has n complex
roots (counted with multiplicities). Therefore there is at least one A € C
such that A — Al is not an invertible matrix, i.e. its columns are linearly
dependent. So there is some linear combination of the columns equal to 0;
that is, there is an x € C™ such that (A — AI)x = 0 and thus Az = \z. This
x is an eigenvector of A, with eigenvalue \.

Fact 3. The geometric multiplicity of an eigenvalue is at least 1 but may be
less than the algebraic multiplicity of that eigenvalue.

Proof. First some definitions. The algebraic multiplicity of an eigenvalue
A for matrix A € C™ is the multiplicity of A as a root of the characteristic
polynomial of A. The geometric multiplicity of A is the dimension of its
corresponding eigenspace, which is the span of all eigenvectors of A having
eigenvalue \. We know that there is at least one eigenvector corresponding to
A, and so the dimension of the corresponding eigenspace is at least 1. To see
that the geometric multiplicity may be less than the algebraic multiplicity,

consider the matrix
1 k
a=(o1)

for any k # 0. A has characteristic polynomial (1 — X)2. The root A = 1
has algebraic multiplicity 2, but A only has one corresponding eigenvector,
(1,0)".
Fact 4. Let A € C"*". The following are equivalent:

1. A is diagonalizable.

2. The sum of the geometric multiplicities of the eigenvalues of A is n.

3. A has n linearly independent eigenvectors.

Fact 5. FEvery matriz A € C"™*" has a singular value decomposition A =
UDV =Y with unitary U and V and diagonal D; only some square matrices
A € C™" may be diagonalized A = PDP~' for invertible P and diagonal
D, and only some of these A may be diagonalized by unitary matrices.



