Training Binary Restricted Boltzmann Machines
with Contrastive Divergence

David Andrzejewski
andrzeje@cs.wisc.edu

August 19, 2009

1 Setup
1.1 Definitions

Let x be the observed (visible) binary variables (dimension V'), y are the latent
(hidden) binary variables (dimension H), and W is the set of model parameters
(an H x V matrix). Let the probability of a given (x,y) configuration we given
by

1 e
POy W) = e

E(x,y;W) = -y Wx

1.2 Maximum Likelihood Training?

Given training data D, we would like to select W to maximize the log-likelihood

L(W, D).

L(W, D) = —((E(x; w)) py|x;w) o — log(Z(W))
If we try to take the gradient of this, we get
oL oF oF

oW —<W>o + <W>oo
where the second term follows from multiple applications of the chain rule.
Since our energy function FE is so simple, the gradient with respect to each W

entry w;; is simple as well

oE
8wij

= YTy

Figure 1: RBM graphical model.

However, since the second term is an expectation over the distribution of
the model we cannot compute the gradient, making optimization of the log-
likelihood infeasible. If we were able to do so, we could simply take steps of the
form

witt = wl; + n(((Wixs) peyixewy)o = (Bi;) infry)

1.3 Contrastive Divergence Training

Maximum Likelihood traning can be shown to minimize the Kullback-Leibler
divergence between the empirical training distribution and the distribution of
the model

PO(Xa y)

KL(P || Px) = Z PO(X»Y)IOgW-

(x,y)

In contrastive divergence learning, we instead seek to minimize the following
related objective

CDy, = KL(Py || Px) — KL(P, || Px)

where P, is the distribution of a Markov chain with stationary distribution
P, started from FPy. This works pretty well, even for n = 1. The key benefit
here is that the P, terms cancel each other out (more or less). Furthermore,
for the Restricted Boltzmann Machine it is very easy to sample from P,, due to
the bipartite structure of the graphical model.

1
Py, =1 _a W)=
(y] |X?y 7) 1+exp(7W]j;X)
1
Pz, =1|x_;,y; W) =
(@ i,y W) 1 +exp(—Wly)

The contrastive divergence weight learning update is then

Z‘rl = ng + n(((yixj>P(y\X;W)>0 - <ylxj>7’b) (1)

Also note that the derivative 8‘97]? is bilinear, making it easy to calculate the
ij

expectations in Equation 1.

w.

|D|
1
(i) piyeany Yo =— 3 oV Py = 1[x@; W)
n
d=1

1 |D|

Wi == S [PO = 1Ux D] W)
d=1

Here [mgd)]n and [x(9], are the states of the visible units after n Gibbs
sampling iterations.
1.3.1 Practical tweaks

In practice, there are a few modifications (observed in the code at http://www.
cs.toronto.edu/~rsalakhu/code_AIS /rbm.m).

e Both hidden and visible units have bias terms, equivalent to appending
all visible/hidden vectors with fixed 1 values.

o Weight momentum is used, where the current step is a weighted sum of
the standard current step (Equation 1) and the step previously taken for
this weight.

e Weight momentum scheduling, where the momentum parameter changes
as training goes on.

e Weight cost/penalty, where larger weights are penalized.

e Batch learning, where the dataset is partitioned into subsets (the batches).
A single weight step is then calculated and taken for each batch separately
for each “epoch”.

o Others?

