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Abstract— Phylogenetic tree reconstruction is difficult in the presence of lateral gene transfer and other processes generating
conflicting signals. We develop a new approach to this problem using ideas borrowed from algorithmic information theory.
It selects the hypothesis that simultaneously minimizes the descriptive complexity of the tree(s) plus the data when encoded
using those tree(s). In practice this is the hypothesis that can compress the data the most. We show not only that phylogenetic
compression is an efficient method for encoding most phylogenetic data sets and is more efficient than compression schemes
designed for single sequences, but also that it provides a clear information theoretic rule for determining when a collection of
conflicting trees is a better explanation of the data than a single tree. By casting the parsimony problem in this more general
framework, we also conclude that the so-called total-evidence tree—the tree constructed from all the data simultaneously—is
not always the most economical explanation of the data. [Compression; information; Kolmogorov complexity; phylogenetics;

total evidence.]

Recombination, lateral gene transfer, hybridization,
and other biological processes generate conflict between
phylogenetic trees constructed from different loci or dif-
ferent partitions of a sequence data set. Lateral gene
transfer in bacteria provides many examples (Kurland
et al., 2003; Lerat et al., 2003), and transfers between
mitochondrial genomes of distantly related plants are
now well documented (Bergthorsson et al., 2003). Hy-
bridization and introgression is another source of con-
flict, as suggested by numerous disagreements between
trees based on nuclear and organellar genes (Cronn
and Wendel, 2003; Doyle et al., 2003). Conflicts can also
emerge when different partitions have the same phylo-
genetic history but very different patterns of molecular
evolution, causing biased inferences in one or more par-
titions (Rokas et al., 2003). This can arise, for example,
if one partition is subject to long-branch attraction but
another is not (e.g., Sanderson et al., 2000). No concep-
tual issue has generated more discussion in phylogenet-
ics in the last decade than the treatment of these conflicts
(Bull et al., 1993; Cunningham, 1997a, 1997b; de Queiroz
et al., 1995; Farris et al., 1995; Huelsenbeck et al., 1996;
Thornton and DeSalle, 2000).

The problem can be reduced to deciding when a col-
lection of trees—a “forest”—is a better explanation for
evolutionary relationships among a set of sequences
than is a single tree. In this article we present a new
framework for addressing this issue based on algorith-
mic information theory (Li and Vitanyi, 1997). An im-
portant tool in that field is an elegant formulation of
parsimony as a form of data compression, a tool gen-
eral enough to apply equally well to forests and to a
single tree. This perspective places the question of “for-
est versus tree” within a unified inferential setting. It
also provides a deterministic decision rule for choos-
ing between these two hypotheses that does not depend
on randomization tests such as the widely used incon-
gruence length difference (ILD) test (Farris et al., 1995).
Finally, it settles the long-standing phylogenetic contro-
versy over whether the maximum parsimony tree based

on the entire data set, the “total evidence” (Kluge, 1989),
is always preferable to separate analyses of subsets of the
data.

Maximum parsimony (MP) finds the tree for a given
data matrix for which the sum across characters of the
number of evolutionary changes required on that tree is
minimized. Initially introduced as a heuristic approx-
imation to likelihood methods (Edwards and Cavalli-
Sforza, 1964), MP eventually would become the method
of choice for phylogeneticists, until the more recent as-
cendancy of model-based inference methods beginning
in the early 1990s (Felsenstein, 2001). In a widely cited
paper, Farris (1979) proposed two rationales for con-
structing the MP tree: it is the most economical evo-
lutionary explanation of the data, and it is the most
efficient summary of its information content—the sum-
mary that requires literally the fewest symbols. Later
workers (Kluge, 1989; Kluge and Wolf, 1993; Nixon and
Carpenter, 1996) took up this view, arguing that subdi-
viding data sets and constructing separate phylogenetic
trees is inappropriate, because trees from partitions of
any data set will tend to be suboptimal by the parsimony
criterion relative to the entire data set. This spawned the
so-called total evidence view of the problem (Kitching
et al., 1998), which argues that “pooling the data and
determining the most parsimonious solution for all
the data ... maximizes information content” (Nixon and
Carpenter, 1996). Here we show that this statement can-
not be universally true in complex data sets with con-
flicting signals.

Algorithmic information theory provides a very gen-
eral framework for assessing the information content
of hypotheses. It rests on the concept of Kolmogorov
complexity, defined as the length of the shortest com-
puter program that faithfully describes an object (Li and
Vitanyi, 1997). A complex object requires a long program;
a simple object with much regularity does not. A long
random string of digits is complex because it cannot be
coded as a computer program any shorter than the triv-
ial program that just prints out all its digits it cannot be
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compressed. The irrational number, 7, has an infinite
number of digits but is not very complex, because a
short computer program can be written that calculates
this long string to any desired accuracy it can be com-
pressed dramatically.

This idea can be extended to hypothesis selection
via the minimum description length principle (Li and
Vitanyi, 1997). The best hypothesis is the one that mini-
mizes the length of the description of the hypothesis plus
the length of the description of the data when encoded
or compressed with the help of that hypothesis. Scien-
tific inference based on some version of this idea has
been applied to many biological problems, including se-
quence alignment (Allison et al., 1999, 2000; Allison and
Yee, 1990), phylogeny reconstruction (Cheeseman and
Kanefsky, 1993; Li et al., 2001; Milosavljevic et al., 1990;
Otu and Sayood, 2003; Ren et al., 1995), and comparison
of classifications (Day, 1983), though not to collections of
trees constructed from separate data sets. In this frame-
work, a hypothesis is either a tree or a collection of trees
and the best hypothesis is the one that permits the max-
imum compression of that hypothesis plus the sequence
alignment.

MATERIALS AND METHODS
Preliminaries

Assume the data set, D, consists of n nucleotide se-
quences on the state set {u, c, g, t}, each sequence con-
sisting of m sites. These sequences may be associated with
atree, T, with n leaves. A parsimony score, L = L(T, D),
for the data set with respect to tree T can be determined
by standard algorithms (Semple and Steel, 2003). Write
lg(x) for [log,(x)], where [x] is the smallest integer larger
than x. We frequently need an efficient coding scheme for
integers of arbitrary size. The size in bits of an encoding
of integer, k, will be denoted des(k) (see Appendix A).

The raw unencoded form of these sequences requires
2 bits per nucleotide or a total of 2nm bits. This can be
reduced using a consensus sequence and encoding the re-
maining sequences as differences from this consensus—
essentially using a “star” phylogeny. With no missing
data this coding length is 4m + L(2 + 1g(n)), where L =
L(T*, D), and T* is the star phylogeny. This description
length is shorter than the unencoded data whenever

L - 2n —4 2n
m =~ lgn)+2  lgn)

Note, however, that L will tend to be quite large when
there is phylogenetic signal in the data. Characters that
evolve only once on the true tree will be regarded as
parallelisms on T*, adding length to L, making this star-
tree encoding relatively inefficient.

Compression Using a Most-Parsimonious Tree

For phylogenetically related sequences, the informa-
tion contained at any site in an alignment is partly re-
dundant, because changes in sequence occur only occa-
sionally in its evolutionary history. Many lineages simply
retain a conserved site. Presumably, this observation mo-

tivated Farris’s (1979, 1980) claim that the parsimony tree
permits the most efficient summary of the data possible.
He sketched the outlines of a coding scheme but did not
develop it in sufficient detail to derive an expression for
its description length. Details of our coding schemes are
described in Appendices A to C; here we summarize the
results.

The data are compressed with respect to a binary tree,
T. If necessary, any tree can be made binary (“resolved”)
by adding zero-length branches (highly unresolved trees,
not surprisingly, will be compressed better using the pre-
vious “star-phylogeny” scheme). The size in bits of the
compressed file based on T has two parts. The first part is
the number of bits required to encode T, which is 2n — 4
for the shape, plus n lg n for the ordering of the taxon
labels. The second part is the number of bits required to
encode the matrix relative to T, which is accomplished
by first encoding the sequence of one of the taxa, which
takes 2m bits, then encoding the branch where each of L
substitutions occur, and finally adding delimiters and an
end of file signal:

4m + (2 +1g@2n — 3))L + 1g(2n — 3)
The total file size is thus

21— 4+ nlgn + 4m + 2 +1g@n — 3)L +1g@n — 3)
(1)

This result is valid for any tree, but the size is small-
est when T is the MP tree, because that tree minimizes
L. Put another way, this proves that among all binary
trees representing relationships among these taxa, the
MP tree provides the most efficient (shortest) encoding of
the data using the coding method outlined in Appendix
A. We note that finding the MP tree exactly can require
exponential running times. Polynomial time heuristics
such as those available in standard tree reconstruction
packages may terminate with suboptimal solutions, and
hence compression efficiency will often be improved in
direct proportion to the quality of the MP search strategy.

Figure 1 shows the length of codes constructed using
Equation 1 as a function of the number of taxa and the
amount of homoplasy in the data. Rates of evolution are
monotonically increasing with L, and the amount of ho-
moplasy is roughly proportional to L /m (L /m is related
to the reciprocal of the “consistency index”). Compres-
sion is much more effective for large trees than small ones
and for lower rates of evolution (lower homoplasy). In
fact, it is more efficient to use phylogenetic compression
than to keep the data uncompressed when

2n

L
< -
m ~ log, (n)

, when m and n are large

Note that the ratio

L / _n
m [ log,(n)
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FIGURE1. Phylogenetic compression rate based on Equation 1. The

quantity L /m is the ratio of the inferred most parsimonious number of
changes on the tree to the number of sites.

is close to the number of bits used per nucleotide. Only
if homoplasy is very high and/or the trees are small is
it worse to compress the data using the MP tree than to
leave it uncompressed, due to the “overhead” of describ-
ing the tree.

Compression Using a Forest

A data set with phylogenetic signal can be compressed
using the most parsimonious tree. However, it can some-
times be compressed even further by reference to a collec-
tion of trees rather than a single tree. Consider a partition
of the sequence alignment, D, into! subsets of characters,
the ith labeled D;, each with m; characters. This corre-
sponds to a forest, 7, of | binary trees, the ith labeled
T;. Define the “total evidence” length as L'™® = L(T, D),
where T is the tree constructed from the entire data set,
D, and the length of the forest as Lt = ™. L(T;, D).
Let the incongruence between the total evidence tree and
the forest of individual treesbe AL = LTE) — [ forest Thig
“incongruence length” is the number of extra evolution-
ary steps required to fit the individual data sets in the
partition to the overall total evidence tree (Farris et al.,
1995).

If each of the trees in F is ”sufficiently” different from
one another, the best strategy is to separately compress
each data subset with respect to its own MP tree. This
can be achieved with a code of size

des(l) + 1(2n — 4 + nlg(n)) 4+ 11g(2n — 3) + 4m
+ (2 + 1g(2n — 3))LForest 2)

This length is also shorter than uncompressed data under
the same conditions as outlined for Equation 1 above.

The more interesting question is when is Equation 2
shorter than Equation 1; that is, when is the forest com-
pression scheme better than the total evidence compres-
sion scheme? The answer is surprisingly simple, at least
when 7 is large enough. Whenever

AL > (1 —1n,

itis more efficient to use the forest to encode the data. The
conventional method for assessing whether AL is large
enough is to compare it to a null distribution generated
by randomizing the data matrix (the ILD test; Farris etal.,
1994,1995). Here the cutoff is determined by the informa-
tion content directly, with no reference to a hypothetical
null distribution. The exact cutoff for any n is given in
Appendix B.

If the trees are similar to one another it can be more
efficient still to code each tree as a small number of re-
arrangements from one of the trees. For example, we
choose a reference tree, say tree one, and calculate a
sequence of intermediate trees that can be obtained by
nearest-neighbor interchange (NNI) operations (Li et al.,
1996). Each rearrangement can be described by specify-
ing the branch around which the interchange occurs and
which of the two possible rearrangements is chosen (see
Appendix A). Let k; be the NNI distance between tree T;

and T; and let the mean NNI distance be k = 1 Zi':z ki.
Compression can now be achieved with length

des(l) + 2n — 4 +nlg(n) + k(I — 1(Agn —3) + 1)
+ des(ky) + - - - + des(k;) +11g(2n — 3)
+ 4m 4 2 + 1g(2n — 3))Lforest (©)

This is shorter than the single-tree description length in
Equation 1 when

AL > (1 -1k

approximately, for large n. Appendix B gives the exact
expression.

Choosing between the Forest and the Tree

The forest compression scheme is preferred when

AL > (-1, or
> =Dk 4

approximately for large n. The entity inferred when
Equation 4 is satisfied is an entire forest, 7. It should
not be regarded as a set of equally good alternative (sin-
gle) explanations. In fact, by the conventional measure
of tree quality in that latter context, the maximum par-
simony score, the trees in 7 may score unequally with
respect to the entire data set. Even more surprisingly, the
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7 times 4 times rtimes 7 times 4 times r times

—— — — —

a AAAAAAA AAAA AA... AAAAAAA AAAA AA...

b AAAAAAA CCCC AA... CCCCCCC ccce AA...

¢ CCCCCCC CCCC AA... AAAAAAA CCCC AA..

d CCCCCCC AAAA AA... CCCCCCC AAAA AA..
submatrix D, submatrix D,

FIGURE 2. Example discussed in text in which it is more efficient
to code a data matrix with a forest of two trees than the single MP tree
from the combined matrix.

total evidence tree T can have a better score than any of
the trees in F; nonetheless, F is preferred.

Figure 2 is a contrived data set with some of these
surprising properties. It has two partitions, D; and D,,
each of which includes four informative sites favoring
one tree, seven informative sites favoring a different tree,
and r invariant sites. However, the trees favored in the
two partitions are different, and the total evidence tree
is different from either of those (see Page, 1996, for a
similar example and a useful visualization). Let T be the
total evidence tree, (ad)(bc), T be the MP tree favored by
partition D;, (ab)(cd), and T, be the MP tree favored by
D,, (ac)(bd).

The parsimony scores for the partitions are L(T;, D;) =
L(T>, D,) = 15, which are each better than the score for
the total evidence tree on either of these partitions, L(T,
Dy) = L(T, D,) = 18, and are also better than the scores
of these trees on the opposite partition: L(T;, D) = L(T5,
Dy) = 22. This confirms that the MP tree for each parti-
tion is indeed better than any other tree for that partition.

In addition, the score of trees T; and T, with respect to
the whole matrix, D, is worse than the score of the total
evidence tree with respect to D: L(Ty, D) = L(T;, D) =
37, whereas L(T, D) = 36.

Now, the extra steps entailed by the incongruence,
AL =L(T, D) — [L(Ty, D) + L(Tz, Dy)] =36 — (15 +
15) = 6, satisfy Equation 4 above, and the forest consist-
ing of T; and T; is preferred over the total evidence tree
T in our compression scheme. This is a striking result:
a solution composed entirely of “suboptimal” trees—
according to the conventional parsimony criterion—is
preferred over the more parsimonious total evidence
tree. The conclusion also holds using the exact cutoff val-
ues provided in Appendix B.

DATA SETS

Compression Efficiency in a Large Sample
of Phylogenetic Data Sets

We compared compression efficiency in 638 nucleotide
sequence data sets for protein coding genes in green
plants. Details of how these data were obtained from
GenBank are described elsewhere (Sanderson et al., 2003:
data available at http://ginger.ucdavis.edu). Data sets
ranged in size from 4 to 1079 taxa and 72 to 3375 charac-
ters. At one extreme a few data sets contain identical or
nearly identical sequences; at the other extreme data sets
contain sequences that are diverged by up to 40% at the
amino acid level from other sequences in that data set.

Available DNA sequence compression programs
rarely compress single sequences to less than about
1.6 bits per character (Chen et al., 2002). For compara-
tive purposes, we examined the compression efficiency
of astandard DN A sequence compression program, Gen-
Compress (Chen et al., 2002), on the same data sets we
compressed with our phylogenetic method. GenCom-
press uses a type of Lempel-Ziv coding (Cover and
Thomas, 1991), tailored to DNA sequence data sets,
and looks for approximate substring matches in the file.
Both compression schemes are increasingly effective as
the number of taxa increases. Both take advantage of
the evolutionary redundancy of the similar sequences
in phylogenetic data sets (Fig. 3A). With phylogenetic
compression, data sets with 100 taxa can typically be
compressed 90% to 95%. Large data sets were almost
always more efficiently compressed via phylogenetic
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FIGURE 3. (A) Compression efficiency in 638 DNA sequence data
sets extracted from GenBank. Filled circles are data sets compressed us-
ing phylogenetic compression as described in text. Open circles are data
sets compressed using GenCompress (nonphylogenetic) compression.
(B) Relative efficiency of these compression procedures. Vertical axis
is the compression level obtained for phylogenetic compression minus
compression level for GenCompress for a given data set. Values below
0 indicate better compression efficiency for phylogenetic compression.
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compression than GenCompress (Fig. 3B). The most com-
pressible data set, consisting of 102 taxa, 2155 sites, and
a parsimony length of 278 could be compressed to 0.06
bits/site and generated a file less than half the size of
the corresponding GenCompress file. As expected, the
poorest performance occurred in small trees with high
homoplasy. The worst was a data set of four taxa, 960
sites, and a tree length of 799 steps, which is an extraor-
dinarily high level of homoplasy (nearly one change per
site). Phylogenetic compression actually produced a file
slightly larger than 2 bits/site for this data set, whereas
GenCompress compressed these data twice as much. Al-
though compression methods aimed at single DNA se-
quences usually do not achieve lower than 1.6 bits/site
on single sequences, they perform better than this on
data sets with collections of sequences with phyloge-
netic structure to them. Nonetheless, explicit phyloge-
netic compression is usually more efficient. It might be
expected that GenCompress would perform better on
phylogenetic data matrices that are transposed. Trans-
posing rows and columns would, for example, turn con-
stant characters (columns) into rows of constant blocks
of identical letters. However, at least in all but the largest
data sets (where the program simply would not termi-
nate) most of the data sets actually were compressed less
by GenCompress when transposed.

A Case Study of Conflicting Signals

Sanderson et al. (2000) analyzed phylogenetic relation-
ships in 19 land plant species for two plastid genes, psaA
and psbB, using parsimony and maximum likelihood (see
also Magallon and Sanderson, 2002). An ILD test (Farris
et al., 1995) for data set heterogeneity suggested congru-
ent signals between genes but not between codon po-
sitions. Parsimony analysis of the two genes separately
each yielded one most parsimonious tree, the “psa A-tree”
and “psbB-tree,” respectively, which are only slightly dif-
ferent from each other. Third codon positions from both
genes combined yielded one most parsimonious tree (the
“3-tree”), whereas first and second positions from both
genes combined yielded four equally parsimonious al-
ternative MP trees (the “12-tree”), all quite different from
the 3-tree. The total evidence (TE) tree was the same as
the 3-tree. Figure 4 shows a schematic of the various
trees resulting from these analyses with their pairwise
NNI distances. These were calculated using the program
COMPONENT (Page, 1993). Recent discussions of phy-
logenetic relationships in seed plants have focused on
the dispute between these two basic trees, which dis-
agree strongly about (among other things) the position
of the Gnetales, an enigmatic clade of seed plants whose
relationships have long been the subject of controversy
(Donoghue and Doyle, 2000). Rydin et al. (2002) reiter-
ated older findings that the TE tree and 3-tree, which
support the placement of Gnetales as the sister group of
the remaining seed plants, is the best estimate of seed
plant phylogeny. Other workers argue that the 12-tree is
closer to the truth, basing this in part on extensive use of
maximum likelihood methods (Aris-Brosou, 2003; Mag-
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FIGURE 4. Schematic diagram showing trees resulting from parsi-
mony analyses of combined total evidence data described in Table 1.
Trees from the total evidence data set and the two different partitioning
schemes are shown. One partition divides the data set into two genes
(psaA versus psbB); the other divides it into two classes of codon po-
sitions (first and second [12] versus third [3]). Integers on internodes
indicate the NNI distance between trees found in parsimony analyses
(Li et al., 1996).

allon and Sanderson, 2002; Sanderson et al., 2000), which
generally favor that result. High rates of substitution in
the 3rd position data make long-branch attraction a pos-
sible explanation for these differences (Sanderson et al.,
2000).

We excluded any sites having missing or ambiguous
data, because the compression scheme does not allow
more than four character states (but see Appendix C). The
data compressed with respect to the total evidence tree
required 50,083 bits (see Table 1). The data compressed
with respect to the two-gene partition is larger than this:
50,197 bits when the trees are coded separately, 50,086

TABLE 1. Phylogenetic compression analysis of photosystem gene
data sets. All data sets have 19 taxa. Missing or ambiguous sites were
removed from alignments. Number of nucleotides in combined matrix
is 66,291 (number of bits = 132,582).

Length of Length of
Number of MP tree compressed file
Data partition/coding scheme characters or forest in bits
Total evidence 3489 4499 50083
12 partition 2325 885 16515
3 partition 1164 3581 33439
12 4 3 forest (separate tree 3489 4466 49957
coding)
12 + 3 forest (NNI coding) 3489 4466 49880
(AL =33)
psaA partition 2130 2751 30663
psbB partition 1359 1745 19531
psaA+psbB forest 3489 4496 50197
(separate tree coding)
psaA+psbB forest (NNI 3489 4496 50086
coding) (AL =3)
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bits when they are coded using NNI distances. How-
ever, the data compressed with respect to the codon par-
tition trees is smaller than the total evidence case: 49,957
bits using separate trees or 49,880 bits with NNI com-
pression. Thus, compression is improved by using the
codon partition, but degraded by using the gene parti-
tion. These results are consistent with the approximate
predictions of Equation 4. For the total evidence tree to be
favored, the incongruence length difference, AL, should
be less than (approximately) the smaller of #, the num-
ber of taxa, 19 (or 17.25 exactly), or k, the NNI distance
between the two trees (3 for the gene partition, 9 for the
codon partition, approximately, or 3.375 and 7.625, re-
spectively, for the exact cutoff). For the gene partition,
AL =3, and the total evidence hypothesis is favored,
but for the codon partition AL = 33, so the forest is fa-
vored. These results agree with the conventional ILD test
of homogeneity, which says that the two genes are not
significantly different (P = 0.77) but the two codon par-
titions are (P = 0.01).

The “best” representation of the data is therefore a for-
est of two trees derived from the separate codon posi-
tions. The two trees do not have the same MP score with
respect to the entire data matrix. Indeed, the 3-tree is
more parsimonious at 4499 steps compared to the 12-
tree, which has 4611 steps—112 steps longer. Nonethe-
less, the most economical explanation of all the data is a
joint hypothesis that retains both trees.

GenCompress (also with ambiguous and missing sites
removed) only compressed the alignment to 90,128 bits,
almost twice as large as the phylogenetically compressed
version.

Di1sCUSSION

Identifying Conflicting Phylogenetic Signals
or Non-Treelike History

Discovery of conflict between phylogenetic data sets
provides some of the most compelling evidence for con-
flicting evolutionary histories. This conflict may be a dif-
ference in the branching relationships of the subsets of
the data involved, or a difference in the molecular sub-
stitution processes tracking the same phylogeny, or both.
Application of algorithmic information theory provides
anew tool to diagnose these conflicts. Roughly speaking,
whenever AL > min(n, k) for two data sets, the data sup-
port the added complexity entailed by a hypothesis that
there is a conflicting history for the sequences.

In the example of the plastid photosystem data, it is
unlikely that the true phylogenetic tree for the first two
codon positions is different from the tree for the third
codon positions. No biological mechanism is known that
would allow for such an outcome, yet our compression
scheme leads unambiguously to an inference of hetero-
geneity. This is an example in which the substitution pro-
cess is clearly heterogeneous but biology suggests that
the tree per se is not. We interpret this to imply that
tree inference methods would do well to consider dif-
ferent models for the different partitions. Such hetero-
geneous models might well then lead to an inference

of a single tree, as was found when maximum likeli-
hood was applied to the two codon partitions separately
(Magall6én and Sanderson, 2002). There are parallel gen-
eralizations of parsimony methods that allow different
“models” (weighting schemes or methods that count site
patterns differently than conventional parsimony meth-
ods; Willson, 1999).

Relationship to Other Tests for Conflict

Information theory provides a solution to one conun-
drum of the conventional parsimony approach to incon-
gruence between data sets. Two data sets are incongruent
whenever AL > 0, which is almost always the case for
any two subsets of a data set. Nonetheless, no one has
seriously argued that data sets should be regarded as
conflicting any time AL > 0. Instead, the ILD random-
ization test is often used to establish a null distribution
on AL, and incongruence is accepted only when AL is
far enough out on the tail of this null distribution. The
relative merits of this test have been scrutinized exten-
sively (Barker and Lutzoni, 2002; Darlu and Lecointre,
2002; Dolphin et al., 2000; Hipp et al., 2004; Yoder et al.,
2001). Our equation (4) is an alternative condition. It,
too, establishes a cutoff value for AL, but it does not
rely on null models. Instead it suggests that the natural
penalty for added complexity of a hypothesis of two trees
should be the cost of describing that additional tree. For-
mal measures of complexity based on compression allow
description of the data to be placed on the same footing
as descriptions of the tree, thus making it possible to
evaluate the overall simplicity of a hypothesis involving
multiple evolutionary histories. We have undertaken a
small simulation study of the four-taxon case, which in-
dicates that the level and power of the ILD test and our
compression test are quite similar when using the sep-
arate trees encoding and for large data sets for the NNI
encoding (results not shown). However, the ILD test is
more conservative than the compression test, which is
somewhat too liberal, for small data sets.

The computational advantages of the compression ap-
proach may be important with the increasing size of
concatenated data matrices drawn from whole genome
analyses (Lerat et al., 2003; Rokas et al., 2003) or broad
surveys (Bapteste et al., 2002; Murphy et al., 2001). Gen-
eralizations of the ILD test or statistical tests like it are
not obvious, although a promising Bayesian approach
has recently been reported (Vogl et al., 2003). The calcu-
lations outlined in Equations 1 to 4 require the construc-
tion of parsimony trees, but these need to be done only
once per partition, whereas randomization tests require
large numbers of replicate searches. This means many
combinations of subsets might be examined in the time
it takes one typical ILD run.

Implications for the “Iotal Evidence” School of Inference

An intense debate has surrounded the argument that
the maximum parsimony tree is the most faithful re-
flection of any data set, as opposed to several trees en-
tailed by subsets of the data (Nixon and Carpenter, 1996).



152

SYSTEMATIC BIOLOGY

VOL. 54

Critics of this view have largely assailed it on biological
grounds: that disparate evolutionary processes (“pro-
cess partitions”) sometimes underlie a single data set,
and combination of these signals into a “total evidence”
analysis will thus obscure their distinct histories (Bull
et al., 1993). Our argument against the total evidence
view is more direct. When simplicity, complexity, and
information are cast in a sufficiently general framework,
the most economical hypothesis associated with a given
data set may well entail multiple conflicting trees, any
one of which may be “suboptimal” by the conventional
parsimony criterion. In our view, this defeats the fairly
abstract but nonetheless compelling argument that the
maximum parsimony tree is always the vehicle provid-
ing the most efficient summary of a data matrix.

Relationship to Work on Recombination

Hein (1990, 1993) comes close in spirit to the present
work in using a parsimony criterion to identify a col-
lection of trees implied by an alignment when recombi-
nation occurs between sequences. His method respects
the order of sites in a sequence and chooses a tree for
every site by minimizing an optimality criterion hav-
ing two elements: the parsimony score of possible trees
at that site and the rearrangement distance between
trees at neighboring sites. This penalizes both substitu-
tions and recombination events that are either too nu-
merous among sites or too complex between any two
neighboring sites. Different weights can be assigned to
substitution events versus recombination events. Hein’s
method imposes additional structure on the problem,
which is appropriate for the special case of recombina-
tion, but this is not generally required by our approach
and could be removed from his. Perhaps more impor-
tantly, by casting our inference problem in terms of data
compression and Kolmogorov complexity, we “remove”
the issue of relative weights between different kinds of
events, which naturally arises both in Hein’s approach
and other gene-tree-parsimony type methods (Page and
Charleston, 1997). Some might argue that this merely
gives equal weight to substitution and recombination in
that problem, but it is worth noting that the compression
approach does not stipulate that the source of data set
conflict need be recombination or anything else.

Complexity of a Phylogenetic Data Set
and its Evolutionary Implications

A description of the information content or complex-
ity of a phylogenetic data set by the length of its most
efficient encoding provides a novel kind of summary of
the evolutionary history of a clade. It combines informa-
tion about sequence divergence with speciation and ex-
tinction patterns. For example, a low complexity, highly
compressible data set can arise when rates of sequence
evolution are very slow (sequences are highly con-
served), when most speciation events in the tree are very
recent (high redundancy), and/or when extinction has
selectively removed large clades, rather than removed
lineages at random across the tree. A high complexity,

minimally compressible data set arises when rates of evo-
lution are high and/or the tree is nearly starlike.

Oddly enough, low complexity is ideal for tree-based
prediction. One of the triumphs of phylogenetic biology
has been the realization that a phylogenetic tree permits
prediction about character states not yet observed in taxa
whose relationships are known. This works best in areas
of the tree with high redundancy or low information con-
tent. In other words, high character state diversity (high
complexity) is not ideal for prediction. This idea finds
formal support in Fano’s inequality (Cover and Thomas,
1991), which provides bounds on the error associated
with prediction in the presence of different levels of in-
formation. Although this is derived using probabilistic
notions of entropy, the idea should hold for algorithmic
measures of information content.

Entropy

If sites in a sequence were independent and iden-
tically distributed (i.i.d.), then the optimal compres-
sion rate of an infinite sequence would be the entropy
of a random nucleotide (“nucleotide entropy”). This
is computed from the base frequencies and is exactly
2 bits/nucleotide when base frequencies are equal. The
optimal compression rate for real DNA sequences is
actually less than the nucleotide entropy because sites
are not ii.d. Existing compression programs take ad-
vantage of repeated patterns to compress close to or
below the entropy. For example, in the sequence data
from the combined photosystem data set, the nucleotide
entropy is 1.36 bits/nucleotide, and the GenCompress
program achieves almost exactly this compression rate.
Phylogenetic compression improves on this consider-
ably, however, to about 0.76 bits/nucleotide. This is pos-
sible because our compression scheme takes advantage
of the fact that a sequence alignment is not i.i.d. An align-
ment can be regarded as a set of nucleotide “patterns” (or
“characters”), each of which corresponds to the combi-
nation of nucleotides at a given site for all taxa. The ideal
compression rate of an infinite sequence of i.i.d. patterns
is the entropy of a random pattern (“pattern entropy”).
Our compression rate, in terms of bits per pattern, aims at
being close to this pattern entropy. As the sequences are
phylogenetically dependent, this entropy is much below
2n, yielding an optimal compression rate much below
2n bits/pattern; i.e., 2 bits/nucleotide. The pattern en-
tropy for the photosystem data implies a lower bound
on compression of about 0.20 bits/nucleotide. Our com-
pression comes closer than others to this lower bound,
but still could be improved. One way to do this would be
to compress the reference sequence used in our compres-
sion scheme (Appendix A). This would then account for
dependence within a single sequence as well as across
the tree.

Compression Optimality and Robustness of Model Selection

Choosing between a forest and a tree is a prob-
lem in model selection (Burnham and Anderson, 1998).
Our model selection scheme is based on the idea of
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compression. For any given data set, it is possible that
a different compression scheme might lead to a differ-
ent choice of models. If different schemes favor different
models, it would make sense to favor the model associ-
ated with the best compression scheme.

In an ideal setting, we would like to have an opti-
mal compression scheme, having the lowest rate of all
compression schemes on all data sets. If characters are
ii.d., then it is known that the pattern entropy is a lower
bound on the compression rate of any (instantaneous or
prefix-free) code (Cover and Thomas, 1991). Moreover,
this lower bound can be achieved asymptotically with
schemes called Huffman codes, for example (Cover and
Thomas, 1991). For our code, we can show that its asymp-
totic compression rate is

4+ (2 +1g@2n —3))E{L}

where E{L} is the average parsimony score of a random
site pattern on the given tree. It can also be shown that
this quantity is larger than the pattern entropy. Our code
is thus not optimal, at least with respect to infinitely long
sequences of i.i.d. patterns. A Huffman code would do
better on very long sequences, even though it would re-
quire a heavy overhead to define a translation table at
the beginning of the file. This is further evidence that
the “total evidence” tree is not the most economical ex-
planation of the data, when they are made of very long
sequences.

On the other hand, we always deal with finite se-
quences, and the overhead due to the tree or the trans-
lation table definition is important. Our code may well
perform better than a Huffman code on most data sets
of a fixed size. No code has optimal performance on
all sequences of all size (Li and Vitanyi, 1997), and no
code has optimal performance (on average) on sequences
drawn from any distribution and of any size. Making the
assumption that the distribution of the data has some
relationship to a tree, we built a code aimed at phyloge-
netically structured data.

Optimality of the code is a desirable property for the
purposes of model selection. However, it is important
to achieve a balance between the tree coding (overhead
due to the model) and the matrix coding (information
remaining in the data once the model is known). An ex-
cellent tree coding combined with a poor matrix coding
will tend to favor complex models, whereas a poor tree
coding combined with an excellent matrix coding will
favor too simple models. For the purpose of model se-
lection, the balance in model/data coding may be a more
desirable property than overall optimality.

Extensions and Generalizations

The methods described here can be extended in sev-
eral directions. Appendix C describes procedures for in-
cluding missing data (as well as alignment gaps) and
increasing the alphabet size to handle amino acid data
or other data with more than four states. Generalization
to nonbinary trees is also fairly straightforward.

A more interesting extension is to consider subsets of
data that do not share the same taxon set. This is related
to the problem of constructing phylogenetic supertrees
(Bininda-Emonds et al., 2002), which are trees assembled
from smaller trees so as to minimize any conflict between
overlapping taxa. A given data set might be best com-
pressed by associating subsets of the data with proper
subtrees rather than trees having all the taxa.

This raises the much more general problem of finding
the partition that globally minimizes the length of the
code among all such partitions. This is obviously a hard
problem because even if all subsets have the same taxa,
the number of subsets is exponential in the number of
characters in the matrix. Finding the MP tree for any el-
ement of any partition is already an NP hard problem,
so finding it for all elements of all possible partitions is
unlikely to be easy. However, it might be possible to im-
pose some biologically relevant constraints on the kinds
of partitions to be examined.

Finally, for some data it is conceivable that a graph
rather than a tree would provide a better compression
scheme. Consensus networks (Holland et al., 2004) have
been used to summarize and visualize information about
conflicts. However, graphs require more symbols to en-
code than trees do, and then yet more symbols are re-
quired to encode the character state changes associated
with a graph, so presumably only data sets with ex-
traordinarily high levels of conflict would benefit from
this. Homoplasy can often be reduced by adding enough
reticulations, but this seems like it offers too ad hoc a
strategy for explaining away homoplasy—perhaps best
avoided as a general method of tree inference. However,
an information compression approach imposes a rather
stiff penalty that the data must overcome before they
support the added complexity of a reticulation hypoth-
esis. Only if the savings in description length because
of reduced homoplasy exceeds the extra complexity of
handling graphs will such an evolutionary inference be
warranted.
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APPENDIX A: CODING SCHEME DESCRIPTION

This appendix is devoted to the coding schemes’ detailed description
and the derivation of Equations 1, 2, and 3 giving the lengths of the
various compressed data sets.

The data matrix is coded with binary characters. Recall that a naive
method would be to encode each nucleotide one after another, using
2 bits for each. A matrix with n sequences and m characters would be
coded in 2nm bits. Though very simple, this naive method is still a
compression scheme as standard text files use 1 byte (or 8 bits) for each
symbol. In our experience, when run on such files the Unix command
“compress” does not even reduce them to less than 2 bits per nucleotide.

Our compression schemes are intended to exploit sequence simi-
larities to reduce the code length to less than 2nm. Three schemes are
presented here. The first one uses the “total evidence” MP tree. Only
binary trees are considered. If an MP tree is not binary then it is arbi-
trarily resolved, as this operation does not change its parsimony score.
The second scheme allows for partitioning the data into several consec-
utive submatrices. Associated MP trees are described separately. The
third coding scheme is similar to the previous one except that MP trees
are described by reference to already described trees. In each scheme,
the resulting compressed file is organized in two parts: an introductory
part contains the model description (MP tree[s], number of such trees
if necessary) and the main part contains the matrix itself. Methods will
be illustrated for the matrix shown in Figure 5. It is divided into 2 sub-
matrices of size m; = 4, m, = 2 whose binary MP trees are as shown in
Figure 6. Sequence labels a, b, ¢, and d (Fig. 5) are used to keep track of
the sequence order in the matrix, but we do not intend to code them.
This task may be done separately.

Before going further, let us recall some notation. Let g denote the
function log, in base 2, rounded to the nearest larger or equal integer:
Ig(k) = [log,(k)].Itis the smallest number of bits needed to code letters
from an alphabet of size k with a fixed length code. When needed, the
encoding of unbounded length integers will use a logarithmic ramp,
and the length of the description of k will be denoted by des(k). More
specifically, we have des(k) = 1g(k) + Ig(g(k)) + - - - +2 + 1 whenever
k is not a power of 2 (see Li and Vitanyi [1997] for more detail).

A.1: Matrix Encoding

Let us first assume that the model has been encoded, i.e., that the
number of trees and the tree(s) are known, along with the root(s) and the
edge ordering. In our example (Fig. 5), the model encoding would give,
say, the two trees of Figure 6 both rooted at sequence a. It would not
give the size m; = 4 and m, = 2 of the submatrices, though. However,
as will be seen later, each (sub)matrix description ends with an end-
of-matrix symbol, which is classified as an end-of-file symbol if there
is a single matrix or for the last submatrix. Submatrices can then be

ACCA
ATTT
ACCT
ATTC

—_——
D

A A
AA
GG
GG

~—
D,

QU O S

FIGURE 5. Data matrix used to illustrate the coding scheme.

b d c d

FIGURE6. Most parsimonious trees for matrices in Figure 5. On the
left is the MP tree of the left submatrix. On the right is the MP tree of
the right submatrix. Edges are numbered according to a postorder tree
traversal.

safely concatenated. We now describe the coding procedure for one
(sub)matrix. This procedure is shared by the three coding schemes.

A pattern can be described by the state at the root and the substi-
tutions that occurred along the tree. Coding the nucleotide at the root
just takes 2 bits. For example, A may be translated to 00, C to 01, G to
10, and T to 11. Then a substitution is described by the new nucleotide
replacing the “old” one and by the edge where it occurred. We need 2
bits to code the new nucleotide and 1g(2n — 3) bits for the edge, as the
binary tree has exactly 2n — 3 edges. As we know the new nucleotide is
different from the ancestral one, we will use this piece of information
in the coding scheme. It will be useful later. More precisely, instead
of coding the new nucleotide, we code the change of nucleotide, de-
scribed by the difference between the new state and the ancestral one.
It requires 2 bits as well, but the sequence 00, which codes for “no dif-
ference,” would not be used. The edge number is described after the
nucleotide change.

In the matrix of Figure 5, sites 1 to 4 are treated with respect to the
first tree (on the left), whereas the second tree is used for sites 5 and
6. Encoding site 1 just requires us to code the ancestor A (00) and no
substitution at all. Coding site 2 requires us to code the ancestor C (01)
and one substitution from C to T on edge number 4 (coded by 100).
T should be coded by 11; therefore, the difference between T and C is
11 — 01 = 10. So the code for site 2 would be: 01 10 100. The fourth site
is more complicated, as it needs 2 substitutions. It starts with an A (00)
at the root. On edge number 5 (coded by 101), this A is replaced by
a T (11). This substitution is coded by 11 — 00 = 11. On edge number
3(011) this T'is replaced by a C, and this is coded by 01 — 11 = —10 = 10
modulus 4. The whole code for site 4 would be 00 11 101 10 011. Because
sites do not necessarily share the same number of substitutions, they do
not share the same coding length either. Therefore, a signal is needed
to separate them. This can be done by adding a 00 at the end of each
site description. This 00 follows an edge number or an initial root state,
where a substitution would be expected. At this decoding state, 00
means “no change in nucleotide,” which is instead understood as “end
of the current pattern description.” In our example, the first site would
be coded by 00 00, site 2 by 0110100 00, and so on. These coding words
can be concatenated and form the final encoded matrix description:
0000 011010000 011010000 00111011001100.

To be complete, the code needs an end-of-matrix symbol. As is de-
scribed, the last symbol of the matrix is the no-nucleotide-change sym-
bol 00 signaling the end of a site description. This last 00 is actually re-
placed by a fake parsimony step description starting with, say 01, and
ending with the description of an edge that does not exist, say 0...0
(Ig(2n — 3) times). Indeed, there is an odd number 21 — 3 of edges, and
all Ig(2n — 3)-bit-long symbols are not used. In our example, 000 does
not code for any edge. It is used as an end-of-matrix symbol.

The length of the matrix description is uniquely determined by the
number m of sites (m; in case of one submatrix) and the number of
substitutions, which is the parsimony score L(or L(Tj, D;) in case of
one submatrix). The root sequence is coded with 2m bits. The 00s sep-
arating the sites also take 2m bits. The remaining bits are due to sub-
stitutions. Each one needs 2 + Ig(2n — 3) bits. The end-of-matrix signal
adds 1g(2n — 3) bits. Summing up these quantities leads to a total of

4m + (2 +1g(2n — 3))L + 1g(2n — 3) bits.
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A.2: Model Encoding

The introductory part of the compressed file is still to be defined.
Its purpose is to give the model, including the tree(s) and possibly
the matrix structure. It therefore differs from one coding scheme to
another.

A.2.1: Single tree coding scheme—With the simplest coding
scheme just a single tree has to be described. At first, labels are ignored.
The tree shape is encoded using the parenthesis description derived
from the widely used Newick tree format: parentheses are kept and
the rest (labels, commas) is removed. Then a left parenthesis is coded
by 1 and a right one by 0. For example, the left tree in Figure 6 can be
written as (a, ¢, (b, d)) in Newick format. Only (()) would be retained
and finally coded by 1100. Notice that this is enough information to
recover the tree shape because the tree is known to be binary.

Such a description is self-delimited and does not require the a priori
knowledge of the number of taxa. This is because there are as many
right parentheses as there are left parentheses, and because the right
parenthesis closing the first left one is precisely the last parenthesis. A
counter can be set to 0 at the beginning of the description and incre-
mented by +1 (respectively —1) when a left (respectively right) paren-
thesis is encountered. The tree description is over when the counter
returns to 0. The number of pairs of parentheses is the number of in-
ternal nodes in T, which is n — 2. It follows that the number of taxa n is
known at this point, and that the tree shape description exactly takes
2n — 4 bits.

Once the tree shape is known, sequences need to be mapped on the
tips. Tips of T may be numbered in an implicit order, related to the
order in which internal nodes appear in the tree. On the other hand,
taxa are numbered in the order in which they appear in the matrix.
For each i, let j(i) be the number of the taxon that should be mapped
on tip number i. Then the sequence j(1), ... j(n) is encoded in base 2.
As there are n taxa we may use lg(n) bits for each one of them. Let
us go back to the left tree of Figure 6. The decoder knows the shape:
(0) and wants to recover the Newick description: (?,?,(?,?)) with the
taxa numbers instead of question marks. The sequence to be encoded
is then 1,3,2,4. As we want to spend only 2 bits for each number, we
start numbering taxa from 0 and get the new sequence 0,2,1,3 coded by
0010 01 11. The number of bits used in this step is n1g(n). Adding this
to the previous step gives a total of

2n — 4 + nlgn bits.

Adding this length to the previous matrix description length gives
the total length claimed in Equation 1. Now that the tree encoding
is complete, the root is arbitrarily set to the first tip. Edges of T are
also numbered by the postorder tree traversal, for matrix encoding
purposes (section A.1).

A.2.2: Forest coding scheme with separately described
trees.—When the model is a forest with an arbitrary number of trees,
this number lof trees is first encoded with des(/) bits. For example, | = 2
is encoded by 10 0 of length des(2) = 3. Then each tree is coded just
as described in the previous section. Trees are described separately,
each description having the same length, 2n — 4 + nlgn bits. Matrix
descriptions follow. They are naturally separated by the previous end-
of-file signals, that now tell where the matrix is divided into subma-
trices. As the number | of submatrices has been given before, the Ith
end-of-file signal is the true one. The total size of the compressed file

old tree

FIGURE 7.
(see Fig. 6).

new tree T,

is now

des(l) + 12n — 4+ nlg(n)) +11g2n — 3)
—
trees

+ 4m + (2 + Ig(2n — )L™ bits,

matrix

which is the length given in Equation 2.

A.2.3: Forest coding scheme with trees described by
rearrangement.—The last coding scheme also uses a forest. The
number [ of trees is first encoded, the first tree is described just as
before, but each following tree is then described by its differences with
respect to the first tree.

The description of a binary tree T’ using a binary tree T is now
described. We assume that T is rooted at one of its tips and that its
edges are ordered. Tree T’ will inherit T’s root and T’s edge ordering.
Recall that the first tree T; was rooted to the first encountered tip, and
its edges were numbered. We assume that the NNI (nearest neighbor
interchange) distance k between T’ and T has been computed, and that
an optimal set of k NNI operations has been determined. Tree T” is then
described by the encoding of the integer k followed by the descriptions
of the k optimal NNI. In order to explain how an interchange is encoded,
let us recall how it is defined. Two NNI operations may be done with
respect to a given edge e. Let a, b, ¢, and d be the edges adjacent to
e, such that a leads to the root, b is next to a and ¢ has a lower edge
number than d, as illustrated in Figure 7.

Two interchanges may occur around ¢, leading either to tree T. or to
T;, edge b being swapped with either edge ¢ or edge d. Both operations
are defined by the edge ¢ and an extra bit of information. We may use
the bit 0 (respectively 1) for the operation leading to T, (respectively
T;). There are n — 3 internal edges, so coding e takes 1g(n — 3) bits, and
each NNI operation takes lg(n — 3) + 1 bits. The description of T" takes
then a total of des(k) + k(Ig(n — 3) + 1) bits. Recall the trees in Figure
6. Describing the second one from the first one would first require 1 bit
(0) to encode k = 1. As there are only n — 3 = 1 internal edges, there is
no choice about the NNI edge. No bit (no information) is required for
that. In the first tree, the edge sister to the root leads to c and needs to be
swapped with the edge having the smallest number (the one leading
to b). This NNI operation thus receives code 0. The total second tree
description is then 00. With this coding scheme, the second tree gets
a different edge ordering from what is shown in Figure 5. The branch
from c (respectively b) inherits number 1 (respectively 2) from the first
tree.

If k; is the NNI distance between trees T, and T, and k =
(31, ki)/( — 1) is the average distance then the file is encoded with

des(l) + 2n — 4 + nlgn)
—_—
first tree

+ k(I —1(g(n —3) + 1) — des(ky) + - - - + des(k;)

next trees

+ 1g2n — 3) + 4m + (2 + 1g(2n — 3))L°™* bits,

matrix

which is the length given in Equation 3.

new tree Ty

The two possible nearest neighbor interchange (NNI) operations around edge e. Edge ¢ must have a lower edge number than d
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APPENDIX B: MODEL COMPARISON

The compression length in Equation 2 (several separately described
trees) is shorter than the compression length in Equation 1 (one tree)
as soon as L™ — Lfrst js greater than the cutoff value

des(l)

2n — 4 +nlg(n) +1g(2n — 3)
sep (] _
Alp=0=1 21 1g@n—3)

max 2+1g@2n —3)

The first term on the right is less than or equal to (! —1)( 4 1) and
is actually equivalent to (I — 1)n when 7 is large. As the second term
tends to zero, it follows that for large 7,

ALS? ~ (= Dn.

The compression length in Equation 3 (forest and trees described by
reference to the first one) is shorter than the compression length in
Equation 1 (one tree) as soonas LT® — Lt js Jarge enough. The cutoff
value is now

des() + Y\_, des(k:)

ALY — (I —1) k(g —3) + 1) + 1g(2n — 3)
2 +1g(2n —3)

e 2 +1g(2n —3)

Recall that k is the average NNI distance between the first tree and the
others. Here again the first term on the right is always < (¢ — 1)(k + 1).
Moreover, the second term is negligible with respect to the first one
since all k; are bounded by 1 log(n) + O(n) (Liet al., 1996) and des(k;) =
O(g(n)). For large n we now have

AL® ~(1 -1k

max

APPENDIX C: EXTENDING THE ALPHABET TO GAPS
OR OTHER SYMBOLS

As a general rule, aligned sequences contain gaps, ambiguous or
missing data, or might code for amino acid data. Let us consider an
alphabet with ¢ letters. It could be {A, C, G, T,—} for instance, with
¢ = 5. This section describes an adaptation of the coding scheme to this
new alphabet. The resulting model selection criterion is derived.

The naive encoding with a fixed-length code would use b = Ig(c)
bits for each letter, yielding a file of bnm bits. With DNA sequences,
gaps, and/or missing data, we have b = 3. With 20 amino acids we
have b = 5.

C.1: Coding Scheme

There is no difference in the model (tree(s), matrix structure), so that
the only part that differs is the matrix encoding. When describing a
site, gaps (—) or missing data (?) are treated just like other standard
symbols. It differs from usual phylogenetic analyses in that a step is
needed here to go from a letter to a “?,” for instance. The parsimony
score L may therefore be higher here than in usual analyses. The widely
used PAUP program optionally allows users to count these gaps or “?”
as necessitating extra steps.

The description of a given site or pattern includes the same elements
as before. It starts with the “ancestral” state, using b bits instead of 2.
Then for each parsimony step, the new state is described by encoding
the change of state instead of the new state itself, using again b bits
instead of 2. The edge description still takes 1g(2n — 3) bits, as does the
end-of-file symbol. The pattern description finally ends with the signal
0...0 (b times). The total compressed matrix length is then

2bm + (b +1g(2n — 3))L + 1g2n — 3),

resulting in a compressed file length of 2n — 4 + nlg(n)1g(2n — 3) +
2bm + (b + 1g(2n — 3))L when using a single tree. When this is below
bnm, compression is efficient. If m is large, the homoplasy L/m needs
to fall below b(n — 2)/(b + 1g(2n — 3)) ~ bn/1g(n) for the compression
to be efficient.

C.2: Model Selection

As before, the model selection can be based on LT® — Lfrest [f jt is
greater than AL, then the forest is preferred. The cutoff value AL .«
is now

(— 1)271 —4+nlgn) +1g2n — 3) des(l)
b +1g(2n —3) b +1g(2n —3)
or
Q-1 k(gn —3)+1) +1g@n —3) = des() + Y_, des(k;)

b +1g(2n —3) b +1g2n —3)

depending on the chosen scheme. Interestingly, the asymptotic behav-
ior (when n is large) is as before: (I — Dnor (I — 1) k. It does not depend
on the number of symbols in the alphabet.



