
Computing the Joint Distribution of Tree
Shape and Tree Distance for Gene Tree
Inference and Recombination Detection

Yujin Chung, Nicole T. Perna, and Cécile Ané

Abstract—Ancestral recombination events can cause the underlying genealogy of a site to vary along the genome. We consider

Bayesian models to simultaneously detect recombination breakpoints in very long sequence alignments and estimate the phylogenetic

tree of each block between breakpoints. The models we consider use a dissimilarity measure between trees in their prior distribution to

favor similar trees at neighboring loci. We show empirical evidence in Enterobacteria that neighboring genomic regions have similar

trees. The main hurdle in using such models is the need to properly calculate the normalizing function for the prior probabilities on

trees. In this work, we quantify the impact of approximating this normalizing function as done in biomc2, a hierarchical Bayesian

method to detect recombination based on distance between tree topologies. We then derive an algorithm to calculate the normalizing

function exactly, for a Gibbs distribution based on the Robinson-Foulds (RF) distance between gene trees at neighboring loci. At the

core is the calculation of the joint distribution of the shape of a random tree and its RF distance to a fixed tree. We also propose fast

approximations to the normalizing function, which are shown to be very accurate with little impact on the Bayesian inference.

Index Terms—Phylogenetic tree, recombination, Robinson-Foulds distance, normalizing function, gene tree discordance

Ç

1 INTRODUCTION

RECOMBINATION occurs in the genomes of many organ-
isms leading to exchange of genetic material. In

eukaryotes, recombination is reciprocal. In prokaryotic
organisms, homologous recombination leads to a unidirec-
tional flow of genetic material from a donor to a recipient,
more akin to eukaryotic gene conversion. This is one type of
horizontal gene transfer (HGT) that is particularly common
among closely related organisms, such as within species of
Enterobacteria. Recombination events can complicate the
analysis of the evolution of a group of organisms, as they
can cause conflicting phylogenetic relationships between
different regions of the genomes. Recently developed
statistical methods simultaneously detect the location of
recombination events along an alignment and infer phylo-
genetic histories of regions in the alignment defined by
recombination breakpoints. These methods are based on the
premise that discordant phylogenetic trees from different
genomic regions are due to recombination events. RecPars
[1] infers the most parsimonious history of substitutions on
trees and recombination, and MDL [2] enables a penalty
parameter to control the number of breakpoints. PLATO [3]
infers the maximum-likelihood phylogenetic tree from the
whole input alignment, and then detects regions whose

likelihood values for this tree are relatively small. Similarly,
ClonalOrigin [4] estimates the phylogenetic tree of the
genome and recombination breakpoints in a two-stage
hierarchical Bayesian framework. Hidden Markov models
(HMM) assume that hidden states are the underlying trees
of genetic regions [5], [6], [7], [8]. DualBrothers [9] is an
extension of the first Bayesian method [10] to infer break-
point positions and phylogenetic trees simultaneously, but
works well on only few taxa. cBrother [11] improved the
computational issues of DualBrothers, and StepBrothers
[12] further infers relative times of recombination events.
Biomc2 [13] incorporates correlation in tree topologies
through the distance between trees at neighboring regions
in a Bayesian model and is able to handle larger data sets.

Although tree topologies of regions between recombina-
tion breakpoints are different, these genomic regions share
some evolutionary history before and after the recombina-
tion events. For example, in Fig. 1, the gray genomic regions
in taxa C and D have a different evolutionary history than
the white genomic regions: genes in the gray region in taxa
C and D are more closely related to genes in taxon B than to
genes in taxon E, but genes in the white region are more
closely related to genes in taxon E. However, the trees of the
gray and white regions share features during time periods
t1 (A is an outgroup in both regions) and t3 (both regions
have clade CD in their trees).

Models that favor similar trees at neighboring genomic
regions can detect breakpoints between very similar trees
[7] and inference can be more accurate [8]. As far as we
know, biomc2 is one of the few methods that take into
account correlation between tree topologies: topologies at
adjacent genomic regions can be different but preferably
similar (but see [4], [12]). Note that other methods such as
cBrother and HMM uniformly prefer different topologies of
adjacent genomic regions. Empirical evidence for correla-
tion between trees at adjacent genomic regions is assessed
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in Section 2. Biomc2 uses approximated subtree prune and
regraft (SPR) distances (d̂SPR) between tree topologies at
adjacent predefined segments. The SPR distance is con-
sidered to have a truncated-Poisson distribution a priori
with parameter �� ¼ ð�1; . . . ; �L�1Þ, using the following
probability-like function on tree topologies T ¼ ðT1; . . . ; TLÞ:

~P ðT j ��;wÞ ¼

QL�1
l¼1

e��l �
d̂SPRðTl;Tlþ1Þ
l

d̂SPRðTl;Tlþ1Þ!

� �wlþ1

~�ð��;w; LÞ ; ð1Þ

where N is the number of taxa, L is the number of

segments in the alignment, w ¼ ðw1; . . . ; wL�1Þ are non-

negative weights,

~�ð��;w; LÞ ¼
YL�1

l¼1

XD
d¼0

e��l�dl
d!

� �wlþ1
" #

; ð2Þ

and D ¼ N � 3 is the number of internal edges and an

upper bound for the SPR distance. The function ~� used by

[13] is meant to normalize ~P so that ~P is a probability

distribution: ~� should ensure that the probabilities sum up

to 1. Such a function is called a normalizing function. The

parameter �l is larger than the expected distance between

trees Tl and Tlþ1 because the Poisson distribution is

truncated. For convenience, however, it is interpreted here

as the prior mean distance between neighboring trees.

Weights w enable the distribution (1) to have smaller mean

and variance, so as to give higher probabilities to similar

trees at adjacent segments.
One difficulty for Gibbs-like distributions such as the

prior distribution (1) used in biomc2 is that normalizing
functions are easily overlooked or miscalculated. For
example, Gibbs-like distributions have also been used for
supertree estimation. A model to find the maximum-
likelihood supertree from estimated smaller phylogenetic
trees was proposed by [14]. Estimated gene trees can be
different from the true tree on the full taxon set (“super-
tree”) because of technical issues (e.g., incorrect orthology
detection), stochastic error (e.g., estimation error), or
biological processes (e.g., incomplete lineage sorting). In
[14], the discrepancy between gene trees Ti and the
supertree T is modeled using the Robinson-Foulds (RF)
distance [15] d and the likelihood of T as

PT ðT1; . . . ; TkÞ /
Yk
i¼1

exp½��idðTi; T Þ�; ð3Þ

where T1; . . . ; Tk are the k input gene trees estimated on
taxon subsets. The “maximum-likelihood supertree” pro-
posed by [14] is

arg min
T

Xk
i¼1

�idðTi; T Þ: ð4Þ

However, as pointed out in [16], the correct likelihood
maximization should normalize the term (3) using

ZT ;�� ¼
Yk
i¼1

Z
ðiÞ
T ;�i ;

with

Z
ðiÞ
T ;�i ¼

X
T :LðT Þ¼LðTiÞ

exp ��idðT; T Þ½ �; ð5Þ

where �� ¼ ð�1; . . . ; �kÞ, and LðTiÞ is the set of tip labels of
gene tree Ti. In [16], criterion (4) is corrected as

arg min
T

Xk
i¼1

�idðTi; T Þ þ logZT ;��

( )
;

and a polynomial-time algorithm is described to calculate
the distribution of the RF distance given the tree shape of T .
In biomc2, the function ~� used in the prior distribution (1)
on trees is not the actual normalizing function, that is, (1) is
not a probability distribution becauseX

T1

� � �
X
TL

~P ðT1; . . . ; TL j ��;wÞ 6¼ 1:

The correct normalizing function is

�ð��;w; LÞ ¼
X
T1

� � �
X
TL

YL�1

l¼1

e��l�
dðTl;Tlþ1Þ
l

dðTl; Tlþ1Þ!

( )wlþ1

: ð6Þ

In other words, the numerator in (1) should be summed
over all possible trees, not over tree distance values. The
normalizing function in biomc2 has not been corrected in its
implementation or in publication as far as we know. More
generally, complex computation of normalizing functions
makes it difficult to embed correlations among tree
topologies into statistical models.

To simultaneously detect recombination breakpoints and
infer phylogenetic trees of genomic regions, we propose a
method with a new Gibbs prior distribution. The Gibbs
probability of a random variable X having value x is

P ðX ¼ xÞ ¼ 1

Zð�Þ expð��EðxÞÞ;

where EðxÞ is called the energy function of the configura-
tion x, � is a parameter called the inverse temperature [17],
and Zð�Þ is the normalizing function, also called a partition
function. We consider the sum of RF distances (interpreted
as dissimilarities) between tree topologies at adjacent
genomic regions as the energy of the phylogenetic histories
of the genomic regions. We use here the RF distance to
measure the presence of recombination, because a positive
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Fig. 1. Illustration of different tree topologies of genomic regions
because of recombination event. The phylogenetic tree of the gray
region has the clade BCD, but the white region has the clade CDE.



RF distance between trees at adjacent sites implies the
presence of one or more recombination events. However,
we do not use RF distances to measure the amount of
recombination (as would be done with the SPR distance)
because the RF distance between trees at adjacent sites does
not scale with the number of recombination events at that
location [13].

Section 2 shows empirical evidence in Enterobacteria
that neighboring genomic regions have similar trees. In
Section 3, the impact of overlooking the normalizing
function in biomc2 is investigated. In Section 4, a Bayesian
model is introduced to simultaneously identify recombina-
tion breakpoints and infer phylogenetic histories. For this,
we use the Gibbs distribution mentioned above as a prior
distribution on tree topologies. Section 5 shows that the
normalizing function of the Gibbs distribution can be
calculated through the number of tree topologies with a
certain shape and at a certain distance away from a given
tree topology. In Section 6 we propose approximations to
the normalizing function. Conclusion and discussion are in
Section 7.

2 CORRELATION AMONG GENE TREES IN REAL

DATA

To motivate the models considered here, we first investigate
the level of spatial correlation between phylogenetic trees at
neighboring loci in real data. ProgressiveMauve was
applied to generate alignments of 33 Escherichia genomes
and 8 Shigella genomes [18]. The longest alignment among
those with nonempty sequences from all of the 41 taxa
contained 52,080 base pairs (bps). We partitioned this
alignment into 103 segments of 500 bps and 1 segment of
580 bps. We excluded segments from the analysis if
they shared less than 4 taxa with all other segments;
76 segments remained. We applied MrBayes [19] to each
segment independently. The HKY model [20] with gamma-
distributed rates across sites was used with four chains, two
independent runs, and 10 million generations. Trees were
sampled every 100th generation and the first 10 percent
were discarded. We estimated the phylogenetic tree of each
segment by the greedy consensus tree with posterior
probabilities on internal edges.

We modified the RF distance to account for posterior
probabilities of internal edges in the trees, to give lower
weight to edges with high uncertainty. Our modified
weighted RF (wRF) distance is also normalized to compare
subtrees on identical taxon sets,

wRF ðT1; T2Þ ¼

P
c2CðT1jLÞ
c 62CðT2jLÞ

pp1ðcÞ þ
P

c62CðT1jLÞ
c2CðT2jLÞ

pp2ðcÞP
c2CðT1jLÞ pp1ðcÞ þ

P
c2CðT2jLÞ pp2ðcÞ

;

where L ¼ L1 \ L2 is the set of taxa that are common to both
trees T1 and T2, TijLði ¼ 1; 2Þ is the subtree obtained from Ti
after pruning taxa whose labels are not in the other tree,
CðT Þ is the collection of all bipartitions in tree T , and ppiðcÞ
is the posterior probability of c for tree Ti. Since the wRF
distance was scaled between 0 and 1, it provides compar-
able distances between trees of different sizes. We com-
puted the wRF distance between the consensus trees from
all pairs of segments.

To determine if trees from nearby segments are more
similar (positively correlated) than trees from randomly
selected segments, a permutation test was conducted on
the wRF distance between trees from segments located
k segments apart. We randomly shuffled the greedy con-
sensus trees along the alignment, and then computed average
wRF distances between trees located k segments away from
each other. We repeated the process 100,000 times and
calculated p-values by counting the number of times that the
sampled average wRF distance was smaller than the
observed average wRF distance.

The average wRF distance roughly increases with the
physical distance between segments (see Fig. 2). At the
1 percent significance level, trees from regions no more than
2 kb (four segments) apart were significantly more similar
to each other than to trees from other regions. The
correlation between trees was too weak to be detected in
our experiment across distances beyond 2 kb.

3 IMPORTANCE OF THE NORMALIZING FUNCTION

Biomc2 is one of the few methods that take this correlation
between tree topologies into account, when estimating trees
ðT1; . . . ; TLÞ along an alignment with L predefined short
segments. For the prior distribution on tree topologies,
biomc2 considers the truncated-Poisson distribution in (1)
parameterized by �� ¼ ð�1; . . . ; �LÞ. Independent gamma
hyperprior distributions are placed on �l and wl. In this
section, we identify an issue with the normalizing function
~� (2) currently implemented in biomc2.

Not fully knowing the prior distribution might not be a
problem under a Markov chain Monte Carlo (MCMC)
approach, where the prior distribution needs to be known
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Fig. 2. Average wRF distance between trees from 500-bp segments
that are a given physical distance apart in the alignment (top). For
each k, a permutation test was conducted to determine if trees of loci
located k segments apart are more similar than trees from randomly
selected loci (bottom). The test was significant (p-value < 0:01) for
k � 4 segments only (i.e., 2 kb).



only up to a constant. Assume we want to use a prior
distribution on tree topologies, P ðT1; . . . ; TL j ��Þ, that cannot
be easily calculated. Suppose that P is replaced in the
MCMC algorithm by ~P where the product

~P ðT1; . . . ; TL j �Þ~fð��Þ ¼ P ðT1; . . . ; TL j ��Þfð��Þ;

is easily evaluated at each step of the MCMC. Here fð��Þ is
the real normalizing function for the true prior distribu-
tion P but is difficult to calculate. Instead, ~fð��Þ is a
pseudonormalizing function easier to calculate. If a fixed ��

is used to infer the posterior distribution of tree
topologies, it is fine to use the pseudonormalizing function
~fð��Þ or to simply ignore the true normalizing function
fð��Þ. If we assume a hyperprior distribution �ð��Þ on ��,
however, then

~P ðT1; . . . ; TL j ��Þ�ð��Þ ¼ P ðT1; . . . ; TL j ��Þ
fð��Þ
~fð��Þ

�ð��Þ:

If ~P is used instead of P in an MCMC approach to define
the prior probability of trees given ��, then the hyperprior
distribution actually used on �� is

~�ð��Þ ¼ fð��Þ
~fð��Þ

�ð��Þ
Z
fð��0Þ
~fð��0Þ

�ð��0Þd��0
" #�1

: ð7Þ

If the ratio f=~f is a constant, i.e., the true normalizing
function is known up to a constant, then the MCMC
sampling procedure is not affected by the usage of the
function ~P ðT1; . . . ; TL j �Þ as a prior distribution. However,
a problem arises when f=~f is not constant, since MCMC
samples are not from the assumed posterior distribution in
that case. The correct calculation of the normalizing
function is then required.

To see the impact of using the pseudonormalizing
function (2) rather than the true normalizing function (6)
in biomc2, we compare the ratio of normalizing functions
�=~� and calculate the hyperprior distribution on �� actually
used as determined by (7). Either comparison is not easy
to carry out analytically, so we consider here a simple case
when all wl’s are fixed to 0 and �l’s are all equal. The
function used as a prior distribution on tree topologies
in (1) becomes

~P ðT1; . . . ; TL j �Þ ¼
1

~�ð�; LÞ
YL�1

l¼1

e���dSPRðTl;Tlþ1Þ

dSPRðTl; Tlþ1Þ!
; ð8Þ

where dSPR is the true SPR distance between tree topologies
and the pseudonormalizing function is

~�ð�; LÞ ¼
YL�1

l¼1

XD
d¼0

e���d

d!

" #
:

The correct normalizing function for (8) is

�ð�; LÞ ¼
X
T1

� � �
X
TL

YL�1

l¼1

e���dSPRðTl;Tlþ1Þ

dSPRðTl; Tlþ1Þ!
:

We follow [21] and choose an exponential distribution Eð�Þ
with mean 1=� for the distribution of �, which is a special
case of the gamma distribution. The hyperprior distribution
actually used is then

~�ð�Þ / �ð�Þ �ð�; LÞ
~�ð�; LÞ ¼ �e

���

�
X
T1

� � �
X
TL

�
PL�1

l¼1
dSPRðTl;Tlþ1ÞQL�1

l¼1 dSPRðTl; Tlþ1Þ!

8<
:

9=
;
, XD

d¼0

�d

d!

 !L�1

:

When there are two candidate recombination break-
points (L ¼ 3) and N ¼ 5 taxa, the ratio of the true
normalizing function to the pseudonormalizing function
can be calculated exactly and it is not a constant (see Fig. 3a),
although the ratio converges to 4 as � increases. The
hyperprior distribution actually used is

~�ð�Þ / 1þ 24� þ 146�2 þ 24�3 þ �4

ð1þ � þ �2=2Þ2
�e���; ð9Þ

which differs from the targeted hyperprior distribution
Eð�Þ, as shown in Figs. 3b, 3c, and 3d for � ¼ 100; 1 and 0.01.
The exponential density has a mode at � ¼ 0, but the
density actually used (9) has very small values near � ¼ 0
except for � ¼ 100. This discrepancy might partly explain
why it is recommended to use a very large � in biomc2 and
even more so when there are more candidate recombination
breakpoints; or why it is recommended to use a prior
distribution for the wi values. Indeed, fixing them to 0 was
shown to cause an overestimation of recombination [21].
Larger values of wi decrease the prior mean distance
between trees, which might counteract the effect of the
pseudonormalizing function.
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Fig. 3. Impact of using the pseudonormalizing function ~P in (8). The
alignment has two candidate breakpoints (L ¼ 3) and N ¼ 5 taxa.
(a) Ratio of the true normalizing function to the pseudonormalizing
function �=~�. (b)-(d) The real line indicates the exponential distribution
Eð�Þ whose mean 1=� is indicated with a circle (�). The hyperprior
density actually used ~� is indicated with a dotted line (- -) whose mean is
indicated with a triangle (�) when � ¼ 100,1, and 0.01. Note that the
axis for � in (a) is on a log scale.



4 GIBBS MODEL TO INFER RECOMBINATION

BREAKPOINTS AND PHYLOGENETIC TREES

In this section, we lay the mathematical foundation for a
Gibbs-distribution-based method, where the issue of the
normalizing function can be solved. Our approach to
simultaneously infer recombination breakpoints and phy-
logenetic trees involves a hierarchical model with a Gibbs
distribution on tree topologies given a prior frequency of
recombination breakpoints, and a sequence evolution
model (as in [13]) for the likelihood of sequence data given
the tree topologies. We consider below a long alignment
divided into L predefined arbitrary short segments, which
may have different tree topologies T ¼ ðT1; . . . ; TLÞ because
of recombination. Within a segment, all sites are assumed to
have the same phylogenetic tree. Our focus here is on a new
Gibbs prior distribution on ðT1; . . . ; TLÞ to take into account
the similarity of trees across consecutive segments, and for
which the normalizing function can be calculated. Tree
similarity is measured by the RF distance, which is meant to
detect the presence of recombination (not the amount). The
RF distance between two fully resolved unrooted trees is
the number of bipartitions found in only one of the two
trees. It has an even value and the distance dð�; �Þ used here
is one-half of the RF distance. The proposed prior
probability of tree topologies is then

P ðT1; . . . ; TLÞ ¼ exp ��
XL�1

l¼1

dðTl; Tlþ1Þ
 !,

ZLð�Þ; ð10Þ

where � a nonnegative parameter and ZLð�Þ is the normal-
izing function

ZLð�Þ ¼
X
t1

. . .
X
tL

exp ��
XL�1

l¼1

dðtl; tlþ1Þ
 !

; ð11Þ

to ensure that the probabilities in (10) sum to 1. When there
is only L ¼ 1 segment, Z1ð�Þ ¼ Z1 ¼ ð2N � 5Þ!! is the total
number of tree topologies and does not depend on �.

Under this Gibbs distribution, similar trees at adjacent
segments are favored. For large �, ZLð�Þ approaches Z1 and
the Gibbs distribution forces all trees to be identical:

P ðT1; . . . ; TLÞ ¼
1=Z1 if T1 ¼ � � � ¼ TL;
0 otherwise;

�

as if no recombination occurred. When � ¼ 0, ZLð�Þ ¼ ZL1 ,
and the Gibbs probability P ðT1 ¼ t1; . . . ; TL ¼ tLÞ ¼ 1=ZL

1

regardless of the values of t1; . . . ; tL. In other words, trees
become independent, each with a uniform distribution.
Between these two extreme distributions, 1/� scales with
the average recombination rate per segment. We will
informally call � the a priori inverse recombination rate.

The Gibbs distribution has desirable properties, such
as the following Markov property, by the Hammersley-
Clifford theorem [22]:

P ðTj ¼ t j T1; . . . ; Tj�1; Tjþ1; . . . ; TLÞ
¼ P ðTj ¼ t j Tj�1; Tjþ1Þ; for j ¼ 2; . . . ; L� 1:

ð12Þ

In other words, conditional on its neighbors, a tree Tj is
independent of the trees at all other segments. Moreover, the

distribution is homogeneous across the alignment: P ðTiþ1 ¼
t2 j Ti ¼ t1; Tiþ2 ¼ t3Þ is independent of i. Additionally, the
sequence of tree topologies from the Gibbs distribution is
a nonstationary Markov chain: � parameterizes the transi-
tion rate between Ti and Tiþ1 with lower � resulting in a
higher probability of change and the transition probabilities
are generally inhomogeneous in i, as are the marginal
distributions.

We define a block as the collection of all the consecutive
segments located between two recombination breakpoints.
In other words, segments (and sites) within a block are
inferred to have the same tree topology while segments in
two adjacent blocks are inferred to have different tree
topologies. Knowing the prior distribution on the number
of breakpoints B can be useful to choose an appropriate
value for the recombination rate, or an appropriate
hyperprior mean if the inverse recombination rate, �, is
given a hyperprior distribution. Indeed, the following
proposition (proved in Appendix A, which can be found
on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2013.109) links
� to the expected number of recombination breakpoints.

Proposition 1. Assume the Gibbs distribution (10). When � ¼ 0,
the number of recombination breakpoints B has a binomial
distribution BðL� 1; 1� 1=Z1Þ with expectation EðBÞ ¼
ðL� 1Þð1� 1=Z1Þ. If � ¼ 1, there is exactly one block: B ¼
0 with probability 1. In general,

P ðB ¼ bÞ ¼ L� 1

b

� �Xb
i¼0

b
i

� �
ð�1Þb�iZiþ1ð�Þ

ZLð�Þ
;

with an expected number of breakpoints

EðBÞ ¼ ðL� 1Þ 1� ZL�1ð�Þ
ZLð�Þ

� �
:

At each segment boundary, the probability of there being a
recombination breakpoint is 1� ZL�1=ZL. This is maximum
at 1� 1=Z1 when the recombination rate is very large
(� ¼ 0). When the recombination rate is small (large �), this
is approximately 2ðN � 3Þe�� (see Appendix A, which can
be found in the online supplemental material).

5 THE GIBBS NORMALIZING FUNCTION

When tree topologies ðT1; . . . ; TLÞ of consecutive segments
follow the Gibbs distribution in (10), the corresponding
normalizing function ZLð�Þ in (11) depends on �. With this
model, it is necessary to either compute the normalizing
function exactly or to provide a good approximation for it if
we want to place a hyperprior on �, such as an exponential
distribution with mean 1=�. In this section, we develop an
algorithm to calculate ZLð�Þ exactly. We can rewrite

ZLð�Þ ¼
X
S12SN

�ðS1ÞZL;S1
ð�Þ; ð13Þ

where the sum goes over the set of unrooted tree shapes
SN on N tips, �ðSÞ ¼ jfT : SðT Þ ¼ Sgj, SðT Þ denotes a
tree shape from tree T by discarding the terminal node
labels, and
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ZL;S1
ð�Þ ¼

X
T2

. . .
X
TL

exp ��
XL�1

l¼1

dðTl; Tlþ1Þ
( )

for any fixed T1 of shape S1. The value of ZL;S1
ð�Þ can be

recursively computed as

ZL;S1
ð�Þ ¼

X
S22SN

XN�3

y¼0

�2;S1
ðS2; yÞe��yZL�1;S2

ð�Þ; ð14Þ

where, for any fixed T of shape S,

�2;SðS0; yÞ ¼ jfT 0 : dðT; T 0Þ ¼ y and SðT 0Þ ¼ S0gj: ð15Þ

Therefore, ZL;S1
ð�Þ in (14) and eventually ZLð�Þ can be

recursively computed from the �2;SðS0; yÞ values. The rest
of the section provides a way to calculate �2;SðS0; xÞ for all
values of x and all shapes S; S0. In other words, the goal
of the following sections is to determine the joint
distribution of the shape of T2 and dðT1; T2Þ conditional
on T1 (or its shape) when T2 has a uniform distribution.
The C code for computing the joint distribution �2;SðS0; xÞ
is available upon request.

5.1 Computing the Joint Distribution of the
Robinson-Foulds Metric and Tree Shape

Computing �2;SðS0; xÞ in (15) is required to recursively
compute the normalizing function ZLð�Þ. We fix tree T
with shape S in the rest of Section 4. Then, �2;SðS0; xÞ is
the number of tree topologies with shape S0 whose
distance from T is x. In this section, we provide several
generating functions that are linked to our target
frequency �2;SðS0; xÞ, simplified as �SðS0; xÞ here. First,
we define qSðS0; dÞ as

qSðS0; dÞ ¼ jfT 0 : SðT 0Þ ¼ S0 ;
T and T 0 share exactly d bipartitionsgj
¼

X
�2A:j�j¼d

jfT 0 : SðT 0Þ ¼ S0;

T and T 0 share exactly bipartitions �gj;

where A is the set of all possible bipartitions from tree T ,
and thereby �SðS0; xÞ can be calculated through

qSðS0; dÞ ¼ �SðS0; N � 3� dÞ for d ¼ 0; . . . ; N � 3:

The generating function for qSðS0; dÞ, defined as

QS;S0 ðxÞ ¼
XN�3

d¼0

qSðS0; dÞxd;

is called the “exact” generating function by [23]. The “at-
least” generating function for the number of tree topologies
with shape S0 is defined as

US;S0 ðxÞ ¼
XN�3

d¼0

uSðS0; dÞxd; ð16Þ

where

uSðS0; dÞ ¼
X

�2A:j�j¼d
jfT 0 : SðT 0Þ ¼ S0; T and T 0

share partitions � and possibly othersgj
ð17Þ

and satisfies the following equation by the principle of
inclusion and exclusion [23]:

QS;S0 ðxÞ ¼ US;S0 ðx� 1Þ:

Therefore, if we can determine U , then we can determine Q
and all �SðS0; dÞvalues. The following sections present an
algorithm to compute uSðS0; dÞ.

5.2 Definitions and Theorems

To compute �2;SðS0; xÞ in (15) through uSðS0; dÞ in (17), we
first define the terminology used in the following sections.
First, we assume that all trees and tree shapes are in their
left-light centered (LLC) form, which provides an unique
representation and was used to rank all possible tree shapes
[24]. Edges and nodes on trees or shapes in LLC form can be
labeled in a unique way. To transform an unrooted tree or
tree shape into its LLC form, we first determine its
centroid(s). A centroid is a node that leads to no more than
half of the terminal nodes. Furnas [24] showed that any
binary tree has either a single or two centroid nodes, and
that these two centroids must be neighbors. If there are two
centroids, a new node called the “pseudoroot” is introduced
on the edge connecting the two centroids (see Fig. 4) and
used to root the tree. The tree is rooted at the unique
centroid node otherwise. Then, every edge should lead to
an equal number of or fewer terminal nodes than any sister
edge on its right, for the tree to be in LLC form. Once trees
and shapes are in LLC form, edges are labeled as
1; . . . ; N � 3 following a preorder tree traversal (root to tip
then left to right; see Fig. 4). Note that these edge labels do
not correspond to bipartitions, but instead only depend on
the tree shape.

We now define edge and node properties. A node is
called “cherry” if it is directly connected to two leaves.
Edges e and e0 in a tree are symmetric if we can exchange the
labels of e and e0 by flipping subtrees at their most recent
common ancestor (MRCA) and possibly at some of its
descendant nodes while maintaining the tree in LLC form.
For example, edges labeled 2 and 4 are symmetric in Fig. 4b.
Two nodes are symmetric in a tree if their parent edges are
symmetric. Two nodes in a tree are incomparable if one is not
ancestor or descendant of the other. A set of nodes
f�1; . . . ; �ng in a tree is an antichain if the nodes are pairwise
incomparable. If an antichain is not a proper subset of any
other antichain, then it is a maximal antichain.

Let e be a vector of internal edge labels on tree T . Define
the tree forest Tnme as the set of subtrees derived by
disconnecting edges in e and by adding labels as described
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Fig. 4. Two tree shapes in LLC form with (a) one centroid and (b) two
centroids and newly introduced pseudoroot. Centroids are indicated with
filled circles (�) and the pseudoroot is indicated with an empty circle (�).
Internal edge labels are defined using a preorder tree traversal.



next. Pseudoterminal nodes are introduced where internal
edges in e are disconnected. The edge indices are used to
label these pseudoterminal nodes. That way, the two new
terminal nodes from the same original internal edge have
matching labels. More specifically, the two new nodes
obtained from cutting ei are both labeled mi.

If the argument of a shape function S is a tree forest Tnme,
then S generates a forest from Tnme by removing the
(pseudo)root and terminal node labels but keeping pseudo-
terminal node labels. That is,

SðTnmeÞ ¼ fSðF1Þ; . . . ;SðFjejþ1Þg;

where the Fi’s are the elements of forest Tnme. Note that if
T1 and T2 are different topologies but have the same shape,
then SðTnmeÞ ¼ SðT 0nmeÞ for any edge vector e on T (or T 0).

Similarly, for any label set L and permutation 		L of these
labels, we consider 		L as applying to trees by only
permuting labels in L. If the argument tree contains
pseudoterminal nodes with matching labels, 		L only
permutes the original node labels in L.

Key to our formulas are two equivalence relations
between vectors of edges. They are used later when edges
are matched to bipartitions across the two trees, to avoid
double counting.

Definition 1 (Set equivalence). Let e and e0 be vectors of edge
labels on tree T . They are set-equivalent if e can be obtained
from e0 by permuting the order of elements in e0. For each set-
equivalence class, the representative edge vector e is defined as
the only class member whose elements are arranged with
ascending labels. The collection of all set-equivalence class
representatives is denoted as E

�
ðT Þ.

Definition 2 (Subtree-shape equivalence). Vectors of edge
labels e and e0 are subtree-shape equivalent if SðTnmeÞ ¼
SðTnme0Þ. Note that this relation depends on T through its
shape only. e ¼ ðe1; . . . ; edÞ is defined as the representative
of its subtree-shape equivalence class if it satisfies the
following conditions:

1. e1 � e0 for any edge e0 symmetric with e1.
2. For d > 1,

a. subvector ðe1; . . . ; ed�1Þ is the representative of its
subtree-shape equivalence class,

b. ed � e0 for any e0 62 ðe1; . . . ; ed�1Þ symmetric
with ed and that satisfies the following condi-
tions: for each ei 2 ðe1; . . . ; ed�1Þ, i) ed and e0

are descendants of ei or ii) ed, e
0 and ei are

pairwise incomparable and MRCAðei; edÞ ¼
MRCAðei; e0Þ.

If T has a pseudoroot, the 2 edges eL and eR connected to
that root represent a unique edge on the unrooted tree.
Therefore, for this definition, all edges (except eL and eR)
are considered to be descendant of the left edge eL.

We prove in the Appendix, which can be found in the
online supplemental material, that this definition identifies
a unique representative of every equivalence class. �EðT Þ is
defined as the collection of all subtree-shaped equivalent
class representatives.

For a vector e ¼ ðe1; . . . ; ehÞ of edges in a tree topology T ,
SðT=�eÞ is defined as the shape of the consensus tree

obtained by contracting all edges but e1; . . . ; eh on T , and by

giving label ci to the edge corresponding to ei. Suppose that

trees T and T 0 have shape S and S0, respectively, and

consider edge vectors e on T and e0 on T 0. Note that

SðT=�eÞ ¼ SðT 0=�e0Þ holds precisely when there exist tree

topologies T1 and T 01 with shape S and S0, respectively, such

that the bipartitions defined by e on T1 are the same as the

bipartitions defined by e0 on T 01.
For the remainder of this paper, we further fix a tree T 0

with shape S0, and define �0 and �00 to be the roots of T and

T 0 (once in LLC form). For d 	 0 we define


SðS0; dÞ ¼
X
jej¼d
e2E
�
ðT Þ;

X
je0 j¼d
e02 �EðT 0 Þ;

NðT 0nme0ÞIISðT=�eÞ¼SðT 0=�e0Þ; ð18Þ

where II is the indicator function, and

NðTnmeÞ ¼
Yjejþ1

i¼1

#fF : 9		Li such that

		LiðF Þ ¼ Fi; Fi 2 Tnmeg:
ð19Þ

Each term in the product is the number of trees obtained by

permuting the original tip labels Li on tree Fi in the forest

Tnme. Note that the NðTnmeÞ values are easily calculated

recursively (see the Appendix C, which can be found in the

online supplemental material). We also define the generat-

ing function

�S;S0 ðxÞ ¼
XN�3

d¼0


SðS0; dÞxd: ð20Þ

The following theorem shows that 
 equals u, and hence is

the object of interest to eventually compute �2;SðS0; xÞ
(proved in Appendix B, which can be found in the online

supplemental material).

Theorem 1. �S;S0 ðxÞ is the “at-least” generating function for the

number of tree topologies with shape S0. In other words,

�S;S0 ðxÞ ¼ US;S0 ðxÞ and uSðS0; dÞ ¼ 
SðS0; dÞ in (17).

We are now ready to define the main object that our

algorithm calculates recursively through the tree. Consider a

vector V of p antichain nodes in tree T , arranged with

ascending labels, and a vector V 0 of q antichain nodes in tree

T 0. Further, consider vectors D and K of p nonnegative

integers, and a vector M of p 0=1 elements. Similarly,

consider vectors D0, K0, and M 0 of size q with nonnegative

and binary elements. Finally, H is assumed to be a set of

pairs of indices, pairing elements of V with elements of V 0.

The following function generalizes the 
 function (18):

RðV ; V 0; D;D0; K;K0;M;M 0; HÞ
¼

X
E¼ðe1;...;epÞ
2 �MV ;D;K;M

X
E0¼ðe0

1
;...;e0q Þ

2 �M
V 0 ;D0 ;K0 ;M0

X
G02GGE0 ;V 0 ;D0 ;M0 ;H

Yq
i¼1

N
�
T 0v0i
nme0i

�
� IIðT V ; T 0V 0 ; E; E0; K;K0;M;M 0; G0Þ

( )
;

ð21Þ
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where all elements are described in the rest of this section,
and such that 
SðS0; dÞ ¼ 
ðdÞ is


ðdÞ ¼
XN
k¼0

Rðð�0Þ; ð�00Þ; ðdÞ; ðdÞ; ðkÞ; ðkÞ; ð0Þ; ð0Þ; ;Þ: ð22Þ

Given V ¼ ðv1; . . . ; vpÞ, E, M, and K of size p, T V ¼
ðTv1 ; . . . ; TvpÞ is a vector of subtrees of T satisfying the

following conditions: 1) Tvi contains all descendants of node

vi; and 2) Tvi is rooted at vi if mi ¼ 0. If mi ¼ 1, the parent

edge is included in Tvi as a root edge and is considered as an

internal edge. We define
�MV ;D;K;M ¼

Qp
i¼1M

�
vi;di;ki;mi

with

M
�
v;d;k;m ¼ fe : jej ¼ dþm; e 2 E

�
ðTvÞ; jFvj ¼ k;

the parent edge of v 2 e if m ¼ 1g;

where Fv is the element of Tvnme containing node v and
jFvj is the number of original terminal nodes in Fv, not
counting pseudoterminal nodes. Similarly, �MV 0;D0;K0;M 0 ¼Qq

j¼1
�Mv0j;d

0
j;k
0
j;m

0
j

and

�Mv;d;k;m ¼
�
e : jej ¼ dþm; e 2 �EðTvÞ; jFvj ¼ k;

the parent edge of v 2 e if m ¼ 1
	
:

We next consider position vectors. They will be used

later to merge vectors ðe1; . . . ; epÞ 2 �MV 0;D0;K0;M 0 onto a

single vector e
 of all elements in a specific order. This

order can be specified by a positioning G ¼ ðg1; . . . ;gpÞ, to

place edge ei;j in position gi;j in e
, that is, e
gi;j ¼ ei;j.
Definition 3. Given E, V , M, and D of size p, the set GGE;V ;D;M

of permissible positionings of edges in E is defined as the set of
G ¼ ðg1; . . . ;gpÞ such that

1. for all i, jgij ¼ di þmi;
2.

Sp
i¼1 gi ¼ f1; . . . ;

Pp
i¼1ðdi þmiÞg;

3. for all i, elements in gi are arranged in ascending order;
4. For any symmetric sibling nodes �1 and �2 in tree T

and any maximal antichain W1 in subtree T�1

and maximal antichain W2 in subtree T�2
, if W1 �

V and W2 � V , say W1 ¼ fvi1 ; . . . ; virg and W2 ¼
fvj1 ; . . . ; vjsg ðir < j1Þ, then

minfgi1 ; . . . ;girg � minfgj1 ; . . . ;gjsg:

If the pseudoroot exists and has two symmetric
children �1 and �2, and if e1;1 ¼ 1, then it is
additionally required that

2nd minfgi1 ; . . . ;girg � minfgj1
; . . . ;gjsg:

Note that ðe1; . . . ; epÞ 2
�MV ;D;K;M are naturally merged

onto a single edge vector by concatenation. In other words,
the position of edge ei;r 2 ei is defined as

Pi�1
x¼1ðdi þmiÞ þ r.

Finally, GGE0;V 0;D0;M 0;H in (21) is defined as the set of position
vectors G0 in GGE0;V 0;D0;M 0 such that for any pair ði; jÞ 2 H,
the position g0j;r corresponding to the parent edge e0j;r 2 e0j of
v0j is different from

P
x<iðdx þmxÞ þ r.

Given V ¼ ðv1; . . . ; vpÞ, E, M, K, and G of size p, the
consensus tree CT V ðEÞ is constructed by grafting the trees

SðTvi= �eiÞ at their roots. Edges in CT V ðEÞ are named by the
positioning vector G. The shape of consensus tree
CT V ðEÞ

-

nn-K is obtained by removing ki tips directly
connected to vi in CT V ðEÞ for all i. Then, IIðT V ; T 0V 0 ; E; E0;
K;K0;M;M 0; G0Þ in (21) is 1 if the following conditions are
satisfied, 0 otherwise:

1. CT V ðEÞ

-

nn-K ¼ CT 0
V 0
ðE0Þ

-

nn-K0,
2. ki ¼ ð1�miÞjFvi j and k0j ¼ ð1�m0jÞjF 0v0

j
j.

5.3 Recursive Equations for the Algorithm

We present here the key equations for the recursive
derivation of RðV ; V 0; D;D0; K;K0;M;M 0; HÞ, which is
used to calculate 
SðS0; dÞ through (22). The first theorems
initialize the R values, while Theorems 6, 7, and 8 enable
the decomposition of R values during the recursion
through the tree. More specifically, we start with V ¼
ð�0Þ and V 0 ¼ ð�00Þ as in (22). We first use Theorem 6 to
compute R through augmented V as replacing �0 by its
children. Theorem 6 is repeatedly applied to the leftmost
node in V satisfying the conditions in Theorem 6 until any
mi ¼ 1. We then move on Theorem 7 to augment V 0 as
replacing �00 by its children. Similarly, Theorem 7 is
repeatedly applied to the leftmost node in V 0 satisfying
the conditions in Theorem 7 until any newly introduced
m0j ¼ 1. Then, Theorem 8 is applied to factorize R. This
process is repeated until the value of R is obtained by
Theorems 2-5. All proofs are found in Appendix D, which
can be found in the online supplemental material.

Theorem 2. If ki¼jTvi j and k0j ¼ jT 0v0j j for all i; j, then

RðV ; V 0;0;0; K;K0;0;0; HÞ ¼
Y
j

N
�
T 0v0j
nm;

�
;

otherwise RðV ; V 0;0;0; K;K0;0;0; HÞ ¼ 0.

Theorem 3. R ¼ RðV ; V 0; D;D0; K;K0;M;M 0; HÞ ¼ 0 ifP
iðdi þmiÞ 6¼

P
jðd0j þm0jÞ, and if V and V 0 do not

contain both children of the pseudoroot. Generally, R ¼ 0 if
� 6¼ �0, where � ¼

P
iðdi þmiÞ if V does not contain both

children of the pseudoroot, � ¼ d1 þ d2 þm1 otherwise. �0

is defined similarly.

Theorem 4. R ¼ 0 if there exists an index i satisfying at least
one of the following conditions:

1. vi is a cherry, di > 0;
2. di > 0; ki > jTvi j � 2;
3. di ¼ mi ¼ 0; ki 6¼ jTvi j;
4. mi ¼ 0, ki þ 1 or more tips are directly connected to

vi; or
5. di > jTvi j � 2.

Similarly, if there exists an index j satisfying at least one of the
analogous conditions in terms of V 0; D0; K0;M 0, then R ¼ 0.

Theorem 5. Consider trees T� and T 0�0 on the same number of
taxa with d internal nodes. If they have the same shape, then
Rðð�Þ; ð�0Þ; ðdÞ; ðdÞ; ðkÞ; ðkÞ; ð0Þ; ð0Þ; ;Þ ¼ 1 if k is the num-
ber of tips directly connected to �; 0 otherwise. If T� and T 0�0
have different shapes, then Rðð�Þ; ð�0Þ; ðdÞ; ðd0Þ; ðkÞ; ðk0Þ; ð0Þ;
ð0Þ; ;Þ ¼ 0 for all k and k0.

Theorems 6 and 7 decompose R into a sum of R values,
where one node in V or V 0 is replaced by its children.
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Theorem 6 (Formula dismantling a node in T ). Consider

vx 2 V such that mx ¼ 0, dx 	 1, and vx has rð� 3Þ internal

nodes and k0 tips as children. Let w1; . . . ; wr be the r internal

node children of vx. We define the following sets:

C ¼
�

~d; ~m j ~d ¼ ð~dx; . . . ; ~dxþr�1Þ;

~m ¼ ð ~mx; . . . ; ~mxþr�1Þ;
Xxþr�1

i¼x
ð~di þ ~miÞ ¼ dx;

~m2 ¼ 1 and ~d1 þ ~m1 þ ~d2 ¼ dx

if �x is the pseudoroot and ~m1 ¼ 1

�
;

K ~m ¼
�

~k j ~k ¼ f~kx; . . . ; ~kxþr�1g;

Xxþr�1

i¼x

~k
ð1� ~miÞ
i ¼ kx � k0; ~ki ¼ 0 if ~mi ¼ 1

�
:

Then,

RðV ; V 0; D;D0; K;K0;M;M 0; HÞ
¼
X

~d; ~m2C

X
~k2K ~m

Rð ~V ; V 0; ~D;D0; ~K;K0; ~M;M 0; ~HÞ;

where ~V is similar to V except that vx is replaced by its

children. More specifically, ~vi ¼ vi, for i � x� 1; wi�xþ1, for

x � i � xþ r� 1; vi�rþ1, for i 	 xþ r. ~D0, ~K0 and ~M 0 are

defined similarly. By definition, ~H contains ði; jÞ if ði; jÞ 2 H,

and i � x� 1; ðiþ r� 1; jÞ if ði; jÞ 2 H and i 	 xþ 1. Note

that jHj ¼ j ~Hj.
Theorem 7 (Formula dismantling a node in T 0). Consider

v0x 2 V 0 such that m0x ¼ 0, d0x 	 1 and v0x has rð� 3Þ internal

nodes and k00 tips as children. Let w01; . . . ; w0r (r � 3) be the

r internal node children of v0x. We define the following sets:

C ¼
�

~d0; ~m0 j ~d0 ¼
�

~d0x; . . . ; ~d0xþr�1

�
;

~m0 ¼ ð ~m0x; . . . ; ~m0xþr�1Þ;
Xxþr�1

i¼x

�
~d0i þ ~m0i

�
¼ d0x;

~d0j þ ~m0j ¼ 0 if ~d0j�1 þ ~m0j�1 ¼ 0;

and if ~w0j�1 and ~w0j are symmetric;

~m02 ¼ 1 and ~d01 þ ~m01 þ ~d02 ¼ d0x

if v0x is the pseudoroot and if ~m01 ¼ 1

�
;

K ~m0 ¼
�

~k0 j ~k0 ¼ f~k0x; . . . ; ~k0xþr�1g;

Xxþr�1

i¼x

~k0
ð1� ~m0iÞ
i ¼ k0x � k00; ~k0i ¼ 0 if ~m0i ¼ 1

�
;

symFv0x
ðv0xÞ ¼

1 if none of S ðFw0iÞ are the same;
2 if exactly 2 of S ðFw0iÞ are same;
3 if r ¼ 3 and all 3 S ðFw0iÞ are same:

8<
:

Then,

RðV ; V 0; D;D0; K;K0;M;M 0; HÞ

¼
X

~d0; ~m02C

X
~k02K ~m0

�
RðV ; ~V 0; D; ~D0; K; ~K0;M; ~M 0; ~HÞ

� k0x!

�

symFv0x
ðv0xÞ!

Yxþr�1

i¼x
ð~k0i!Þð1� ~m0iÞ

��
;

where ~V 0 is similar to V 0 except that v0x is replaced by its

children, as defined by ~v0i ¼ v0i, for i � x� 1; w0i�xþ1, for

x � i � xþ r� 1; v0i�rþ1, for i 	 xþ r. ~D0, ~K0 and ~M 0 are

defined similarly. By definition, ~H contains ði; jÞ if ði; jÞ 2 H
and j � x� 1; ði; jþ r� 1Þ if ði; jÞ 2 H and j 	 xþ 1. Note

that jHj ¼ j ~Hj.
Theorem 8 (Factorization formula). Consider vx 2 V such that

mx ¼ 1, and assume that the partial sum
Px�1

i¼1 ðdi þmiÞ ¼ 0.

Define Z as the index set of nodes v0j in V 0 that can be paired

with vx to define the same bipartition, as specified below. If V

and V 0 contain all internal node children of roots �0 and �00,

Z ¼ fj j ðx; jÞ 62 H;m0j ¼ 1; k0j ¼ 0; dx ¼ d0j; jTvx j ¼ jT 0v0j j; v
0
j

has no symmetric sibling inðv01; . . . ; v0j�1Þg. More generally,

Z ¼
�
j j ðx; jÞ 62 H;m0j ¼ 1; k0j ¼ 0; dx ¼ d0j; jTvx j ¼ jT 0v0x j;

8�0 � v0j; symmetric sibling of either v0j or its ancestor

and 8W maximal antichain in T 0�0 ; W 6� V 0
	
:

Let H
 be the augmented constraint set H
 ¼ H [ fðx; jÞ :

j 2 Zg. Then,

RðV ; V 0; D;D0; K;K0;M;M 0; HÞ
¼ RðV ; V 0; D;D0; K;K0;M;M 0; H
Þ

þ
X
j2Z

"XjTvx j
k¼0

R
�
ðvxÞ; ðv0jÞ; ðdxÞ; ðdxÞ; ðkÞ; ðkÞ; ð0Þ; ð0Þ; ;

�

�RðV�x; V 0�j; D�x;D0�j;K�x;K0�j;M�x;M 0
�j;

~HÞ
#
;

where V�x contains all elements in V except for vx, and we

similarly define V 0�j and so on. We also define ~H ¼ fð~{; ~|Þ:
ði; lÞ 2 H, where i ¼ ~{ if ~{ < x; ~{þ 1 if ~{ 	 x, and l ¼ ~| if

~| < j; ~|þ 1 if ~| 	 jg.

6 APPROXIMATIONS TO THE NORMALIZING

FUNCTION

Although we can calculate the exact values of the normal-

izing function ZLð�Þ through (14), (15), and the algorithm

outlined in Section 5, its computation is usually too

expensive to be repeated at each iteration of an MCMC

algorithm. Therefore, we propose two approximations to

this normalizing function.

6.1 Large-LL Normal Approximation

Recall that L denotes the number of segments and N

denotes the number of taxa. We can write
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ZLð�Þ ¼ Z1 þ �Lð1Þe�� þ
XDL

x¼2

�LðxÞe��x; ð23Þ

where DL ¼ ðL� 1ÞðN � 3Þ, Z1 ¼ ð2N � 5Þ!! was defined
previously,

�LðxÞ ¼ # ðT1; . . . ; TLÞ :
XL�1

l¼1

dðTl; Tlþ1Þ ¼ x
( )

;

and �Lð1Þ is easily shown to be �Lð1Þ ¼ ðL� 1Þ 2ðN � 3ÞZ1.

The sum in (23) is approximated using the following central
limit theorem.

Theorem 9. Consider independent, uniformly distributed

unrooted N-taxon trees ðTiÞi	1. Let SL ¼
PL�1

l¼1 dðTl; Tlþ1Þ.
Then, P ðSL � 1Þ goes to 0 as L goes to infinity and both

ðSL � �LÞ=	L and

ðSL � �LÞ=	L IIðSL 	 2Þ !d Nð0; 1Þ as L!1;

where �L ¼ ðL� 1ÞEðdðT1; T2ÞÞ and

	2
L ¼ ðL� 1ÞfvarðdðT1; T2Þ þ covðdðT1; T2Þ; dðT2; T3ÞÞg:

The proof (Appendix F.1, which can be found in the

online supplemental material) rests on the weak depen-
dence of the sequence ðdðTi; Tiþ1ÞÞi	1. The second part
results in a normal approximation for the sum in (23), from

which we obtain the normal approximation ZLð�Þ 
 Ẑð1Þ:

Ẑð1Þ ¼ Z1 þ ðL� 1Þ�2ð1Þe�� þ
�
ZL1 � Z1 � ðL� 1Þ�2ð1Þ

	
�
�
�
�
DL þ :5;�L � �	2

L; 	
2
L

�
� �

�
2� :5;�L � �	2

L; 	
2
L

��
� exp ���L þ

�2	2
L

2


 �
;

ð24Þ

where �ð�;�; 	2Þ is the cumulative distribution function of
the normal distribution with mean � and variance 	2.

6.2 Independence Approximation

Our second approximation is simply obtained by ignoring
the dependence between distances dðTl�1; TlÞ and dðTl; Tlþ1Þ,
for l ¼ 1; . . . ; L� 1. We can write

ZLð�Þ ¼ ZL
1 E
�
e��
PL�1

l¼1
dðTl;Tlþ1Þ� 
 Ẑð2Þ

Ẑð2Þ ¼ ZL
1 E
�
e��dðT1;T2Þ

�L�1
:

ð25Þ

Note that dðTl�1; TlÞ are indeed independent when there is

only one possible tree shape, i.e., when N � 5. We prove in
the appendix, which can be found in the online supple-
mental material, that for all N;L, and all �,

Zð2Þð�Þ � ZLð�Þ:

6.3 Accuracy of Approximations

The proposed approximations (24)-(25) to the normalizing
function are compared with the true value ZLð�Þ for various
values of �, on trees with 5 taxa and 10 taxa, and when the

length of the alignment varies from 10 to 1,000 (see Fig. 5).
The normalizing function ZLð�Þ quickly drops to Z1 as �

grows. The extent of the decline is more profound with more
segments or more taxa. Since distances between tree
topologies fdðTi; Tiþ1Þ : i 	 1g are independent when there
is only one tree shape, the independence approximation Ẑð2Þ
in (25) is exact for N � 5. The large-L normal approximation
Ẑð1Þ in (24) is a good approximation except for � 2 ð1:5; 5Þ
approximately. Note that the distribution of the sum of tree
distances SL is skewed left because its mean �L is
approximately ðL� 1ÞðN � 3� 1=8Þ [25], which is very close
to its maximum value ðL� 1ÞðN � 3Þ. The symmetric
normal approximation to the distribution of SL is thus
expected to underestimate the true probabilities at small
values. These small values of x are given more weight by the
exponential term in (23), so Ẑð1Þ is expected to underestimate
the true ZL. This is indeed what we observe in Fig. 5. The
proposed approximations showed similar accuracy on
10 taxa. In particular, the independence approximation Zð2Þ
is still very close to the true normalizing function.

Fig. 6 shows the impact of using Ẑð2Þ instead of the
true normalizing function in terms of hyperprior densities.
Although the hyperprior actually used on � has a slightly
higher density than the assumed hyperprior on small
� values when � ¼ 0:01 (see Fig. 6d), the difference is small
enough to be ignored. Overall, the hyperprior actually used
is very close to the assumed hyperprior.

7 DISCUSSION

In this work, we first show empirical evidence that the
phylogenetic trees of neighboring genomic regions are
correlated, in the sense that they are more similar than
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Fig. 5. Accuracy of approximations to the normalizing function ZLð�Þ on
5 taxa and 10 taxa, when the number of segments is L ¼ 10, L ¼ 100, or
L ¼ 1,000. The true normalizing function ZLð�Þ in the thick gray line is
compared with two approximations: the normal approximation Ẑð1Þ (—)
and the independence approximation Ẑð2Þ (- -).



expected by chance. In Escherichia and Shigella genomes, the
correlation between neighboring trees was shown to span
across distances of about 2 kb. This is in support of methods
that go beyond detecting gene tree discordance, toward the
analysis of the dissimilarity of discordant gene trees. Leigh
et al. [26] take this approach to cluster predefined genes
based on the similarity of their gene trees. We focus here on
long alignments for which recombination-free loci are not
predefined. We consider a Bayesian approach to simulta-
neously detect recombination breakpoints and phylogenetic
trees based on a Gibbs prior distribution, to account for the
correlation between phylogenetic trees at neighboring loci.
The behavior of the Gibbs distribution is controlled by a
parameter � which scales with the inverse recombination
rate per segment. The dissimilarity between tree topologies
is measured by the RF distance. We show how to calculate
the normalizing function of the Gibbs distribution exactly,
and propose fast and accurate approximations. We, thus,
provide the mathematical foundation for the future im-
plementation of Gibbs-distribution-based methods to si-
multaneously infer recombination breakpoints and the
phylogenetic history of individual recombination blocks.

The RF distance is not the ideal dissimilarity measure to
quantify gene tree discordance due to recombination,
because one recombination event is expected to cause the
trees on the left and right side of the breakpoint to disagree
by one SPR rearrangement [27]. Therefore, we use the RF
distance here to measure the presence of recombination and
detect breakpoints, but not as a measure of the amount of
recombination. Computing the SPR distance between two
trees is computationally heavy unfortunately [28], requiring
approximations like in biomc2. On the other hand, comput-
ing the RF distance is fast. Additionally, there is a wide lack
of tools to study the normalizing function of the Gibbs

distribution based on the SPR distance. For instance, the
distribution of the SPR distance between a random tree and
a fixed tree, as a function of the shape of the fixed tree, is
unknown. The diameter of the SPR metric space is bounded
above by N � 3 and below by N=2� oðNÞ, where N is the
number of taxa [29].

The core of the present work is an algorithm to calculate
the joint distribution of the shape of a random tree and its RF
distance to another fixed tree (code available upon request).
This joint distribution completely determines the Gibbs
distribution for the trees at two neighboring segments. It is
then used to recursively calculate the normalizing function
of the Gibbs distribution on any number of segments. The
core algorithm to calculate the joint distribution of tree shape
and RF distance builds on Bryant and Steel [16], who
provide the distribution of the RF distance only, based on the
shape of the fixed tree. Their algorithm recursively calculates
a quantity analogous to Rðv; d; kÞ, where v is the root of a
subtree and d relates to the RF distance between two
subtrees. To also track the second tree shape, our algorithm
needs to condition the R value on many other variables,
making the algorithm much more complicated. We had to
add arguments such as v0, d0, and k0 for the other tree. To
specify the shared bipartitions between two trees, additional
arguments m, m0, and H were introduced to avoid matching
some pairs of edges multiple times.

When both trees are fixed, the complexity of the
algorithm calculating �SðS0; dÞ for all RF distance values
(d) depends on the shapes S and S0 of the trees. If both are
caterpillar trees whose shape is the most asymmetric shape
a tree can have [30], then the algorithm runs in a polynomial
time. If both trees are fully symmetric, then the algorithm
has an exponential time complexity (see Appendix E, which
can be found in the online supplemental material).

Two approximations to the normalizing function were
proposed, and our “independence” approximation showed
excellent performance. Both approximations require the
marginal distribution of the RF distance between a random
tree and a fixed tree, whose shape is known but arbitrary.
This can be calculated in polynomial time [16]. These
practical considerations are important, because the normal-
izing function needs to be evaluated each time a new prior
inverse recombination rate � is proposed during Bayesian
inference with Markov Chain Monte Carlo. Bryant and
Steel [16] also provide two approximations to their normal-
izing function (5) when � is either small or large. Their
approximations cut down computing time substantially, as
they do not require the distribution of the RF distance. Our
attempts to use their small � and large � approximations to
speed up our independence approximation resulted in
large errors unfortunately, and increasingly more so as
more segments were considered. Instead, our independence
approximation provides a substantial computing time
reduction without misleading the MCMC results.
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Fig. 6. Impact of using the independence approximation on 10 taxa
with L ¼ 10 segments. (a) Ratio of the true normalizing function to
independence approximation ZL=Ẑð2Þ. (b)-(d) The thick gray line
indicates the exponential distribution Eð�Þ, with mean indicated by a
circle (�). The hyperprior density actually used is indicated with a dotted
line (- -) with mean indicated by a triangle (�) when � ¼ 100, 1, and
0.01. Note that the axis for � in (a) is on the log scale.
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