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Computing the Joint Distribution of Tree
Shape and Tree Distance for Gene Tree
Inference and Recombination Detection

Yujin Chung, Nicole T. Perna and Cécile Ané

Abstract—Ancestral recombination events can cause the underlying genealogy of a site to vary along the genome. We consider
Bayesian models to simultaneously detect recombination breakpoints in very long sequence alignments and estimate the
phylogenetic tree of each block between breakpoints. The models we consider use a dissimilarity measure between trees in
their prior distribution to favor similar trees at neighboring loci. We show empirical evidence in Enterobacteria that neighboring
genomic regions have similar trees. The main hurdle to using such models is the need to properly calculate the normalizing
function for the prior probabilities on trees. In this work, we quantify the impact of approximating this normalizing function as
done in biomc2, a hierarchical Bayesian method to detect recombination based on distance between tree topologies. We then
derive an algorithm to calculate the normalizing function exactly, for a Gibbs distribution based on the Robinson-Foulds (RF)
distance between gene trees at neighboring loci. At the core is the calculation of the joint distribution of the shape of a random
tree and its RF distance to a fixed tree. We also propose fast approximations to the normalizing function, which are shown to be
very accurate with little impact on the Bayesian inference.

Index Terms—Phylogenetic tree, recombination, Robinson-Foulds distance, normalizing function, gene tree discordance
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1 INTRODUCTION

R ECOMBINATION occurs in the genomes of many
organisms leading to exchange of genetic ma-

terial. In eukaryotes, recombination is reciprocal. In
prokaryotic organisms, homologous recombination
leads to a unidirectional flow of genetic material
from a donor to a recipient, more akin to eukaryotic
gene conversion. This is one type of horizontal gene
transfer (HGT) that is particularly common among
closely related organisms, such as within species of
enterobacteria. Recombination events can complicate
the analysis of the evolution of a group of organisms,
as they can cause conflicting phylogenetic relation-
ships between different regions of the genomes. Re-
cently developed statistical methods simultaneously
detect the location of recombination events along an
alignment and infer phylogenetic histories of regions
in the alignment defined by recombination break-
points. These methods are based on the premise that
discordant phylogenetic trees from different genomic
regions are due to recombination events. RecPars [1]
infers the most parsimonious history of substitutions
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on trees and recombinations, and MDL [2] enables a
penalty parameter to control the number of break-
points. PLATO [3] infers the maximum likelihood
phylogenetic tree from the whole input alignment
and then detects regions whose likelihood values for
this tree are relatively small. Similarly, ClonalOrigin
[4] estimates the phylogenetic tree of the genome
and recombination breakpoints in a two-stage hierar-
chical Bayesian framework. Hidden Markov models
(HMM) assume that hidden states are the underlying
trees of genetic regions [5], [6], [7], [8]. DualBroth-
ers [9] is an extension of the first Bayesian method
[10] to infer breakpoint positions and phylogenetic
trees simultaneously, but works well on only few
taxa. cBrother [11] improved the computational issues
of DualBrothers and StepBrothers [12] further infers
relative times of recombination events. Biomc2 [13]
incorporates correlation in tree topologies through the
distance between trees at neighboring regions in a
Bayesian model and is able to handle larger data sets.

Although tree topologies of regions between re-
combination breakpoints are different, these genomic
regions share some evolutionary history before and
after the recombination events. For example, in Figure
1, the gray genomic regions in taxa C and D have a
different evolutionary history than the white genomic
regions: genes in the gray region in taxa C and D are
more closely related to genes in taxon B than to genes
in taxon E, but genes in the white region are more
closely related to genes in taxon E. However, the trees
of the gray and white regions share features during
time periods t1 (A is an outgroup in both regions) and
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Fig. 1. Illustration of different tree topologies of
genomic regions because of recombination event.
The phylogenetic tree of the gray region has the clade
BCD, but the white region has the clade CDE.

t3 (both regions have clade CD in their trees).
Models that favor similar trees at neighboring ge-

nomic regions can detect breakpoints between very
similar trees [7] and inference can be more accurate
[8]. As far as we know, biomc2 is one of the few
methods that take into account correlation between
tree topologies: topologies at adjacent genomic re-
gions can be different but preferably similar (but see
[4], [12]). Note that other methods such as cBrother
and HMM uniformly prefer different topologies of ad-
jacent genomic regions. Empirical evidence for corre-
lation between trees at adjacent genomic regions is as-
sessed in section 2. Biomc2 uses approximated subtree
prune and regraft (SPR) distances (d̂SPR) between tree
topologies at adjacent predefined segments. The SPR
distance is considered to have a truncated-Poisson dis-
tribution a priori with parameter β = (β1, . . . , βL−1),
using the following probability-like function on tree
topologies T = (T1, . . . , TL):

P̃ (T|β,w) =

L−1∏
l=1

{
e−βlβ

d̂SPR(Tl,Tl+1)
l

d̂SPR(Tl, Tl+1)!

}wl+1

η̃(β,w, L)
(1)

where N is the number of taxa, L is the number of
segments in the alignment, w = (w1, . . . , wL−1) are
non-negative weights,

η̃(β,w, L) =

L−1∏
l=1

[
D∑
d=0

{
e−βlβdl
d!

}wl+1
]

(2)

and D = N − 3 is the number of internal edges and
an upper bound for the SPR distance. The function
η̃ used by [13] is meant to normalize P̃ so that P̃
is a probability distribution: η̃ should ensure that
the probabilities sum up to one. Such a function is
called a normalizing function. The parameter βl is
larger than the expected distance between trees Tl
and Tl+1 because the Poisson distribution is truncated.
For convenience, however, it is interpreted here as

the prior mean distance between neighboring trees.
Weights w enable the distribution (1) to have smaller
mean and variance, so as to give higher probabilities
to similar trees at adjacent segments.

One difficulty for Gibbs-like distributions such as
the prior distribution (1) used in biomc2 is that nor-
malizing functions are easily overlooked or miscal-
culated. For example, Gibbs-like distributions have
also been used for supertree estimation. A model
to find the maximum likelihood supertree from es-
timated smaller phylogenetic trees was proposed by
[14]. Estimated gene trees can be different from the
true tree on the full taxon set (“supertree”) because
of technical issues (e.g. incorrect orthology detection),
stochastic error (e.g. estimation error), or biological
processes (e.g. incomplete lineage sorting). In [14], the
discrepancy between gene trees Ti and the supertree
T is modeled using the Robinson-Foulds (RF) distance
[15] d and the likelihood of T as

PT (T1, . . . , Tk) ∝
k∏
i=1

exp [−βid(Ti, T )] , (3)

where T1, . . . , Tk are the k input gene trees esti-
mated on taxon subsets. The “maximum likelihood
supertree” proposed by [14] is

arg min
T

k∑
i=1

βid(Ti, T ). (4)

However, as pointed out in [16], the correct likelihood
maximization should normalize the term (3) using

ZT ,β =

k∏
i=1

Z
(i)
T ,βi

with

Z
(i)
T ,βi

=
∑

T :L(T )=L(Ti)

exp [−βid(T, T )] (5)

where β = (β1, . . . , βk) and L(Ti) is the set of tip labels
of gene tree Ti. In [16], criterion (4) is corrected as

arg min
T

{
k∑
i=1

βid(Ti, T ) + logZT ,β

}
,

and a polynomial-time algorithm is described to cal-
culate the distribution of the RF distance given the
tree shape of T . In biomc2, the function η̃ used in
the prior distribution (1) on trees is not the actual
normalizing function, that is, (1) is not a probability
distribution because∑

T1

· · ·
∑
TL

P̃ (T1, . . . , TL|β,w) 6= 1.

The correct normalizing function is

η(β,w, L) =
∑
T1

· · ·
∑
TL

L−1∏
l=1

{
e−βlβ

d(Tl,Tl+1)
l

d(Tl, Tl+1)!

}wl+1

. (6)
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In other words, the numerator in (1) should be
summed over all possible trees, not over tree distance
values. The normalizing function in biomc2 has not
been corrected in its implementation or in publication
as far as we know. More generally, complex compu-
tation of normalizing functions makes it difficult to
embed correlations among tree topologies into statis-
tical models.

To simultaneously detect recombination break-
points and infer phylogenetic trees of genomic re-
gions, we propose a method with a new Gibbs prior
distribution. The Gibbs probability of a random vari-
able X having value x is

P (X = x) =
1

Z(β)
exp (−βE(x)) ,

where E(x) is called the energy function of the config-
uration x, β is a parameter called the inverse temper-
ature [17] and Z(β) is the normalizing function, also
called a partition function. We consider the sum of
RF distances (interpreted as dissimilarities) between
tree topologies at adjacent genomic regions as the
energy of the phylogenetic histories of the genomic
regions. We use here the RF distance to measure
the presence of recombination, because a positive
RF distance between trees at adjacent sites implies
the presence of one or more recombination events.
However, we do not use RF distances to measure the
amount of recombination (as would be done with the
SPR distance) because the RF distance between trees
at adjacent sites does not scale with the number of
recombination events at that location [13].

Section 2 shows empirical evidence in Enterobac-
teria that neighboring genomic regions have similar
trees. In section 3, the impact of overlooking the
normalizing function in biomc2 is investigated. In
section 4, a Bayesian model is introduced to simulta-
neously identify recombination breakpoints and infer
phylogenetic histories. For this, we use the Gibbs dis-
tribution mentioned above as a prior distribution on
tree topologies. Section 5 shows that the normalizing
function of the Gibbs distribution can be calculated
through the number of tree topologies with a certain
shape and at a certain distance away from a given tree
topology. In section 6 we propose approximations to
the normalizing function. Conclusion and discussion
are in section 7.

2 CORRELATION AMONG GENE TREES IN
REAL DATA

To motivate the models considered here, we first in-
vestigate the level of spatial correlation between phy-
logenetic trees at neighboring loci in real data. Pro-
gressiveMauve was applied to generate alignments of
33 Escherichia genomes and 8 Shigella genomes [18].
The longest alignment among those with non-empty
sequences from all of the 41 taxa contained 52,080 base

pairs (bps). We partitioned this alignment into 103
segments of 500 bps and 1 segment of 580 bps. We
excluded segments from the analysis if they shared
less than 4 taxa with all other segments. 76 segments
remained. We applied MrBayes [19] to each segment
independently. The HKY model [20] with Gamma-
distributed rates across sites was used with 4 chains,
2 independent runs and 10 million generations. Trees
were sampled every 100th generation and the first
10% were discarded. We estimated the phylogenetic
tree of each segment by the greedy consensus tree
with posterior probabilities on internal edges.

We modified the RF distance to account for pos-
terior probabilities of internal edges in the trees, to
give lower weight to edges with high uncertainty.
Our modified weighted RF (wRF) distance is also
normalized to compare subtrees on identical taxon
sets:

wRF (T1, T2) =

∑
c∈C(T1|L)

c/∈C(T2|L)

pp1(c) +
∑

c/∈C(T1|L)

c∈C(T2|L)

pp2(c)

∑
c∈C(T1|L)

pp1(c) +
∑

c∈C(T2|L)

pp2(c)
,

where L = L1 ∩L2 is the set of taxa that are common
to both trees T1 and T2, Ti|L(i = 1, 2) is the subtree
obtained from Ti after pruning taxa whose labels are
not in the other tree, C(T ) is the collection of all bipar-
titions in tree T , and ppi(c) is the posterior probability
of c for tree Ti. Since the wRF distance was scaled
between 0 and 1, it provides comparable distances
between trees of different sizes. We computed the
wRF distance between the consensus trees from all
pairs of segments.

To determine if trees from nearby segments are
more similar (positively correlated) than trees from
randomly selected segments, a permutation test was
conducted on the wRF distance between trees from
segments located k segments apart. We randomly
shuffled the greedy consensus trees along the align-
ment, and then computed average wRF distances be-
tween trees located k segments away from each other.
We repeated the process 100,000 times and calculated
p-values by counting the number of times that the
sampled average wRF distance was smaller than the
observed average wRF distance.

The average wRF distance roughly increases with
the physical distance between segments (Figure 2). At
the 1% significance level, trees from regions no more
than 2kb (4 segments) apart were significantly more
similar to each other than to trees from other regions.
The correlation between trees was too weak to be
detected in our experiment across distances beyond
2kb.
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Fig. 2. Average wRF distance between trees from 500-
bp segments that are a given physical distance apart in
the alignment (top). For each k a permutation test was
conducted to determine if trees of loci located k seg-
ments apart are more similar than trees from randomly
selected loci (bottom). The test was significant (p-value
< 0.01) for k ≤ 4 segments only (i.e 2kb).

3 IMPORTANCE OF THE NORMALIZING
FUNCTION

Biomc2 is one of the few methods that take this corre-
lation between tree topologies into account, when es-
timating trees (T1, . . . , TL) along an alignment with L
predefined short segments. For the prior distribution
on tree topologies, biomc2 considers the truncated-
Poisson distribution in (1) parameterized by β =
(β1, . . . , βL). Independent gamma hyperprior distri-
butions are placed on βl and wl. In this section, we
identify an issue with the normalizing function η̃ (2)
currently implemented in biomc2.

Not fully knowing the prior distribution might not
be a problem under a Markov chain Monte Carlo
(MCMC) approach, where the prior distribution needs
to be known only up to a constant. Assume we
want to use a prior distribution on tree topologies,
P (T1, . . . , TL|β), that cannot be easily calculated. Sup-
pose that P is replaced in the MCMC algorithm by P̃
where the product

P̃ (T1, . . . , TL|β)f̃(β) = P (T1, . . . , TL|β)f(β),

is easily evaluated at each step of the MCMC. Here
f(β) is the real normalizing function for the true
prior distribution P , but is difficult to calculate. In-
stead, f̃(β) is a pseudo-normalizing function easier

to calculate. If a fixed β is used to infer the posterior
distribution of tree topologies, it is fine to use the
pseudo-normalizing function f̃(β) or to simply ignore
the true normalizing function f(β). If we assume a
hyperprior distribution π(β) on β, however, then

P̃ (T1, . . . , TL|β)π(β) = P (T1, . . . , TL|β)
f(β)

f̃(β)
π(β).

If P̃ is used instead of P in an MCMC approach to
define the prior probability of trees given β, then the
hyperprior distribution actually used on β is

π̃(β) =
f(β)

f̃(β)
π(β)

[∫
f(β′)

f̃(β′)
π(β′)dβ′

]−1

. (7)

If the ratio f/f̃ is a constant, i.e. the true normalizing
function is known up to a constant, then the MCMC
sampling procedure is not affected by the usage of the
function P̃ (T1, . . . , TL|β) as a prior distribution. How-
ever, a problem arises when f/f̃ is not constant, since
MCMC samples are not from the assumed posterior
distribution in that case. The correct calculation of the
normalizing function is then required.

To see the impact of using the pseudo-normalizing
function (2) rather than the true normalizing function
(6) in biomc2, we compare the ratio of normalizing
functions η/η̃ and calculate the hyperprior distribu-
tion on β actually used as determined by (7). Either
comparison is not easy to carry out analytically, so we
consider here a simple case when all wl’s are fixed to
0 and βl’s are all equal. The function used as a prior
distribution on tree topologies in (1) becomes:

P̃ (T1, . . . , TL|β) =
1

η̃(β, L)

L−1∏
l=1

e−ββdSPR(Tl,Tl+1)

dSPR(Tl, Tl+1)!
, (8)

where dSPR is the true SPR distance between tree
topologies and the pseudo-normalizing function is

η̃(β, L) =

L−1∏
l=1

[
D∑
d=0

e−ββd

d!

]
.

The correct normalizing function for (8) is

η(β, L) =
∑
T1

· · ·
∑
TL

L−1∏
l=1

e−ββdSPR(Tl,Tl+1)

dSPR(Tl, Tl+1)!
.

We follow [21] and choose an exponential distribution
E(λ) with mean 1/λ for the distribution of β, which
is a special case of the gamma distribution. The hy-
perprior distribution actually used is then:

π̃(β) ∝ π(β)
η(β, L)

η̃(β, L)
= λe−λβ×

∑
T1

· · ·
∑
TL

{
β
∑L−1

l=1 dSPR(Tl,Tl+1)∏L−1
l=1 dSPR(Tl, Tl+1)!

}/(
D∑
d=0

βd

d!

)L−1

.

When there are 2 candidate recombination break-



5

beta[index]

R
at

io

(a) Ratio of normalizing functions

1

5

10

15

20

25

30

35

1 5 20 1000.1 0.50.01 0.00 0.02 0.04 0.06

β

hy
pe

rp
rio

r

(b) λ=100

0

20

40

60

80

100

Exponential hyperprior
Hyperprior actually used

●

0 1 2 3 4 5

β

hy
pe

rp
rio

r

(c) λ=1

0.0

0.2

0.4

0.6

0.8

1.0

●

● Mean of Exponential dist.
Mean of actually used dist.

0 20 40 60 80 100

β

hy
pe

rp
rio

r

(d) λ=0.01

0.00

0.01

0.02

0.03

0.04

●

Fig. 3. Impact of using the pseudo-normalizing
function P̃ in (8). The alignment has 2 candidate
breakpoints (L = 3) and N = 5 taxa. (a) Ratio of the
true normalizing function to the pseudo-normalizing
function η/η̃. (b)-(d) The real line indicates the expo-
nential distribution E(λ), whose mean 1/λ is indicated
with a circle (◦). The hyperprior density actually used
π̃ is indicated with a dotted line (- -) whose mean is
indicated with a triangle (∆) when λ = 100, 1 and 0.01.
Note that the axis for β in (a) is on a log scale.

points (L = 3) and N = 5 taxa, the ratio of the
true normalizing function to the pseudo-normalizing
function can be calculated exactly and it is not a
constant (Figure 3 (a)), although the ratio converges to
4 as β increases. The hyperprior distribution actually
used

π̃(β) ∝ 1 + 24β + 146β2 + 24β3 + β4

(1 + β + β2/2)
2 λe−λβ , (9)

differs from the targeted hyperprior distribution E(λ)
as shown in Figure 3 (b)-(d) for λ = 100, 1 and 0.01.
The exponential density has a mode at β = 0, but the
density actually used (9) has very small values near
β = 0 except for λ = 100. This discrepancy might
partly explain why it is recommended to use a very
large λ in biomc2 and even more so when there are
more candidate recombination breakpoints; or why it
is recommended to use a prior distribution for the
wi values. Indeed, fixing them to 0 was shown to
cause an overestimation of recombination [21]. Larger
values of wi decrease the prior mean distance between
trees, which might counteract the effect of the pseudo-
normalizing function.

4 GIBBS MODEL TO INFER RECOMBINATION
BREAKPOINTS AND PHYLOGENETIC TREES

In this section, we lay the mathematical foundation for
a Gibbs-distribution based method, where the issue
of the normalizing function can be solved. Our ap-
proach to simultaneously infer recombination break-
points and phylogenetic trees involves a hierarchical
model with a Gibbs distribution on tree topologies
given a prior frequency of recombination breakpoints,
and a sequence evolution model (as in [13]) for the
likelihood of sequence data given the tree topologies.
We consider below a long alignment divided into L
predefined arbitrary short segments, which may have
different tree topologies T = (T1, . . . , TL) because of
recombination. Our focus here is on a new Gibbs prior
distribution on (T1, . . . , TL) to take into account the
similarity of trees across consecutive segments, and
for which the normalizing function can be calculated.
Tree similarity is measured by the RF distance, which
is meant to detect the presence of recombination
(not the amount). The RF distance between two fully
resolved unrooted trees is the number of bipartitions
found in only one of the two trees. It has an even
value and the distance d(·, ·) used here is one-half of
the RF distance. The proposed prior probability of tree
topologies is then:

P (T1, . . . , TL) = exp

(
−β

L−1∑
l=1

d(Tl, Tl+1)

)
/ZL(β),

(10)
where β a non-negative parameter and ZL(β) is the
normalizing function

ZL(β) =
∑
t1

. . .
∑
tL

exp

(
−β

L−1∑
l=1

d(tl, tl+1)

)
(11)

to ensure that the probabilities in (10) sum to one.
When there is only L = 1 segment, Z1(β) = Z1 =
(2N − 5)!! is the total number of tree topologies and
does not depend on β.

Under this Gibbs distribution, similar trees at ad-
jacent segments are favored. For large β, ZL(β) ap-
proaches Z1 and the Gibbs distribution forces all trees
to be identical:

P (T1, . . . , TL) =

{
1/Z1 if T1 = . . . = TL,
0 otherwise,

as if no recombination occurred. When β = 0, ZL(β) =
ZL1 and the Gibbs probability P (T1 = t1, . . . , TL =
tL) = 1/ZL1 regardless of the values of t1, . . . , tL. In
other words, trees become independent, each with a
uniform distribution. Between these two extreme dis-
tributions, 1/β scales with the average recombination
rate per segment. We will informally call β the a priori
inverse recombination rate.

The Gibbs distribution has desirable properties,
such as the following Markov property, by the
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Hammersley-Clifford theorem [22]:

P (Tj = t|T1, . . . , Tj−1, Tj+1, . . . , TL)

= P (Tj = t|Tj−1, Tj+1), for j = 2, . . . , L− 1. (12)

In other words, conditional on its neighbors, a tree
Tj is independent of the trees at all other segments.
Moreover, the distribution is homogeneous across the
alignment: P (Ti+1 = t2|Ti = t1, Ti+2 = t3) is indepen-
dent of i. Additionally, the sequence of tree topolo-
gies from the Gibbs distribution is a non-stationary
Markov chain: β parameterizes the transition rate
between Ti and Ti+1 with lower β resulting in a higher
probability of change and the transition probabilities
are generally inhomogeneous in i, as are the marginal
distributions.

We define a block as the collection of all the con-
secutive segments located between two recombination
breakpoints. In other words, segments (and sites)
within a block are inferred to have the same tree
topology while segments in two adjacent blocks are
inferred to have different tree topologies. Knowing
the prior distribution on the number of breakpoints
B can be useful to choose an appropriate value for
the recombination rate, or an appropriate hyperprior
mean if the inverse recombination rate, β, is given a
hyperprior distribution. Indeed, the following propo-
sition (proved in Appendix A) links β to the expected
number of recombination breakpoints.

Proposition 1: Assume the Gibbs distribution (10).
When β = 0, the number of recombination break-
points B has a binomial distribution B(L−1, 1−1/Z1)
with expectation E(B) = (L− 1)(1− 1/Z1). If β =∞
there is exactly one block: B = 0 with probability 1.
In general,

P (B = b) =

(
L− 1

b

) b∑
i=0

(
b
i

)
(−1)b−iZi+1(β)

ZL(β)
,

with an expected number of breakpoints

E(B) = (L− 1)

(
1− ZL−1(β)

ZL(β)

)
.

At each segment boundary, the probability of there
being a recombination breakpoint is 1−ZL−1/ZL. This
is maximum at 1− 1/Z1 when the recombination rate
is very large (β = 0). When the recombination rate is
small (large β), this is approximately 2(N−3)e−β (see
Appendix A).

5 THE GIBBS NORMALIZING FUNCTION

When tree topologies (T1, . . . , TL) of consecutive seg-
ments follow the Gibbs distribution in (10), the corre-
sponding normalizing function ZL(β) in (11) depends
on β. With this model, it is necessary to either com-
pute the normalizing function exactly or to provide a
good approximation for it if we want to place a hyper-
prior on β, such as an exponential distribution with

mean 1/λ. In this section, we develop an algorithm to
calculate ZL(β) exactly. We can rewrite

ZL(β) =
∑

S1∈SN

ζ(S1)ZL,S1(β) (13)

where the sum goes over the set of unrooted tree
shapes SN on N tips, ζ(S) = | {T : S(T ) = S} |, S(T )
denotes a tree shape from tree T by discarding the
terminal node labels and

ZL,S1(β) =
∑
T2

. . .
∑
TL

exp

{
−β

L−1∑
l=1

d(Tl, Tl+1)

}
for any fixed T1 of shape S1. The value of ZL,S1

(β)
can be recursively computed as:

ZL,S1(β) =
∑

S2∈SN

N−3∑
y=0

ζ2,S1(S2, y)e−βyZL−1,S2(β) (14)

where, for any fixed T of shape S,

ζ2,S(S′, y) = | {T ′ : d(T, T ′) = y and S(T ′) = S′} |. (15)

Therefore, ZL,S1
(β) in (14) and eventually ZL(β) can

be recursively computed from the ζ2,S(S′, y) values.
The rest of the section provides a way to calculate
ζ2,S(S′, x) for all values of x and all shapes S, S′. In
other words, the goal of the following subsections is to
determine the joint distribution of the shape of T2 and
d(T1, T2) conditional on T1 (or its shape) when T2 has
a uniform distribution. The C code for computing the
joint distribution ζ2,S(S′, x) is available upon request.

5.1 Computing the joint distribution of the
Robinson-Foulds metric and tree shape
Computing ζ2,S(S′, x) in (15) is required to recur-
sively compute the normalizing function ZL(β). We
fix tree T with shape S in the rest of section 4. Then,
ζ2,S(S′, x) is the number of tree topologies with shape
S′ whose distance from T is x. In this subsection, we
provide several generating functions that are linked to
our target frequency ζ2,S(S′, x), simplified as ζS(S′, x)
here. First, we define qS(S′, d) as

qS(S′, d) = | {T ′ : S(T ′) = S′, T and T ′ share
exactly d bipartitions} |,

=
∑

α∈A:|α|=d

| {T ′ : S(T ′) = S′, T and T ′ share

exactly bipartitions α} |,

where A is the set of all possible bipartitions from tree
T , and thereby ζS(S′, x) can be calculated through

qS(S′, d) = ζS(S′, N − 3− d) for d = 0, . . . , N − 3.

The generating function for qS(S′, d), defined as

QS,S′(x) =

N−3∑
d=0

qS(S′, d)xd
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is called the “exact” generating function by [23]. The
“at-least” generating function for the number of tree
topologies with shape S′ is defined as

US,S′(x) =

N−3∑
d=0

uS(S′, d)xd, (16)

where

uS(S′, d) =
∑

α∈A:|α|=d

| {T ′ : S(T ′) = S′, T and T ′

share partitions α and possibly others } | (17)

and satisfies the following equation by the principle
of inclusion and exclusion [23]:

QS,S′(x) = US,S′(x− 1).

Therefore, if we can determine U , then we can deter-
mine Q and all ζS(S′, d) values. The following sub-
sections present an algorithm to compute uS(S′, d).

5.2 Definitions and theorems
To compute ζ2,S(S′, x) in (15) through uS(S′, d) in
(17), we first define the terminology used in the
following sections. First, we assume that all trees and
tree shapes are in their left-light centered (LLC) form,
which provides an unique representation and was
used to rank all possible tree shapes [24]. Edges and
nodes on trees or shapes in LLC form can be labeled
in a unique way. To transform an unrooted tree or
tree shape into its LLC form, we first determine its
centroid(s). A centroid is a node that leads to no
more than half of the terminal nodes. Furnas [24]
showed that any binary tree has either a single or
two centroid nodes, and that these two centroids must
be neighbors. If there are two centroids, a new node
called the “pseudo-root” is introduced on the edge
connecting the two centroids (Figure 4) and used to
root the tree. The tree is rooted at the unique centroid
node otherwise. Then, every edge should lead to an
equal number of or fewer terminal nodes than any
sister edge on its right, for the tree to be in LLC
form. Once trees and shapes are in LLC form, edges
are labeled as 1, . . . , N − 3 following a pre-order tree
traversal (root to tip then left to right, see Figure
4). Note that these edge labels do not correspond
to bipartitions, but instead only depend on the tree
shape.

We now define edge and node properties. A node
is called “cherry” if it is directly connected to two
leaves. Edges e and e′ in a tree are symmetric if we
can exchange the labels of e and e′ by flipping sub-
trees at their most recent common ancestor (MRCA)
and possibly at some of its descendant nodes while
maintaining the tree in LLC form. For example, edges
labeled 2 and 4 are symmetric in Figure 4(b). Two
nodes are symmetric in a tree if their parent edges
are symmetric. Two nodes in a tree are incomparable

1
32

(a) One centroid

Centroids

2

31

4

(b) Two centroids and pseudo−node

Pseudo−root

Fig. 4. Two tree shapes in LLC form with (a) one
centroid and (b) two centroids and newly introduced
pseudo-root. Centroids are indicated with filled circles
(•) and the pseudo-root is indicated with an empty
circle (◦). Internal edge labels are defined using a pre-
order tree traversal.

if one is not ancestor or descendant of the other. A
set of nodes {ν1, . . . , νn} in a tree is an antichain if the
nodes are pairwise incomparable. If an antichain is
not a proper subset of any other antichain, then it is
a maximal antichain.

Let e be a vector of internal edge labels on tree
T . Define the tree forest T\me as the set of subtrees
derived by disconnecting edges in e and by adding la-
bels as described next. Pseudo-terminal nodes are in-
troduced where internal edges in e are disconnected.
The edge indices are used to labels these pseudo-
terminal nodes. That way, the two new terminal nodes
from the same original internal edge have matching
labels. More specifically, the two new nodes obtained
from cutting ei are both labeled mi.

If the argument of a shape function S is a tree
forest T\me, then S generates a forest from T\me by
removing the (pseudo)-root and terminal node labels
but keeping pseudo-terminal node labels. That is,

S(T\me) = {S(F1), . . . ,S(F|e|+1)},

where the Fi’s are the elements of forest T\me. Note
that if T1 and T2 are different topologies but have the
same shape, then S(T\me) = S(T ′\me) for any edge
vector e on T (or T ′).

Similarly, for any label set L and permutation σL
of these labels, we consider σL as applying to trees
by only permuting labels in L. If the argument tree
contains pseudo-terminal nodes with matching labels,
σL only permutes the original node labels in L.

Key to our formulas are two equivalence relations
between vectors of edges. They are used later when
edges are matched to bipartitions across the 2 trees,
to avoid double-counting.

Definition 1: Set Equivalence. Let e and e′ be vec-
tors of edge labels on tree T . They are set-equivalent
if e can be obtained from e′ by permuting the order
of elements in e′. For each set-equivalence class, the
representative edge vector e is defined as the only
class member whose elements are arranged with as-
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cending labels. The collection of all set-equivalence

class representatives is denoted as
◦
E (T ).

Definition 2: Subtree-shape Equivalence. Vectors of
edge labels e and e′ are subtree-shape equivalent if
S(T\me) = S(T\me′). Note that this relation depends
on T through its shape only. e = (e1, . . . , ed) is defined
as the representative of its subtree-shape equivalence
class if it satisfies the following conditions:

1) e1 ≤ e′ for any edge e′ symmetric with e1.
2) For d > 1,

a) sub-vector (e1, . . . , ed−1) is the representa-
tive of its subtree-shape equivalence class,

b) ed ≤ e′ for any e′ /∈ (e1, . . . , ed−1) symmet-
ric with ed and that satisfies the following
conditions: for each ei ∈ (e1, . . . , ed−1), (i)
ed and e′ are descendants of ei or (ii) ed,
e′ and ei are pairwise incomparable and
MRCA(ei, ed) = MRCA(ei, e

′).
If T has a pseudo-root, the 2 edges eL and eR con-
nected to that root represent a unique edge on the
unrooted tree. Therefore, for this definition, all edges
(except eL and eR) are considered to be descendant of
the left edge eL.
We prove in the Appendix that this definition identi-
fies a unique representative of every equivalence class.
Ĕ(T ) is defined as the collection of all subtree-shape
equivalent class representatives.

For a vector e = (e1, . . . , eh) of edges in a tree
topology T , S(T/ē) is defined as the shape of the
consensus tree obtained by contracting all edges but
e1, . . . , eh on T , and by giving label ci to the edge
corresponding to ei. Suppose that trees T and T ′ have
shape S and S′, respectively, and consider edge vec-
tors e on T and e′ on T ′. Note that S(T/ē) = S(T ′/ē′)
holds precisely when there exist tree topologies T1 and
T ′1 with shape S and S′, respectively, such that the
bipartitions defined by e on T1 are the same as the
bipartitions defined by e′ on T ′1.

For the rest of this paper, we further fix a tree T ′

with shape S′ and define ν0 and ν′0 to be the roots of
T and T ′ (once in LLC form). For d ≥ 0 we define

γS(S′, d) =
∑

e∈
◦
E(T ),

|e|=d

∑
e′∈Ĕ(T ′),
|e′|=d

N(T ′\me′)IS(T/ē)=S(T ′/ē′), (18)

where I is the indicator function, and

N(T\me) =

|e|+1∏
i=1

# {F : ∃σLi
such that

σLi(F ) = Fi, Fi ∈ T\me} .(19)

Each term in the product is the number of trees ob-
tained by permuting the original tip labels Li on tree
Fi in the forest T\me. Note that the N(T\me) values
are easily calculated recursively (see the Appendix C).

We also define the generating function

ΓS,S′(x) =

N−3∑
d=0

γS(S′, d)xd. (20)

The following theorem shows that γ equals u, and
hence is the object of interest to eventually compute
ζ2,S(S′, x) (proved in Appendix B).

Theorem 1: ΓS,S′(x) is the “at-least” generating
function for the number of tree topologies with shape
S′. In other words, ΓS,S′(x) = US,S′(x) and uS(S′, d) =
γS(S′, d) in (17).

We are now ready to define the main object that
our algorithm calculates recursively through the tree.
Consider a vector V of p antichain nodes in tree T ,
arranged with ascending labels, and a vector V ′ of q
antichain nodes in tree T ′. Further, consider vectors
D and K of p non-negative integers, and a vector
M of p 0/1 elements. Similarly, consider vectors D′,
K ′ and M ′ of size q with non-negative and binary
elements. Finally, H is assumed to be a set of pairs
of indices, pairing elements of V with elements of V ′.
The following function generalizes the γ function (18):

R(V, V ′, D,D′,K,K ′,M,M ′, H) =∑
E=(e1,...,ep)

∈
◦
MV,D,K,M

∑
E′=(e′1,...,e

′
q)

∈M̆V ′,D′,K′,M′

∑
G′∈GE′,V ′,D′,M′,H{

q∏
i=1

N(T ′v′i\me′i)× I(TV , T ′V ′ , E,E′,K,K ′,M,M ′, G′)

}
,

(21)

where all elements are described in the rest of this
section, and such that γS(S′, d) = γ(d) is

γ(d) =

N∑
k=0

R ((ν0), (ν′0), (d), (d), (k), (k), (0), (0), ∅) . (22)

Given V = (v1, . . . , vp), E, M and K of size p,
TV = (Tv1 , . . . , Tvp) is a vector of subtrees of T
satisfying the following conditions: (i) Tvi contains all
descendants of node vi; (ii) Tvi is rooted at vi if mi = 0.
If mi = 1, the parent edge is included in Tvi as a root
edge and is considered as an internal edge. We define
◦
MV,D,K,M =

p∏
i=1

◦
Mvi,di,ki,mi with

◦
Mv,d,k,m =

{
e : |e| = d+m, e ∈

◦
E(Tv), |Fv| = k;

the parent edge of v ∈ e if m = 1} ,

where Fv is the element of Tv\me containing node
v and |Fv| is the number of original terminal nodes
in Fv , not counting pseudo-terminal nodes. Similarly,



9

M̆V ′,D′,K′,M ′ =

q∏
j=1

M̆v′j ,d
′
j ,k
′
j ,m
′
j

and

M̆v,d,k,m =
{
e : |e| = d+m, e ∈ Ĕ(Tv), |Fv| = k;

the parent edge of v ∈ e if m = 1} .

We next consider position vectors. They will
be used later to merge vectors (e1, . . . , ep) ∈
M̆V ′,D′,K′,M ′ onto a single vector e∗ of all elements
in a specific order. This order can be specified by
a positioning G = (g1, . . . ,gp), to place edge ei,j in
position gi,j in e∗, that is e∗gi,j = ei,j .

Definition 3: Given E, V , M and D of size p, the set
GE,V,D,M of permissible positionings of edges in E is
defined as the set of G = (g1, . . . ,gp) such that

1) for all i, |gi| = di +mi;

2)
p⋃
i=1

gi = {1, . . . ,
p∑
i=1

(di +mi)}

3) for all i, elements in gi are arranged in ascending
order;

4) For any symmetric sibling nodes ν1 and ν2 in
tree T and any maximal antichain W1 in subtree
Tν1 and maximal antichain W2 in subtree Tν2 , if
W1 ⊂ V and W2 ⊂ V , say W1 = {vi1 , . . . , vir}
and W2 = {vj1 , . . . , vjs} (ir < j1), then

min{gi1 , . . . ,gir} ≤ min{gj1 , . . . ,gjs}.

If the pseudo-root exists and has 2 symmetric
children ν1 and ν2, and if e1,1 = 1, then it is
additionally required that

2nd min{gi1 , . . . ,gir} ≤ min{gj1 , . . . ,gjs}.

Note that (e1, . . . , ep) ∈
◦
MV,D,K,M are naturally

merged onto a single edge vector by concatenation. In
other words, the position of edge ei,r ∈ ei is defined

as
i−1∑
x=1

(di + mi) + r. Finally, GE′,V ′,D′,M ′,H in (21) is

defined as the set of position vectors G′ in GE′,V ′,D′,M ′
such that for any pair (i, j) ∈ H , the position g′j,r
corresponding to the parent edge e′j,r ∈ e′j of v′j is
different from

∑
x<i

(dx +mx) + r.

Given V = (v1, . . . , vp), E, M , K and G of size p,
the consensus tree CTV (E) is constructed by grafting
the trees S(Tvi/ēi) at their roots. Edges in CTV (E)
are named by the positioning vector G. The shape of
consensus tree CTV (E) ) K is obtained by removing
ki tips directly connected to vi in CTV (E) for all i.
Then, I(TV , T ′V ′ , E,E′,K,K ′,M,M ′, G′) in (21) is 1 if
the following conditions are satisfied, 0 otherwise:

1) CTV (E) )K = CT ′
V ′

(E′) )K ′,
2) ki = (1−mi)|Fvi | and k′j = (1−m′j)|F ′v′j |.

5.3 Recursive equations for the algorithm

We present here the key equations for the recursive
derivation of R(V, V ′, D,D′,K,K ′,M,M ′, H), which
is used to calculate γS(S′, d) through (22). The first
theorems initialize the R values, while theorems 6, 7
and 8 enable the decomposition of R values during
the recursion through the tree. More specifically, we
start with V = (ν0) and V ′ = (ν′0) as in (22). We first
use Theorem 6 to compute R through augmented V as
replacing ν0 by its children. Theorem 6 is repeatedly
applied to the leftmost node in V satisfying the con-
ditions in Theorem 6 until any mi = 1. We then move
on Theorem 7 to augment V ′ as replacing ν′0 by its
children. Similarly, Theorem 7 is repeatedly applied
to the leftmost node in V ′ satisfying the conditions in
Theorem 7 until any newly introduced m′j = 1. Then
Theorem 8 is applied to factorize R. This process is
repeated until the value of R is obtained by Theorem
2-5. All proofs are found in Appendix D.

Theorem 2: If ki= |Tvi | and k′j = |T ′v′j | for all i, j then

R(V, V ′,0,0,K,K ′,0,0, H) =
∏
j

N(T ′v′j\m∅),

otherwise R(V, V ′,0,0,K,K ′,0,0, H) = 0.

Theorem 3: R = R(V, V ′, D,D′,K,K ′,M,M ′, H) =

0 if
∑
i

(di+mi) 6=
∑
j

(d′j+m′j) and if V and V ′ do not

contain both children of the pseudo-root. Generally,
R = 0 if ∆ 6= ∆′, where ∆ =

∑
i(di + mi) if V does

not contain both children of the pseudo-root, ∆ = d1+
d2 +m1 otherwise. ∆′ is defined similarly.

Theorem 4: R = 0 if there exists an index i satisfying
at least one of the following conditions: (1) vi is a
cherry, di > 0; (2) di > 0, ki > |Tvi | − 2; (3) di =
mi = 0, ki 6= |Tvi |; (4) mi = 0, ki + 1 or more tips are
directly connected to vi; or (5) di > |Tvi |−2. Similarly,
if there exists an index j satisfying at least one of the
analogous conditions in terms of V ′, D′,K ′,M ′, then
R = 0.

Theorem 5: Consider trees Tν and T ′ν′ on
the same number of taxa with d internal
nodes. If they have the same shape, then
R((ν), (ν′), (d), (d), (k), (k), (0), (0), ∅) = 1 if k is
the number of tips directly connected to ν; 0
otherwise. If Tν and T ′ν′ have different shapes then
R((ν), (ν′), (d), (d′), (k), (k′), (0), (0), ∅) = 0 for all k
and k′.

The following theorems 6 and 7 decompose R into
a sum of R values, where one node in V or V ′ is
replaced by its children.

Theorem 6 (Formula dismantling a node in T ):
Consider vx ∈ V such that mx = 0, dx ≥ 1 and vx
has r(≤ 3) internal nodes and k0 tips as children. Let
w1, . . . , wr be the r internal node children of vx. We
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define the following sets:

C =
{
d̃, m̃

∣∣∣d̃ = (d̃x, . . . , d̃x+r−1),

m̃ = (m̃x, . . . , m̃x+r−1),

x+r−1∑
i=x

(d̃i + m̃i) = dx;

m̃2 = 1 and d̃1 + m̃1 + d̃2 = dx

if νx is the pseudo-root and m̃1 = 1} ,

Km̃ =
{
k̃
∣∣∣k̃ = {k̃x, . . . , k̃x+r−1},

x+r−1∑
i=x

k̃
(1−m̃i)
i = kx − k0; k̃i = 0 if m̃i = 1

}
.

Then

R(V, V ′, D,D′,K,K ′,M,M ′, H) =∑
d̃,m̃∈C

∑
k̃∈Km̃

R(Ṽ , V ′, D̃,D′, K̃,K ′, M̃ ,M ′, H̃)

where Ṽ is similar to V except that vx is replaced by
its children. More specifically, ṽi = vi, for i ≤ x − 1;
wi−x+1, for x ≤ i ≤ x + r − 1; vi−r+1, for i ≥ x + r.
D̃′, K̃ ′ and M̃ ′ are defined similarly. By definition, H̃
contains (i, j) if (i, j) ∈ H and i ≤ x− 1; (i+ r − 1, j)
if (i, j) ∈ H and i ≥ x+ 1. Note that |H| = |H̃|.

Theorem 7 (Formula dismantling a node in T ′):
Consider v′x ∈ V ′ such that m′x = 0, d′x ≥ 1 and v′x
has r(≤ 3) internal nodes and k′0 tips as children. Let
w′1, . . . , w

′
r (r ≤ 3) be the r internal node children of

v′x. We define the following sets:

C =
{
d̃′, m̃′

∣∣∣d̃′ = (d̃′x, . . . , d̃
′
x+r−1),

m̃′ = (m̃′x, . . . , m̃
′
x+r−1),

x+r−1∑
i=x

(d̃′i + m̃′i) = d′x;

d̃′j + m̃′j = 0 if d̃′j−1 + m̃′j−1 = 0,

and if w̃′j−1 and w̃′j are symmetric;

m̃′2 = 1 and d̃′1 + m̃′1 + d̃′2 = d′x

if v′x is the pseudo-root and if m̃′1 = 1} ,

Km̃′ =
{
k̃′
∣∣∣k̃′ = {k̃′x, . . . , k̃′x+r−1},

x+r−1∑
i=x

k̃′
(1−m̃′i)
i = k′x − k′0; k̃′i = 0 if m̃′i = 1

}
,

symFv′x
(v′x) =


1 if none of S(Fw′i) are the same,
2 if exactly 2 of S(Fw′i) are same,
3 if r = 3 and all 3 S(Fw′i) are same.

Then

R(V, V ′, D,D′,K,K ′,M,M ′, H) =∑
d̃′,m̃′∈C

∑
k̃′∈Km̃′

{
R(V, Ṽ ′, D, D̃′,K, K̃ ′,M, M̃ ′, H̃)

×k′x!
/(

symFv′x
(v′x)!

x+r−1∏
i=x

(k̃′i!)
(1−m̃′i)

)}
,

where Ṽ ′ is similar to V ′ except that v′x is replaced
by its children, as defined by ṽ′i = v′i, for i ≤ x − 1;
w′i−x+1, for x ≤ i ≤ x + r − 1; v′i−r+1, for i ≥ x + r.
D̃′, K̃ ′ and M̃ ′ are defined similarly. By definition, H̃
contains (i, j) if (i, j) ∈ H and j ≤ x− 1; (i, j + r − 1)
if (i, j) ∈ H and j ≥ x+ 1. Note that |H| = |H̃|.

Theorem 8 (Factorization formula): Consider vx ∈ V
such that mx = 1 and assume that the partial sum∑x−1
i=1 (di + mi) = 0. Define Z as the index set of

nodes v′j in V ′ that can be paired with vx to define
the same bipartition, as specified below. If V and V ′

contain all internal node children of roots ν0 and ν′0,
Z = {j|(x, j) /∈ H,m′j = 1, k′j = 0, dx = d′j , |Tvx | =
|T ′v′j |, v

′
j has no symmetric sibling in (v′1, . . . , v

′
j−1)}.

More generally

Z =
{
j
∣∣∣(x, j) /∈ H,m′j = 1, k′j = 0, dx = d′j , |Tvx | = |T ′v′x |;

∀ν′ ≤ v′j , symmetric sibling of either v′j or its ancestor
and ∀W maximal antichain in T ′ν′ , W * V ′} .

Let H∗ be the augmented constraint set H∗ = H ∪
{(x, j) : j ∈ Z}. Then

R(V, V ′, D,D′,K,K ′,M,M ′, H) =

R(V, V ′, D,D′,K,K ′,M,M ′, H∗) +
∑
j∈Z|Tvx |∑

k=0

R
(
(vx), (v′j), (dx), (dx), (k), (k), (0), (0), ∅

)
×

R(V−x, V
′
−j , D−x, D

′
−j ,K−x,K

′
−j ,M−x,M

′
−j , H̃)

]
where V−x contains all elements in V except for vx
and we similarly define V ′−j and so on. We also define
H̃ = {(̃ı, ̃) : (i, l) ∈ H where i = ı̃ if ı̃ < x; ı̃+ 1 if ı̃ ≥
x, and l = ̃ if ̃ < j; ̃+ 1 if ̃ ≥ j}.

6 APPROXIMATIONS TO THE NORMALIZING
FUNCTION

Although we can calculate exact values of the nor-
malizing function ZL(β) through (14), (15) and the
algorithm outlined in section 5, its computation is
usually too expensive to be repeated at each iteration
of an MCMC algorithm. Therefore, we propose two
approximations to this normalizing function.

6.1 Large-L normal approximation

Recall that L denotes the number of segments and N
the number of taxa. We can write

ZL(β) = Z1 + ζL(1)e−β +

DL∑
x=2

ζL(x)e−βx (23)
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where DL = (L − 1)(N − 3), Z1 = (2N − 5)!! was
defined previously,

ζL(x) = #

{
(T1, . . . , TL) :

L−1∑
l=1

d(Tl, Tl+1) = x

}
and ζL(1) is easily shown to be ζL(1) = (L−1) 2(N −
3)Z1. The sum in (23) is approximated using the
following central limit theorem.

Theorem 9: Consider independent, uniformly dis-
tributed unrooted N -taxon trees (Ti)i≥1. Let SL =∑L−1
l=1 d(Tl, Tl+1). Then P (SL ≤ 1) goes to 0 as L goes

to infinity and both (SL − µL)/σL and

(SL − µL)/σL I(SL ≥ 2)
d→ N (0, 1) as L→∞

where µL = (L− 1)E(d(T1, T2)) and

σ2
L = (L− 1) {var(d(T1, T2) + cov(d(T1, T2), d(T2, T3))} .

The proof (Appendix F.1) rests on the weak depen-
dence of the sequence (d(Ti, Ti+1))i≥1. The second
part results in a normal approximation for the sum in
(23), from which we obtain the normal approximation
ZL(β) ≈ Ẑ(1):

Ẑ(1) = Z1+(L−1)ζ2(1)e−β+
{
ZL1 − Z1 − (L− 1)ζ2(1)

}
× [Φ(DL + .5;µL− βσ2

L, σ
2
L)−Φ(2− .5;µL− βσ2

L, σ
2
L)]

× exp
[
−βµL +

β2σ2
L

2

]
, (24)

where Φ(·;µ, σ2) is the cumulative distribution func-
tion of the normal distribution with mean µ and
variance σ2.

6.2 Independence approximation
Our second approximation is simply obtained by ig-
noring the dependence between distances d(Tl−1, Tl)
and d(Tl, Tl+1), for l = 1, . . . , L− 1. We can write

ZL(β) = ZL1 E
(
e−β

∑L−1
l=1 d(Tl,Tl+1)

)
≈ Ẑ(2)

Ẑ(2) = ZL1 E
(
e−βd(T1,T2)

)L−1

. (25)

Note that d(Tl−1, Tl) are indeed independent when
there is only one possible tree shape, i.e. when N ≤ 5.
We prove in the appendix that for all N,L and all β,

Z(2)(β) ≤ ZL(β) .

6.3 Accuracy of approximations
The proposed approximations (24)-(25) to the nor-
malizing function are compared with the true value
ZL(β) for various values of β, on trees with 5 taxa
and 10 taxa and when the length of the alignment
varies from 10 to 1000 (Figure 5). The normalizing
function ZL(β) quickly drops to Z1 as β grows. The
extent of the decline is more profound with more
segments or more taxa. Since distances between tree

5

10

15

20

25

5 taxa

Beta[−1]

lo
g(

N
or

m
al

iz
in

g 
F

un
ct

io
n)

10
 s

eg
m

en
ts

ZL
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Fig. 5. Accuracy of approximations to the normaliz-
ing function ZL(β). On 5 taxa and 10 taxa, when the
number of segments is L = 10, L = 100 or L = 1000.
The true normalizing function ZL(β) in the thick gray
line is compared with two approximations: the normal
approximation Ẑ(1) (—) and the independence approx-
imation Ẑ(2) (- -).

topologies {d(Ti, Ti+1) : i ≥ 1} are independent
when there is only one tree shape, the independence
approximation Ẑ(2) in (25) is exact for N ≤ 5. The
large-L normal approximation Ẑ(1) in (24) is a good
approximation except for β ∈ (1.5, 5) approximately.
Note that the distribution of the sum of tree distances
SL is skewed left because its mean µL is approxi-
mately (L− 1)(N − 3− 1/8) [25], which is very close
to its maximum value (L− 1)(N − 3) . The symmetric
normal approximation to the distribution of SL is
thus expected to underestimate the true probabilities
at small values. These small values of x are given
more weight by the exponential term in (23), so Ẑ(1)

is expected to underestimate the true ZL. This is
indeed what we observe in Figure 5. The proposed
approximations showed similar accuracy on 10 taxa.
In particular, the independence approximation Z(2) is
still very close to the true normalizing function.

Figure 6 shows the impact of using Ẑ(2) instead of
the true normalizing function in terms of hyperprior
densities. Although the hyperprior actually used on
β has a slightly higher density than the assumed
hyperprior on small β values when λ = 0.01 (Figure
6 (d)), the difference is small enough to be ignored.
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Fig. 6. Impact of using the independence approxi-
mation. On 10 taxa with L = 10 segments. (a) Ratio of
the true normalizing function to independence approx-
imation ZL/Ẑ(2). (b)-(d) The thick gray line indicates
the exponential distribution E(λ), with mean indicated
by a circle (◦). The hyperprior density actually used is
indicated with a dotted line (- -) with mean indicated by
a triangle (∆) when λ = 100, 1 and 0.01. Note that the
axis for β in (a) is on the log scale.

Overall, the hyperprior actually used is very close to
the assumed hyperprior.

7 DISCUSSION

In this work, we first show empirical evidence that
the phylogenetic trees of neighboring genomic regions
are correlated, in the sense that they are more similar
than expected by chance. In Escherichia and Shigella
genomes, the correlation between neighboring trees
was shown to span across distances of about 2 kb. This
is in support of methods that go beyond detecting
gene tree discordance, towards the analysis of the
dissimilarity of discordant gene trees. Leigh et al. [26]
take this approach to cluster predefined genes based
on the similarity of their gene trees. We focus here
on long alignments for which recombination-free loci
are not predefined. We consider a Bayesian approach
to simultaneously detect recombination breakpoints
and phylogenetic trees based on a Gibbs prior dis-
tribution, to account for the correlation between phy-
logenetic trees at neighboring loci. The behavior of
the Gibbs distribution is controlled by a parameter
β which scales with the inverse recombination rate
per segment. The dissimilarity between tree topolo-
gies is measured by the RF distance. We show how
to calculate the normalizing function of the Gibbs

distribution exactly, and propose fast and accurate
approximations. We thus provide the mathematical
foundation for the future implementation of Gibbs-
distribution based methods to simultaneously infer re-
combination breakpoints and the phylogenetic history
of individual recombination blocks.

The RF distance is not the ideal dissimilarity mea-
sure to quantify gene tree discordance due to recombi-
nation, because one recombination event is expected
to cause the trees on the left and right side of the
breakpoint to disagree by one SPR re-arrangement
[27]. Therefore, we use the RF distance here to mea-
sure the presence of recombination and detect break-
points, but not as a measure of the amount of re-
combination. Computing the SPR distance between
2 trees is computationally heavy unfortunately [28],
requiring approximations like in biomc2. On the other
hand, computing the RF distance is fast. Additionally,
there is a wide lack of tools to study the normalizing
function of the Gibbs distribution based on the SPR
distance. For instance, the distribution of the SPR
distance between a random tree and a fixed tree, as
a function of the shape of the fixed tree, is unknown.
The diameter of the SPR metric space is bounded
above by N − 3 and below by N/2 − o(N), where
N is the number of taxa [29].

The core of the present work is an algorithm to
calculate the joint distribution of the shape of a ran-
dom tree and its RF distance to another fixed tree
(code available upon request). This joint distribution
completely determines the Gibbs distribution for the
trees at 2 neighboring segments. It is then used to
recursively calculate the normalizing function of the
Gibbs distribution on any number of segments. The
core algorithm to calculate the joint distribution of
tree shape and RF distance builds on Bryant and Steel
[16], who provide the distribution of the RF distance
only, based on the shape of the fixed tree. Their
algorithm recursively calculates a quantity analogous
to R(v, d, k), where v is the root of a subtree and
d relates to the RF distance between 2 subtrees. To
also track the second tree shape, our algorithm needs
to condition the R value on many other variables,
making the algorithm much more complicated. We
had to add arguments such as v′, d′ and k′ for the
other tree. To specify the shared bipartitions between
two trees, additional arguments m, m′ and H were
introduced to avoid matching some pairs of edges
multiple times.

When both trees are fixed, the complexity of the
algorithm calculating ζS(S′, d) for all RF distance
values (d) depends on the shapes S and S′ of the
trees. If both are caterpillar trees whose shape is the
most asymmetric shape a tree can have [30], then
the algorithm runs in a polynomial time. If both
trees are fully symmetric, then the algorithm has an
exponential time complexity (see appendix E).

Two approximations to the normalizing function
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were proposed, and our ‘independence’ approxima-
tion showed excellent performance. Both approxima-
tions require the marginal distribution of the RF dis-
tance between a random tree and a fixed tree, whose
shape is known but arbitrary. This can be calculated
in polynomial time [16]. These practical considera-
tions are important, because the normalizing function
needs to be evaluated each time a new prior inverse
recombination rate β is proposed during Bayesian
inference with Markov Chain Monte Carlo. Bryant
and Steel [16] also provides two approximations to
their normalizing function (5) when β is either small
or large. Their approximations cut down computing
time substantially, as they do not require the distri-
bution of the RF distance. Our attempts to use their
small β and large β approximations to speed up our
independence approximation resulted in large errors
unfortunately, and increasingly more so as more seg-
ments were considered. Instead, our independence
approximation provides a substantial computing time
reduction without misleading the MCMC results.

ACKNOWLEDGMENTS

We thank Guy Plunkett III for providing alignments
of 33 Escherichia genomes and 8 Shigella genomes. We
also thank Aaron Darling for technical assistance with
the alignments. This work was funded in part by NSF
awards 0936214 and 0949121.

REFERENCES
[1] J. Hein, “A heuristic method to reconstruct the history of

sequences subject to recombination,” Journal of Molecular Evo-
lution, vol. 36, no. 4, pp. 396–405, 1993.

[2] C. Ané, “Detecting Phylogenetic Breakpoints and Discordance
from Genome-Wide Alignments for Species Tree Reconstruc-
tion,” Genome Biology and Evolution, vol. 3, pp. 246–258, Jan.
2011.

[3] N. Grassly and E. Holmes, “A likelihood method for the
detection of selection and recombination using nucleotide
sequences,” Mol Biol Evol, vol. 14, no. 3, pp. 239–247, 1997.

[4] X. Didelot, D. Lawson, A. Darling, and D. Falush, “Inference
of homologous recombination in bacteria using whole-genome
sequences,” Genetics, vol. 186, no. 4, pp. 1435–1449, 2010.

[5] D. Husmeier and G. McGuire, “Detecting Recombination in
4-Taxa DNA Sequence Alignments with Bayesian Hidden
Markov Models and Markov Chain Monte Carlo,” Mol Biol
Evol, vol. 20, no. 3, pp. 315–337, 2003.

[6] W. P. Lehrach and D. Husmeier, “Segmenting bacterial and
viral dna sequence alignments with a trans-dimensional phy-
logenetic factorial hidden markov model,” Journal Of The Royal
Statistical Society Series C, vol. 58, no. 3, pp. 307–327, 2009.

[7] A. Webb, J. M. Hancock, and C. C. Holmes, “Phylogenetic in-
ference under recombination using Bayesian stochastic topol-
ogy selection,” Bioinformatics, vol. 25, no. 2, pp. 197–203, 2009.

[8] B. Boussau, L. Guguen, and M. Gouy, “A mixture model and a
hidden markov model to simultaneously detect recombination
breakpoints and reconstruct phylogenies,” Evolutionary Bioin-
formatics, vol. 5, pp. 67–79, 2009.

[9] V. N. Minin, K. S. Dorman, F. Fang, and M. A. Suchard,
“Dual multiple change-point model leads to more accurate
recombination detection,” Bioinformatics, vol. 21, no. 13, pp.
3034–3042, 2005.

[10] M. A. Suchard, R. E. Weiss, K. S. Dorman, and J. S. Sinsheimer,
“Oh Brother, Where Art Thou? A Bayes Factor Test for Recom-
bination with Uncertain Heritage,” Syst Biol, vol. 51, no. 5, pp.
715–728, 2002.

[11] F. Fang, J. Ding, V. N. Minin, M. A. Suchard, and K. S. Dorman,
“cBrother: relaxing parental tree assumptions for Bayesian
recombination detection,” Bioinformatics, vol. 23, no. 4, pp.
507–508, 2007.

[12] E. W. Bloomquist, K. S. Dorman, and M. A. Suchard, “Step-
Brothers: inferring partially shared ancestries among recom-
binant viral sequences,” Biostat, vol. 10, no. 1, pp. 106–120,
2009.

[13] L. de Oliveira Martins, E. Leal, and H. Kishino, “Phylogenetic
Detection of Recombination with a Bayesian Prior on the
Distance between Trees.” PLoS ONE, vol. 3, no. 7, p. e2651,
2008.

[14] M. Steel and A. Rodrigo, “Maximum likelihood supertrees,”
Systematic Biology, vol. 57, no. 2, pp. 243–250, 2008.

[15] D. F. Robinson and L. R. Foulds, “Comparison of phylogenetic
trees,” Mathematical Biosciences, vol. 53, no. 1-2, pp. 131–147,
February 1981.

[16] D. Bryant and M. Steel, “Computing the distribution of a tree
metric,” IEEE/ACM Trans. Comput. Biol. Bioinformatics, vol. 6,
no. 3, pp. 420–426, 2009.

[17] B. A. Cipra, “An introduction to the ising model,” Am. Math.
Monthly, vol. 94, pp. 937–959, December 1987.

[18] A. E. Darling, B. Mau, and N. T. Perna, “progressivemauve:
Multiple genome alignment with gene gain, loss and rear-
rangement,” PLoS ONE, vol. 5, no. 6, p. e11147, 06 2010.

[19] J. P. Huelsenbeck and F. Ronquist, “MRBAYES: Bayesian infer-
ence of phylogenetic trees,” Bioinformatics, vol. 17, no. 8, pp.
754–755, 2001.

[20] M. Hasegawa, H. Kishino, and T. Yano, “Dating of the human-
ape splitting by a molecular clock of mitochondrial dna,”
Journal of Molecular Evolution, vol. 22, no. 2, pp. 160–174, 1985.

[21] L. de Oliveira Martins and H. Kishino, “Distribution of dis-
tances between topologies and its effect on detection of phy-
logenetic recombination,” Annals of the Institute of Statistical
Mathematics, vol. 62, pp. 145–159, 2010.

[22] C. J. Preston, “Generalized gibbs states and markov random
fields,” Advances in Applied Probability, vol. 5, no. 2, pp. 242–
261, 1973.

[23] I. P. Goulden and D. M. Jackson, Combinatorial Enumeration.
New York: Dover Publications, 2004.

[24] G. Furnas, “The generation of random, binary unordered
trees,” Journal of Classification, vol. 1, no. 1, pp. 187–233,
December 1984.

[25] M. A. Steel and D. Penny, “Distributions of tree comparison
metrics - some new results,” Systematic Biology, vol. 42, no. 2,
pp. 126–141, 1993.

[26] J. W. Leigh, K. Schliep, P. Lopez, and E. Bapteste, “Let them
fall where they may: Congruence analysis in massive phylo-
genetically messy data sets,” Molecular Biology and Evolution,
vol. 28, no. 10, pp. 2773–2785, 2011.

[27] Y. Song and J. Hein, “Constructing minimal ancestral recom-
bination graphs,” J Comput Biol., vol. 12, no. 2, pp. 147–69,
2005.

[28] M. Bordewich and C. Semple, “On the computational com-
plexity of the rooted subtree prune and regraft distance.”
Annals of combinatorics., vol. 8, no. 4, pp. 409–423, January 2005.

[29] B. L. Allen and S. Mike, “Subtree transfer operations and their
induced metrics on evolutionary trees,” Annals of Combina-
torics, vol. 5, pp. 1–15, 2001.

[30] C. Semple and M. Steel, Phylogenetics. New York, NY: Oxford
University Press, 2003.

Yujin Chung received a PhD degree in
statistics from the University of Wisconsin-
Madison in 2012. She is currently working as
a postdoctoral associate at Rutgers Univer-
sity.



14

Nicole T. Perna received a PhD degree in
Genetics from the University of New Hamp-
shire in 1996. She is a professor of Genetics
at the University of Wisconsin-Madison. Her
research interests include microbial genome
evolution and molecular evolution of complex
traits like virulence and host range.
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