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ASYMPTOTIC THEORY WITH HIERARCHICAL
AUTOCORRELATION: ORNSTEIN–UHLENBECK TREE MODELS1

BY LAM SI TUNG HO AND CÉCILE ANÉ

University of Wisconsin–Madison

Hierarchical autocorrelation in the error term of linear models arises
when sampling units are related to each other according to a tree. The residual
covariance is parametrized using the tree-distance between sampling units.
When observations are modeled using an Ornstein–Uhlenbeck (OU) process
along the tree, the autocorrelation between two tips decreases exponentially
with their tree distance. These models are most often applied in evolution-
ary biology, when tips represent biological species and the OU process pa-
rameters represent the strength and direction of natural selection. For these
models, we show that the mean is not microergodic: no estimator can ever be
consistent for this parameter and provide a lower bound for the variance of
its MLE. For covariance parameters, we give a general sufficient condition
ensuring microergodicity. This condition suggests that some parameters may
not be estimated at the same rate as others. We show that, indeed, maximum
likelihood estimators of the autocorrelation parameter converge at a slower
rate than that of generally microergodic parameters. We showed this theoret-
ically in a symmetric tree asymptotic framework and through simulations on
a large real tree comprising 4507 mammal species.

1. Introduction and overview of main results.

1.1. Motivation. This work is motivated by the availability of very large data
sets to compare biological species, and by the current lack of asymptotic theory
for the models that are used to draw inference from species comparisons. For in-
stance, Cooper and Purvis (2010) studied the evolution of body size in mammals
using data from 3473 species whose genealogical relationships are depicted by
their family tree in Figure 1. Even from this abundance of data, Cooper and Purvis
found a lack of power to discriminate between a model of neutral evolution versus
a model with natural selection. To model neutral evolution, body size is assumed to
follow a Brownian motion (BM) along the branches of the tree, with observations
made on present-day species at the tips of the tree. To model natural selection, body
size is assumed to follow an Ornstein–Uhlenbeck (OU) process, whose parameters
represent a selective body size (μ) and a selection strength (α). The lack of power
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FIG. 1. Family tree of 4507 mammal species [Bininda-Emonds et al. (2007)]. Branch lengths indi-
cate estimated diversification times on the horizontal axis. The Cretaceous/Tertiary mass extinction
event marked the extinction of dinosaurs 65.5 million years ago. Cooper and Purvis (2010) used
body mass data available for 77% of these species to infer the mode of evolution: neutral evolution
(BM) versus natural selection (OU).

observed by Cooper and Purvis suggests a nonstandard asymptotic behavior of the
model parameters, which is the motivation for our work.

1.2. Tree structured autocorrelation. Hierarchical autocorrelation, as depicted
in the mammalian tree, arises whenever sampling units are related to each other
through a vertical inheritance pattern, like biological species, genes in a gene fam-
ily or human cultures. In the genealogical tree describing the relatedness between



ORNSTEIN–UHLENBECK HIERARCHICAL AUTOCORRELATION 959

FIG. 2. Correlation (or residual correlation) between observations at tips i and j are parametrized
in the OU model as a function of the tree distance dij between i and j and of the length tij of their
shared path from the root. For instance, Cooper and Purvis (2010) considered body mass (Y ) across
3473 mammal species (i, j = 1, . . . ,3473).

units, internal nodes represent ancestral unobserved units (like species or human
languages). Branch lengths measure evolutionary time between branching events
and define a distance between pairs of sampling units. This tree and its branch
lengths can be used to parametrize the expected autocorrelation. For doing so,
the BM and the OU process are the two most commonly used models. They are
defined as usual along each edge in the tree. At each internal node, descendant lin-
eages inherit the value from the parent edge just prior to the branching event, thus
ensuring continuity of the process. Conditional of their starting value, each lineage
then evolves independently of the sister lineages. BM evolution of the response
variable (or of error term) along the tree results in normally distributed errors and
in a covariance matrix governed by the tree, its branch lengths and a single param-
eter σ 2. The covariance between two tips i and j is simply σ 2tij , where tij is the
shared time from the root of the tree to the tips (Figure 2). Under the more complex
OU process, changes toward a value μ are favored over changes away from this
value, making the OU model appropriate to address biological questions about the
presence or strength of natural selection. This model is defined by the following
stochastic equation [Ikeda and Watanabe (1981)]: dYt = −α(Yt − μ)dt + σ dBt

where Y is the response variable (such as body size), α is the selection strength
and Bt is a BM process. In what follows, μ is called the “mean” even though it is
not necessarily the expectation of the observations. It is the mean of the stationary
distribution of the OU process, and it is the mean at the tips of the tree if the state
at the root has mean μ. In the biology literature, μ is called the “optimal” value
or “adaptive optimum” in reference to the action of natural selection, but this ter-
minology could cause confusion here with likelihood optimization. The parameter
α measures the strength of the pull back to μ. High α values result in a process
narrowly distributed around μ, as expected under strong natural selection if the
selective fitness of the trait is maximized at μ and drops sharply away from μ.
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Simple mathematical models of natural selection at the level of individuals result
in the OU process for the population mean [Hansen and Martins (1996), Lande
(1979)]. If α = 0, the OU process reduces to a BM with no pull toward any μ

value, as if the trait under consideration does not affect fitness. While some ap-
plications focus on the presence of natural selection (α �= 0) such as Cooper and
Purvis (2010), other applications are interested in models where μ takes differ-
ent values (μ1, . . . ,μp) along different branches in the tree, to model different
adaptation regimes [e.g., Butler and King (2004)]. Other applications assume a
randomly varying μ along the tree, varying linearly with explanatory variables
[Hansen, Pienaar and Orzack (2008)]. In our work, we develop an asymptotic the-
ory for the simple case of a constant μ over the whole tree. The covariance between
two observed tips depends on how the unobserved response at the root is treated. It
is reasonable to assume that this value y0 at the root is a random variable with the
stationary Gaussian distribution with mean μ and variance γ = σ 2/(2α). With this
assumption, the observed process (Yi)i∈tips is Gaussian with mean μ and variance
matrix

γ V with Vij = e−αdij ,(1)

where dij is the tree distance between tips i and j , that is, the length of the path
between i and j . Therefore, the strength α of natural selection provides a direct
measure of the level of autocorrelation. If instead we condition on the response
value y0 at the root, the Gaussian process has mean (1 − e−αtii )μ + e−αtii y0 for
tip i and variance matrix

γ V with Vij = e−αdij
(
1 − e−2αtij

)
,(2)

where, again, tii is the distance from the root to tip i, and tij is the shared time
from the root to tips i and j (Figure 2).

1.3. Main results and link to spatial infill asymptotics. In contrast to autocor-
relation in spatial data or time series, hierarchical autocorrelation has been little
considered in the statistics literature, even though tree models have been used in
empirical studies for over 25 years. The usual asymptotic properties have mostly
been taken for granted. Recently, Ané (2008) showed that the maximum likelihood
(ML) estimator of location parameters is not consistent under the BM tree model
as the sample size grows indefinitely, proving that the basic consistency property
should not be taken for granted. However, Ané (2008) did not consider the more
complex OU model, for which the ML estimator admits no analytical formula.

In the spatial infill asymptotic framework when data are collected on a denser
and denser set of locations within a fixed domain, σ 2 can be consistently esti-
mated, but α cannot under an OU spatial autocorrelation model in dimension d ≤ 3
[Zhang (2004)]. Recently, α has been proved to be consistently estimated under
OU model when d ≥ 5 [Anderes (2010)]. We uncover here a similar asymptotic
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behavior under the OU tree model. Just like in infill asymptotics, the tree struc-
ture implies that all sampling units may remain within a bounded distance of each
other, and that the minimum correlation between any pair of observations does not
go down to zero with indefinitely large sample sizes. It is therefore not surprising
that some properties may be shared between these two autocorrelation frameworks.
Under infill asymptotics, microergodic parameters can usually be consistently es-
timated [see Zhang and Zimmerman (2005)] while nonmicroergodic parameters
cannot (e.g., α). A parameter is microergodic when two different values for it lead
to orthogonal distributions for the complete, asymptotic process [Stein (1999)].

In Section 2, we prove that the mean μ is nonmicroergodic under the OU au-
tocorrelation framework, and we provide a lower bound for the variance of the
MLE of μ. We also give a sufficient condition for the microergodicity of the OU
covariance parameters α and σ 2 (or γ ) based on the distribution of internal node
ages. The microergodic covariance parameter under spatial infill asymptotics with
OU autocorrelation, σ 2, is recovered as microergodic if 0 is a limit point of the se-
quence of node ages, that is, with dense sampling near the tips. Our condition for
microergodicity suggests that some parameters may not be estimated at the same
rate as others. In Section 3, we illustrate this theoretically for a symmetric tree
asymptotic framework, where we show that the REML estimator of α converges
at a slower rate than that of the generally microergodic parameter. We also illus-
trate that the ML estimate convergence rate of α is slower than that of σ 2, through
simulations on a large 4507-species real tree showing dense sampling near the tips.

In most of this work, we only consider ultrametric trees, that is, trees in which
the root is at equal distance from all the tips. This assumption is very natural for
real data. We also focus on model (1), because the model matrix is not of full rank
under model (2) on an ultrametric tree.

1.4. Other tree models in spatial statistics. Trees have already been used for
various purposes in spatial statistics. When considering different resolution scales,
the nesting of small spatial regions into larger regions can be represented by a tree.
The data at a coarse scale for a given region is the average of the observations at
a finer scale within this region. For instance, Huang, Cressie and Gabrosek (2002)
use this “resolution” tree structure to obtain consistent estimates at different scales,
and otherwise use a traditional spatial correlation structure between locations at the
finest level. In contrast, the tree structure in our model is the fundamental tool to
model the correlation between sampling units, with no constraint between values
at different levels. Trees have also been used to capture the correlation among loca-
tions along a river network [Cressie et al. (2006), Ver Hoef, Peterson and Theobald
(2006), Ver Hoef and Peterson (2010), and discussion]. A river network can be rep-
resented by a tree with the associated tree distance. To ensure that the covariance
matrix is positive definite, moving average processes have been introduced, either
averaging over upstream locations or over downstream locations, or both. There
are two major differences between our model and these river network models.
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First, the correlation among moving averages considered in Cressie et al. (2006)
and Ver Hoef and Peterson (2010) decreases much faster than the correlation con-
sidered in this work. Most importantly, any location along the river is observable,
while observations can only be made at the leaves of the tree in our framework.

2. Microergodicity under hierarchical autocorrelation. The concept of mi-
croergodicity was formalized by Stein (1999) in the context of spatial models. This
concept was especially needed in the infill asymptotic framework, when some pa-
rameters cannot be consistently estimated even if the whole process is observed.
Specifically, consider the complete process (Ys)s∈S where S is the space of all pos-
sible observation units. In spatial infill asymptotics, S can be the unit cube [0,1]d .
In our hierarchical framework, we consider a sequence of nested trees converging
to a limit tree, which is the union of all nodes and edges of the nested trees. In this
case, S is the set of all tips in the limit tree. Consider a probability model (Pθ )θ∈�

on (Ys)s∈S . A function f (θ) of the parameter vector is said to be microergodic
if for all θ1, θ2 ∈ �, f (θ1) �= f (θ2) implies that Pθ1 and Pθ2 are orthogonal. If a
parameter is not microergodic, then there is no hope of constructing any consis-
tent estimator for it; see Zhang (2004) for an excellent explanation. In spatial infill
asymptotics with OU correlation in dimension d ≤ 3, α and γ are not microer-
godic even though σ 2 is [Zhang (2004)], and the MLE of σ 2 is strongly consistent
[Ying (1991)]. Also note that the microergodicity of (γ,α) is equivalent to the
microergodicity of both γ and α.

2.1. Theory of equivalent Gaussian measures. We recall here the theory of
equivalent Gaussian measures, which we apply to Ornstein–Uhlenbeck tree mod-
els in the next section. We consider two Gaussian measures Pk (k = 1,2) on the
σ -algebra U generated by a sequence of random variables (Yj )

∞
j=1, a linearly

independent basis for both H1 and H2 where Hk is the Hilbert space generated
by (Yj )

∞
j=1 with linear product: 〈Yj1, Yj2〉 = covk(Yj1Yj2) for k = 1 or 2. The en-

tropy distance between equivalent Gaussian measures P1 and P2 on the σ -algebra
U ′ ⊂ U is defined as twice the symmetrized Kullback–Leibler divergence,

r
(
U ′) = −

[
EP1 log

P2(dw)

P1(dw)
+ EP2 log

P1(dw)

P2(dw)

]
.

We will use the following properties proved in Ibragimov and Rozanov (1978):

r
(
U ′) ≤ r

(
U ′′) for U ′ ⊂ U ′′.(3)

Consider nonsingular Gaussian measures P1 and P2 on the σ -algebra Un gener-
ated by (Yj )

n
j=1. Let rn = r(Un). Then (rn)

∞
n=1 is nondecreasing and

P1 ⊥P2 ⇔ rn → ∞ and P1 ≡ P2 ⇔ rn → r < ∞.(4)

We now recall how to calculate rn as described in Stein (1999); see also Ibragimov
and Rozanov (1978). Consider a new basis (Y1,n, . . . , Yn,n) obtained by linearly
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transforming (Y1, . . . , Yn) such that this new basis is centered orthonormal un-
der P1 : E1Yj,n = 0 and cov1(Yj1,n, Yj2,n) = δj1,j2 is 1 if j1 = j2 and is 0 oth-
erwise, and such that cov2(Yj1,n, Yj2,n) = σ 2

j1,n
δj1,j2 for some σ 2

j1,n
. Also set

mj,n = E2Yj,n. Then

rn = 1

2

n∑
j=1

(
σ 2

j,n + 1/σ 2
j,n − 2 + m2

j,n + m2
j,n/σ

2
j,n

)
.

Radhakrishna Rao and Varadarajan (1963) take a similar approach using the
Hellinger distance instead of the entropy distance rn. They show that the following
condition is sufficient for the orthogonality of P1 and P2:

lim
n→∞

n∑
j=1

(
σ 2

j,n − 1
)2 = ∞.(5)

2.2. Microergodicity of Ornstein–Uhlenbeck tree models. We say that T is a
subtree of tree T

′ if we can get T by removing some branches from T
′. We con-

sider a nested sequence of trees (Tn)
∞
n=1 such that Tn−1 is a subtree of Tn for

every n. This is to ensure that the observations (Yj )
n
j=1 at the tips of Tn provide a

well-defined infinite sequence (Yn)n≥1. One essential assumption is that trees are
ultrametric, that is, the distance from the root to leaf nodes of tree Tn is assumed
to be the same for all tips. This is equivalent to saying that the tree distances be-
tween tips define an ultrametric metric. This assumption comes in naturally. If
the distance from the root to all tips is constant, models (1) and (2) predict equal
variances and equal means at the tips, which are reasonable assumptions. Ultra-
metric trees arise in most applications when tips are extant species sampled at the
present time, and branch lengths represent time calibrated in millions of years, for
instance. Define I Tn as the set of all internal nodes of tree Tn (including the root)
and I = ⋃∞

n=1 I Tn . Let (Ti)i∈I be the sequence of node ages. The age of a node
is the distance from the node to any of its descendant tip. This is well defined on
ultrametric trees. I Tn is a subset of I Tn+1 so (Ti)i∈I is a well-defined infinite
sequence. In most of what follows, we will assume that:

(C) (Tn)
∞
n=1 is a nested sequence of ultrametric trees and the sequence of inter-

nal node ages (Ti)i∈I is bounded.

Without loss of generality, we can assume that all trees are bifurcating because
a multifurcating tree can be made into a bifurcating tree with some zero branch
lengths. With this assumption I Tn contains n−1 internal nodes. This is equivalent
to counting nodes and their ages with multiplicity, where an internal node having
d descendants contributes his age d − 1 times.

Theorems 2.1 and 2.4 below state general results on the microergodicity of
parameters in OU tree models. Our main tool is the equivalence (4) applied to
rn = r(Tn), the entropy distance between Pθ1 and Pθ2 for two parameter sets
θk = (μk,αk, γk), k = 1,2, on the σ -algebra generated by (Yj )

n
j=1.
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2.3. Microergodicity of the mean μ.

THEOREM 2.1. Under OU model (1) and condition (C), μ is not microer-
godic.

The theorem follows directly from (4) and the boundedness of (Ti)i∈I once the
following upper bound is established:

r(T) ≤ (μ1 − μ2)
2/

(
γ1e

−2α1T
)
,(6)

if α1 = α2 and γ1 = γ2, where T is the age of the root of T (Appendix B.2). One
consequence is that there is no consistent estimator for μ. To illustrate this, we
consider the MLE of μ and provide a lower bound for its variance. We let t be
the length of the shortest branch stemming from the root and k the number of
daughters of the root (Figure 3).

THEOREM 2.2. Assume OU model (1) on an ultrametric tree. Let μ̂ be the
MLE of μ conditional on some possibly wrong value α∗ of α. Then

var(μ̂) ≥ σ 2

2α
e−2αT

(
1 + e2αt − 1

k

)
.(7)

The equality holds if and only if α is known (α∗ = α) and the tree is a star tree with
the root as unique internal node, in which case k = n and t = T . If T is bounded
as the sample size n grows and α > 0, then μ̂ is not consistent.

The second part of the theorem follows directly from the lower bound (7). Note
that μ̂ is Gaussian with mean μ. Therefore, the lower bound of its variance implies
that μ̂ cannot converge to μ. Hence, it is not consistent.

The assumption that α > 0 is trivial. When α = 0, the OU process reduces to
a BM where μ has no influence on the process. In that case, μ is no longer a
parameter in the model. As expected, the lower bound on the variance of μ̂ is
heavily influenced by the actual value of the correlation parameter α. The precision

FIG. 3. Ultrametric tree with all tips at equal distance T from the root. The root has k = 3 children
here, and t is the minimum distance from the root to its children.
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FIG. 4. Example of a nonultrametric tree on which μ can be consistently estimated.

of μ̂ is weakest when autocorrelation is strong, that is, when α is small, for a given
value of γ = σ 2/(2α).

The ultrametric assumption is necessary. If the tree is not ultrametric, model
(2) predicts unequal variances and most importantly unequal means at the tips.
Such trees can carry more information about μ. Consider, for instance, the star
tree in Figure 4, in which all tips are directly connected to the root, by a branch
of length t1 for half of the tips and of length t2 for the other half of the tips. If
t1 �= t2 the variance of μ̂ goes to 0 as the sample size grows (see Appendix B.2),
thus providing a counterexample to Theorem 2.2 when the ultrametric assumption
is violated.

PROOF OF THEOREM 2.2. To prove (7), we note that μ̂ = (1tV −1
α∗ 1)−1 ×

1tV −1
α∗ Y , where 1 is a vector of ones. This estimator is unbiased and has variance

σ 2

2α
(1tV −1

α 1)−1 when α∗ = α is known. Its variance is larger when α is unknown,
by the Gauss–Markov theorem. For this reason, we only need to prove the follow-
ing lemma (which is done in Appendix B.2). �

LEMMA 2.3. For all α > 0, (1tV −1
α 1)−1 ≥ e−2αT + 1

k
(e−2α(T −t) − e−2αT )

with equality if the tree is a star with k branches stemming from the root.

Theorem 2.2 can be applied to any tree growth asymptotic framework, so long as
T is bounded. For instance, both conditions are met almost surely with k = 2 under
the coalescent model [Kingman (1982a, 1982b)]. Even if these conditions do not
hold asymptotically, (7) provides a finite-sample upper bound on the estimator’s
precision. This inequality can be used, for instance, under the Yule model of tree
growth [Aldous (2001), Yule (1925)] if we let both T and n increase indefinitely.

2.4. Microergodicity of the autocorrelation parameter (γ,α).

THEOREM 2.4. Under OU model (1) and condition (C):

(a) Let t0 be a limit point of (Ti)i∈I . Then ft0(γ,α) is microergodic, where

ft (γ,α) =
{

γ
(
1 − e−2αt

)
, t > 0,

γα, t = 0.
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(b) If
∑

i∈I (Ti − t)2 = ∞ for all t ≥ 0, then (γ,α) is microergodic. Note that
this condition is satisfied if (Ti)i∈I has 2 or more limit points.

PROOF. The key idea is to reduce the tree for a lower bound of r(Tn). We will
consider subtrees that provide independent contrasts, sufficient to ensure microer-
godicity. Our constructive proof could be used to construct estimators based on a
restricted set of contrasts, but we do not pursue this here. Let i ∈ I be an arbi-
trary internal node, and Y i

1 , Y i
2 be two leaves having i as their most recent common

ancestor. Let pi be the path connecting Y i
1 and Y i

2 . We define C
pi

i = Y i
1 − Y i

2 as
a contrast with respect to internal node i and path pi . For convenience, we define
T

C
pi
i

= Ti . The following lemma is proved in Appendix B.2.

LEMMA 2.5. We have that C
pi

i ∼ N(0,2γ (1 − e−2αTi )). Also, C
pi1
i1

and C
pi2
i2

are independent if their paths pi1 and pi2 do not intersect.

PROOF OF PART (a). We denote I T

S = {i :Ti ∈ S, i ∈ I T} the set of internal
nodes of T whose ages lie in S. Let (γ1, α1) and (γ2, α2) such that ft0(γ1, α1) �=
ft0(γ2, α2). Denote

g(t) = 1

2

(
ft (γ1, α1)

ft (γ2, α2)
+ ft (γ2, α2)

ft (γ1, α1)
− 2

)
, t ∈ [

0, T ∗]
,

and let δ = g(t0)/2 > 0. Note that g is continuous at t0, so there exists εδ > 0 such
that g(t) ≥ g(t0) − δ for all t satisfying |t − t0| < εδ . We now use Lemma B.1
(in Appendix B.1) to select a large set Cn of independent contrasts with respect to
internal nodes whose ages are in (t0 −εδ, t0 +εδ) such that |Cn| ≥ 1

2 |I Tn

(t0−εδ,t0+εδ)
|.

Let r(Cn) be the entropy distance between Pθ1 and Pθ2 on the σ -algebra generated
by Cn. By (3) and direct calculation,

r(Tn) ≥ r(Cn) = ∑
C∈Cn

g(TC) ≥ |Cn|(g(t0) − δ
) = δ|Cn| ≥ δ

2

∣∣I Tn

(t0−εδ,t0+εδ)

∣∣.
Clearly |I Tn

(t0−εδ,t0+εδ)
| → ∞ if t0 is a limit point of (Ti)i∈I . Therefore ft0(γ,α)

is microergodic.

PROOF OF PART (b). First, we consider the case when (Ti)i∈I has two dif-
ferent limit points t1 and t2. By part (a), ft1(γ,α) and ft2(γ,α) are microergodic.
So, (γ,α) is microergodic by the following lemma (proved in Appendix B.2):

LEMMA 2.6. Assume there exists t1 �= t2 such that both ft1(γ1, α1) =
ft1(γ2, α2) and ft2(γ1, α1) = ft2(γ2, α2). Then (γ1, α1) = (γ2, α2).
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We now turn to the case when (Ti)i∈I has only one limit point t0. We al-
ready know that ft0(γ,α) is microergodic, so we may assume that ft0(γ1, α1) =
ft0(γ2, α2), that is, g(t0) = 0. Denote I(t0,∞) = ⋃∞

n=1 I Tn

(t0,∞) and I[0,t0] =⋃∞
n=1 I Tn[0,t0]. The condition in (b) implies that

∑
i∈I(t0,∞)

(Ti − t0)
2 = ∞ or∑

i∈I[0,t0](Ti − t0)
2 = ∞ or both. We now use Lemma B.2 (Appendix B.1) to se-

lect, for each n, a large set Cn of independent contrasts such that
limn

∑
C∈Cn

(TC − t0)
2 = ∞. Again, by (3) we have r(Tn) ≥ r(Cn) =∑

C∈Cn
g(TC), which we approximate below. If t0 = 0, by Taylor expansion there

exists c(α,T ∗) such that |e−2αx − 1 + 2αx − 2α2x2 + 4
3α3x3| ≤ c(α,T ∗)x4 for

every x satisfying |x| < T ∗. Similarly, if t0 > 0 there exists c(α,T ∗) such that
|e−2αx − 1 + 2αe−2αt0(x − t0) − 2α2e−2αt0(x − t0)

2| ≤ c(α,T ∗)x3 for every x

satisfying |x − t0| < T ∗. In both cases, we can then write

r(Cn) = 1

2

∑
C∈Cn

(
ht0(α1) − ht0(α2)

)2
(TC − t0)

2 + o(TC − t0)
2,

where o(TC − t0)
2 is uniform in n, h0(α) = α and ht (α) = 2αe−2αt/(1 − e−2αt )

for t > 0. Therefore r(Cn) → ∞ unless (γ1, α1) = (γ2, α2). Hence (γ,α) is mi-
croergodic. �

Theorem 2.4 part (b) gives a very general sufficient condition ensuring the mi-
croergodicity of (γ,α). Unfortunately, it is not a necessary condition in general.
To prove so, we consider the particular case when Tn is a symmetric tree, that is,
a tree in which each internal node is the parent of subtrees of identical shapes (see
Figure 5). We give below 3 examples in which (Ti)i∈I has only one limit point t0,
and the condition in Theorem 2.4 part (b) is violated. Two examples illustrate the
nonmicroergodicity of (γ,α), one in which t0 > 0 and one in which t0 = 0. In the
last example the condition in (b) is violated, yet (γ,α) is microergodic.

THEOREM 2.7. Consider the OU model (1) on symmetric trees with m lev-
els and whose internal nodes at level i have di descendants along branches of
length ti .

(a) Increasing node degrees. Consider a nested sequence of symmetric trees with
a fixed number of levels m and fixed branch lengths t1, t2, . . . , tm. Assume that
the number of descendants dm at the last level goes to infinity, but all other
d1, . . . , dm−1 are fixed, so that tm > 0 is the only limit point of (Ti)i∈I . Then
(γ,α) is not microergodic.

(b) Dense sampling near the tips, or at distance t0 from the tips. Consider a nested
sequence of symmetric trees with a growing number of levels m, dk = d de-
scendants at all levels k ≥ 1 and such that the age of nodes at level k is
uk = qk + t0 for some 0 < q < 1. Suppose that dq2 < 1, to guarantee the
violation of the condition in Theorem 2.4(b):
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FIG. 5. Symmetric trees with m = 4 levels.

(i) If t0 = 0, then (γ,α) is not microergodic.
(ii) If t0 > 0, then (γ,α) is microergodic.

We discuss here the key ingredients of the proof. The technical details are
provided in Appendix B.2. Note that node ages are counted with multiplicity.
Here ui is the age of the d1 · · ·di−1 internal nodes at level i, with multiplicity
di − 1 for each. Hence in part (a) um = tm is the only limit point. For a sym-
metric tree, the eigenvalues of the covariance matrix are γ λk(α) with multiplic-
ity d1 · · ·dk−1(dk − 1), where λk(α) = ∑m

i=k di+1 · · ·dm(e−2αui+1 − e−2αui ) (Ap-
pendix A). In (a), only the multiplicity of the smallest eigenvalue increases to in-
finity when the tree grows. If (γ1, α1) and (γ2, α2) share the same smallest eigen-
value, that is, if γ1λm(α1) = γ2λm(α2), then insufficient information is gained to
distinguish between P(γ1,α1) and P(γ2,α2) when the tree grows. In (b), the eigen-
value with the largest multiplicity is also the smallest, γ λm(α) = γ (1 − e−2αum).
It converges to 0 when t0 = 0 and to γ (1 − e−2αt0) > 0 when t0 > 0, yielding too
little information in (i) when t0 = 0, but more information to distinguish between
P(γ1,α1) and P(γ2,α2) in (ii) when t0 > 0.

3. Different convergence rates of ML estimators for different microergodic
parameters. Section 2 suggests that the different parameters may not be esti-
mated at the same rate. Indeed, if t0 is the only limit point of internal node ages,
then Theorem 2.4 shows that ft0(γ,α) is microergodic regardless of whether con-
dition in (b) is satisfied or not. Therefore, the ML or REML estimate of ft0(γ,α)

is expected to converge to the true value at a faster rate than the estimate of other
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parameters. In particular, for t0 = 0 the ML estimate of σ 2 is expected to converge
at a faster rate than that of α, which might not even be consistent. Here we identify
cases with unequal convergence rates both theoretically and empirically.

3.1. Faster convergence of the REML estimator for ft0(γ,α) than for α and γ .
We focus here on the symmetric tree growth model from Theorem 2.7 part (a)
with nodes of increasing degrees, but we consider here the case when ñ = n/dm =
d1 · · ·dm−1 increases indefinitely to ensure the microergodicity of γ and α. We
show that the REML estimator of (γ,α) is consistent and asymptotic normally
distributed. We further show that ftm(γ,α), which is microergodic regardless of
the growth of ñ, is estimated at a faster rate than α or γ , which have stronger
requirements to be microergodic.

THEOREM 3.1. Consider the asymptotic growth model from above with OU
model (1). Denote ν = γ (1 − e−2αtm). Then the REML estimator (ν̂, α̂) is consis-
tent and ( √

n(ν̂ − ν)√
ñ(α̂ − α)

)
d→ N

(
0,

(
8ν2 0
0 vα

))
.

Moreover, if n/ñ = dm converges to infinity, then
√

ñ(γ̂ − γ, α̂ − α)t converges to
a centered normal distribution and the asymptotic correlation between log γ̂ and
log(1 − e−2α̂tm) is −1.

The proof in Appendix B.3 gives the expression for vα . With increasing node
degrees at m levels, the age of nodes at the last level tm is the only limit point of
(Ti)i∈I if ñ is bounded. The growth of ñ ensures at least 2 limit points and the con-
sistency of all parameters. Our results show that the rate of convergence is ñ−1/2

for both α̂ and γ̂ . However, only one limit point (tm) is required for the consistent
estimation of ν = ftm(γ,α), which is microergodic regardless of ñ. Accordingly,
the convergence rate of ν̂ is n−1/2, which can be much faster than ñ−1/2.

3.2. Simulations on a very large real tree. In this section we use simulations
to investigate the properties of the MLE of the OU parameters on a real tree, com-
prising 4507 mammal species from Bininda-Emonds et al. (2007). Figure 6 shows
the distribution of node ages for this tree, and for a symmetric tree with dense
sampling near the tips described in Theorem 2.7(b), on which α and γ are not
microergodic. Both distributions show a high density of very young nodes. Under
the symmetric tree asymptotics with 0 as the only limit point, σ 2 is microergodic
while (γ,α) might not be. Note that this is also the behavior under spatial infill
asymptotics in dimension d ≤ 3. For real trees like this mammal tree, therefore,
we expect the MLE of σ 2 to converge quickly, and the MLE of α to converge
more slowly or not at all. For various sample sizes from 10 to 4507 (full tree), we
simulated data from the OU model with μ = 0, γ = 1 and α = 0.1, so σ 2 = 0.2.



970 L. S. T. HO AND C. ANÉ

FIG. 6. Distribution of node ages in the mammal tree (top) and in a symmetric tree (bottom) of
similar size n = 212 = 4096 with d = 2 at each level, levels being added near the tips at ages qm.
The value q = 0.7 ≈ 2−1/2 is the largest at which α and γ are not microergodic.

We created 20 sequences of six nested trees from 4507 to 10 leaves by randomly
selecting subsets of leaves, conditional on the root being the only common ances-
tor of the selected leaves to guarantee that all trees have the same height. Trees
were all rescaled by the same factor to have height 1. For each tree, we simulated
100 data sets and computed the MLEs μ̂, γ̂ and α̂. As expected, these simulations
show that σ̂ 2 converges quickly to the true value while α̂ and γ̂ do not (Figure 7).
A strong bias is apparent for γ̂ and α̂ even at the largest sample size (4507). More-
over, the correlation between log α̂ and log γ̂ converges very fast to −1 (Table 1).
Also, the lower bound for the variance of μ̂ is very close to the true variance (Ta-
ble 1). Therefore, this lower bound can be useful in practice at finite sample sizes.

4. Discussion. We considered an Ornstein–Uhlenbeck model of hierarchical
autocorrelation and showed that the location parameter, here the mean μ, is not
microergodic. We provided the lower bound for the variance of its ML estimator.
In practice, these results could have important implications when scientists use OU
hierarchical autocorrelation to detect a location shift, that is, a change in μ along
a branch of the tree [e.g., Butler and King (2004), Lavin et al. (2008), Monteiro
and Nogueira (2011)]. Often times, the OU model is used with multiple adaptive
optima whose placements on the tree are not fully known. Our results suggest that
the power to detect such shifts may be low and mostly influenced by the effect size
rather than by the sample size. An open question is whether the location of such
shifts on the tree can be identified consistently with a growing number of tips.

We provide a general sufficient condition for the covariance parameters to be
microergodic. Properties of infill asymptotics were recovered when 0 is the only
limit point of internal node ages, that is, when new nodes were added closer and
closer to already existing tips. In this case, σ 2 is necessarily microergodic. This
asymptotics can be appropriate for coalescent trees or when many species diverged
recently from a moderate number of genera. We assume here the idealized situa-
tion with no error in the tree structure (topology and branch lengths) and no data
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FIG. 7. Violin plots showing the distribution of the MLE of μ, γ , α and σ 2 = 2γα on trees sub-
sampled from the mammal phylogeny in Bininda-Emonds et al. (2007) with 2000 simulations at each
sample size. The true values were μ = 0, γ = 1, α = 0.1 and σ 2 = 0.2.

TABLE 1
Correlation between log α̂ and log γ̂ and variance of μ̂ from simulations. Last line: value of

theoretical bound (7) for var(μ̂), averaged over 20 simulation subtrees

Sample size 10 50 100 500 1000 4507

cor(log α̂, log γ̂ ) −0.44 −0.927 −0.9674 −0.9938 −0.9971 −0.9993
var(μ̂) 0.9007 0.8455 0.8499 0.8853 0.8789 0.8851
Lower bound (7) 0.8517 0.8472 0.8469 0.8468 0.8468 0.8468
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measurement error, leaving this for future work. With measurement error, the co-
variance matrix becomes γ Vα + σ 2

e I. The error variance σ 2
e is called a nugget

effect in spatial statistics. Measurement error with tree-structured correlation is
rarely accounted for in applications; but see Ives, Midford and Garland (2007).

For a general tree growth model, by using independent contrasts we can con-
struct a consistent estimator for ft0(γ,α) where t0 is any limit point of (Ti)i∈I .
If (Ti)i∈I has at least two limit points, then by Lemma 2.6, we can construct a
consistent estimator for (γ,α). This proposed estimator is based on a restricted set
of well-chosen contrasts, but it uses fewer contrasts and thus less information than
the conventional REML estimator. We conjecture that if (γ,α) is microergodic,
the REML estimator of (γ,α) is also consistent and asymptotically normal.

The microergodicity results suggest that parameters may not all be estimated at
the same rate. Indeed, we show that the REML of α converges at a slower rate than
n−1/2 under a symmetric tree asymptotic framework. Similarly, our simulations
suggest that the mammalian tree with 4507 species shares features similar to those
under infill asymptotics (in low dimension) and under dense sampling near the tips
of symmetric trees, where σ 2 can be consistently estimated but α and γ cannot.
On the real tree, the MLE of σ 2 converges quickly to the true value while that of α

and γ do not. This behavior may explain a lack of power to discriminate between
a model of neutral evolution (α = 0) versus a model with natural selection (α �= 0),
as observed in Cooper and Purvis (2010). It would be interesting to know if most
real trees share the “dense tip” asymptotic behavior, or how frequently a “dense
root” asymptotic is applicable instead. Our results point to the distribution on node
ages as indicative of the most appropriate asymptotic regime.

APPENDIX A: SPECTRAL DECOMPOSITION OF THE OU COVARIANCE
MATRIX ON SYMMETRIC TREES

We consider here symmetric trees (Figure 5) with m levels of internal nodes,
the root being at level 1. Each node at level k is connected to dk ≥ 2 children by
branches of length tk . The age of nodes at level k is then uk = tk + · · · + tm. Under
the OU model (1), the correlation matrix Vα is identical to that obtained under
a BM model along a tree with an extra branch extending from the root and with
transformed branch lengths tBM,

tBM
k (α) =

⎧⎨
⎩

1 − e−2αtm, for k = m,
e−2αuk+1 − e−2αuk , 1 ≤ k ≤ m − 1,
e−2αu1, k = 0 (extra root branch).

Therefore, we can derive the eigen-decomposition of Vα(t) = VBM
α (tBM) as done

in Ané (2008). The eigenvalues, from greatest to smallest, are

λk = n

m∑
i=k

tBM
i (α)

d1 · · ·di

=
m∑

i=k

di+1 · · ·dm

(
e−2αui+1 − e−2αui

)
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with multiplicity d1 · · ·dk−1(dk − 1), for k = 0, . . . ,m and um+1 set to 0 and u0
to ∞. Furthermore, Ané (2008) showed that the eigenvectors of VBM

α are indepen-
dent of the tree’s branch lengths, which implies here that the eigenvectors of Vα

are independent of α. Each eigenvector corresponding to λk(α) represents a con-
trast between the descendants of a node at level k. One exception is the eigenvector
associated with the extra root branch and largest eigenvalue λ0. This eigenvector
is 1 and has multiplicity 1.

APPENDIX B: SUPPORTING LEMMAS AND TECHNICAL PROOFS

B.1. Procedures for choosing independent contrasts.

LEMMA B.1. Let T be an ultrametric tree. For every a < b, we can choose a
set of independent contrasts C with respect to some of the internal nodes in I T

(a,b)

such that |C | ≥ 1
2 |I T

(a,b)|.
PROOF. We choose contrasts as follows, starting with C = ∅ and T0 = T.

At step n, we choose an internal node in ∈ I
Tn−1
(a,b) of minimum age, and a path

pin connecting any two tips having in as their common ancestor. We update C =
C ∪ {Cpin

in
} and obtain tree Tn from Tn−1 by dropping all descendants of in. We

stop when I Tn

(a,b) = ∅. The procedure guarantees that the paths do not intersect,

hence the contrasts are independent. Furthermore, I Tn

(a,b) = I
Tn−1
(a,b) \ {in, i ′n} where

i′n is the parent of in, so |C | ≥ |I T

(a,b)|/2. �

LEMMA B.2. Let T be an ultrametric tree of height T . For all t ∈ [0, T ]:
(a) There exists a set of independent contrasts C with respect to nodes in I T[0,t]

such that
∑

C∈C (TC − t)2 ≥ 1
2

∑
i∈I T[0,t]

(Ti − t)2.

(b) There exists a set of independent contrasts C with respect to nodes in I T

(t,∞)

such that
∑

C∈C (TC − t)2 ≥ 1
4 [(T − t)2 + ∑

i∈I T

(t,∞)
(Ti − t)2].

Proof of Lemma B.2. (a) The procedure in the proof of Lemma B.1 gives us a
desired set of contrasts. Indeed, let (ik)

m
k=1 be the chosen set of nodes and (i ′k)mk=1

be their parents. Then I T[0,t] ⊂ ⋃m
k=1{ik, i ′k}, hence

∑
i∈I T[0,t]

(Ti − t)2 ≤
m∑

k=1

(Tik − t)2 + (Ti′k − t)2 ≤ 2
m∑

k=1

(Tik − t)2 = 2
∑
C∈C

(TC − t)2.

(b) Contrasts are chosen by induction, starting with C = ∅. Let rT be the root

of T. If rT /∈ I T

(t,T ], then we stop; else we update C = C ∪ {CpT
r

rT
} where the path

pT
r is chosen carefully as follows. From each child of the root, the path descends

toward the tips. Each time an internal node is encountered, a decision needs to be
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FIG. 8. Recursive construction of independent contrasts, taken with respect to the root at each step.

made to either go left or right. Of the two children of the internal node, the path is
connected to the youngest (Figure 8). We then remove from T the path pT

r and the
edges connected to it. What is left is a forest, a set of subtrees of T, one which we
repeat the procedure, recursively extracting one path and its corresponding contrast
from each subtree.

We now prove by induction that this procedure gives us a desired set of con-
trasts. This is easy to see for ≤ 3 tips. Assume that it is true for every tree with
≤m tips, and that T has m + 1 tips. Let i1 and i2 be the two children of rT. Let
(Tk)

l
k=1 be the subtrees obtained after removing pT

r and the edges connected to it,
and such that rTk ∈ I T

(t,T ]. Let sk be the sibling of rTk in T (sk could be a leaf).
By construction, Tsk ≤ TrTk . Let Ck be the set of contrasts obtained from Tk . We

have I T

(t,T ] ⊂ {rT, i1, i2}⋃l
k=1 I Tk

(t,T ] ∪ {sk} and C = {rT}⋃l
k=1 Ck . Therefore,

4
∑
C∈C

(TC − t)2 = 4(TrT − t)2 + 4
l∑

k=1

∑
C∈Ck

(TC − t)2

≥ 2(TrT − t)2 + (
max{Ti1, t} − t

)2 + (
max{Ti2, t} − t

)2

+
l∑

k=1

{
(TrTk − t)2 + ∑

i∈I
Tk
(t,T ]

(Ti − t)2
}

≥ (TrT − t)2 + ∑
i∈I T

(t,T ]

(Ti − t)2.

B.2. Technical proofs for Section 2.

Counter example for Theorem 2.2 on nonultrametric trees. Let a = e−αt1 and
b = e−αt2 . It is easy to see that Vα can be expressed in terms of the n/2 × n/2
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identity matrix I as Vα = diag((1 − a2)I, (1 − b2)I) + (a1t , b1t )t (a1t , b1t ).
We then get V−1

α using Woodbury’s formula, then 1tV−1
α 1 = n( 1

1−a2 + 1
1−b2 +

n(a−b)2

(1−a2)(1−b2)
)/(1 + na2

1−a2 + nb2

1−b2 ). If t1 �= t2, then a �= b and var(μ̂) = (1tV −1
α 1)−1

goes to 0 as claimed.

Proof of Lemma 2.3. We will first prove Vα ≥ e−2αT Jn by induction on
the number of tips, where Jn = 11t . Clearly, this is true for trees with a single
tip. Now consider a tree with n tips, and consider its k subtrees obtained by re-
moving the k branches stemming from the root. Let T1, . . . , Tk be the heights of
these subtrees, that is, the age of their roots. Their number of tips n1, . . . , nk is at
most n − 1. So by induction, the covariance matrices V(1)

α , . . . ,V(k)
α associated

with these subtrees must satisfy V(i)
α ≥ e−2αTi Jni

. Therefore Vα − e−2αT Jn ≥
diag(V(i)

α − e−2αTi Jni
) ≥ 0 is true for all trees. Now we use the definition of

t and go a step further using that V(i)
α − e−2αT Jni

≥ (e−2αTi − e−2αT )Jni
≥

(e−2α(T −t) − e−2αT )Jni
for all i = 1, . . . , k. This implies that Vα − e−2αT Jn ≥

(e−2α(T −t) − e−2αT )diag(Jn1, . . . ,Jnk
) ≥ 1

k
(e−2α(T −t) − e−2αT )Jn, from which

Lemma 2.3 follows easily.

Proof of upper bound (6). Assume here that α1 = α2 and γ1 = γ2 = γ . Since
(Yi)

n
i=1 have the same covariance matrix γ V under both distributions Pθ1 and Pθ2 ,

it is easy to see that r(T) = (μ1 −μ2)
21tV−11/γ [Hershey and Olsen (2007)]. The

bound r(T) ≤ (μ1 − μ2)
2/(γ e−2αT ), where T is the age of the root, then follows

from Lemma 2.3.

Proof of Lemma 2.5. First, var(Cpi

i ) = var(Y i
1) + var(Y i

2) − 2 cov(Y i
1, Y i

2) =
2γ −2γ e−2αTi . Second, consider two paths pi1 and pi2 that do not intersect. Then,
the most recent common ancestor of Y

i1
j and Y

i2
k (j, k ∈ {1,2}) is the most recent

common ancestor of internal nodes i1 and i2. Therefore, the distance from Y
i1
1

to Y
i2
1 equals the distance from Y

i1
2 to Y

i2
1 . Hence cov(Y

i1
1 , Y

i2
1 ) = cov(Y

i1
2 , Y

i2
1 ).

Similarly, cov(Y
i1
1 , Y

i2
2 ) = cov(Y

i1
2 , Y

i2
2 ). Therefore cov(C

pi

i1
,C

pi

i2
) = cov(Y

i1
1 −

Y
i1
2 , Y

i2
1 − Y

i2
2 ) = 0.

Proof of Lemma 2.6. Define h1(x) = (1 − e−2xα2)/(1 − e−2xα1), and assume
t1 �= 0 and t2 �= 0. From the system of equations, we have γ1/γ2 = h1(t1) = h1(t2).
Now (logh1)

′(x)/x = h2(xα2) − h2(xα1) where h2(x) = xe−x/(1 − e−x) is
monotone on (0,∞). So α1 = α2, and γ1 = γ2. If t2 = 0, we make a similar argu-
ment because h3(x) = x/(1 − e−2xt2) is monotone on (0,∞).

Proof of Theorem 2.7 part (a). Under the symmetric tree growth model,

r(T) = 1

2

m∑
k=1

d1 · · ·dk−1(dk − 1)

(
γ2λk(α2)

γ1λk(α1)
+ γ1λk(α1)

γ2λk(α2)
− 2

)
+

(
m2

1,n + m2
1,n

σ 2
1,n

)
.



976 L. S. T. HO AND C. ANÉ

To show this, we consider h = (Yj,n)j≤n = γ
−1/2
1 �−1/2(α1)P−1(Y − μ11),

where �(α) = diag(λk(α)) contains the eigenvalues λk with their multiplici-
ties, and P contains the eigenvectors of Vα , which do not depend of α (Ap-
pendix A). Then h is orthonormal under Pθ1 , and orthogonal under Pθ2 with
variances (γ2/γ1)λk(α2)/λk(α1) with multiplicities d1 · · ·dk−1(dk − 1). Further-
more, E2h = (μ2 − μ1)γ

−1/2
1 �−1/2(α1)P−11 so that mj,n = 0 if j ≥ 2 and

m1,n = (μ2 − μ1)/
√

nγ1λ0(α1), from which r(T) follows.
With increasing node degrees at m levels, it is easy to see that the ratio

λk(α1)/λk(α2) converges to a positive limit for all k ≤ m. Under the assumption
that dk is fixed for k < m, the multiplicity of λk(α) is constant as n grows, except
for k = m. r(Tm) is then expressed as a finite sum where all terms are conver-
gent except for the last term (k = m) associated with the smallest eigenvalue λm =
1 − e−2αtm . This term is bounded if and only if γ1(1 − e−2α1tm) = γ2(1 − e−2α2tm),
in which case r(Tn) converges to a finite value. Otherwise, r(Tn) goes to infinity.
Hence Pθ1 and Pθ2 are equivalent if and only if γ1(1 − e−2α1tm) = γ2(1 − e−2α2tm),
which completes the proof.

Proof of Theorem 2.7 part (b). We denote here λk = λk,m to emphasize the de-
pendence of m. We first consider case (i) when t0 = 0. When dk = d and uk = qk ,
the eigenvalues simplify to

λk,m(α)

dm−k
=

m−k−1∑
j=0

e−2αqk+1+j − e−2αqk+j

dj
+ 1 − e−2αqm

dm−k
.(8)

It is then easy to see that for all α ≥ 0 and k, λk,m(α)/dm−k converges to some
finite function of α and k. To prove the convergence of r(Tm) we will need the
following lemma, which is proved later.

LEMMA B.3. Let γ1α1 = γ2α2, that is, σ 2
1 = σ 2

2 . Then there exists K , c and
C which depend only on α1, α2, d and q such that for all m > k ≥ K ,

cq2k ≤ γ2λk,m(α2)

γ1λk,m(α1)
+ γ1λk,m(α1)

γ2λk,m(α2)
− 2 ≤ Cq2k.

Because γα is microergodic [Theorem 2.4 part (a)], we can assume γ1α1 =
γ2α2. Lemma B.3 implies that the first sum in the expression of r(Tm) [from the
proof of part (a)] is bounded above and below by

∑m
k=K (dq2)k up to some mul-

tiplicative constant, and so converges to a finite limit because dq2 < 1. The last
term with m2

1,n is always bounded as shown in the proof of (6). This completes the
proof.

We now turn to case (ii) with t0 > 0. To prove that (γ,α) is microergodic, we
will show that Pθ1 ⊥Pθ2 under the restriction γ1(1 − e−2tα1) = γ2(1 − e−2tα2). To
do so, we only need to check the sufficient condition in (5). Note that there exits
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w > 0 such that dwq ≥ 1. Denote km = [m/(w + 1)] where [x] is a largest integer
smaller than x. The condition in (5), denoted by zm, can be written as

zm =
m∑

k=1

dk−1(d − 1)

(
γ1λk,m(α1)

γ2λk,m(α2)
− 1

)2

≥ dkm−1
(

γ1λkm,m(α1)

γ2λkm,m(α2)
− 1

)2

≥ dkm−1
(

(ht0(α1) − ht0(α2))fm,1 + Oα1,α2,t0(1)qkm

1 + ht0(α2)fm,1 + Oα2,t0(1)qkm

)2

,

where ht (α) = 2αe−2αt

1−e−2αt and fm,1(q) = ∑m−k−1
j=0 (

q
d
)j + 1

1−q
(
q
d
)m−k . If (γ1, α1) �=

(γ2, α2), then zm → ∞ because ht (α) is monotone in α.

Proof of Lemma B.3. We first note that for every a > 0 there exists xa > 0
such that e−ax − (1 − ax + a2x2/2) = O(a3x3) uniformly for all x in [0, xa].
Therefore there exists K = K(α,q) such that e−2αqk+j+1 −e−2αqk+j −2αqk+j (1−
q) + 2α2q2k+2j (1 − q2) = q3k+3jOα(1) where the Oα(1) term is bounded uni-
formly in k + j ≥ K . We can now combine this with (8), λk,m(α)/dm−k −
2α(1 − q)qkf1 + 2α2(1 − q2)q2kf2 = q3kf3Oα(1) where f1, f2 and f3 only
depend on q, d,m − k and are defined by f1 = fm,1(q), f2 = fm,1(q

2) and
f3 = fm,1(q

3). Because the f values are bounded as m − k grows, we get
λk,m(α1)

λk.m(α2)
= α1

α2
(1 + (α2 − α1)(1 + q)qkf2/f1) + q2kO(1) where the O(1) term

is bounded uniformly in m > k ≥ K , and the same formula holds when α2 and
α1 are switched. Lemma B.3 then follows immediately because we assume that
γ1α1 = γ2α2.

B.3. Technical proofs for Section 3.

Criterion for the consistency and asymptotic normality of REML estimators.
In Appendix A, we showed that 1 is an eigenvector of Vα for symmetric trees,
independently of α. Therefore, the REML estimator of (γ,α) based on Y is the ML
estimator of (γ,α) based on the transformed data Ỹ = P̃tY where P̃ is the matrix
of all eigenvectors but 1. Ỹ is Gaussian centered with variance �n = γ �̃ where �̃
is the diagonal matrix of all eigenvalues of Vα but λ0(α). Following Mardia and
Marshall (1984) and like Cressie and Lahiri (1993), we use a general result from
Sweeting (1980). The following conditions, C1–C2, ensure the consistency and
asymptotic normality of the ML estimator [reworded from Mardia and Marshall
(1984)]. Assume there exists nonrandom continuous symmetric matrices An(θ)

such that:

(C1) (i) As n goes to infinity A−1
n converges to 0.

(ii) A−1
n JnA−1

n converges in probability to a positive definite matrix W(θ),
where Jn is the second-order derivative of the negative log likelihood func-
tion L.
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(C2) �n is twice continuously differentiable on � with continuous second deriva-
tives.

Under these conditions, the MLE θ̂ satisfies An(θ)(θ̂ − θ)
d→ N(0,W(θ)−1).

A standard choice for An is the inverse of the square-root of the Fisher infor-
mation matrix Bn = E(Jn). Because (C1)(ii) is usually difficult to verify, Mardia
and Marshall (1984) suggest using a stronger L2-convergence condition. This ap-
proach was later taken by Cressie and Lahiri (1993, 1996). Unfortunately, their
conditions for establishing (C1) do not hold here, because the largest eigenvalues
and the ratio of the largest to the smallest eigenvalues are both of order n. In what
follows, we will check (C1) for the particular choice of An = B1/2

n and W(θ) = I
and where we replace (C1)(ii) by the stronger condition

(C1) (ii′) ∑
i,j,k,l=1,2 bkiblj tr(�n(�

−1
n )kj�n(�

−1
n )li) converges to 0, where bij is

the (i, j)-element of B−1
n , and (�−1

n )ij is the (i, j)-second order derivative

of �−1
n .

Proof of Theorem 3.1. It is convenient here to re-parametrize the model
using (ν,α). The diagonal elements in �n are νλk(α)/λm(α) with multiplicity
d1 · · ·dk−1(dk − 1). The smallest is ν (for k = m) with multiplicity n− ñ, which is
conveniently independent of α. With this parametrization, the inverse of the Fisher
information matrix is the symmetric matrix

B−1
n = 2

det Bn

⎛
⎜⎜⎜⎜⎜⎝

m−1∑
k=1

d1 · · ·dk−1(dk − 1)(�k,m − �m,m)2 ∗

−ν−1
m−1∑
k=1

d1 · · ·dk−1(dk − 1)(�k,m − �m,m) (n − 1)/ν2

⎞
⎟⎟⎟⎟⎟⎠ ,

where �k,m = λ′
k,m/λk,m, det Bn = (n − 1)2/(4ν2)varq(�K,m − �m,m) and the

variance is taken with respect to P{K = k} = qk,n = d1 · · ·dk−1(dk − 1)/(n − 1).
When the degree at the last level near the tips dm becomes large then qm,n ∼ 1, that
is, the distribution q is concentrated around the high end K = m. It is then useful
to express

det Bn = (n − ñ)(ñ − 1)

4ν2 Ep(�K,m − �m,m)2 + (ñ − 1)2

4ν2 varp(�K,m − �m,m),

where the expectation and variance are now taken with respect to P{K = k} =
pk,n = d1 · · ·dk−1(dk − 1)/(ñ − 1) for k < m, that is, pk,n = qk,n(n − 1)/(ñ − 1).
To verify conditions (C1)(i) and (ii′), we will use the following lemmas.

LEMMA B.4. �1,m < �2,m < · · · < �m,m. Moreover for any fixed T and
α > 0, �k,m and λ′′

k,m/λk,m are uniformly bounded. Specifically, |�k,m| ≤
max{2T ,1/α} and |λ′′

k,m/λk,m| ≤ 4 max{T 2, T /α}.
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Proof of Lemma B.4. Denote g(α) = b − (b + c)e−cα + ce−(b+c)α . It is easy
to see that g′ > 0 then g > 0 for all α,b, c > 0. It follows that

(a + b)e−αb − a

1 − e−αb
− (a + b + c)e−αc − (a + b)

1 − e−αc
> 0 ∀a ∈ R, α, b, c > 0.

Now let ai > 0 for i = 1, . . . , n+1 and let Ak = ∑k
i=1 ai . By applying the previous

inequality with a = An−1, b = an and c = an+1, we get that

Ane
−αAn − An−1e

−αAn−1

e−αAn−1 − e−αAn
>

An+1e
−αAn+1 − Ane

−αAn

e−αAn − e−αAn+1
.

Recall that λk,m = ∑m
i=k di+1 · · ·dm(e−2αui+1 − e−2αui ). The monotonicity of

�k,m in k follows easily from combining the inequality above with the fact
that if x1/y1 > · · · > xn/yn and if yi, ci > 0, then

∑n−1
i=1 cixi/

∑n−1
i=1 ciyi >∑n

i=1 cixi/
∑n

i=1 ciyi . The proof of the second part of Lemma B.4 is easy and
left to the reader. The following lemma results directly from Lemma B.4.

LEMMA B.5. With m fixed and parametrization (ν,α), the quantities (n −
1)

∑m
k=1 qk,n(�k,m − �m,m)2, (n − 1)

∑m
k=1 qk,n(�k,m − �m,m) and the trace of

�n(�
−1
n )kj�n(�

−1
n )li are bounded in O(ñ) uniformly on any compact subset of

{T > 0, α > 0}. Therefore, (C1)(i) and (ii′) are satisfied if det Bn is of order greater
than nñ1/2, that is, if det B−1

n = o(n−1ñ−1/2).

It is easy to see that det Bn ∼ 2nñ/(ν2vα) with vα defined later. Indeed, pk,n

converges to 0 when k < s, where s is the largest level ≤ m − 1 such that
ds goes to infinity and ds+1, . . . , dm−1 are fixed. For k = s, ps,n converges to
ps = 1/(ds+1 · · ·dm−1), and pk,n converges to pk = (dk − 1)/(dk · · ·dm−1) for
s < k < m. Note that ps, . . . , pm−1 are the asymptotic relative frequencies of node
ages at levels s, . . . ,m − 1. If dm goes to infinity, then vα = 8/

∑m−1
k=s pk(�k −

�m)2 with �k = limn �k,m. If dm is fixed,

vα = 8

(
m−1∑
k=s

pk(�k − �m)2 −
(

m−1∑
k=s

pk(�k − �m)

)2/
dm

)−1

.

Clearly, vα > 0 because pm−1 = 1 − 1/dm−1 > 0 is fixed and �m−1 − �m > 0 is
easily checked. So det Bn is of order nñ. The consistency and asymptotic normality
of (ν̂, α̂) follows from applying Lemma B.5.

For the second part of the theorem, we obtain the asymptotic normality of√
ñ(γ̂ −γ, α̂−α) through that of

√
ñ(c1γ̂ +c2α̂−c1γ −c2α) for every c1, c2 ∈ R.

For this we apply the following δ-method. Its proof is similar to that of the classical
δ-method [Shao (1999)] and is left to the reader.
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LEMMA B.6. Assume that (an(Xn − x), bn(Yn − y))t converges in distri-
bution to N(0,�), with an, bn → ∞, bn/an → 0 and �22 > 0. Suppose that
g : R2 → R is a continuous differentiable function such that ∂g/∂y(x, y) �= 0.
Then bn(g(Xn,Yn) − g(x, y)) also converges to a centered normal distribution
with variance �22(∂g/∂y(x, y))2.

Finally, using the classical δ-method and the fact that
√

n(ν̂ − ν) is asymp-
totically normal, we deduce that the asymptotic correlation between log γ̂ and
log(1 − exp−2α̂tm) is −1 if ñ = o(n).

REFERENCES

ALDOUS, D. J. (2001). Stochastic models and descriptive statistics for phylogenetic trees, from Yule
to today. Statist. Sci. 16 23–34. MR1838600

ANDERES, E. (2010). On the consistent separation of scale and variance for Gaussian random fields.
Ann. Statist. 38 870–893. MR2604700

ANÉ, C. (2008). Analysis of comparative data with hierarchical autocorrelation. Ann. Appl. Stat. 2
1078–1102. MR2516805

BININDA-EMONDS, O. R. P., CARDILLO, M., JONES, K. E., MACPHEE, R. D. E.,
BECK, R. M. D., GRENYER, R., PRICE, S. A., VOS, R. A., GITTLEMAN, J. L. and PURVIS, A.
(2007). The delayed rise of present-day mammals. Nature 446 507–512.

BUTLER, M. A. and KING, A. A. (2004). Phylogenetic comparative analysis: A modeling approach
for adaptive evolution. Am. Nat. 164 683–695.

COOPER, N. and PURVIS, A. (2010). Body size evolution in mammals: Complexity in tempo and
mode. Am. Nat. 175 727–738.

CRESSIE, N. and LAHIRI, S. N. (1993). The asymptotic distribution of REML estimators. J. Multi-
variate Anal. 45 217–233. MR1221918

CRESSIE, N. and LAHIRI, S. N. (1996). Asymptotics for REML estimation of spatial covariance
parameters. J. Statist. Plann. Inference 50 327–341. MR1394135

CRESSIE, N., FREY, J., HARCH, B. and SMITH, M. (2006). Spatial prediction on a river network.
J. Agric. Biol. Environ. Stat. 11 127–150.

HANSEN, T. F. and MARTINS, E. P. (1996). Translating between microevolutionary process and
macroevolutionary patterns: The correlation structure of interspecific data. Evolution 50 1404–
1417.

HANSEN, T. F., PIENAAR, J. and ORZACK, S. H. (2008). A comparative method for studying
adaptation to a randomly evolving environment. Evolution 62 1965–1977.

HERSHEY, J. R. and OLSEN, P. A. (2007). Approximating the Kullback–Leibler divergence between
Gaussian mixture models. In IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2007 4 IV-317–IV-320. IEEE, Washington, DC.

HUANG, H.-C., CRESSIE, N. and GABROSEK, J. (2002). Fast, resolution-consistent spatial predic-
tion of global processes from satellite data. J. Comput. Graph. Statist. 11 63–88. MR1937283

IBRAGIMOV, I. A. and ROZANOV, Y. A. (1978). Gaussian Random Processes. Applications of Math-
ematics 9. Springer, New York. MR0543837

IKEDA, N. and WATANABE, S. (1981). Stochastic Differential Equations and Diffusion Processes
24. North-Holland, Amsterdam.

IVES, A. R., MIDFORD, P. E. and GARLAND, T. JR. (2007). Within-species variation and measure-
ment error in phylogenetic comparative methods. Systematic Biology 56 252–270.

KINGMAN, J. F. C. (1982a). The coalescent. Stochastic Process. Appl. 13 235–248. MR0671034

http://www.ams.org/mathscinet-getitem?mr=1838600
http://www.ams.org/mathscinet-getitem?mr=2604700
http://www.ams.org/mathscinet-getitem?mr=2516805
http://www.ams.org/mathscinet-getitem?mr=1221918
http://www.ams.org/mathscinet-getitem?mr=1394135
http://www.ams.org/mathscinet-getitem?mr=1937283
http://www.ams.org/mathscinet-getitem?mr=0543837
http://www.ams.org/mathscinet-getitem?mr=0671034


ORNSTEIN–UHLENBECK HIERARCHICAL AUTOCORRELATION 981

KINGMAN, J. F. C. (1982b). On the genealogy of large populations. J. Appl. Probab. 19A 27–43.
MR0633178

LANDE, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain: Body
size allometry. Evolution 33 402–416.

LAVIN, S. R., KARASOV, W. H., IVES, A. R., MIDDLETON, K. M. and GARLAND, T. JR. (2008).
Morphometrics of the avian small intestine compared with that of nonflying mammals: A phylo-
genetic approach. Physiological and Biochemical Zoology 81 526–550.

MARDIA, K. V. and MARSHALL, R. J. (1984). Maximum likelihood estimation of models for resid-
ual covariance in spatial regression. Biometrika 71 135–146. MR0738334

MONTEIRO, L. R. and NOGUEIRA, M. R. (2011). Evolutionary patterns and processes in the radi-
ation of phyllostomid bats. BMC Evol. Biol. 11 137.

RADHAKRISHNA RAO, C. and VARADARAJAN, V. S. (1963). Discrimination of Gaussian pro-
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