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Abstract. We establish modified logarithmic Sobolev inequalities for the path distributions

of some continuous time random walks on graphs, including the simple examples of the
discrete cube and the lattic&’ZOur approach is based on the Malliavin calculus on Poisson
spaces developed by J. Picard and stochastic calculus. The inequalities we prove are well
adapted to describe the tail behaviour of various functionals such as the graph distance in
this setting.

1. Introduction

The classical logarithmic Sobolev inequality for Brownian motkea= (B;),5q in
R4 [Gr] indicates that for all functionalg in the domain of the Malliavin gradient
operatorD : L%(Q, P) — L2(Q x [0, T], P ® d1),

T
E(F?log F?) — E(F?) log E(F?) < 2 |E<f |D,F|2dt> . (1.1)
0
In particular, if F = f(B;,,...,B;,),0=19 <11 <--- < t, for some smooth
function f : (RY)" > R,

n

n n
i=1 k=i

i=1

where, with some abus¥®,; F = V; f(By,, ..., By,) andV; f is the gradient off
along thei-th direction, so that

2

) . (1.2)

E(F?log F?) — E(F?)log E(F?) < 22(;1- — zi_1)|E<
i=1

n
kaF
k=i
If F = f(B,),t > 0, for some smootlf : R - R,

E(£2(B,)log f2(B))) — E(£%(B,)) log E(f2(B)) < 2t E(|V£(B)[?) . (1.3)
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In the recent years, lots of efforts have been put in trying to extend the logarithmic
Sobolev inequality (1.1) to Brownian motions on Riemannian maniféfdsith
geometric bounds on the Ricci curvature. This problem has been solved in the papers
[Hs], [A-E], and is now pretty much well understood with the contribution [C-H-L]
where it is shown how one can easily deduce a logarithmic Sobolev inequality in
this setting from a Clark-Ocone formula. The latter is in turn a consequence of
appropriate integration by parts formulae going back to the work by J.-M. Bismut
[Bi]. In the flat case, such a representation formula indicates that for any smooth

functional F,
T

F:IE(F)+/ E(D;F|7,)dB; . (1.4)
0

As a generic by-product of these logarithmic Sobolev inequalities, one can obtain
tail estimates for Lipschitz functionals of large deviation type. For example (cf.
[Le]), if M has non-negative Ricci curvature, for evéry- 0,

. 1 1
zelinooﬁ log P{ sup d(B;,x0) > R} = —

— (1.5)
0<t<T 2T

whered (B;, xg) is the Riemannian distance of Brownian motiBnat timer from
its starting pointvo.

The aim of this work is to investigate logarithmic Sobolev inequalities for
Brownian motions with values in graphs, with some view to tail estimates of the
type (1.5). Our study is very preliminary, and at this stage we only cover examples
that would correspond to constant curvature spaces in a Riemannian setting. In
order to introduce our purpose, and to understand better what kind of results can
be expected, let us first discuss two simple examples.

Let x = {—1, +1} be the discrete cube in4Rand letB = (B;),»¢ be the
continuous time simple random walk gn In other words B is the process that
jumps, after an exponential waiting time, from one of the vertices of the cube to
one of its neighbour with equal probability. The transition densities (with respect
to the uniform probability measure g of the process® are given by

d
P,y =[]@+xiyie™),
i=1
x=(x1,...,x30),y = (V1,...,y4) € x,t > 0. Let us assumed = 1 so as to
make the notation more simple. jfis a function on{—1, +1}, andF = f(B;),
t > 0, itis known that

E(f2(B)log f2(By)) — E(f?(B))log E(£%(By))

1 _ l+e!

e 2y o Iog<1_ e_[> E(|Df(B)|?)  (L6)
whereDf (x) = f(—x) — f(x), x € {—1, +1}. Since the law oB;, is a Bernoulli
measure or{—1, +1} with Weigths%(l + e "), the inequality (1.6) is just the
logarithmic Sobolev inequality for an asymmetric Bernoulli measure (cf. [SC]).
One important feature of the constant in (1.6) is that it significantly differs, as
t — 0, from the corresponding one in the Poirearequality

=
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E(f2(B)) — (E(f(B))® < %(1—e*2'>E(|Df<B,>|2) .@

As explained carefully in Section 2, these Poirgcand logarithmic Sobolev in-
equalities may be tensorized to arbitrary cylindrical functions. However, while the
Poincaé inequalities may be extended to functions of all the path, this is no more
the case for the logarithmic Sobolev inequalities, owing to the distortion of the
constant by the factor éog((1+e77)/(1— e~ ")) which tends to infinity as — 0.
Asecond example is provided by the grgpk= Z¢. Brownian motionB on Z¢
is defined as before as the continuous time simple random walk on the integers (with
generator one half of the discrete Laplacian). However, it turns out that we cannot
expect here any kind of logarithmic Sobolev inequality contrary to the compact
case{—1, +1},. Assume again that = 1 for simplicity. If r > 0, the law ofB;
(starting from the origin) is easily seen as the convolution of the Poisson measure
with parameter /2 on Z_ with the Poisson measure with the same parameter on
Z _. (This example may actually be analysed almost equivalently on the standard
Poisson process.) Now, it is known that Poisson measures do not satisfy the standard
logarithmic Sobolev inequality with respect to the discrete gradierf origee [B-
L], [G-R]). Therefore, the same negative comment applieB;tcand thus to the
whole process. In a sense, this observation is reasonable. Indeed, one cannot
expect, for Brownian motions oz Dr Z¢, tail estimates that would be similar
to the Gaussian large deviation result (1.5). For example, using Fourier series as
well as a representation formula for the modified Bessel function, the heat kernel
p:(x, y) of the discrete Laplacian oZ #s given explicitely by

+1
per.y) = 7 Y20(5 + %)e*Z’t‘S/ (1 — w2422t gy,
-1

forallz > 0 andx, y € Z, wheres is the distancéx — y| from x to y. Now, as is
shown in [Pa], for fixed > 0, p;(x, y) behaves (at a logarithmic scale) a8/
when the ratid/s is small, and as&'°9¢/1) whens/r is large ¢, g > 0). Thus
the distribution of the distance of Brownian motion from its starting point entails
a mixed Gaussian and Poisson behavior. Such a behavior cannot be reflected by a
standard logarithmic Sobolev inequality that would only yield Gaussian tails (cf.
[Le]).

In order to clarify these early observations, we will make use of a modified
form of logarithmic Sobolev inequalities in discrete spaces recently put forward in
the work [B-L]. To recall the main result of [B-L], lgi be the Poisson measure on
Z . with parameted > 0. Then, for anyf on Z, with strictly positive values,

[ 7100 sau~ [ sawiog [ san <o [ % \Df Pdu (1.8)

where Df (x) = f(x +1) — f(x), x € Z,. One main aspect of inequality
(1.8) is that, due to the lack of chain rule for the discrete gradiernthe change

of functions f — f?2 does not yield the standard logarithmic Sobolev inequality
(whichin case of Poisson measure is just not true). A similar inequality holds for the
Bernoulli measure with this time a constant of the same order than the spectral gap.
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Moreover, this form of logarithmic Sobolev inequality is well adapted to describe
tail behaviors of Lipschitz functions. As was shown indeed in [B-L]xifs any
measure onZ., satisfying an inequality such as (1.8) for sofie- 0 and all f

with strictly positive values, then, if on Z is such thatsup.z |Df(x)| < 1,

we have thaff| f|du < oo and, for every- > 0,

> [ fd < “log(1+ =
w(f = [fdu+r) _exp( a og( + 2C)> :
In particular, the tail of the Lipschitz functiofi is Gaussian for the small values
of r and Poissonian for the large values (with respeatoThis is of course the
typical behaviour off (x) = x for example for Poisson measure, as well as the one
put forward above for the heat kernel of the random walk&n Z

As a consequence of these observations, we concentrate our investigation on
modified logarithmic Sobolev inequalities of the (1.8) type. As a result, we will
establish such an inequality for the continuous time process associated to the simple
random walk on a locally uniformly finite graph jumping to the neighbours with
equal probability. We will actually allow varying probabilities, but regardless of
the position (which thus corresponds to some constant curvature setting). While for
the simple examples of the cube and the lattice, the one-dimensional logarithmic
Sobolev inequalities may be iterated to the family of all cylindrical functions,
we follow a different route in the general case. Namely, our framework will be
somewhat more general and enters the setting developed by J. Picard [Pi] in his
investigation of Malliavin calculus on Poisson spaces. We actually take advantage
of hisintegration by parts formulae to derive the appropriate representation formula.
Provided with such a representation, the proof of the logarithmic Sobolev inequality
simply relies on the stochastic calculus argument of [C-H-L]. Thus, we establish
that for every positive functional” on the paths of the graph up to timeT > 0,

1
E(FlogF) — E(F)log E(F) < IE(F/ |D([7j)F|2dt ®dn> , (1.9
[0.T]xJ

T]x

wheredn is the counting measure on the geif the directions of the graph (see Sec-
tion 5 for details) andD;, ; is the gradient in Poisson spaces. For example, for the
standard Poisson procg¥s= (N;),>o0n Z, the set of directions is reduced to the
direction 4" (to the right), and ifF = f(N;, ..., Ny,),0=1tg <t1 <--- <1y,

n n

Dy F = ZI {ti—1<t<t;} Z DiF ojk-1
i=1 k=i

where, fori < k,
DyFotik—1=D¢f(Nys-. .. Nyt . Ny + 1., Ny , + L Ny .U Ny)

with Dy f the discrete derivative of along thek-th coordinate. Therefore, in this
case,
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/ |D.jyFI2dt @ dn
[0, T]xJ
n n 2
= Z(h’ —fi-1) <Z DyF o Ti,k—l)
i=1 k=i

n
2
=Y (ti —tiiD[fNigs .. Ny . Ny + 1 Ny + 1) = f(Ny. .. N,
i=1

and thus (1.9) provides the appropriate extension of (1.1) (as soon as the discrete
derivative is infinitesimal). As a general consequence of (1.9,i8 1-Lipschitz
with respect to this gradier?, we show that

R R
P(F > E(F) + R) < exp<—Z log(1+ ﬁ))

for everyR > 0 wherea? = es%sugf[oﬂxj |D¢.j)F|?dt ® dn. These conclu-

sions are presented in Sections 4 and 5, which form the core of this paper, where the
main results are further illustrated by various examples. As announced, we discuss
more or less in depth the random walks on the cube in Section 2 and on the lattice
Z% in Section 3. In the last part, we apply the logarithmic Sobolev inequalities to
prove the preceding tail estimate for Lipschitz functions following [B-L], [Le].

Since this work has been submitted, various authors developed results related
to the present contribution. L. Miclo (personal communication) and L. Wu [Wu]
observed in particular that for the Poisson measure with paratmhetat for every
non-negative functiorf on Z,

f Flog fdu - f fdulog / fdu <6 / DfD(og fHdu . (1.10)

an inequality that actually follows from the corresponding one on the two-point
space. While (1.8) and (1.10) (for Bernoulli or Poisson measures) are hot compara-
ble, the proof of (1.10) is actually more simple than the one of (1.8). Moreover, with
respect to the latter, inequalities (1.10) do imply exponential decay of entropy. They
also entail concentration properties similar to (1.8). The Poisson process version of
(1.10) is investigated in [Wu] with arguments similar to the ones developed here.
Most of our results may actually be expressed similarly with the fbyfD (log f).

2. The discrete cube

We consider here the continuous time simple random vBak¢ (B;),-q on the
discrete cube, in dimension one for simplicity. Thus jet= {—1, +1}. We are
looking for a logarithmic Sobolev inequality for the law 8f As discussed in
the introduction, we already know that for a one-dimensional cylindrical function
F=f(B),t>0,
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E(f%(By)log f2(B,)) — E(f2(B:)) log E(f3(B,))

—t
< %(1—e‘2’)e’log<i+e )|E(|Df(B,)y ) - (2.1)

Recall thatDf (x) = f(—x) — f(x), x € x. Our first aim is to properly ten-
sorize this inequality to arbitrary cylindrical functions. At the level of Poigcar
inequalities, a Markovian tensorization of (1.7) yields, for= f(B;,, ..., B:,),
O<n=<--=t,

E(F?) — (E(F))® < % > (- e iV E(T"F) (2.2)
i=1
where, fori < k,

DkF o 7:l',k*l = Dkf(Blla ceey Bti,lv _Bt" ceey

i

_Btk—l’ Bl/w IR Bln)
with Dy f the discrete derivative of with respect to thé-th coordinate,

n 2
ri-"f = (Z Dy F o ri,kl)

k=i
2
- [f(Btl, e ey Bti—l’ _Bt,'s e ey _Btn) - f(Btla e ey Btn)]

To establish (2.2), note that the law@,,, . ... B;,) is the measure of-1, +1}"
given by

dP(x1,..., %) = Py (X0, X1) Pry—1, (X1, X2) - - Pt,—1,_1 (Xn—1, Xp)dx1dx2 - - - dx,

where we denote hyx the uniform probability measure ¢r-1, +1}. By induction
on (1.7) we get that

E(f%(By, ..., By))

ffzdP<</fdP) + = 2

(1 g 20—l 1>)/|D fil2dp

1
where
filxa, .o x) = / Siv1(xas - Xk D) Prg— (i Xip1)dxi 41
= E(f(-x17 cees Xiy Bl‘H,la ey Bfn) | Bl[ = xl)

foreveryi =1,...,n — 1, andf, = f. The result will be established as soon as
we can show that

|Dl.fl|2 S /[f(-xlv-"sxi—lv —Xiy .o, _xn) - f(xlv"'9xn)]2

Xpt,'Jrl—l,' (-xi, -xi-l-l) ot Pty—ty 1 (xn—ls xn)d-xi+l e d-xn . (23)
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To achieve this task, write
Jilxa, .o, xi—1, —x;)
= / FX1, ooy Xim1, =X, Xig 1y oo s Xp)
X Ptir—t; (= Xis Xit 1) Pty p—tiq Kit1s Xit2) * * * Pty—ty_y (Xn—1, Xp)dXi41 -+ - dxy
= / fx1, oo  Xic1, —Xiy —Xig1, Xit2y « -+ » Xn)

XPti1—t; (xi, xi+1)17ti+2—t,-+1(—xi+l, Xiy2) - Pty—t,_1 (Xn—1, Xp)dxiy1---dxy

Z/f(xls ey Xi—1y = Xiy ety _-x)’l)
X Priga—t; (Xis Xi41) -+ Pry—t,_1 (Xn—1, Xn)dXit1 -+ -dxp .

We have used here a basic commutation property expressed by the fact that

/w(—y)pz (x, y)dy = /w(y)pz(—x, ndy . (2.4)
As a consequence,
Difi = fi(x1, ..., xi—1, —=xi) — fi(x1, ..., Xi—1, X;)
= /[f(xl,...,xi_l, —Xiy oo, —Xp) — f(xl,...,xn)]
X Ptipar—t; (Xis Xit1) -+ * Pry—t,_q (Xn—1, Xp)dXi41---dx,  (2.5)

from which (2.3) follows by Jensen’s inequality.
To develop the same argument at the level of the logarithmic Sobolev inequality,
we first get, by induction on (2.1),

/ f2log f2dP — / f2dPlog / £2dPp

1 -
< Z Z(l_ e—2(l; Iz—l))c(tl. _ ti—l)/ |D,fl|2dP

i=1

where
1+ e—(lf—ti1)>

C(tl‘ _ tl—l) — e_(ti_ti—l) Iog(l - e_(ti_ti_l)

and now, the successive functiofisare defined by
SR, x) = f SAa(1 X)) prg o O Xip1)dxiga
In this case we get

Dy fil? < /[fm, it =i =) = 1 )]

Xplpr]_—t,‘ (xiv xi+1) te ptn—tn,]_(-xn—lv xn)d-xi+1 te d-xn
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from the Minkowski inequality in B. Therefore,

E(F?log F?) — E(F?)log E(F?)
1 - — <l i..n
= 52(1—9 20--0Ye(1; — 1;_1) E(T™"F) . (2.6)

However, contrary to what occurs in (2.2), the factofs — ¢,_1) which tend to
infinity asr; — t;_1 — 0 would not allow us to extend this inequality to functions
of all the path properly.

Together with the example of the lattice in the next section (for which the
classical logarithmic Sobolev inequality just does not hold), this is why we will
turn to some modified logarithmic Sobolev inequalities whose constants behave
better ag — 0. For example, as was shown in [B-L],ffis positive on{—1, +1},

E(f(Bt) log f(Bt)) - E(f(Bt)) log |E(f(Bt))

1 Df(B)|?
<-@1- e‘”)E(M) . 2.7)
4 S (Br)
The constant in (2.7) is now comparable to the one in the Pdinnaquality (1.7).
This inequality can be tensorized to cylindrical functioiis= f (B, ..., B,),

f > 0, following the argument leading to (2.2) thus allowing extensions to the
whole path. Indeed, as a consequence of (2.5) and the Cauchy-Schwarz inequality,

D; fi|? 1
%5/?[f(xl,...,xl;l,—xi,...,—xn)—f(xl,...,xn)]z

Xpl‘lurlfti (Xi, xi+1) e ptnft,l,]_(xnflv -xn)dxi+l e dxn

from which we get similarly that

Fi...nF). 28)

1 n B o
E(F log F) — E(F) log E(F) < - ;(1 — e A=) E(

Since (2.7) (and (2.8)) may be treated, to some extent, as the examptebafl@w,
we simply turn to this case now. Actually, we will establish (2.7) in the next section
in a setting that includes both examples.

Before turning to the next section, let us however briefly digress on a somewhat
different tensorization procedure on the cube. As is usual, the cube is often seen
as a discrete version of Gaussian spaces, and the proBgss, ought to be
compared to the (real-valued) Ornstein-Uhlenbeck pro&ess(X;),.q (starting
from the origin for example). Sinck is Gaussian, it is a simple matter to see that
if F=f(X;, -,X;,),0<r <...t,,andf is smooth enough on'R

n

n 2
E(F?) — (E(F%)) <Y (1- e—2<ff—’f1>)E<< > e—<’k—’f)akF> ) (2.9)
k=i

i=1

wheredy F = o f (X4, ..., X,,). Similarly, we have a logarithmic Sobolev in-
equality replacing the variance 6fon the left-hand side of (2.9) by one-half of the
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entropy ofF2. In (2.9), the coefficients &% %) reflects a (constant) strictly positive
curvature property of Gauss spaces (cf. e.g. [Bal]). Now, the commutation property
(2.4) on the cube does not reflect any kind of non-zero curvature. Using a different
commutation argument, one can however show tha#fet f(B;,,..., B;,) on

the cube,

n

1
SZZ

i=1

n

2
- ez(’i’il))IE(( Y e DF o n,k_1> ) (2.10)

k=i

E(F?) — (E(F?)
(1

where
DyFotig—1=ByDif(Bns---s By 1o —Bysooos =By 1, By, ..., By)

The proof of (2.10) is similar to the one of (2.2). It is enough to show that, for every
i=1...,n,

n 2
|Di fi? < /(Ze(”"")XkafOTi,k—l)

k=i
X P11 Xis Xig1) =+ Pry—ty_q (n—1, Xp)dXjq1---dx, . (2.11)

Let us sketch the argument wher= 2,i = 1. We can write

D1 f1(x1) = fi(=x1) — fi(x1)

- / [ (=1, 22 Pryry (—1. %2) — (51, X2) Prysy (51, 52)Jdx2

= /[f(—XLxz)Dlptz—tl(M,xz) + D1f(x1, X2) prp—1, (X1, X2) |dx2 .
Observe now that

J f(—=x1, x2) D1ppy—n, (x1, x2)dx2
=e 27y /XZsz(—XL X2) Pro—1y (X1, x2)dx2 .
Therefore
x1D1 f1(x1) = /[X1D1f(X1,X2)pzz—zl(X1,X2)
+ & 2 x5 Dy f(—X1, X2) Pry—iy (X1, X2) |dix2

so that (2.11) follows from Jensen’s inequality in this particular example. The
general case is similar.

To develop the same argument at the level of the logarithmic Sobolev inequality,
we would need the analogue of (2.11) when ftie are defined by

2 2
[, .o x) =/J‘,-+1(X1,.-.,xz'+1)pz,-+l_r,»(xi,Xi+1)dxi+1 .
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It is however much less convenient to deal now with the discrete derivddyvgs

and we actually do not know whether (2.11) still holds in this case. To be more
precise, we have been able to check this inequality in dimension 2 directly (writing
f as determined by 4 values). With the help of the computer, we also checked
the result for a functionf on {—1, +1}3. However what is missing to us, is a
generic argument that would yield the result for any cylindrical function. Thus
we do not know at this point, although we strongly conjecture it, whether, for
F = f(By, ..., B;,) and anyn,

E(F?log F?) — E(F?)log E(F?)

1 oy I 2
= ZZ(l_e 2D e(t; — 1-1) |E<<Ze (k ”)DkFor,-,k1> > .

im1 =i
3. The lattice Z¢

We consider here the continuous time random walk= (B;),>o on the lattice

Z¢ and start with the case = 1 for simplicity. ThusB is the process orZzhat
jumps to one of its neighbour with equal probability and whose Markov generator is
(half of) the discrete Laplacian. As we have seen it in the introduction, the standard
logarithmic Sobolev inequality cannot hold and we have to consider a modified
form of it. Our starting point is the following result for one-dimensional cylindrical
functions. If f is a function onZ, we set

f@) =[fx+D) - fFOP+[f0) - fx—D]>, xezZ.

Proposition 3.1. For anyr > 0 and any functionf on Z,

E(f(B)?) — (Ef(B))” < E(Tf(B) . (3.1)
Moreover, if f takes stricly positive values,
I'f(B
E(f(B)log f(B:)) — E(f(B))log E(f(B) <t E (%) . (B2
t

Proof. We first prove the corresponding inequality for the Poisson process. This
inequality is actually known [B-L] but we would like to provide here a new more
simple proof based on tH& calculus of [Bal], [BaZ2]. In what follows, calculus are
made onZ, for simplicity, but it could be made oZ&r Z¢, or on the cube. The
method is actually more general and includes further examples of discrete Markov
generators.

Let L be the generator of the Poisson processzon defined by

Lf)=fx+1D—fx), xeZy .

Let(P,),>o be the Markov semigroup with generaé)t, sothatP; f(x) = [ fdus
wherepu;} is the Poisson distribution on+ ZZ with parameter/2. The “caré du
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champ” operator associated to L is defined by'2f, ¢) = L(fg) — fLg— gL f
and we have here

2Tf(x) = 2I'(f, @) = [fx+D - fO]°, xeZ; .

TheT'; operator is defined similarly by the formul&@2f = L(I'f) — 2T (f, L f).
We wish to comparé&, f andI' (/T f). For this, note that

0=4r(VI7) ) = [If&+2 = f&x+ DI = |fxr + 1) = F@IT
= [(f(x+2)—f(x+l))—(f(x+1)_f(x))]2=4r*2f )

The positivity of I'> f will imply a Poincaé inequality, while the more precise
boundT'af > I'(/Tf) will lead to a modified logarithmic Sobolev inequality.
What follows is classical in the case of diffusions (see [Ba2] for instance)f bet

any functiononZ,.. Setyr1(s) = PsT P—s f, Y2(s) = Po(VT Pi—s f),0< s < t,
and writeg = g, = P,_; f to make the notation more simple. Then

1
Yi(s) = > P(LTg —2I'(g,Lg)) = Ps(T28) = 0

sothat, foralk > 0, P, f < P,T'f. Inthe same way,

(Lﬁ - e Lg))

2
—% s( (ZrL(\/»)—ZF(g,Lg))
1
T2

(% (rag - r(\/E))) >0.

Hence (1) > y2(0), thatis to saw/T (P f) < P,(/Tf), forallt > 0.
Now, letg1(s) = Py((Pi—s £)?), andga(s) = Ps(Pi—s f log Pi_ f) if fis non-
negative. With the preceding, we can bound the derivativgg ahd¢,. Namely,

'ﬁz(s ) =

P

¢1(s) = Ps(TP—s f) < Py(P—sTf) = P(Tf) .
This implies the Poincé&rinequality forP, in the form of
P(f?) = (P f)? <tP(Tf) . (3:3)
In order to bound the derivative
, 1
#5(s) = 5 Py(L(P=s FI0Q Pi_s f) = (L4109 Pros L (P )

notice that for allg > 0,

2l'g
L(glogg) —(1+logg)Lg < 5
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This last estimate is a consequence of the inequality ledpga — (b —a)/a < 0O,
a,b > 0. Hence,

¢/2(5)§Ps< F(Pt—sf)> fPs<

Pi_yf Psf (P"Sﬁ)z) ’

where we used that' (P, f) < P,_;(v/Tf). By the Cauchy-Schwarz inequality

(Pr—s(X))? < Pr_y(X?/Y) P,y (Y)

r r
¢/2(S) S Ps (Pt—v<7f)> == P;(Tf) .
Finally, asp2(¢) — ¢2(0) = P,(f log f) — P; f log P; f, we have shown that for all
f>0onZ,4,

we get that

Piflog ) Piflogpus) < ipi(<L) . (3.

We now relate (3.3) and (3.4) to the inequalities of the proposition. Recall thus
the proces® on Z. Assume it starts at € Z. It is known and easy to see [G-R]
that the lawp, (x, -) = p; of B, is the convolution product

~0
Pyo= Wy ok iy

wherey; is the Poisson measure of paramef@ronx+2 ., andﬂ? isthe reversed
Poisson measure of parametg? on Z_. (To prove this equality, just verify that
these measures coincide on the charactérs) én the preceding language, the
Markov semigroup of the proce$B), ¢ has generato%L where L is the discrete
Laplacian Lf (x) = f(x +1) + f(x — 1) — 2f(x) on Z. Since (3.3) and (3.4)
apply to bothu; andﬁ?, it is an easy task to deduce (3.1) and (3.2) by a classical
tensorization argument. Let us deal with the logarithmic Sobolev inequality (3.2).
Let f > 0 on Z. We can write

ff log fdp; = f fO+2)109 f(y + dp; @) (v)
= f f flog fduy ™ dad(y) .
From (3.4) applied ta./ ™, we get
/ flog fdui™ < f fdu;™ log / fdu ™ / %[f(-ﬂ)—f)]zduf” :
lfwe leth(y) = [ fdu; ™ and apply (3.4) tgi?, it follows that

1
/h loghdpi? < /hdﬁ?log/hdﬁ?—i—t/ o [h(-—1) —m)]7di® .
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But
[ =1 —h]() = f[f(- — = flaw™

and, by the Cauchy-Schwarz inequality,

(/[f(—l) fld ’“”)2 /1f[f(—1) "“ffdu’“”.

It follows from these bounds that
1
[ r10qsdp; < [ rapiog [ rap;+1 57 LFC+ D= 1)}

i / 57 =D = plap .

Since B, has law p;, inequality (3.2) follows. The Poincarinequality (3.1)
is established in the same way from (3.3). This completes the proof of
Proposition 3.1. O

It should be mentioned that the preceding inequalities are sharp. (3.3) is sharp
on the functionf (x) = x while (3.4) applied to the functiong (x) = ¢*,x € Z,,
with ¢ > 0 yields
(P:(f:log f2) — P; fe log(P; f2)) (0) _,¢ loge + (1 —¢)
P()©) (1—¢)?

which tends ta ase tends to 0. Note that applying (3.4) totlef and lettinge
tend to 0 only yields (3.3) up to a factor 2.

The tensorization argument used in the preceding proof may be used similarly
to tensorize Proposition 3.1 to thkedimensional continuous time random walk
B = (B));>0 on the lattice Z?. Indeed, the law of3, = (B}, ..., BY) is the
product measure of the laws of the marginals. We get in this way (3.1) and (3.2)
with I defined in this case by

2rf = Z( feren) = fFH[re—en—oT)

where(eq, ..., eq) is the canonical basis ofZ.

The proof developed in Proposition 3.1 applies similarly to the cube, by means
of the generator If(x) = f(—x) — f(x) for which 2U'f = |Df|2. It should be
mentioned however that we do not recover exactly (1.7) and (2.7), but only their
analogues in finite time using thatdle % < 2¢,t > 0.

Although we will not follow this route in the sequel, it is tempting to tensorize
Proposition 3.1 to cylindrical function8 = f (B, ..., B),0<r1 <. <y,
as we described it on the cube in Section 2. By induction on (3.2), we get that

n lF
E(Flog F) — E(F) IogIE(F)<lZ;(t, —ti_ 1)IE< 7 >
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whereF; = fi(By,, ..., B;) and
.fl.(-xlv o 7-xi) = IE(f(-xls cees Xiy B[H,]_v cee B[n) | Bll‘ = xi)

andwherd is thel” operator acting on thieth coordinate. Using the commutation
property

/ o0y + Ddp (y) = / edp ()

analogous to (2.4), we bound as in Section 2 (cf. the proof of (2.2) and (2.9))

ir.
(%)
F
Fi...nF
(=)
F

using the Cauchy-Schwarz inequality, where

by

i 2
2Fl...1‘1F = [f(Bl‘l’ ooy Bti—l’ Bt,’ + 1, ooy Bl‘n + l) - f(Btla ey Bt,l)]
2
+[fBi,....By_ . B, —1,...., B, — 1) — f(By,....B,)]|" .

Thus we get

n Fi"'nF
E(FIogF)—IE(F)IogIE(F)5§(ti—ti_1)lE( - ) (3.5)

The corresponding Poin@amequality

n

E(F?) — (E(P)* < (@t — ti-1) E(T""F) (3.6)
i=1

is obtained in the same way. On the cube,
j 2
ZFI'I.HF = [f(Btj_’ T Bl‘,',la _Bl‘iv DRI _Bl‘,l) - f(Bl‘lv LR Bln)]

so that, at the expense of the boundsé2(i ~i-1) < 2(1; —t;_1), (3.5) is directly
comparable to (2.8), and (3.6) to (2.2).

As we will realize it later on, this tensorization procedure heavily relies on
commutativity in Z or Z¢. In order to reach some more general statements, we
will rather consider a path space approach based on the stochastic calculus of
variation in Poisson spaces developed by J. Picard [Pi] to which we turn now.
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4. Modified logarithmic Sobolev inequality on Poisson spaces

In this part, we consider random Poisson measures, and establish a modified log-
arithmic Sobolev inequality in this context. The correspondance between Poisson
measures and continous time Markov processes will be developed in Section 5 in
order to deduce logarithmic Sobolev inequalities for various kinds of continuous
random walks on graphs.
We follow the notation of [Pi]. Let/ be a finite set, which will be later on the
set of directions taken by the process, ana positive measure({j}) = %Aj on
J. The spacd/ = R* x J is endowed with the measufie. (1) = dt ® dn(j).
We call 2 the set of measures on U such thatw({u}) = 0or 1forallu € U
andw(A) < oo whenever.™(A) < oco. Let alsor™ be the random measure on
U defined byrt (w, A) = w(A) for o € Q. We will denote by IP the probability
measure o2 under whichA™ is a random Poisson measure of intensity and
by A the compound Poisson meastire AT — A™.
It is clear that, almost surely, the random atomic meastréas at most one
atom at timer for all + > 0. Thus, we can restrié to such measures (that have
at most one atom at each timg and we can order the random ato(@s, ji);-1,
O<Ti<Tr<---<Ti <---ofthe measura™. Recall thai(Tj 1 — Tx);-1 IS @
sequence of i.i.d. random variables of exponential law with parametemn (J) =
% > jes *j» and that(ji), -1 is also a sequence of i.i.d. random variables with law
n/n(J) onJ, and that these two sequences of random variables are independent.
The filtration which will be used is the right-continuous filtratiof, = o (A
(A), A € %(0,1] x J),t > 0. More generally, for any intervdl of R, Z 1 will
denote ther-algebras (A*(A), A € (T x J)), andZ will be # g . Itis clear
that7,- = (J,;_, 7, is Z o, With our notation. Notice also that @1-measurable
function F is # r-measurable if and only i (w) = F(wj7x ), Wherew|rx; is
the measure restricted tol' x J. Indeed, the condition is necessary because it is
true for functions,*(A), A € #(T x J), and sufficient because the map

R, 7r1) — (2, 7)

W W|TxJ

is measurable. In a similar way, a procé&sss predictable if and only it; (w) =
Y: (w)[0,1]xs)- This condition is necessary because it holds for processes of the type

[sns] (D (@), Q1€ Fyy, s1<52 .
It is sufficient since the map
(Ry xQ,2) — (Ry x 2, 4(R.) ® F)
(t7 Cl)) > (tv U)[O,t[xJ)

is measurable. Here? denotes the predictable-algebra on R x Q.

Now, we want to introduce the derivative of a functibhdefined on<2. For
ueU,letD,F = Foel —Foe,,wherethe transformatimj;’j) (resp.e(‘t’j)) of
Q adds an atom at timén directionj if there was none and removes all other atoms
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at timet (resp. removes the probably existing atom at tineThis definition is
not the one of [Pi], where the path correspondance we will make is not considered,
and where the existence of several simultaneous atoms is not annoying. In [Pi],
transformation$;” andé, on the measure space are considered. The first one just
adds an atom atwhile the second one removesi it if there was one. But actually, itis
clear tha@i’j)(a)) # 8(is,,-)(w) if and only if w admits an atom &k, j’) with j # j’.
Almost surely.™ has at most one atom at timgand as soon &8s, j) is charged
by AT, then(s, j') is not. Consequently,*{§* # ¢*} = 0. Moreover, as.~ is
non-atomicA™{§% # ¢*} = 0. Thus & (w) = ¢ (w) holds for(A* + A7) @ P
almost all(u, w). Therefore, all the results of [Pi] are still valid in our context.
Our task in this section will be to prove the following modified logarithmic
Sobolev inequality for the law IP of the random Poisson measure.

Theorem 4.1. Let0 < T < oo and letF be anZ r-measurable and integrable
function onQ. Then

E(F?) — (E(F))° <E </
[0

Moreover, if F takes strictly positive values, then

|DuF|2dA_(u)> ) (4.1)
,T1xJ

E(F log F) — E(F)log E(F) < |E<i / |D,£F|2d)\_(u)) . (4.2
F Jo,r1x7s

These inequalities are sharp for every choice. pf

Before we turn to the proof of Theorem 4.1, let us comment on optimality. Let
N; = A7([0, t] x J) the number of atoms before timeN, has a Poisson law of
parameterAz. Let F,(w) = ¢V with 0 < ¢ < 1. Then forA~ ® P almost all

(s, ), w),s <t,
|D,j)Ni| =Nt +1—N;|=1 and
|Dis, jy Fe(@)| = [V — M| = (1 - &) Fo (o) ,

so that
E(N?) — (E(N)® = At = E([ 1dr(u)) ,
[0, T]1xJ

and (4.1) is sharp. Concerning (4.2), let
_ E(FclogF,;) — EF.logE(F;) [E(FlogF;) — EF;logE(F)

re = . _ .
E(fio.s L dnm ) A= e)2E(Fy)

Using the corresponding comment in Section 3, it is easily seen that

eloge — (1—¢)

1 o2 -1

re =

ase tends to 0 so that (4.2) is sharp also.
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Let us recall that applying (4.2) t6 = 1+ G and lettinge — 0 only yields
(4.1) up to a constant 2 so that (4.1) and (4.2) will be proved separately.

As described in the introduction, the idea of the proof of Theorem 4.1 is the fol-
lowing. We first describe the Clark-Ocone representation formula following Corol-
lary 6 of [Pi]. Once this representation has been established, we simply adapt the
stochastic calculus proof [C-H-L] to our setting. The following is the announced
representation formula. It will play the role of (1.4) in this discrete framework.

Theorem 4.2. Denote byw; = wj[5,/[xs the measure restricted to[s, 7[x J. Let
F be integrable or2. Then,

Zis. (@) = E(D yF | Fs-) = / (D5 jy F) (@2 + @35,) dP(@)

is almost surely defined, and

E(F| 7)) = E(F) + f

Zs, pdAr(s, J) .
[0,1]xJ

Proof. It is based on the isometry formula of [Pi], Theorem 1.

Proposition 4.3. LetZ, ber~ @ P or A™ ® P integrable and such thab, Z, = 0.

Then
IE (f zudﬁ(u)) =E (/ Zudr(u)>

Actually this proposition is equivalent to the following integration by parts
formula (Theorem 2 of [Pi]).

Proposition 4.4. Let Z} and ZZ be two processes ol x Q. DefineD, Z, =
Zioe—Zioe, i = 1,2 andassumethalD,z2andz2D, z are (At +17)@P
integrable. Then

E (/ zY(D,7?) d,\(u)) =E </(DMZl}) 72 dx(u)>
= E < / D,Z} D, 72 dr(u))

Provided with these isometry and duality formulae, the proof of Theorem 4.2 will
consist in using the following existence theorem of a martingale representation (cf.
[Br], Chap. Ill, T9 and [Pi]).

Proposition 4.5. Let M; = E(M, | ;) be a uniformly integrable martingale.
Then there exists a previsible procesgs such thatflo’t]X] |Zy|dX™ () < oo IP-
almost surely for alt > 0, satisfying

M; = My +/ Z,dr(u) Palmost surely.
[0,/]1xJ

The proces< is unique in the sense that # satisfies the same conditions, then
Z =7 (A~ + 17 ® P-almost everywhere.
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To prove Theorem 4.2, we first show that the processes (whked varies)
Wi j(w) = / D(z,j>F(w? + o) dP(®)

are well defined and integrable, and then thatw) = Z, (w) for A~ +17) @ IP-
almost every(u, w). What follows is just an adaptation of [Pi]. Let us prove first
that

Wi j) (@) = /|D(,,,-)F(w,° + &L)|dP(@) < 00 (4.3)

for A~ ® P-almost all((z, j), w). LetY( ;) be previsible non-negative processes,
j € J.Then
Y. (@) = Yo (@) = Yo jy(@] + @) .

Therefore,

IE</ W.Y., d,\—(u)>

= / / |D(t,,,~)F(w,° + a)go)|Y<t,,/>(w9 + @k )dP(w)dP(@)dA™ (t, j)

= E(/ |D, F|Y, d/\—(u)>

< |E<|F|/Yud/\—(u)+/|Fogu+|Yudr(u)>
E<|F|/Yudx(u)+/|F|Yudﬁ(u)>
E(|F|/Yud<r +m<u>) .

In the last but one line, we made use of the isometry formula of Proposition 4.3
since|F o ¢ |Y, does not depend oni" ({u}). TakingY; = I [0,,,](¢) With

g =inf{t; A7 +27)([0,7] x J) =k —1} ,

we get that

IE(/ W, dr(u)) <kE(|FI) ,
[0.c]xJ

which proves the integrability property (4.3). The proc#ésis thus well defined.
Now we want to show the integrability a¥,,. It follows from |W,| < W, that

IE(/ |Wu|dk(u)> < IE(/ W, d)\(u)) <kE(|F|)
[0,¢c]xJ [0,8c]xJ

which proves that for al > 0,

f [Wuldr™(u)
[0,¢]xJ
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is almost surely finite. Notice now tha¥, ; is also equal to ED( ;) F | F)
almost surely. Indeed),, ;) F (w) does not depend an(, ), SO that

Wis, jy (@) = /D(s,,/)F(wuo,t[xJ + O|[,00[x ] VAP (@)

= / D, j) F(o)[0,1]xJ + @[)t,00[x 1 )dP(®)
= |E(D(s’j)F | 0%5) .

It still remains to identifyZ, and W,. To this end, we claim that for all pre-
visible bounded processé% ;) whose supports are in [x A ¢;], where¢ =
inf{t; fio.qxcs Zudr™ (@) = k},

IE(/ WuYudr(u)) - IE(/ Zl,YudA_(u)> . (4.4)
[0,7]xJ [0.7]xJ

As before, using Proposition 4.3, we get that

E ( / w,Y, d,\—(u)>
[0,¢]xJ
:/ E(W,Y,)dr" (1) = IE(/ D,F Y, d,\—(u)>
[0,6]xJ [0,6]xJ

=IE</ Fogl Yudr(u)> —IE</ Foeg, Yudr(u)>
[0,6]xJ [0,8]xJ

=|E<f Fogl Yudk+(u)> —IE</ Foeg, Yudr(u)> )
[0,/]xJ [0,6]xJ

Bute, (w) = w for AT-almost allu ande;, (w) =  for A~-almost allu. Thus,

IE(/ W, Y, dr(@) = IE(/ FY,dOm — ,\—)(u))
[0,6]xJ [0,¢]xJ

[0,e]xJ

whereM; is the uniformly integrable martingale(i& | # ;) and N, is the bounded
martingalef[O,I]X] Y, di(u). LetA(-, j) be the measurk restricted to R. x {j}.
We know that
dM, = Z Zq prdt, j)
jelJ
and that
dN; =Yy e, j) .
jeJ
It follows that the previsible brackeéd, N) is given by

d{M.N) =Y Zq.jYa.j » (@t ) .
jeJ
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Indeed, if we callA ; (1) the martingalqé A(ds, j), thend(A;, A ), is equal to O
for j # j’ and equal to.~ (dt, j) if j = j'. As

(M,N); = / Z,Y,d)™ (u)
[0,e]xJ

is bounded (by) by the assumption on the supportXgf, and similarlyN;, the
processM;N; — (M, N); is a true martingale sinc#f, is uniformly integrable.
Thus

E(/ w.Y, dk_(u)> = [E(M;N;)
[0,/]xJ
= E((M. N),)

t
= |E(‘/0 ZZ(S,./')Y(S’J') A (s, ]))

jeJ

— IE(/ Z.Y, dk(u)) .
[0,s]xJ

Thus (4.4) is established. It follows that = W, A~ ® P-almost everywhere.
Moreover, asZ, and W, do not depend o™ ({u}), it follows from Proposition
4.3 thatZ andW also coincide.™ ® IP-almost everywhere. The proof of Theorem
4.2 is complete. O

Now we turn to the proof of Theorem 4.1.
Proof of Theorem 4.Me start with the Poincarinequality (4.1). Suppose first that
F is bounded, so that the martingal = E(F | &) is uniformly bounded. By

Ito’s formula,
d(M?) = 2M,-dM; + (AM,)? .

Recall here thabh N; = N, — N,;- denotes the jump of the proceSsat timer. As
the procesy M;_d M, is a martingale, we get, by taking expectation,

E(F?) — (E(F))® = E< 3 (AMI)2> .
0<t<T
But the Clark-Ocone formula of Theorem 4.2 implies thd, = 3, Z;(t)dx
(t, j). Therefore the jumping part is given kyM, = Zjej Z;(t)drt(, j), and
(AM)? = (Zj0)?dr* (. j)
jeJ

as atoms in different directions occur at distinct times IP-almost surely. It follows
that

E(F?) — (E(F))® = E(/ 72 ,dit @, j)>
[0, T]1xJ

= E(/ Z(Zt’j)d)\_(t, j)>
[0, T]1xJ
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where we used Proposition 4.3. Then, by the Cauchy-Schwarz inequality
2
(Zw.j)? = E(DujF | F1)” < E((Do.jyF)?| 71)

so that

E(F?) — (|E(F))2 < E(/ |E((D(,,j)F)2 ENrG j))
[0, T]xJ

- E( / (D )20 (1, j))
[0, T]xJ

which is (4.1). To handle arbitrary functionals considerF4 = maxmin(F, A),
—A). Then|F4| is increasing and tends {&'| asA tends to infinity, andD,, F 4|
is also increasing t@D, F'|. The conclusion easily follows.

The proof of the modified logarithmic inequality (4.2) is similar. Again assume
first F is bounded from above, and bounded from beloweby 0. Itd’s formula
shows here that

The procesd'(log M;_ + 1)d M, is a martingale, and taking expectation, we get
E(FlogF) — E(F)log E(F)
= EM7ylogMr — Mplog Mp)
= IE( > (M;logM, — M,_logM,_) — (M, — M,_)(log M, + 1)) .
O<t<T
Using thatb logb — aloga — (b —a)(loga + 1) < (b —a)?/a, a, b > 0, we have
1
E(FlogF)—E(F)logE(F) < E
(FlogF) — E(F)log E(F) < <ZM

0<t<T =

1, ..
- IE</[O s H zZ dat, J))

_|E</ 1 722 i .)>
- [0,T]xJ M,_ (U¥)) > J .

In the first step, we used the Clark-Ocone formula while in the last one, we used the
isometry formula of Proposition 4.3. Next, notice thidt_ = M, for A~ -almost
everyt, and that, by the Cauchy-Schwarz inequality,

(AM,>2)

1
(Z,1))? = E(Dup F | 7:)* < E( (D F)? | 7, )E(F | 71) .
Therefore,
1
E(F log F) — E(F)log E(F) < IE(IE(E (D jy F)?| %,)d)ﬁ(t, j)>

1
= E(f / (D, j F)2dr= (1, j))
[0,T]1xJ
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and (4.2) is established in this case. Wher OF < M, we may work with the
functionsF, = max(F, ¢) and a standard approximation leads to the result. The
case whetF is not bounded above is somewhat more subtle. We may assume thatthe
right-hand side of (4.2) is finite. L&ty = min(F, A). The entropy EF4 log F4)—
E(F4)log E(Fy) still converges towards & log F) — [E(F) log E(F) asA —

oo. To get the convergence of the energy, notice thgtF'4 | is bounded byD,, F |

and byA. We then consider two parts

1 1
IE(— / (DMFA)Zd/\‘(u)> = / — (DyFa)2d)~ (w)dP
Fa Jio,11xJ r<ay F Jjo,11x4

1
+ / = / (Dy F4)%dr~(w)dP .
(F>a} A J[0,T]xJ

The first term converges towards(ﬁ0 TIxJ %(Du F)2dr~ (u)) by monotone con-
vergence. To prove that the second term converges to zero, we use the dominated
convergence theorem together with the fact thation- A},

(DuFa)? _ (DyF)?
A - F ’
Indeed, on(F > A}, F4 = A. Hence|D,Fa| = |Fao&, — Fa| = |Faog, — Al
Therefore,

(4.5)

2
PuI” _ (Ta28 _1)(py 00, - 4) .

A A
Similarly,
(DuF)? _ (Foe
= (-1 (Foa—F) .
and, according ag4 o g, < A or > A, (4.5) follows. This completes the proof of
the main Theorem 4.1. O

5. Modified logarithmic Sobolev inequalities on discrete path spaces

We now apply the results of the preceding section to some classes of continuous
time Markov processeB = (B;),-( On a graphy. The basic assumption we make
is that the generato}L of the processB may be written as

Lf=Y aj(fotj—f) . (5.1)

jeJ

whereJ is a finite set;r; are transformations of the set of vertices of the graph
X, andx; are positive constants. The oriented edges of the graph are the couples
(x, T;(x)). This means that the transformationsgive the directions taken by the
processB as a random walk on the graph

Let 2 and P as in Section 4. It is then possible to construct the praegth
the sequencéTy),>1 as jumping times and the sequengg),-1 as successive
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directions. More precisely, denote by = supk > 1; Tx <t} = AT([0,¢] x J)
the number of jumps before timeThen the process

B, = (tht ©---0 Tj]_)(BO)

has the expected distribution. This procedure defines a maptronto the space

of cad-lag paths ory. Thus, Theorem 4.1 applies to this setting. Inequalities (4.1)
and (4.2) of Theorem 4.1 may not be sharp for all graphs, since there are more
functions onQ2 than on the space of paths on the graph. At least, they are sharp on
z4.

Recall now that the proces® has the following probabilistic interpretation.
Starting from someqg € y, it jumps at time7; to a neighbour; = tj, (xg) of
xo- The law of 77 is exponential with parametex = %Z?:l Aj,andj; = j
with probability ; /2A. Then, the process waits an exponential tifpe- T; with
parameterA before jumping to a neighboun = t;,(x1) of x1, and so on. If it
happens that, for example;, (xg) = xo, then the process does not perform a true
jump at timeTy, andx; is not a true neighbour ofy. We thus consider the sets of
true jump times and true jump directiot/, j;),.,- The directionj; belongs to
the set of true directiong(xo) = {j; t;(x0) # xo}, andj; = j with probability
proportional tok ;. Time 7] is exponential with parametér(xg) = % Zjej(xo) Aj.
Denote byy] the (true) successive positioki = tjlé(Y,gfl). Y] is chosen among
Y;'s neighbours, and] = y with probability proportional tozj;rj(yé):y Aj.The
next steps are similar. Conditionally ¥y, the waiting time7}, , , — 7}/ is exponential
with parameterA (Y)), and jx41 is chosen in/ (Y}) with probability proportional
to A ;. Notice also tha¥#; = o (By, s < t) is the usual filtration.

Now we discuss somewhat in depth a few examples entering this setting. In
particular, we need to interpret, if possible, the gradient that comes into (4.1) and
(4.2).

Our first examples connect with Section 2 and 3. “Brownian motion" on the
lattice Z may be described in the preceding terminology with the translations
t1(x) = x +landr_1(x) = x — 1, and the constantg = A_1 = 1, the generator
L being thus the discrete Laplacian ah Zhe choice.; = 1,A_1 = 0 leads to the
standard Poisson process, and the &asgé A_1 corresponds to an asymmetric con-
tinuous Markov chain. The example of the two-point spgeg, +1} is described
similarly, and these examples are easily extended in dimewdsiblore generally,

a process on a groupy generated by a finite number of elemesis. .., e; € x
may be defined by (5.1) withy, .. ., 7, the translations; (x) = x -¢;. The process
B then corresponds to a continuous random wallg o®ne may for example con-
sider the symmetric groug’, generated by the set of transpositidms, j € J},
with all A; = 1 for instance.

This framework allows us to consider continuous time random walks on locally
uniformly finite graphs. Lety be an oriented graph, such that the number)
of edges starting from any vertexis uniformly bounded. Let L be the generator
defined by L(x, y) = 1if (x, y) is an edge, 0 otherwise. Then

LHE® =Y (F»—fw) ,

y<x
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so that it can be written in the form (5.1). Indeed, debe the maximum degree
d = max.y, d(x). Definery = --- = Ag = 1. Now, fix a vertexx, and let
Y1, ..., Yd(x) beits neighbours. Defing (x) = y; for j < d(x) andr;(x) = x for
d(x) < j <d.Then we have

d
Lf=) (fori=1) .

j=1

We may also define L by lx, y) = 1/d(x) if (x, y) is an edge, 0 otherwise, so that

1

LHo =705 H(f(y) f)
Such a choice still enters the setting of (5.1). Chagde be the least common
multiple of the setd(x); s € x, so that for every vertex, d/d(x) € IN. Take
A1 =---=Xiq = 1/d. Fix avertexx, and letys, ..., yq() be its neighbours. For
1< j <d/d(x), definet;(x) = y1, andt;(x) = y; for 1 + (k — Dd/d(x) <
j<kd/dx), k <dx).(f dx) =0, i.e.ifx does not have any neighbour, then
definer;(x) = x for everyj.) Then we have

1 d
Lf=3;(forj—f) :

The preceding two choices correspond to two different extensions of the continuous
random walks on the commutative graphsl, +1}¢ or Z<. In the second case,
the processB jumps with equal probability to one of its neighbour point after an
exponential waiting time of parametef2, while in the first one, the waiting time is
exponential with parameter (one half of) the number of neighbours of the position
of B.

Finite graphs provide also a wide class of examples. Indeed, if L is any generator
on a finite graply, defineJ as the set of edges, C {(x,y), x #y, x,y € x},
andforj = (x,y) € J,A; = L(x,y) andt;(z) = y if z = x, z otherwise. It is
easy to see again that this example may be treated as before.

In the last part of this section, we discuss the form of the energy functional that
appear in the Poincarand logarithmic Sobolev inequalities of Theorem 4.1 for
some of these examples. For simplicity, let us deal with

E(F) = IE(/ |D”F|2dk_(u)>
[0,T]1xJ

of (4.1), the study of the one in (4.2) being entirely similar. In the case vhiEn
the continuous time random walk of Znd F is a cylindrical functionF (B) =
f(By, ..., By,), itis easy to see that

E(F) = (t —t;_1) E(T""F)

i=1



Logarithmic Sobolev inequalities 597

which we obtained in (3.6) by a Markov tensorization of Proposition 3.1. Indeed,
recall here the two translationg andz_1 by +1 and—1. Fix a timer between,

say,t;_1 and¢;. Then, forj = +1 or j = —1, we have almost surely
B fors <t
+ _ s ’
(e0.5y(B), = {Bs +j fors>t

ande(‘t’j)(B) = B. Hence

n
Dy s F = ZDkF 0 Tj k-1
k=i
== f(Bll’ ceey Blifl’ Bti :I: 1, ceey Bl" :l: 1) - f(Btl’ ceey Btn)

almost surely, anxﬂD(,,H)F)z + (D(,,,l)F)2 =2r-"Fforti_1 <t < t;. The
claim follows. The examples of the standard Poisson process (cf. the introduction)
and of the cube (cf. Section 2) are similar.

In the general case, the description&fis not so simple and usually takes
into account the whole path before a given time. For simplicityFldie a one-
dimensional cylindrical functionat = f(B;), t > 0. We claim that

N

1
E(F) =t ZA;IE(W > [f @, o-~-o1:jk+lo‘erk)—f(Bt)]z) . (5.2)

jeJ k=0

Recall that hereV; is the number of (hidden) jumps before timeY is the po-
sition andjy, ..., jy, are the random directions taken by the process. When the
transformations;, j € J, of (5.1) commute, we have that

Tin © 0 Tiey 0 Tk = 7 (Tjy, 0+ 0 iy Vi) = (B

so that in this case (5.2) amounts to

sFy =1 3 E([f(5(B)) - FBOT)

jeJ

which corresponds, in the terminology of Section 3, toltfegperator associated to
the generator L. Even in cases where tie do not commute, there are instances
in which (5.2) takes a more simple form. For example, in case of the symmetric
group.¥,, generated by the transpositions, fix= 0 andk < N;, and setv =

Tjy, O+ 0Tj,,- Thenthe setf o 7; 7 transpositiohand{r oo; © transpositiof

are equal since the transpositions form a conjugancy class. Hence

Yo xi[f (e oY) = f(B)]” < (maxie) Y_[f(rj oo ¥) = (B
JjeJ jeJ

= (r}]ee}x)»g) Y [fiB) - f(Bt)]2

jelJ
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and
E(F) < t(maxie) 3 E([f ot — NF) -

ieJ

We now prove (5.2). We first write

E(F)=)_1; Z/IE s [£(z), 00 Tjus 0 T;Y0)

el Tn <T<T
n>=0

2
—f(tjy 00T Y0)] )ds

By independence of the sequencég);-o and(jix)>o, We get

EF)= ) A Z(/ P{Ty <5 < Tip1 Tn <t < Tyi1} ds)

jeJ,n>=0 k=0

X IE([f(rjn o---0Tj 0T Y;)— f(rj,0---0 rjk+1Yk)]2> .

Let
t
I (2) = / P{Ty <5 <Tiy1, T, <t < Tyqa}ds
0

for k < n. Then,

Ly() = ft IP{a)([O,s[XJ) =k, o(s,t[xJ)=n— k}ds
0

k —k
' (As) o As (A — )" e A=5) g

0o Kk (n — k)!
= i e_At /At ﬁ . —(At _ u)n_k du

A o K (n—k)

1, (At t
= —e€ = P{T, <t <T,

A A T axi U=t =Tl

Therefore, coming back t6,

E(F) = Y ,ZTIP{T,1<r<Tn+1}

jeJ,n=0 k=0

x E([f(fjn 0rr0Tj g 0TiVi) = f(zj, 000 Tjk+1Yk)]2>

N:
_IJGZJ)” IE( 1kzo[f(errO"'OTjk+1OTij)_f(Bt)]2> ;

and thus the proof of (5.2) is complete.
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More generally, ifF is now a cylindrical functionF = f(By.,..., B;,), a
similar calculus yields

N,

E(F) = Z(I,—t, DY A IE(m > A(f,B,i,j,k))

jeJ k=Ny_4
where
A(f B i, jo k) = [f (B s By Ty, 0 0 Tjega 0T ¥k oo T,
00T 0T Y) — f(By, ..., Bz,,)]z

As before, this expression may be simplified in some cases (commutation of the
7;'s, on the symmetric group, etc). For example, if this commute,

6(F) = Z(zl—z, D Y HE([f (B s By T (B i (By)

jedJ

— f(Byy, ...,B,”)]Z) .

Let us note to conclude, that in the latter example of commuting transformations
the induction method detailled in Section 2 on the cube may be adapted to yield a
usual logarithmic Sobolev inequality for cylindrical functiafis= f (B, ..., B,)

with energy

E(F) = Za(rl—tl OIS IE( (Biys ... By_yotj(Bi). ... 7;(By))

jeJ

— f(By, ...,B,n)]z)

provided there is one for the law & with constantx(z).

6. Applications to tail estimates

In this last section, we show how the path space logarithmic Sobolev inequalities of
Sections 4 and 5 may be used to deduce a tail estimate similar to (1.5) in the context
of continuous random walks on graphs. As was discussed in the introduction on the
basis of the random walk 0%, we expect tail behaviours with mixed Gaussian and
Poisson components. This is exactly what is provided by the preceding logarithmic
Sobolev inequalities. We follow here [B-L] and [Le].

With the notation and hypotheses of Sections 4 and 5, let us agree that a cylin-
drical functionF = f(B;,...,B;), 0 <1 < .- < t,, is K-Lipschitz if
|D,F(w)| < K, for A~ ® IP-almost every(u, ). An & r-measurable function
F is said to beK-Lipschitz if it is the almost sure limit of a sequenc¢Eg;) of
cylindrical K -Lipschitz functions.
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Proposition 6.1. Let F be # p-measurable and& -Lipschitz function. Thet is
integrable, and, for everg > 0,

P{F > E(F)+ R} < exp(—i Iog(1+ ;“;)) (6.1)

wherea? = ess sug | D, F|2d2~(u). In particular,
Q

. 1

“g]jolipRlog logP{F > R} < K (6.2)
As announced, this result describes a Gaussian tail whersmall with respect to
«?/K, and a Poisson tail for its large values. The constants in Proposition 6.1 are
not sharp.

Before proving Proposition 6.1, let us illustrate the statement.A_be the

Brownian motion on the lattic&Z or on the cube starting frony. Then (6.1) and
(6.2) apply toF = supy., 7 d(-, xo) with K = 1, whered is the graph distance.
One may also consider the’ tdistances

T 1/p
(/ d(, xo)f’dt> .
0

Proof of Proposition 6.1By a simple approximation procedure, it is enough to
consider the case of a bounded cylindrical 1-Lipschitz functiofcf. [Le] for
details in this respect.) We apply the logarithmic Sobolev inequality (4.2)%o e
for everyt > 0. Since for every,

|Dy ()| < eF|eP ! — 1| < e’ |D, Fle" |
we get that
E(cFe'’) — E(e™)log E€ ") < a®t?e EE€ ) .

If we let H(t) = log(Ee*F)/t, the preceding amounts #'(r) < «2€?® while
H(0) = [E(F). Therefore,
2
T F Ol_ T _
EE") < exp( : (€ — 1)+ rlE(F)) .
By Chebychev’s inequality, for ak > 0 andr > 0,

2
P{F > E(F)+ R} < exp(—rR n ‘% (& — 1)) .

Choose then = Iog( 2) for R > 2%, andt = X5 for 0 < R < 2«2 which
immediately yields (6. 105 (6.2) is an easy consequence of (6.1). Proposition 6.1 is
established. O

While the proof of the upper limit in (1.5) follows a very similar scheme, the
lower limitin (1.5) relies on comparison theorems in manifolds with non-negative
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Riccicurvature. To conclude this work, we present one instance for which the bound
(6.2) is sharp.

We consider a graph such that each edge is oriented in both sense. Assume
B starts abco and setD = supy-, -7 d(-, xo) whered is the graph distance. Recall

thatA = 3 3", 4,

Proposition 6.2. There exist®Rg such that for allR > Rgand allT > 0,
P{D > R} > exp| —Rlog<£> — AT
- - AT

wherex = 3 min;c, A;. Hence, in this case

1
lim inf logP{D > R} > -1 .

R—oo RIOQgR

Proof. For R > 0, denote by R] = inf{n € N, n > R} its upper integer part.
Choose a sequengé¢"® € J,n < [R], such thatr;qa.z) o - - o T;ar (x0) iS at

distance R] from xg. Then

P{D > R} = P{ sup d(B;, xo) > [R]} > P{d(Br, x0) > [R]}
0<t<T
> P{Ny =[R]} P{¥n < [R], jun = j"®}
where we recall thaNy is the number of jumps before tinfe As Ny is Poisson
with parameteAt and as\ = % minjes A,

Car (AT A
Pz = (e ) (7))

Choose themkRg such that R]! < exp(R log R) for R > Rg, and the proof is easily
completed. O

In casey = Z¢, the distanced (B, xo) and SUR,<, d(By, Xo) have a Pois-
sonian tail for allz, in the sense that, (for all directio$

et 2y Git/2" ’/2) < P|d(B,. x0) = R}
k>R
< P{ sup d(B;, x0) = R} (6.3)

O<s<t

k
cony

k>R

so that

log P{d(B;, x0) = R} ~ P{ sup d(B,, x0) > R} ~ —RIogR .

O<s<t
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The right-hand side inequality in (6.3) follows from sup_, d(Bs, Bg) < N;
and from the fact that the number of jumps is Poissonnian with parameter
Atr. The left-hand side inequality is a consequence of the decompogifioa
®‘f:1m,-z % [1;._,- It namely implies that for every < d,

P{d(B;, x0) = R} = P{|B/ — Bj| = R}
= (u, % Py )([R, ool)

i —( e (hjt/2)F
z ng,([R, oo[)Mgijt(o) —e (A,H,,)r/zz jk! .

k>R
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