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Abstract. We establish modified logarithmic Sobolev inequalities for the path distributions
of some continuous time random walks on graphs, including the simple examples of the
discrete cube and the lattice ZZd . Our approach is based on the Malliavin calculus on Poisson
spaces developed by J. Picard and stochastic calculus. The inequalities we prove are well
adapted to describe the tail behaviour of various functionals such as the graph distance in
this setting.

1. Introduction

The classical logarithmic Sobolev inequality for Brownian motionB = (Bt )t≥0 in
IRd [Gr] indicates that for all functionalsF in the domain of the Malliavin gradient
operatorD : L2(�, IP)→ L2(�× [0, T ], IP⊗ dt),

IE(F 2 logF 2)− IE(F 2) log IE(F 2) ≤ 2 IE

(∫ T

0
|DtF |2dt

)
. (1.1)

In particular, ifF = f (Bt1, . . . , Btn), 0 = t0 ≤ t1 ≤ · · · ≤ tn for some smooth
functionf : (IRd)

n→ IR,

DtF =
n∑
i=1

∇iF I {t≤ti } =
n∑
i=1

I {ti−1<t≤ti }
( n∑
k=i
∇kF

)

where, with some abuse,∇iF = ∇if (Bt1, . . . , Btn) and∇if is the gradient off
along thei-th direction, so that

IE(F 2 logF 2)− IE(F 2) log IE(F 2) ≤ 2
n∑
i=1

(ti − ti−1)IE

(∣∣∣∣
n∑
k=i
∇kF

∣∣∣∣2
)
. (1.2)

If F = f (Bt ), t ≥ 0, for some smoothf : IRd → IR,

IE
(
f 2(Bt ) logf 2(Bt )

)− IE
(
f 2(Bt )

)
log IE

(
f 2(Bt )

) ≤ 2t IE
(∣∣∇f (Bt )∣∣2) . (1.3)
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In the recent years, lots of efforts have been put in trying to extend the logarithmic
Sobolev inequality (1.1) to Brownian motions on Riemannian manifoldsM with
geometric bounds on the Ricci curvature. This problem has been solved in the papers
[Hs], [A-E], and is now pretty much well understood with the contribution [C-H-L]
where it is shown how one can easily deduce a logarithmic Sobolev inequality in
this setting from a Clark-Ocone formula. The latter is in turn a consequence of
appropriate integration by parts formulae going back to the work by J.-M. Bismut
[Bi]. In the flat case, such a representation formula indicates that for any smooth
functionalF ,

F = IE(F )+
∫ T

0
IE

(
DtF |Ft

)
dBt . (1.4)

As a generic by-product of these logarithmic Sobolev inequalities, one can obtain
tail estimates for Lipschitz functionals of large deviation type. For example (cf.
[Le]), if M has non-negative Ricci curvature, for everyT > 0,

lim
R→∞

1

R2
log IP

{
sup

0≤t≤T
d(Bt , x0) ≥ R

} = − 1

2T
(1.5)

whered(Bt , x0) is the Riemannian distance of Brownian motionBt at timet from
its starting pointx0.

The aim of this work is to investigate logarithmic Sobolev inequalities for
Brownian motions with values in graphs, with some view to tail estimates of the
type (1.5). Our study is very preliminary, and at this stage we only cover examples
that would correspond to constant curvature spaces in a Riemannian setting. In
order to introduce our purpose, and to understand better what kind of results can
be expected, let us first discuss two simple examples.

Let χ = {−1,+1}d be the discrete cube in IRd , and letB = (Bt )t≥0 be the
continuous time simple random walk onχ . In other words,B is the process that
jumps, after an exponential waiting time, from one of the vertices of the cube to
one of its neighbour with equal probability. The transition densities (with respect
to the uniform probability measure onχ ) of the processB are given by

pt (x, y) =
d∏
i=1

(1+ xiyi e−t ) ,

x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ χ , t ≥ 0. Let us assumed = 1 so as to
make the notation more simple. Iff is a function on{−1,+1}, andF = f (Bt ),
t ≥ 0, it is known that

IE
(
f 2(Bt ) logf 2(Bt )

) − IE
(
f 2(Bt )

)
log IE

(
f 2(Bt )

)
≤ 1

4
(1−e−2t )et log

(
1+ e−t

1− e−t

)
IE

(∣∣Df (Bt )∣∣2) (1.6)

whereDf (x) = f (−x)− f (x), x ∈ {−1,+1}. Since the law ofBt is a Bernoulli
measure on{−1,+1} with weigths 1

2(1 ± e−t ), the inequality (1.6) is just the
logarithmic Sobolev inequality for an asymmetric Bernoulli measure (cf. [SC]).
One important feature of the constant in (1.6) is that it significantly differs, as
t → 0, from the corresponding one in the Poincaré inequality
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IE
(
f 2(Bt )

)− (
IE

(
f (Bt )

))2 ≤ 1

4
(1− e−2t ) IE

(∣∣Df (Bt )∣∣2) . (1.7)

As explained carefully in Section 2, these Poincaré and logarithmic Sobolev in-
equalities may be tensorized to arbitrary cylindrical functions. However, while the
Poincaŕe inequalities may be extended to functions of all the path, this is no more
the case for the logarithmic Sobolev inequalities, owing to the distortion of the
constant by the factor et log((1+e−t )/(1−e−t ))which tends to infinity ast → 0.

A second example is provided by the graphχ = ZZd . Brownian motionB on ZZd

is defined as before as the continuous time simple random walk on the integers (with
generator one half of the discrete Laplacian). However, it turns out that we cannot
expect here any kind of logarithmic Sobolev inequality contrary to the compact
case{−1,+1},. Assume again thatd = 1 for simplicity. If t > 0, the law ofBt
(starting from the origin) is easily seen as the convolution of the Poisson measure
with parametert/2 on ZZ+ with the Poisson measure with the same parameter on
ZZ−. (This example may actually be analysed almost equivalently on the standard
Poisson process.) Now, it is known that Poisson measures do not satisfy the standard
logarithmic Sobolev inequality with respect to the discrete gradient on ZZ+ (see [B-
L], [G-R]). Therefore, the same negative comment applies toBt , and thus to the
whole processB. In a sense, this observation is reasonable. Indeed, one cannot
expect, for Brownian motions on ZZ or ZZd , tail estimates that would be similar
to the Gaussian large deviation result (1.5). For example, using Fourier series as
well as a representation formula for the modified Bessel function, the heat kernel
pt (x, y) of the discrete Laplacian on ZZ is given explicitely by

pt (x, y) = π−1/20
(
δ + 1

2

)
e−2t t δ

∫ +1

−1
(1− u2)δ−1/2e2tudu

for all t > 0 andx, y ∈ ZZ, whereδ is the distance|x − y| from x to y. Now, as is
shown in [Pa], for fixedt > 0,pt (x, y) behaves (at a logarithmic scale) as e−αδ2/t

when the ratioδ/t is small, and as e−βδ log(δ/t) whenδ/t is large (α, β > 0). Thus
the distribution of the distance of Brownian motion from its starting point entails
a mixed Gaussian and Poisson behavior. Such a behavior cannot be reflected by a
standard logarithmic Sobolev inequality that would only yield Gaussian tails (cf.
[Le]).

In order to clarify these early observations, we will make use of a modified
form of logarithmic Sobolev inequalities in discrete spaces recently put forward in
the work [B-L]. To recall the main result of [B-L], letµ be the Poisson measure on
ZZ+ with parameterθ > 0. Then, for anyf on ZZ+ with strictly positive values,∫

f logf dµ−
∫
f dµ log

∫
f dµ ≤ θ

∫
1

f
|Df |2dµ (1.8)

whereDf (x) = f (x + 1) − f (x), x ∈ ZZ+. One main aspect of inequality
(1.8) is that, due to the lack of chain rule for the discrete gradientD, the change
of functionsf 7→ f 2 does not yield the standard logarithmic Sobolev inequality
(which in case of Poisson measure is just not true). A similar inequality holds for the
Bernoulli measure with this time a constant of the same order than the spectral gap.
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Moreover, this form of logarithmic Sobolev inequality is well adapted to describe
tail behaviors of Lipschitz functions. As was shown indeed in [B-L], ifµ is any
measure on ZZ+, satisfying an inequality such as (1.8) for someC > 0 and allf
with strictly positive values, then, iff on ZZ+ is such that supx∈ZZ+ |Df (x)| ≤ 1,
we have that

∫ |f |dµ <∞ and, for everyr ≥ 0,

µ
(
f ≥ ∫

f dµ+ r) ≤ exp

(
− r

4
log

(
1+ r

2C

))
.

In particular, the tail of the Lipschitz functionf is Gaussian for the small values
of r and Poissonian for the large values (with respect toC). This is of course the
typical behaviour off (x) = x for example for Poisson measure, as well as the one
put forward above for the heat kernel of the random walk on ZZ.

As a consequence of these observations, we concentrate our investigation on
modified logarithmic Sobolev inequalities of the (1.8) type. As a result, we will
establish such an inequality for the continuous time process associated to the simple
random walk on a locally uniformly finite graph jumping to the neighbours with
equal probability. We will actually allow varying probabilities, but regardless of
the position (which thus corresponds to some constant curvature setting). While for
the simple examples of the cube and the lattice, the one-dimensional logarithmic
Sobolev inequalities may be iterated to the family of all cylindrical functions,
we follow a different route in the general case. Namely, our framework will be
somewhat more general and enters the setting developed by J. Picard [Pi] in his
investigation of Malliavin calculus on Poisson spaces. We actually take advantage
of his integration by parts formulae to derive the appropriate representation formula.
Provided with such a representation, the proof of the logarithmic Sobolev inequality
simply relies on the stochastic calculus argument of [C-H-L]. Thus, we establish
that for every positive functionalF on the paths of the graphχ up to timeT > 0,

IE(F logF)− IE(F ) log IE(F ) ≤ IE

(
1

F

∫
[0,T ]×J

|D(t,j)F |2 dt ⊗ dn
)
, (1.9)

wheredn is the counting measure on the setJ of the directions of the graph (see Sec-
tion 5 for details) andD(t,j) is the gradient in Poisson spaces. For example, for the
standard Poisson processN = (Nt )t≥0 on ZZ+, the set of directions is reduced to the
direction “+” (to the right), and ifF = f (Nt1, . . . , Ntn), 0= t0 ≤ t1 ≤ · · · ≤ tn,

D(t,+)F =
n∑
i=1

I {ti−1<t<ti }
n∑
k=i

DkF ◦ τi,k−1

where, fori < k,

DkF ◦ τi,k−1 = Dkf
(
Nt1, . . . , Nti−1, Nti + 1, . . . , Ntk−1 + 1, Ntk , . . . , Ntn

)
with Dkf the discrete derivative off along thek-th coordinate. Therefore, in this
case,
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∫
[0,T ]×J

|D(t,j)F |2 dt ⊗ dn

=
n∑
i=1

(ti − ti−1)

( n∑
k=i

DkF ◦ τi,k−1

)2

=
n∑
i=1

(ti − ti−1)
[
f (Nt1, . . . , Nti−1, Nti + 1, . . . , Ntn + 1)− f (Nt1, . . . , Ntn)

]2

and thus (1.9) provides the appropriate extension of (1.1) (as soon as the discrete
derivative is infinitesimal). As a general consequence of (1.9), ifF is 1-Lipschitz
with respect to this gradientD, we show that

IP
(
F ≥ IE(F )+ R) ≤ exp

(
−R

4
log

(
1+ R

2α2

))

for everyR ≥ 0 whereα2 = ess sup
�

∫
[0,T ]×J |D(t,j)F |2dt ⊗ dn. These conclu-

sions are presented in Sections 4 and 5, which form the core of this paper, where the
main results are further illustrated by various examples. As announced, we discuss
more or less in depth the random walks on the cube in Section 2 and on the lattice
ZZd in Section 3. In the last part, we apply the logarithmic Sobolev inequalities to
prove the preceding tail estimate for Lipschitz functions following [B-L], [Le].

Since this work has been submitted, various authors developed results related
to the present contribution. L. Miclo (personal communication) and L. Wu [Wu]
observed in particular that for the Poisson measure with parameterθ and for every
non-negative functionf on ZZ+,

∫
f logf dµ−

∫
f dµ log

∫
f dµ ≤ θ

∫
DfD(logf )dµ , (1.10)

an inequality that actually follows from the corresponding one on the two-point
space. While (1.8) and (1.10) (for Bernoulli or Poisson measures) are not compara-
ble, the proof of (1.10) is actually more simple than the one of (1.8). Moreover, with
respect to the latter, inequalities (1.10) do imply exponential decay of entropy. They
also entail concentration properties similar to (1.8). The Poisson process version of
(1.10) is investigated in [Wu] with arguments similar to the ones developed here.
Most of our results may actually be expressed similarly with the formDfD(logf ).

2. The discrete cube

We consider here the continuous time simple random walkB = (Bt )t≥0 on the
discrete cube, in dimension one for simplicity. Thus letχ = {−1,+1}. We are
looking for a logarithmic Sobolev inequality for the law ofB. As discussed in
the introduction, we already know that for a one-dimensional cylindrical function
F = f (Bt ), t ≥ 0,



578 C. Ané, M. Ledoux

IE
(
f 2(Bt ) logf 2(Bt )

)− IE
(
f 2(Bt )

)
log IE

(
f 2(Bt )

)
≤ 1

4
(1− e−2t )et log

(
1+ e−t

1− e−t

)
IE

(∣∣Df (Bt )∣∣2) . (2.1)

Recall thatDf (x) = f (−x) − f (x), x ∈ χ . Our first aim is to properly ten-
sorize this inequality to arbitrary cylindrical functions. At the level of Poincaré
inequalities, a Markovian tensorization of (1.7) yields, forF = f (Bt1, . . . , Btn),
0 ≤ t1 ≤ · · · ≤ tn,

IE(F 2)− (
IE(F )

)2 ≤ 1

2

n∑
i=1

(
1− e−2(ti−ti−1)

)
IE

(
0i...nF

)
(2.2)

where, fori < k,

DkF ◦ τi,k−1 = Dkf
(
Bt1, . . . , Bti−1,−Bti , . . . ,−Btk−1, Btk , . . . , Btn

)
with Dkf the discrete derivative off with respect to thek-th coordinate,

20i...nF =
( n∑
k=i

DkF ◦ τi,k−1

)2

= [
f (Bt1, . . . , Bti−1,−Bti , . . . ,−Btn)− f (Bt1, . . . , Btn)

]2
.

To establish (2.2), note that the law of(Bt1, . . . , Btn) is the measure on{−1,+1}n
given by

dP (x1, . . . , xn) = pt1(x0, x1)pt2−t1(x1, x2) · · ·ptn−tn−1(xn−1, xn)dx1dx2 · · · dxn
where we denote bydx the uniform probability measure on{−1,+1}. By induction
on (1.7) we get that

IE
(
f 2(Bt1, . . . , Btn)

)
=

∫
f 2dP ≤

(∫
f dP

)2

+ 1

4

n∑
i=1

(1− e−2(ti−ti−1))

∫
|Difi |2dP

where

fi(x1, . . . , xi) =
∫
fi+1(x1, . . . , xi+1)pti+1−ti (xi, xi+1)dxi+1

= IE
(
f (x1, . . . , xi, Bti+1, . . . , Btn) |Bti = xi

)
for everyi = 1, . . . , n− 1, andfn = f . The result will be established as soon as
we can show that

|Difi |2 ≤
∫ [
f (x1, . . . , xi−1,−xi, . . . ,−xn)− f (x1, . . . , xn)

]2

×pti+1−ti (xi, xi+1) · · ·ptn−tn−1(xn−1, xn)dxi+1 · · · dxn . (2.3)
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To achieve this task, write

fi(x1, . . . , xi−1,−xi)
=

∫
f (x1, . . . , xi−1,−xi, xi+1, . . . , xn)

×pti+1−ti (−xi, xi+1)pti+2−ti+1(xi+1, xi+2) · · ·ptn−tn−1(xn−1, xn)dxi+1 · · · dxn
=

∫
f (x1, . . . , xi−1,−xi,−xi+1, xi+2, . . . , xn)

×pti+1−ti (xi, xi+1)pti+2−ti+1(−xi+1, xi+2) · · ·ptn−tn−1(xn−1, xn)dxi+1 · · · dxn
= · · ·
=

∫
f (x1, . . . , xi−1,−xi, . . . ,−xn)

×pti+1−ti (xi, xi+1) · · ·ptn−tn−1(xn−1, xn)dxi+1 · · · dxn .
We have used here a basic commutation property expressed by the fact that∫

ϕ(−y)pt (x, y)dy =
∫
ϕ(y)pt (−x, y)dy . (2.4)

As a consequence,

Difi = fi(x1, . . . , xi−1,−xi)− fi(x1, . . . , xi−1, xi)

=
∫ [
f (x1, . . . , xi−1,−xi, . . . ,−xn)− f (x1, . . . , xn)

]
×pti+1−ti (xi, xi+1) · · ·ptn−tn−1(xn−1, xn)dxi+1 · · · dxn (2.5)

from which (2.3) follows by Jensen’s inequality.
To develop the same argument at the level of the logarithmic Sobolev inequality,

we first get, by induction on (2.1),∫
f 2 logf 2dP −

∫
f 2dP log

∫
f 2dP

≤ 1

4

n∑
i=1

(
1− e−2(ti−ti−1)

)
c(ti − ti−1)

∫
|Difi |2dP

where

c(ti − ti−1) = e−(ti−ti−1) log

(
1+ e−(ti−ti−1)

1− e−(ti−ti−1)

)
and now, the successive functionsfi are defined by

f 2
i (x1, . . . , xi) =

∫
f 2
i+1(x1, . . . , xi+1)pti+1−ti (xi, xi+1)dxi+1 .

In this case we get

|Difi |2 ≤
∫ [
f (x1, . . . , xi−1,−xi, . . . ,−xn)− f (x1, . . . , xn)

]2

×pti+1−ti (xi, xi+1) · · ·ptn−tn−1(xn−1, xn)dxi+1 · · · dxn
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from the Minkowski inequality in L2. Therefore,

IE(F 2 logF 2)− IE(F 2) log IE(F 2)

≤ 1

2

n∑
i=1

(
1− e−2(ti−ti−1)

)
c(ti − ti−1) IE

(
0i...nF

)
. (2.6)

However, contrary to what occurs in (2.2), the factorsc(ti − ti−1) which tend to
infinity as ti − ti−1→ 0 would not allow us to extend this inequality to functions
of all the path properly.

Together with the example of the lattice in the next section (for which the
classical logarithmic Sobolev inequality just does not hold), this is why we will
turn to some modified logarithmic Sobolev inequalities whose constants behave
better ast → 0. For example, as was shown in [B-L], iff is positive on{−1,+1},

IE
(
f (Bt ) logf (Bt )

)− IE
(
f (Bt )

)
log IE

(
f (Bt )

)
≤ 1

4
(1− e−2t )IE

( |Df (Bt )|2
f (Bt )

)
. (2.7)

The constant in (2.7) is now comparable to the one in the Poincaré inequality (1.7).
This inequality can be tensorized to cylindrical functionsF = f (Bt1, . . . , Btn),
f > 0, following the argument leading to (2.2) thus allowing extensions to the
whole path. Indeed, as a consequence of (2.5) and the Cauchy-Schwarz inequality,

|Difi |2
fi

≤
∫

1

f

[
f (x1, . . . , xi−1,−xi, . . . ,−xn)− f (x1, . . . , xn)

]2

×pti+1−ti (xi, xi+1) · · ·ptn−tn−1(xn−1, xn)dxi+1 · · · dxn
from which we get similarly that

IE(F logF)− IE(F ) log IE(F ) ≤ 1

2

n∑
i=1

(
1− e−2(ti−ti−1)

)
IE

(0i...nF
F

)
. (2.8)

Since (2.7) (and (2.8)) may be treated, to some extent, as the example of ZZd below,
we simply turn to this case now. Actually, we will establish (2.7) in the next section
in a setting that includes both examples.

Before turning to the next section, let us however briefly digress on a somewhat
different tensorization procedure on the cube. As is usual, the cube is often seen
as a discrete version of Gaussian spaces, and the process(Bt )t≥0 ought to be
compared to the (real-valued) Ornstein-Uhlenbeck processX = (Xt )t≥0 (starting
from the origin for example). SinceX is Gaussian, it is a simple matter to see that
if F = f (Xt1, · · · , Xtn), 0≤ t1 ≤ . . . tn, andf is smooth enough on IRn,

IE(F 2)− (
IE(F 2)

) ≤ n∑
i=1

(
1− e−2(ti−ti−1)

)
IE

(( n∑
k=i

e−(tk−ti )∂kF
)2)

(2.9)

where∂kF = ∂kf (Xt1, . . . , Xtn). Similarly, we have a logarithmic Sobolev in-
equality replacing the variance ofF on the left-hand side of (2.9) by one-half of the
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entropy ofF 2. In (2.9), the coefficients e−(tk−ti ) reflects a (constant) strictly positive
curvature property of Gauss spaces (cf. e.g. [Ba1]). Now, the commutation property
(2.4) on the cube does not reflect any kind of non-zero curvature. Using a different
commutation argument, one can however show that forF = f (Bt1, . . . , Btn) on
the cube,

IE(F 2)− (
IE(F 2)

)
≤ 1

4

n∑
i=1

(
1− e−2(ti−ti−1)

)
IE

(( n∑
k=i

e−(tk−ti )D̃kF ◦ τi,k−1

)2)
(2.10)

where

D̃kF ◦ τi,k−1 = BtkDkf
(
Bt1, . . . , Bti−1,−Bti , . . . ,−Btk−1, Btk , . . . , Btn

)
.

The proof of (2.10) is similar to the one of (2.2). It is enough to show that, for every
i = 1, . . . , n,

|Difi |2 ≤
∫ ( n∑

k=i
e−(tk−ti )xkDkf ◦ τi,k−1

)2

×pti+1−ti (xi, xi+1) · · ·ptn−tn−1(xn−1, xn)dxi+1 · · · dxn . (2.11)

Let us sketch the argument whenn = 2, i = 1. We can write

D1f1(x1) = f1(−x1)− f1(x1)

=
∫ [
f (−x1, x2)pt2−t1(−x1, x2)− f (x1, x2)pt2−t1(x1, x2)

]
dx2

=
∫ [
f (−x1, x2)D1pt2−t1(x1, x2)+D1f (x1, x2)pt2−t1(x1, x2)

]
dx2 .

Observe now that∫
f (−x1, x2)D1pt2−t1(x1, x2)dx2

= e−(t2−t1)x1

∫
x2D2f (−x1, x2)pt2−t1(x1, x2)dx2 .

Therefore

x1D1f1(x1) =
∫ [
x1D1f (x1, x2)pt2−t1(x1, x2)

+ e−(t2−t1)x2D2f (−x1, x2)pt2−t1(x1, x2)
]
dx2

so that (2.11) follows from Jensen’s inequality in this particular example. The
general case is similar.

To develop the same argument at the level of the logarithmic Sobolev inequality,
we would need the analogue of (2.11) when thefi ’s are defined by

f 2
i (x1, . . . , xi) =

∫
f 2
i+1(x1, . . . , xi+1)pti+1−ti (xi, xi+1)dxi+1 .
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It is however much less convenient to deal now with the discrete derivativesDifi ,
and we actually do not know whether (2.11) still holds in this case. To be more
precise, we have been able to check this inequality in dimension 2 directly (writing
f as determined by 4 values). With the help of the computer, we also checked
the result for a functionf on {−1,+1}3. However what is missing to us, is a
generic argument that would yield the result for any cylindrical function. Thus
we do not know at this point, although we strongly conjecture it, whether, for
F = f (Bt1, . . . , Btn) and anyn,

IE(F 2 logF 2)− IE(F 2) log IE(F 2)

≤ 1

4

n∑
i=1

(
1− e−2(ti−ti−1)

)
c(ti − ti−1) IE

(( n∑
k=i

e−(tk−ti )D̃kF ◦ τi,k−1

)2)
.

3. The lattice ZZd

We consider here the continuous time random walkB = (Bt )t≥0 on the lattice
ZZd and start with the cased = 1 for simplicity. ThusB is the process on ZZ that
jumps to one of its neighbour with equal probability and whose Markov generator is
(half of) the discrete Laplacian. As we have seen it in the introduction, the standard
logarithmic Sobolev inequality cannot hold and we have to consider a modified
form of it. Our starting point is the following result for one-dimensional cylindrical
functions. Iff is a function on ZZ, we set

20f (x) = [
f (x + 1)− f (x)]2+ [

f (x)− f (x − 1)
]2
, x ∈ ZZ .

Proposition 3.1. For anyt ≥ 0 and any functionf onZZ,

IE
(
f (Bt )

2)− (
IEf (Bt )

)2 ≤ t IE
(
0f (Bt )

)
. (3.1)

Moreover, iff takes stricly positive values,

IE
(
f (Bt ) logf (Bt )

)− IE
(
f (Bt )

)
log IE

(
f (Bt )

) ≤ t IE

(
0f (Bt )

f (Bt )

)
. (3.2)

Proof. We first prove the corresponding inequality for the Poisson process. This
inequality is actually known [B-L] but we would like to provide here a new more
simple proof based on the02 calculus of [Ba1], [Ba2]. In what follows, calculus are
made on ZZ+ for simplicity, but it could be made on ZZ or ZZd , or on the cube. The
method is actually more general and includes further examples of discrete Markov
generators.

Let L be the generator of the Poisson process on ZZ+, defined by

Lf (x) = f (x + 1)− f (x), x ∈ ZZ+ .

Let(Pt )t≥0 be the Markov semigroup with generator1
2 L, so thatPtf (x) =

∫
f dµxt

whereµxt is the Poisson distribution onx+ZZ+ with parametert/2. The “carŕe du
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champ” operator0 associated to L is defined by 20(f, g) = L(fg)− f Lg− gLf
and we have here

20f (x) = 20(f, f )(x) = [
f (x + 1)− f (x)]2

, x ∈ ZZ+ .

The02 operator is defined similarly by the formula 202f = L(0f )− 20(f,Lf ).
We wish to compare02f and0(

√
0f ). For this, note that

0 ≤ 40
(√
0f

)
(x) = [|f (x + 2)− f (x + 1)| − |f (x + 1)− f (x)|]2

≤ [(
f (x + 2)− f (x + 1)

)− (
f (x + 1)− f (x))]2 = 402f .

The positivity of02f will imply a Poincaŕe inequality, while the more precise
bound02f ≥ 0(

√
0f ) will lead to a modified logarithmic Sobolev inequality.

What follows is classical in the case of diffusions (see [Ba2] for instance). Letf be
any function on ZZ+. Setψ1(s) = Ps0Pt−sf ,ψ2(s) = Ps(

√
0Pt−sf ), 0≤ s ≤ t ,

and writeg = gs = Pt−sf to make the notation more simple. Then

ψ ′1(s) =
1

2
Ps

(
L0g − 20(g,Lg)

) = Ps(02g) ≥ 0

so that, for allt ≥ 0,0Ptf ≤ Pt0f . In the same way,

ψ ′2(s) =
1

2
Ps

(
L
√
0g − 1√

0g
0(g,Lg)

)

= 1

2
Ps

(
1

2
√
0g

(
2
√
0gL

(√
0g

)− 20(g,Lg
))

= 1

2
Ps

(
1√
0g

(
02g − 0

(√
0g

)))
≥ 0 .

Hence,ψ2(t) ≥ ψ2(0), that is to say
√
0(Ptf ) ≤ Pt(

√
0f ), for all t ≥ 0.

Now, letφ1(s) = Ps((Pt−sf )2), andφ2(s) = Ps(Pt−sf logPt−sf ) if f is non-
negative. With the preceding, we can bound the derivatives ofφ1 andφ2. Namely,

φ′1(s) = Ps(0Pt−sf ) ≤ Ps(Pt−s0f ) = Pt(0f ) .

This implies the Poincaré inequality forPt in the form of

Pt(f
2)− (Ptf )2 ≤ tPt (0f ) . (3.3)

In order to bound the derivative

φ′2(s) =
1

2
Ps

(
L(Pt−sf logPt−sf )− (1+ logPt−sf )L(Pt−sf )

)
,

notice that for allg ≥ 0,

L(g logg)− (1+ logg)Lg ≤ 20g

g
.
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This last estimate is a consequence of the inequality logb− loga− (b−a)/a ≤ 0,
a, b > 0. Hence,

φ′2(s) ≤ Ps
(

1

Pt−sf
0(Pt−sf )

)
≤ Ps

(
1

Pt−sf

(
Pt−s

√
0f

)2
)
,

where we used that
√
0(Pt−sf ) ≤ Pt−s(

√
0f ). By the Cauchy-Schwarz inequality

(
Pt−s(X)

)2 ≤ Pt−s(X2/Y )Pt−s(Y )

we get that

φ′2(s) ≤ Ps
(
Pt−s

(0f
f

))
= Pt

(0f
f

)
.

Finally, asφ2(t)−φ2(0) = Pt(f logf )−Ptf logPtf , we have shown that for all
f > 0 on ZZ+,

Pt(f logf )− Ptf log(Ptf ) ≤ tPt
(0f
f

)
. (3.4)

We now relate (3.3) and (3.4) to the inequalities of the proposition. Recall thus
the processB on ZZ. Assume it starts atx ∈ ZZ. It is known and easy to see [G-R]
that the lawpt (x, ·) = pxt of Bt is the convolution product

pxt = µxt ∗ µ̃0
t

whereµxt is the Poisson measure of parametert/2 onx+ZZ+, andµ̃0
t is the reversed

Poisson measure of parametert/2 on ZZ−. (To prove this equality, just verify that
these measures coincide on the characters eiθ ·.) In the preceding language, the
Markov semigroup of the process(B)t≥0 has generator12L where L is the discrete
Laplacian Lf (x) = f (x + 1) + f (x − 1) − 2f (x) on ZZ. Since (3.3) and (3.4)
apply to bothµxt andµ̃0

t , it is an easy task to deduce (3.1) and (3.2) by a classical
tensorization argument. Let us deal with the logarithmic Sobolev inequality (3.2).
Let f > 0 on ZZ. We can write∫

f logf dpxt =
∫ ∫

f (y + z) logf (y + z)dµxt (z)dµ̃0
t (y)

=
∫ ∫

f logf dµx+yt dµ̃0
t (y) .

From (3.4) applied toµx+yt , we get∫
f logf dµx+yt ≤

∫
f dµ

x+y
t log

∫
f dµ

x+y
t +t

∫
1

2f

[
f (·+1)−f )]2

dµ
x+y
t .

If we let h(y) = ∫
f dµ

x+y
t and apply (3.4) tõµ0

t , it follows that∫
h loghdµ̃0

t ≤
∫
hdµ̃0

t log
∫
hdµ̃0

t + t
∫

1

2h

[
h(· − 1)− h)]2

dµ̃0
t .
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But [
h(· − 1)− h](y) = ∫ [

f (· − 1)− f ]
dµ

x+y
t ,

and, by the Cauchy-Schwarz inequality,(∫ [
f (· − 1)− f ]

dµ
x+y
t

)2

≤
∫

1

2f

[
f (· − 1)− f )]2

dµ
x+y
t

∫
f dµ

x+y
t .

It follows from these bounds that∫
f logf dpxt ≤

∫
f dpxt log

∫
f dpxt + t

∫
1

2f

[
f (· + 1)− f ]

)2
dpxt

+t
∫

1

2f

[
f (· − 1)− f )]2

dpxt .

SinceBt has lawpxt , inequality (3.2) follows. The Poincaré inequality (3.1)
is established in the same way from (3.3). This completes the proof of
Proposition 3.1. ut

It should be mentioned that the preceding inequalities are sharp. (3.3) is sharp
on the functionf (x) = x while (3.4) applied to the functionsfε(x) = εx , x ∈ ZZ+,
with ε > 0 yields(

Pt(fε logfε)− Ptfε log(Ptfε)
)
(0)

Pt
(0f
f

)
(0)

= t ε logε + (1− ε)
(1− ε)2

which tends tot asε tends to 0. Note that applying (3.4) to 1+ εf and lettingε
tend to 0 only yields (3.3) up to a factor 2.

The tensorization argument used in the preceding proof may be used similarly
to tensorize Proposition 3.1 to thed-dimensional continuous time random walk
B = (Bt )t≥0 on the lattice ZZd . Indeed, the law ofBt = (B1

t , . . . , B
d
t ) is the

product measure of the laws of the marginals. We get in this way (3.1) and (3.2)
with 0 defined in this case by

20f =
d∑
j=1

([
f (· + ej )− f

]2+ [
f (· − ej )− f

]2
)

where(e1, . . . , ed) is the canonical basis of ZZd .
The proof developed in Proposition 3.1 applies similarly to the cube, by means

of the generator Lf (x) = f (−x) − f (x) for which 20f = |Df |2. It should be
mentioned however that we do not recover exactly (1.7) and (2.7), but only their
analogues in finite time using that 1− e−2t ≤ 2t , t ≥ 0.

Although we will not follow this route in the sequel, it is tempting to tensorize
Proposition 3.1 to cylindrical functionsF = f (Bt1, . . . , Btn), 0 ≤ t1 < · · · < tn,
as we described it on the cube in Section 2. By induction on (3.2), we get that

IE(F logF)− IE(F ) log IE(F ) ≤
n∑
i=1

(ti − ti−1)IE

(
0iFi

Fi

)
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whereFi = fi(Bt1, . . . , Bti ) and

fi(x1, . . . , xi) = IE
(
f (x1, . . . , xi, Bti+1, . . . Btn) |Bti = xi

)
and where0i is the0 operator acting on thei-th coordinate. Using the commutation
property ∫

ϕ(y + 1)dpxt (y) =
∫
ϕ(y)dpx+1

t (y)

analogous to (2.4), we bound as in Section 2 (cf. the proof of (2.2) and (2.9))

IE

(
0iFi

Fi

)

by

IE

(
0i...nF

F

)

using the Cauchy-Schwarz inequality, where

20i...nF = [
f (Bt1, . . . , Bti−1, Bti + 1, . . . , Btn + 1)− f (Bt1, . . . , Btn)

]2

+ [
f (Bt1, . . . , Bti−1, Bti − 1, . . . , Btn − 1)− f (Bt1, . . . , Btn)

]2
.

Thus we get

IE(F logF)− IE(F ) log IE(F ) ≤
n∑
i=1

(ti − ti−1) IE

(
0i...nF

F

)
. (3.5)

The corresponding Poincaré inequality

IE(F 2)− (
IE(F )

)2 ≤
n∑
i=1

(ti − ti−1) IE
(
0i...nF

)
(3.6)

is obtained in the same way. On the cube,

20i...nF = [
f (Bt1, · · · , Bti−1,−Bti , . . . ,−Btn)− f (Bt1, . . . , Btn)

]2

so that, at the expense of the bounds 1−e−2(ti−ti−1) ≤ 2(ti − ti−1), (3.5) is directly
comparable to (2.8), and (3.6) to (2.2).

As we will realize it later on, this tensorization procedure heavily relies on
commutativity in ZZ or ZZd . In order to reach some more general statements, we
will rather consider a path space approach based on the stochastic calculus of
variation in Poisson spaces developed by J. Picard [Pi] to which we turn now.
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4. Modified logarithmic Sobolev inequality on Poisson spaces

In this part, we consider random Poisson measures, and establish a modified log-
arithmic Sobolev inequality in this context. The correspondance between Poisson
measures and continous time Markov processes will be developed in Section 5 in
order to deduce logarithmic Sobolev inequalities for various kinds of continuous
random walks on graphs.

We follow the notation of [Pi]. LetJ be a finite set, which will be later on the
set of directions taken by the process, andn a positive measuren({j}) = 1

2λj on
J . The spaceU = IR+ × J is endowed with the measuredλ−(u) = dt ⊗ dn(j).
We call� the set of measuresω onU such thatω({u}) = 0 or 1 for allu ∈ U
andω(A) < ∞ wheneverλ−(A) < ∞. Let alsoλ+ be the random measure on
U defined byλ+(ω,A) = ω(A) for ω ∈ �. We will denote by IP the probability
measure on� under whichλ+ is a random Poisson measure of intensityλ−, and
by λ the compound Poisson measureλ = λ+ − λ−.

It is clear that, almost surely, the random atomic measureλ+ has at most one
atom at timet for all t ≥ 0. Thus, we can restrict� to such measures (that have
at most one atom at each timet), and we can order the random atoms(Tk, jk)k≥1,
0< T1 < T2 < · · · < Tk < · · · of the measureλ+. Recall that(Tk+1− Tk)k≥1 is a
sequence of i.i.d. random variables of exponential law with parameter3 = n(J ) =
1
2

∑
j∈J λj , and that(jk)k≥1 is also a sequence of i.i.d. random variables with law

n/n(J ) onJ , and that these two sequences of random variables are independent.
The filtration which will be used is the right-continuous filtrationFt = σ(λ+

(A),A ∈ B([0, t ] × J ), t ≥ 0. More generally, for any intervalT of IR+, FT will
denote theσ -algebraσ

(
λ+(A),A ∈ B(T × J )), andF will be F[0,∞[ . It is clear

thatFt− =
⋃
s<t Fs isF[0,t [ with our notation. Notice also that anF-measurable

functionF is FT -measurable if and only ifF(ω) = F(ω|T×J ), whereω|T×J is
the measureω restricted toT × J . Indeed, the condition is necessary because it is
true for functionsλ+(A), A ∈ B(T × J ), and sufficient because the map

(�,FT ) −→ (�,F)

ω 7−→ ω|T×J

is measurable. In a similar way, a processY is predictable if and only ifYt (ω) =
Yt (ω|[0,t [×J ). This condition is necessary because it holds for processes of the type

I ]s1,s2](t) I �1(ω), �1 ∈Fs1, s1 < s2 .

It is sufficient since the map

(IR+ ×�,P) −→ (IR+ ×�,B(IR+)⊗F)

(t, ω) 7−→ (t, ω[0,t [×J )

is measurable. Here,P denotes the predictableσ -algebra on IR+ ×�.
Now, we want to introduce the derivative of a functionF defined on�. For

u ∈ U , letDuF = F ◦ ε+u −F ◦ ε−u , where the transformationε+(t,j) (resp.ε−(t,j)) of
� adds an atom at timet in directionj if there was none and removes all other atoms
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at time t (resp. removes the probably existing atom at timet). This definition is
not the one of [Pi], where the path correspondance we will make is not considered,
and where the existence of several simultaneous atoms is not annoying. In [Pi],
transformations̃ε+u andε̃−u on the measure space are considered. The first one just
adds an atom atuwhile the second one removes it if there was one. But actually, it is
clear that̃ε±(s,j)(ω) 6= ε±(s,j)(ω) if and only ifω admits an atom at(s, j ′)with j 6= j ′.
Almost surely,λ+ has at most one atom at times, and as soon as(s, j) is charged
by λ+, then(s, j ′) is not. Consequently,λ+{ε̃± 6= ε±} = 0. Moreover, asλ− is
non-atomic,λ−{ε̃± 6= ε±} = 0. Thus,ε̃±u (ω) = ε±u (ω) holds for(λ+ + λ−)⊗ IP
almost all(u, ω). Therefore, all the results of [Pi] are still valid in our context.

Our task in this section will be to prove the following modified logarithmic
Sobolev inequality for the law IP of the random Poisson measure.

Theorem 4.1. Let 0 < T ≤ ∞ and letF be anFT -measurable and integrable
function on�. Then

IE(F 2)− (
IE(F )

)2 ≤ IE

(∫
[0,T ]×J

|DuF |2dλ−(u)
)
. (4.1)

Moreover, ifF takes strictly positive values, then

IE(F logF)− IE(F ) log IE(F ) ≤ IE

(
1

F

∫
[0,T ]×J

|DuF |2dλ−(u)
)
. (4.2)

These inequalities are sharp for every choice ofλj .

Before we turn to the proof of Theorem 4.1, let us comment on optimality. Let
Nt = λ+([0, t ] × J ) the number of atoms before timet . Nt has a Poisson law of
parameter3t . Let Fε(ω) = εNt with 0 < ε < 1. Then forλ− ⊗ IP almost all
((s, j), ω), s ≤ t , ∣∣D(s,j)Nt ∣∣ = |Nt + 1−Nt | = 1 and∣∣D(s,j)Fε(ω)∣∣ = ∣∣εNt+1− εNt | = (1− ε)Fε(ω) ,
so that

IE(N2
t )−

(
IE(Nt )

)2 = 3t = IE

(∫
[0,T ]×J

1dλ−(u)
)
,

and (4.1) is sharp. Concerning (4.2), let

rε = IE(Fε logFε)− IEFε log IE(Fε)

IE
(∫

[0,t ]×J
(DuFε)2

Fε
dλ−(u)

) = IE(Fε logFε)− IEFε log IE(Fε)

3t(1− ε)2IE(Fε)
.

Using the corresponding comment in Section 3, it is easily seen that

rε = ε logε − (1− ε)
(1− ε)2 → 1

asε tends to 0 so that (4.2) is sharp also.
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Let us recall that applying (4.2) toF = 1+ εG and lettingε→ 0 only yields
(4.1) up to a constant 2 so that (4.1) and (4.2) will be proved separately.

As described in the introduction, the idea of the proof of Theorem 4.1 is the fol-
lowing. We first describe the Clark-Ocone representation formula following Corol-
lary 6 of [Pi]. Once this representation has been established, we simply adapt the
stochastic calculus proof [C-H-L] to our setting. The following is the announced
representation formula. It will play the role of (1.4) in this discrete framework.

Theorem 4.2. Denote byωst = ω|[s,t [×J the measureω restricted to[s, t [×J . Let
F be integrable on�. Then,

Z(s,j)(ω) = IE
(
D(s,j)F |Fs−

) = ∫
(D(s,j)F )(ω

0
s + ω̄s∞) dIP(ω̄)

is almost surely defined, and

IE(F |Ft ) = IE(F )+
∫

[0,t ]×J
Z(s,j)dλ(s, j) .

Proof. It is based on the isometry formula of [Pi], Theorem 1.

Proposition 4.3. LetZu beλ−⊗ IP or λ+⊗ IP integrable and such thatDuZu = 0.
Then

IE

(∫
Zudλ

+(u)
)
= IE

(∫
Zudλ

−(u)
)
.

Actually this proposition is equivalent to the following integration by parts
formula (Theorem 2 of [Pi]).

Proposition 4.4. Let Z1
u andZ2

u be two processes onU × �. DefineDuZiu =
Ziu◦ε+u −Ziu◦ε−u i = 1,2, and assume thatZ1

uDuZ
2
u andZ2

uDuZ
1
u are(λ++λ−)⊗IP

integrable. Then

IE

(∫
Z1
u (DuZ

2
u) dλ(u)

)
= IE

(∫
(DuZ

1
u) Z

2
u dλ(u)

)

= IE

(∫
DuZ

1
u DuZ

2
u dλ

−(u)
)
.

Provided with these isometry and duality formulae, the proof of Theorem 4.2 will
consist in using the following existence theorem of a martingale representation (cf.
[Br], Chap. III, T9 and [Pi]).

Proposition 4.5. LetMt = IE(M∞ |Ft ) be a uniformly integrable martingale.
Then there exists a previsible processZu such that

∫
[0,t ]×J |Zu|dλ−(u) < ∞ IP-

almost surely for allt ≥ 0, satisfying

Mt = M0 +
∫

[0,t ]×J
Zudλ(u) IP-almost surely.

The processZ is unique in the sense that if̃Z satisfies the same conditions, then
Z = Z̃ (λ− + λ+)⊗ IP-almost everywhere.
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To prove Theorem 4.2, we first show that the processes (whenj ∈ J varies)

W(t,j)(ω) =
∫
D(t,j)F (ω

0
t + ω̄t∞) dIP(ω̄)

are well defined and integrable, and then thatWu(ω) = Zu(ω) for (λ− +λ+)⊗ IP-
almost every(u, ω). What follows is just an adaptation of [Pi]. Let us prove first
that

W̃(t,j)(ω) =
∫ ∣∣D(t,j)F (ω0

t + ω̄t∞)
∣∣dIP(ω̄) <∞ (4.3)

for λ− ⊗ IP- almost all((t, j), ω). LetY(t,j) be previsible non-negative processes,
j ∈ J . Then

Y(t,j)(ω) = Y(t,j)(ω0
t ) = Y(t,j)(ω0

t + ω̄t∞) .
Therefore,

IE

(∫
W̃uYu dλ

−(u)
)

=
∫ ∫ ∫ ∣∣D(t,j)F (ω0

t + ω̄t∞)
∣∣Y(t,j)(ω0

t + ω̄t∞)dIP(ω)dIP(ω̄)dλ−(t, j)

= IE

(∫
|DuF |Yu dλ−(u)

)

≤ IE

(
|F |

∫
Yu dλ

−(u)+
∫
|F ◦ ε+u |Yu dλ−(u)

)

= IE

(
|F |

∫
Yu dλ

−(u)+
∫
|F |Yu dλ+(u)

)

= IE

(
|F |

∫
Yu d(λ

− + λ+)(u)
)
.

In the last but one line, we made use of the isometry formula of Proposition 4.3
since|F ◦ ε+u |Yu does not depend onλ+({u}). TakingYt = I [0,ζk ](t) with

ζk = inf
{
t; (λ− + λ+)([0, t ] × J ) ≥ k − 1

}
,

we get that

IE

(∫
[0,ζk ]×J

W̃u dλ
−(u)

)
≤ k IE

(|F |) ,
which proves the integrability property (4.3). The processWu is thus well defined.

Now we want to show the integrability ofWu. It follows from |Wu| ≤ W̃u that

IE

(∫
[0,ζk ]×J

|Wu| dλ−(u)
)
≤ IE

( ∫
[0,ζk ]×J

W̃u dλ
−(u)

)
≤ k IE

(|F |)
which proves that for allt > 0,∫

[0,t ]×J
|Wu| dλ−(u)
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is almost surely finite. Notice now thatW(s,j) is also equal to IE(D(s,j)F |Fs)

almost surely. Indeed,D(s,j)F (ω) does not depend onω|{(s,j)}, so that

W(s,j)(ω) =
∫
D(s,j)F (ω|[0,t [×J + ω̄|[t,∞[×J )dIP(ω̄)

=
∫
D(s,j)F (ω|[0,t ]×J + ω̄|]t,∞[×J )dIP(ω̄)

= IE
(
D(s,j)F |Fs

)
.

It still remains to identifyZu andWu. To this end, we claim that for all pre-
visible bounded processesY(t,j) whose supports are in [0, ζk ∧ ζ ′k], whereζ ′k =
inf

{
t; ∫

[0,t ]×J Zu dλ
−(u) ≥ k},

IE

(∫
[0,t ]×J

WuYudλ
−(u)

)
= IE

(∫
[0,t ]×J

ZuYudλ
−(u)

)
. (4.4)

As before, using Proposition 4.3, we get that

IE

(∫
[0,t ]×J

WuYu dλ
−(u)

)

=
∫

[0,t ]×J
IE(WuYu)dλ

−(u) = IE

(∫
[0,t ]×J

DuF Yu dλ
−(u)

)

= IE

(∫
[0,t ]×J

F ◦ ε+u Yu dλ−(u)
)
− IE

(∫
[0,t ]×J

F ◦ ε−u Yu dλ−(u)
)

= IE

(∫
[0,t ]×J

F ◦ ε+u Yu dλ+(u)
)
− IE

(∫
[0,t ]×J

F ◦ ε−u Yu dλ−(u)
)
.

But ε+u (ω) = ω for λ+-almost allu andε−u (ω) = ω for λ−-almost allu. Thus,

IE

(∫
[0,t ]×J

WuYu dλ
−(u)

)
= IE

(∫
[0,t ]×J

F Yu d(λ
+ − λ−)(u)

)

= IE

(
F

∫
[0,t ]×J

Yu dλ(u)

)
= IE(MtNt )

whereMt is the uniformly integrable martingale IE(F |Ft ) andNt is the bounded
martingale

∫
[0,t ]×J Yu dλ(u). Let λ(·, j) be the measureλ restricted to IR+ × {j}.

We know that
dMt =

∑
j∈J

Z(t,j)λ(dt, j)

and that
dNt =

∑
j∈J

Y(t,j)λ(dt, j) .

It follows that the previsible bracket〈M,N〉 is given by

d〈M,N〉t =
∑
j∈J

Z(t,j)Y(t,j) λ
−(dt, j) .
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Indeed, if we call3j(t) the martingale
∫ t

0 λ(ds, j), thend〈3j,3j ′ 〉t is equal to 0
for j 6= j ′ and equal toλ−(dt, j) if j = j ′. As

〈M,N〉t =
∫

[0,t ]×J
ZuYudλ

−(u)

is bounded (byk) by the assumption on the support ofYu, and similarlyNt , the
processMtNt − 〈M,N〉t is a true martingale sinceMt is uniformly integrable.
Thus

IE

(∫
[0,t ]×J

WuYu dλ
−(u)

)
= IE(MtNt )

= IE
(〈M,N〉t)

= IE

(∫ t

0

∑
j∈J

Z(s,j)Y(s,j) λ
−(ds, j)

)

= IE

(∫
[0,t ]×J

ZuYu dλ
−(u)

)
.

Thus (4.4) is established. It follows thatZ = W , λ− ⊗ IP-almost everywhere.
Moreover, asZu andWu do not depend onλ+({u}), it follows from Proposition
4.3 thatZ andW also coincideλ+ ⊗ IP-almost everywhere. The proof of Theorem
4.2 is complete. ut

Now we turn to the proof of Theorem 4.1.

Proof of Theorem 4.1. We start with the Poincaré inequality (4.1). Suppose first that
F is bounded, so that the martingaleMt = IE(F |Ft ) is uniformly bounded. By
Itô’s formula,

d(M2
t ) = 2Mt−dMt + (1Mt)

2 .

Recall here that1Nt = Nt −Nt− denotes the jump of the processNt at timet . As
the process

∫
Mt−dMt is a martingale, we get, by taking expectation,

IE(F 2)− (
IE(F )

)2 = IE

( ∑
0≤t≤T

(1Mt)
2
)
.

But the Clark-Ocone formula of Theorem 4.2 implies thatdMt =
∑
j∈J Zj (t)dλ

(t, j). Therefore the jumping part is given by1Mt =
∑
j∈J Zj (t)dλ+(t, j), and

(1Mt)
2 =

∑
j∈J

(Zj (t))
2dλ+(t, j) ,

as atoms in different directions occur at distinct times IP-almost surely. It follows
that

IE(F 2)− (
IE(F )

)2 = IE

(∫
[0,T ]×J

Z2
(t,j)dλ

+(t, j)
)

= IE

(∫
[0,T ]×J

Z2
(t,j)dλ

−(t, j)
)
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where we used Proposition 4.3. Then, by the Cauchy-Schwarz inequality

(Z(t,j))
2 = IE

(
D(t,j)F |Ft

)2 ≤ IE
(
(D(t,j)F )

2 |Ft

)
so that

IE(F 2)− (
IE(F )

)2 ≤ IE

(∫
[0,T ]×J

IE
(
(D(t,j)F )

2 |Ft

)
dλ−(t, j)

)

= IE

(∫
[0,T ]×J

(D(t,j)F )
2dλ−(t, j)

)

which is (4.1). To handle arbitrary functionalsF , considerFA = max(min(F,A),
−A). Then|FA| is increasing and tends to|F | asA tends to infinity, and|DuFA|
is also increasing to|DuF |. The conclusion easily follows.

The proof of the modified logarithmic inequality (4.2) is similar. Again assume
first F is bounded from above, and bounded from below byε > 0. Itô’s formula
shows here that

d(Mt logMt) = (logMt− + 1)(dMt −1Mt)+1(Mt logMt) .

The process
∫
(logMt− + 1)dMt is a martingale, and taking expectation, we get

IE(F logF)− IE(F ) log IE(F )

= IE(MT logMT −M0 logM0)

= IE

( ∑
0<t≤T

(Mt logMt −Mt− logMt−)− (Mt −Mt−)(logMt− + 1)

)
.

Using thatb logb− a loga− (b− a)(loga+ 1) ≤ (b− a)2/a, a, b > 0, we have

IE(F logF)− IE(F ) log IE(F ) ≤ IE

( ∑
0<t≤T

1

Mt−
(1Mt)

2
)

= IE

(∫
[0,T ]×J

1

Mt−
Z2
(t,j)dλ

+(t, j)
)

= IE

(∫
[0,T ]×J

1

Mt−
Z2
(t,j)dλ

−(t, j)
)
.

In the first step, we used the Clark-Ocone formula while in the last one, we used the
isometry formula of Proposition 4.3. Next, notice thatMt− = Mt for λ−-almost
everyt , and that, by the Cauchy-Schwarz inequality,

(Z(t,j))
2 = IE

(
D(t,j)F |Ft

)2 ≤ IE
( 1

F
(D(t,j)F )

2 |Ft

)
IE

(
F |Ft

)
.

Therefore,

IE(F logF)− IE(F ) log IE(F ) ≤ IE

(
IE

( 1

F
(D(t,j)F )

2 |Ft

)
dλ−(t, j)

)

= IE

(
1

F

∫
[0,T ]×J

(D(t,j)F )
2dλ−(t, j)

)
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and (4.2) is established in this case. When 0< F ≤ M, we may work with the
functionsFε = max(F, ε) and a standard approximation leads to the result. The
case whenF is not bounded above is somewhat more subtle. We may assume that the
right-hand side of (4.2) is finite. LetFA = min(F,A). The entropy IE(FA logFA)−
IE(FA) log IE(FA) still converges towards IE(F logF) − IE(F ) log IE(F ) asA→
∞. To get the convergence of the energy, notice that|DuFA| is bounded by|DuF |
and byA. We then consider two parts

IE

(
1

FA

∫
[0,T ]×J

(DuFA)
2dλ−(u)

)
=

∫
{F≤A}

1

F

∫
[0,T ]×J

(DuFA)
2dλ−(u)dIP

+
∫
{F>A}

1

A

∫
[0,T ]×J

(DuFA)
2dλ−(u)dIP .

The first term converges towards IE
(∫

[0,T ]×J
1
F
(DuF)

2dλ−(u)
)

by monotone con-
vergence. To prove that the second term converges to zero, we use the dominated
convergence theorem together with the fact that, on{F > A},

(DuFA)
2

A
≤ (DuF)

2

F
. (4.5)

Indeed, on{F > A}, FA = A. Hence,|DuFA| = |FA ◦ εu−FA
∣∣ = |FA ◦ εu−A|.

Therefore,
(DuFA)

2

A
=

(FA ◦ εu
A

− 1
)(
FA ◦ εu − A

)
.

Similarly,
(DuF)

2

F
=

(F ◦ εu
F
− 1

)(
F ◦ εu − F

)
,

and, according asFA ◦ εu ≤ A or≥ A, (4.5) follows. This completes the proof of
the main Theorem 4.1. ut

5. Modified logarithmic Sobolev inequalities on discrete path spaces

We now apply the results of the preceding section to some classes of continuous
time Markov processesB = (Bt )t≥0 on a graphχ . The basic assumption we make
is that the generator12L of the processB may be written as

Lf =
∑
j∈J

λj (f ◦ τj − f ) , (5.1)

whereJ is a finite set,τj are transformations of the set of vertices of the graph
χ , andλj are positive constants. The oriented edges of the graph are the couples
(x, τj (x)). This means that the transformationsτj give the directions taken by the
processB as a random walk on the graphχ .

Let� and IP as in Section 4. It is then possible to construct the processB with
the sequence(Tk)k≥1 as jumping times and the sequence(jk)k≥1 as successive
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directions. More precisely, denote byNt = sup{k ≥ 1; Tk ≤ t} = λ+([0, t ] × J )
the number of jumps before timet . Then the process

Bt = (τjNt ◦ · · · ◦ τj1)(B0)

has the expected distribution. This procedure defines a map from� onto the space
of càd-l̀ag paths onχ . Thus, Theorem 4.1 applies to this setting. Inequalities (4.1)
and (4.2) of Theorem 4.1 may not be sharp for all graphs, since there are more
functions on� than on the space of paths on the graph. At least, they are sharp on
ZZd .

Recall now that the processB has the following probabilistic interpretation.
Starting from somex0 ∈ χ , it jumps at timeT1 to a neighbourx1 = τj1(x0) of
x0. The law ofT1 is exponential with parameter3 = 1

2

∑d
j=1 λj , andj1 = j

with probabilityλj/23. Then, the process waits an exponential timeT2− T1 with
parameter3 before jumping to a neighbourx2 = τj2(x1) of x1, and so on. If it
happens that, for example,τj1(x0) = x0, then the process does not perform a true
jump at timeT1, andx1 is not a true neighbour ofx0. We thus consider the sets of
true jump times and true jump directions(T ′k, j

′
k)k≥1. The directionj ′1 belongs to

the set of true directionsJ (x0) = {j ; τj (x0) 6= x0}, andj ′1 = j with probability
proportional toλj . TimeT ′1 is exponential with parameter3(x0) = 1

2

∑
j∈J (x0)

λj .
Denote byY ′k the (true) successive positionsY ′k = τj ′k (Y ′k−1). Y

′
1 is chosen among

Y ′0’s neighbours, andY ′1 = y with probability proportional to
∑
j ;τj (Y ′0)=y λj . The

next steps are similar. Conditionally toY ′k, the waiting timeT ′k+1−T ′k is exponential
with parameter3(Y ′k), andjk+1 is chosen inJ (Y ′k) with probability proportional
to λj . Notice also thatFt = σ(Bs, s ≤ t) is the usual filtration.

Now we discuss somewhat in depth a few examples entering this setting. In
particular, we need to interpret, if possible, the gradient that comes into (4.1) and
(4.2).

Our first examples connect with Section 2 and 3. “Brownian motion" on the
lattice ZZ may be described in the preceding terminology with the translations
τ1(x) = x+1 andτ−1(x) = x−1, and the constantsλ1 = λ−1 = 1, the generator
L being thus the discrete Laplacian on ZZ. The choiceλ1 = 1,λ−1 = 0 leads to the
standard Poisson process, and the caseλ1 6= λ−1 corresponds to an asymmetric con-
tinuous Markov chain. The example of the two-point space{−1,+1} is described
similarly, and these examples are easily extended in dimensiond. More generally,
a processB on a groupχ generated by a finite number of elementse1, . . . , ed ∈ χ
may be defined by (5.1) withτ1, . . . , τd the translationsτj (x) = x ·ej . The process
B then corresponds to a continuous random walk onχ . One may for example con-
sider the symmetric groupSn generated by the set of transpositions{τj , j ∈ J },
with all λj = 1 for instance.

This framework allows us to consider continuous time random walks on locally
uniformly finite graphs. Letχ be an oriented graph, such that the numberd(x)

of edges starting from any vertexx is uniformly bounded. Let L be the generator
defined by L(x, y) = 1 if (x, y) is an edge, 0 otherwise. Then

(Lf )(x) =
∑
y←x

(
f (y)− f (x)) ,
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so that it can be written in the form (5.1). Indeed, letd be the maximum degree
d = maxx∈χ d(x). Defineλ1 = · · · = λd = 1. Now, fix a vertexx, and let
y1, . . . , yd(x) be its neighbours. Defineτj (x) = yj for j ≤ d(x) andτj (x) = x for
d(x) < j ≤ d. Then we have

Lf =
d∑
j=1

(f ◦ τj − f ) .

We may also define L by L(x, y) = 1/d(x) if (x, y) is an edge, 0 otherwise, so that

(Lf )(x) = 1

d(x)

∑
y←x

(
f (y)− f (x)) .

Such a choice still enters the setting of (5.1). Choosed to be the least common
multiple of the setd(x); s ∈ χ , so that for every vertexx, d/d(x) ∈ IN. Take
λ1 = · · · = λd = 1/d. Fix a vertexx, and lety1, . . . , yd(x) be its neighbours. For
1 ≤ j ≤ d/d(x), defineτj (x) = y1, andτj (x) = yk for 1+ (k − 1)d/d(x) ≤
j ≤ k d/d(x), k ≤ d(x). (If d(x) = 0, i.e. if x does not have any neighbour, then
defineτj (x) = x for everyj .) Then we have

Lf = 1

d

d∑
j=1

(f ◦ τj − f ) .

The preceding two choices correspond to two different extensions of the continuous
random walks on the commutative graphs{−1,+1}d or ZZd . In the second case,
the processB jumps with equal probability to one of its neighbour point after an
exponential waiting time of parameter 1/2, while in the first one, the waiting time is
exponential with parameter (one half of) the number of neighbours of the position
of B.

Finite graphs provide also a wide class of examples. Indeed, if L is any generator
on a finite graphχ , defineJ as the set of edges,J ⊂ {(x, y), x 6= y, x, y ∈ χ},
and forj = (x, y) ∈ J , λj = L(x, y) andτj (z) = y if z = x, z otherwise. It is
easy to see again that this example may be treated as before.

In the last part of this section, we discuss the form of the energy functional that
appear in the Poincaré and logarithmic Sobolev inequalities of Theorem 4.1 for
some of these examples. For simplicity, let us deal with

E(F ) = IE

(∫
[0,T ]×J

|DuF |2dλ−(u)
)

of (4.1), the study of the one in (4.2) being entirely similar. In the case whenB is
the continuous time random walk on ZZ andF is a cylindrical functionF(B) =
f (Bt1, . . . , Btn), it is easy to see that

E(F ) =
n∑
i=1

(ti − ti−1) IE
(
0i...nF

)
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which we obtained in (3.6) by a Markov tensorization of Proposition 3.1. Indeed,
recall here the two translationsτ1 andτ−1 by +1 and−1. Fix a timet between,
say,ti−1 andti . Then, forj = +1 or j = −1, we have almost surely

(
ε+(t,j)(B)

)
s
=

{
Bs for s < t ,
Bs + j for s ≥ t

andε−(t,j)(B) = B. Hence

D(t,±1)F =
n∑
k=i

DkF ◦ τi,k−1

= f (Bt1, . . . , Bti−1, Bti ± 1, . . . , Btn ± 1)− f (Bt1, . . . , Btn)

almost surely, and
(
D(t,+1)F

)2 + (
D(t,−1)F

)2 = 20i...nF for ti−1 < t < ti . The
claim follows. The examples of the standard Poisson process (cf. the introduction)
and of the cube (cf. Section 2) are similar.

In the general case, the description ofE is not so simple and usually takes
into account the whole path before a given time. For simplicity, letF be a one-
dimensional cylindrical functionalF = f (Bt ), t ≥ 0. We claim that

E(F ) = t
∑
j∈J

λj IE

(
1

Nt + 1

Nt∑
k=0

[
f (τjNt ◦ · · · ◦ τjk+1 ◦ τjYk)− f (Bt )

]2
)
. (5.2)

Recall that hereNt is the number of (hidden) jumps before timet , Yk is the po-
sition andj1, . . . , jNt are the random directions taken by the process. When the
transformationsτj , j ∈ J , of (5.1) commute, we have that

τjNt ◦ · · · ◦ τjk+1 ◦ τjYk = τj
(
τjNt ◦ · · · ◦ τjk+1Yk

) = τj (Bt ) ,
so that in this case (5.2) amounts to

E(F ) = t
∑
j∈J

λj IE
([
f

(
τj (Bt )

)− f (Bt )]2
)

which corresponds, in the terminology of Section 3, to the0 operator associated to
the generator L. Even in cases where theτj ’s do not commute, there are instances
in which (5.2) takes a more simple form. For example, in case of the symmetric
groupSn generated by the transpositions, fixt ≥ 0 andk ≤ Nt , and setσ =
τjNt ◦ · · · ◦ τjk+1. Then the sets{σ ◦ τ ; τ transposition} and{τ ◦σ ; τ transposition}
are equal since the transpositions form a conjugancy class. Hence∑

j∈J
λj

[
f (σ ◦ τjYk)− f (Bt )

]2 ≤ (
max
`∈J

λ`
) ∑
j∈J

[
f (τj ◦ σYk)− f (Bt )

]2

= (
max
`∈J

λ`
) ∑
j∈J

[
f (τjBt )− f (Bt )

]2
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and

E(F ) ≤ t(max
`∈J

λ`
) ∑
i∈J

IE
(
[f ◦ τi − f )]2

)
.

We now prove (5.2). We first write

E(F ) =
∑
j∈J
n≥0

λj

n∑
k=0

∫ t

0
IE

(
I {Tk<s≤Tk+1,
Tn<t≤Tn+1}

[
f (τjn ◦ · · · ◦ τjk+1 ◦ τjYk)

−f (τjn ◦ · · · ◦ τjk+1Yk)
]2

)
ds .

By independence of the sequences(Tk)k≥0 and(jk)k≥0, we get

E(F ) =
∑

j∈J,n≥0

λj

n∑
k=0

(∫ t

0
IP{Tk < s ≤ Tk+1, Tn < t ≤ Tn+1} ds

)

× IE
([
f (τjn ◦ · · · ◦ τjk+1 ◦ τjYk)− f (τjn ◦ · · · ◦ τjk+1Yk)

]2
)
.

Let

In,k(t) =
∫ t

0
IP{Tk < s ≤ Tk+1, Tn < t ≤ Tn+1} ds

for k ≤ n. Then,

In,k(t) =
∫ t

0
IP

{
ω([0, s[×J ) = k, ω([s, t [×J ) = n− k} ds

=
∫ t

0

(3s)k

k!
e−3s

(3(t − s))n−k
(n− k)! e−3(t−s) ds

= 1

3
e−3t

∫ 3t

0

uk

k!
· (3t − u)

n−k

(n− k)! du

= 1

3
e−3t

(3t)n+1

(n+ 1)!
= t

n+ 1
IP{Tn < t ≤ Tn+1} .

Therefore, coming back toE,

E(F ) =
∑

j∈J,n≥0

λj

n∑
k=0

t

n+ 1
IP{Tn < t ≤ Tn+1}

× IE
([
f (τjn ◦ · · · ◦ τjk+1 ◦ τjYk)− f (τjn ◦ · · · ◦ τjk+1Yk)

]2
)

= t
∑
j∈J

λj IE

(
1

Nt + 1

Nt∑
k=0

[
f (τjNt ◦ · · · ◦ τjk+1 ◦ τjYk)− f (Bt )

]2
)
,

and thus the proof of (5.2) is complete.
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More generally, ifF is now a cylindrical functionF = f (Bt1, . . . , Btn), a
similar calculus yields

E(F ) =
n∑
i=1

(ti − ti−1)
∑
j∈J

λj IE

(
1

Nti −Nti−1 + 1

Nti∑
k=Nti−1

1(f,B, i, j, k)

)

where

1(f,B, i, j, k) = [
f (Bti . . . , Bti−1, τjNti

◦ · · · ◦ τjk+1 ◦ τjYk, . . . , τjNtn
◦ · · · ◦ τjk+1 ◦ τjYk)− f (Bt1, . . . , Btn)

]2
.

As before, this expression may be simplified in some cases (commutation of the
τj ’s, on the symmetric group, etc). For example, if theτj ’s commute,

E(F ) =
n∑
i=1

(ti − ti−1)
∑
j∈J

λj IE
([
f

(
Bt1, . . . , Bti−1, τj (Bti ), . . . , τj (Btn)

)
− f (Bt1, . . . , Btn)

]2
)
.

Let us note to conclude, that in the latter example of commuting transformationsτj ,
the induction method detailled in Section 2 on the cube may be adapted to yield a
usual logarithmic Sobolev inequality for cylindrical functionsF = f (Bt1, . . . , Btn)
with energy

E(F ) =
n∑
i=1

α(ti − ti−1)
∑
j∈J

λj IE
([
f

(
Bt1, . . . , Bti−1, τj (Bti ), . . . , τj (Btn)

)
− f (Bt1, . . . , Btn)

]2
)

provided there is one for the law ofBt with constantα(t).

6. Applications to tail estimates

In this last section, we show how the path space logarithmic Sobolev inequalities of
Sections 4 and 5 may be used to deduce a tail estimate similar to (1.5) in the context
of continuous random walks on graphs. As was discussed in the introduction on the
basis of the random walk on ZZd , we expect tail behaviours with mixed Gaussian and
Poisson components. This is exactly what is provided by the preceding logarithmic
Sobolev inequalities. We follow here [B-L] and [Le].

With the notation and hypotheses of Sections 4 and 5, let us agree that a cylin-
drical functionF = f (Bt1, . . . , Btn), 0 ≤ t1 ≤ · · · ≤ tn, is K-Lipschitz if
|DuF(ω)| ≤ K, for λ− ⊗ IP-almost every(u, ω). An FT -measurable function
F is said to beK-Lipschitz if it is the almost sure limit of a sequence(Fk) of
cylindricalK-Lipschitz functions.
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Proposition 6.1. LetF beFT -measurable andK-Lipschitz function. ThenF is
integrable, and, for everyR ≥ 0,

IP
{
F ≥ IE(F )+ R} ≤ exp

(
− R

4K
log

(
1+ KR

2α2

))
(6.1)

whereα2 = ess sup
�

∫ |DuF |2dλ−(u). In particular,

lim sup
R→∞

1

R logR
log IP{F ≥ R} ≤ − 1

4K
. (6.2)

As announced, this result describes a Gaussian tail whenR is small with respect to
α2/K, and a Poisson tail for its large values. The constants in Proposition 6.1 are
not sharp.

Before proving Proposition 6.1, let us illustrate the statement. LetB be the
Brownian motion on the lattice ZZd or on the cube starting fromx0. Then (6.1) and
(6.2) apply toF = sup0≤t≤T d(·, x0) with K = 1, whered is the graph distance.
One may also consider the Lp-distances(∫ T

0
d(·, x0)

pdt

)1/p

.

Proof of Proposition 6.1.By a simple approximation procedure, it is enough to
consider the case of a bounded cylindrical 1-Lipschitz functionF (cf. [Le] for
details in this respect.) We apply the logarithmic Sobolev inequality (4.2) to eτF

for everyτ ≥ 0. Since for everyu,∣∣Du(eτF )∣∣ ≤ eτF
∣∣eτDuF − 1| ≤ τeτ |DuF |eτF ,

we get that

IE
(
τFeτF

)− IE(eτF ) log IE(eτF ) ≤ α2τ2e2τ IE(eτF ) .

If we let H(τ) = log(IEeτF )/τ , the preceding amounts toH ′(τ ) ≤ α2e2τ while
H(0) = IE(F ). Therefore,

IE(eτF ) ≤ exp
(α2

2
τ(e2τ − 1)+ τ IE(F )

)
.

By Chebychev’s inequality, for allR ≥ 0 andτ ≥ 0,

IP
{
F ≥ IE(F )+ R} ≤ exp

(
−τR + α

2

2
τ(e2τ − 1)

)
.

Choose thenτ = 1
2 log( R

α2 ) for R ≥ 2α2, andτ = R

4α2 for 0 ≤ R ≤ 2α2 which
immediately yields (6.1). (6.2) is an easy consequence of (6.1). Proposition 6.1 is
established. ut

While the proof of the upper limit in (1.5) follows a very similar scheme, the
lower limit in (1.5) relies on comparison theorems in manifolds with non-negative
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Ricci curvature. To conclude this work, we present one instance for which the bound
(6.2) is sharp.

We consider a graphχ such that each edge is oriented in both sense. Assume
B starts atx0 and setD = sup0≤t≤T d(·, x0) whered is the graph distance. Recall
that3 = 1

2

∑
j∈J λj .

Proposition 6.2. There existsR0 such that for allR ≥ R0 and allT ≥ 0,

IP{D ≥ R} ≥ exp

(
−R log

( R
λT

)
−3T

)

whereλ = 1
2 minj∈J λj . Hence, in this case

lim inf
R→∞

1

R logR
log IP{D ≥ R} ≥ −1 .

Proof. ForR ≥ 0, denote by [R] = inf {n ∈ IN, n ≥ R} its upper integer part.
Choose a sequencej (n,R) ∈ J , n ≤ [R], such thatτj([R],R) ◦ · · · ◦ τj(1,R) (x0) is at
distance [R] from x0. Then

IP{D ≥ R} = IP
{

sup
0≤t≤T

d(Bt , x0) ≥ [R]
} ≥ IP

{
d(BT , x0) ≥ [R]

}
≥ IP

{
NT = [R]

}
IP

{∀ n ≤ [R], jn = j (n,R)
}

where we recall thatNT is the number of jumps before timeT . AsNT is Poisson
with parameter3t and asλ = 1

2 minj∈J λj ,

IP{D ≥ R} ≥
(

e−3T
(3T )[u]

[u]!

)(
λ

3

)[R]

.

Choose thenR0 such that [R]! ≤ exp(R logR) for R ≥ R0, and the proof is easily
completed. ut

In caseχ = ZZd , the distancesd(Bt , x0) and sup0≤s≤t d(Bs,X0) have a Pois-
sonian tail for allt , in the sense that, (for all directionsj )

e−(λj+λ−j )t/2
∑
k≥R

(λj t/2)k

k!
≤ IP

{
d(Bt , x0) ≥ R

}
≤ IP

{
sup

0≤s≤t
d(Bt , x0) ≥ R

}
(6.3)

≤ e−3t
∑
k≥R

(3t)k

k!

so that

log IP
{
d(Bt , x0) ≥ R

} ∼ IP
{

sup
0≤s≤t

d(Bt , x0) ≥ R
} ∼ −R logR .
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The right-hand side inequality in (6.3) follows from sup0≤s≤t d(Bs, B0) ≤ Nt
and from the fact that the number of jumpsNt is Poissonnian with parameter
3t . The left-hand side inequality is a consequence of the decompositionpxt =
⊗dj=1µλj t ∗ µ̃λ−j t . It namely implies that for everyj ≤ d,

IP
{
d(Bt , x0) ≥ R

} ≥ IP
{|Bjt − Bj0 | ≥ R}

= (µ0
λj t
∗ p̃0

λ−j t )
(
[R,∞[

)
≥ µ0

λj t

(
[R,∞[

)
µ̃0
λ−j t (0) = e−(λj+λ−j )t/2

∑
k≥R

(λj t/2)k

k!
.
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