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Abstract

Many Internet information resources present relational

data|telephone directories, product catalogs, etc. Be-

cause these sites are formatted for people, mechanically

extracting their content is di�cult. Systems using such

resources typically use hand-coded wrappers, procedures

to extract data from information resources. We introduce

wrapper induction, a method for automatically construct-

ing wrappers, and identify hlrt, a wrapper class that is

e�ciently learnable, yet expressive enough to handle 48%

of a recently surveyed sample of Internet resources. We

use PAC analysis to bound the problem's sample com-

plexity, and show that the system degrades gracefully

with imperfect labeling knowledge.

1 Introduction

The Internet contains many sources of relational data.

For example, when queried with a name, email address

services return hname; emaili pairs. But because these

sites are designed for people, the content is formatted

for human browsing (e.g. an html page), rather than

for use by a program. Therefore, software systems us-

ing such resources (e.g., heterogeneous database systems

[

Chawathe et al., 1994; Arens et al., 1996

]

or software

agents

[

Etzioni & Weld, 1994; Kirk et al., 1995

]

) must

translate query responses to relational form.

Wrappers are commonly used as such translators. A

wrapper is a procedure, speci�c to a single information

resource, that translates a query response to relational

form. Wrappers are typically hand-coded; unfortunately,

hand-coding is tedious and error-prone.

We seek an automated solution to this problem of con-

structing wrappers. Natural language processing has

been used for similar information-extraction tasks; see

[

Cowie & Lehnert, 1996

]

for a recent summary. But

many information resources do not exhibit the rich gram-

matical structure such techniques are designed to ex-

ploit. Moreover, linguistic approaches tend to be slow,

while ideally wrappers should execute quickly, because

they are used on-line to satisfy users' queries.

Wrapper induction is a new technique for automati-

cally constructing wrappers. Our system learns a wrap-

per by generalizing from example query responses. A

PAC model bounds the number of examples needed to

generate a satisfactory wrapper. The inductive algo-

rithm requires an oracle to label examples; we solve this

labeling problem

[

Etzioni, 1996

]

by composing oracles

from heuristic knowledge, and we demonstrate that our

system degrades gracefully with imperfect heuristics.

We identify hlrt, a class of wrappers which is e�-

ciently learnable, yet expressive enough to handle numer-

ous actual Internet information resources. hlrt is de-

signed for resources that display their content in a tabu-

lar layout. hlrt wrappers scan their input for substrings

that delimit the information to be extracted. Though

our focus is on Internet resources, these learned delim-

iters need not be html tags, but can be arbitrary text.

hlrt corresponds essentially to a class of �nite-state

automata, so wrapper induction is similar to FSA in-

duction (e.g.,

[

Angluin, 1982

]

). Since FSAs run in linear

time, hlrt satis�es the desire that wrappers be fast.

However, since wrappers are used for parsing (rather

than just classi�cation), the learned FSA must have a

speci�c state topology. Existing FSA induction algo-

rithms do not make such guarantees, so we have devel-

oped a new algorithm targeted speci�cally at hlrt.

We make the following contributions. First , we for-

malize the wrapper construction problem as that of in-

ductive generalization. Second , we identify the hlrt

wrapper class, which is e�ciently learnable yet reason-

ably expressive. Third , we show how to compose the

required oracle from (possibly imperfect) heuristics.

We proceed as follows. In Sec. 2, we describe wrap-

pers. In Sec. 3, we cast wrapper construction as induc-

tive generalization; we then spell out this framework by

describing how to learn hlrt (Sec. 4), applying the PAC

framework (Sec. 5), and presenting a modular approach

to building oracles (Sec. 6). Sec. 7 provides an empiri-

cal evaluation of our approach. Finally, Sec. 8 describes

related work.

2 Wrappers

A wrapper is a procedure for extracting tuples from a

particular information source. Formally, a wrapper is a

function from a page

1

to the set of tuples it contains.

1

We use the term page generically, referring to whatever

query response is returned by an information resource.



(a)

(b)

<HTML><TITLE>Some Country Codes</TITLE>

<BODY><B>Some Country Codes</B><P>

<B>Congo</B> <I>242</I><BR>

<B>Egypt</B> <I>20</I><BR>

<B>Belize</B> <I>501</I><BR>

<B>Spain</B> <I>34</I><BR>

<HR><B>End</B></BODY></HTML>

(c)

ExtractCCs(page P )

skip past �rst occurence of <P> in P

while next <B> is before next <HR> in P

for each h`

k

; r

k

i 2 fh<B>; </B>i ; h<I>; </I>ig

skip past next occurence of `

k

in P

extract attribute from P to next occurence of r

k

return extracted tuples

(d)

ExecuteHLRT(hh; t; `

1

; r

1

; : : : ; `

K

; r

K

i, page P )

skip past �rst occurence of h in P

while next `

1

is before next t in P

for each h`

k

; r

k

i 2 fh`

1

; r

1

i ; : : : ; h`

K

; r

K

ig

skip past next occurence of `

k

in P

extract attribute from P to next occurence of r

k

return extracted tuples

Figure 1: (a) A �ctitious example query response page;

(b) the html from which it was rendered; (c) a wrapper

for this resource; and (d) the hlrt wrapper template.

For example, consider a �ctitious information resource

that provides a tabular list of countries and their tele-

phone country codes. Suppose that in response to a

query, the resource responds as displayed in Fig. 1(a),

which was rendered from the html shown in (b). Many

kinds of wrappers could be written; we consider wrap-

pers that use the positions of particular strings to delimit

the extracted text. From (b), it appears that this re-

source renders tuples by surrounding countries with <B>

and </B>, and country codes with <I> and </I>.

2

So one

candidate wrapper relies on these four delimiters.

But note that this simple left-right (lr) strategy fails,

because not all occurrences of <B>� � �</B> indicate a coun-

try. However, the string <P> can be used to distinguish

the head of the page from the tuples proper. Similarly,

<HR> separates the last tuple from the tail. Fig. 1(c)

shows ExtractCCs, a wrapper based on this more sophis-

ticated head-left-right-tail (hlrt) approach.

We focus on wrappers that are structurally similar to

ExtractCCs. Fig. 1(d) shows the template for hlrt wrap-

pers. Note that instantiating the template with the six

2

Note that though this example involves html tags such

as <B>, our system does not require the use of html; any text

fragment (such as just B>) that reliably delimits the attribute

is acceptable.

hbelrt

fh; t; b; e; `

1

; r

1

; : : : ; `

K

; r

K

g

lr

f`

1

; r

1

; : : : ; `

K

; r

K

g

hlrt

fh; t; `

1

; r

1

; : : : ; `

K

; r

K

g

belr

fb; e; `

1

; r

1

; : : : ; `

K

; r

K

g

X

X

X

X

X

Xy

�

�
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arbitrary �nite state automata

6

Figure 2: A partial hierarchy of wrapper biases. Arrows

indicate that one bias is more expressive than another.

strings h<P>,<HR>,<B>,</B>,<I>,</I>i yields ExtractCCs.

Formally, an hlrt wrapper for a domain with K at-

tributes per tuple is encoded as a vector of 2K+2 strings

hh; t; `

1

; r

1

; : : : ; `

K

; r

K

i. One string (h) marks the end of

the header, another (t) marks the start of the tail, and

two strings (`

k

and r

k

) delimit each of the K attributes.

We focus on hlrt, but alternatives abound. Fig. 2

illustrates a partial hierarchy of wrapper classes. lr is

less expressive than hlrt; for example, the country/code

resource can be wrapped by hlrt but not lr. belr's b

and e mark the beginning and end of each tuple, rather

than page's body. In the extreme, arbitrary �nite-state

automata could be used as wrappers. In

[

Kushmerick,

1997

]

, we analyze this hierarchy in detail.

3 Constructing wrappers by induction

The wrapper construction problem is the following: given

a supply of example query responses, learn a wrapper for

the information resource that generated them. For the

country/code resource, the problem is to induce the Extr-

actCCs procedure, given a supply of html pages similar

to that shown in Fig. 1(b).

Induction thus provides a natural framework for for-

malizing wrapper construction. Induction is the task of

generalizing from labeled examples to a hypothesis, a

function for labeling instances. For our problem:

Instances correspond to pages|e.g. Fig. 1(b).

Labels correspond to pages' tuples|e.g. the example

page is labeled as containing fhCongo,242i, hEgypt,20i,

hBelize,501i, hSpain,34ig.

Hypotheses correspond to hlrt wrapper template

parameters|e.g. h<P>,<HR>,<B>,</B>,<I>,</I>i is the

encoding of ExtractCCs.

Oracles correspond to sources of example query re-

sponses and their labels. We split the traditional ora-

cle (which returns a single labeled instance) into two

parts. PageOracle generates example pages, and La-

belOracle produces correct labels for these instances.

PageOracle is speci�c to a particular information re-

source, while LabelOracle is composed from heuristics

that are reusable across domains.

PAC analysis is used to terminate the learning pro-

cess, so the system takes as input accuracy (�) and



Page

Oracle
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Label

Oracle
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PAC bounds
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repeat
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n

 PageOracle()

L

n

 LabelOracle(P

n
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n

; L

n

ig

w BuildHLRT(E)

until Pr[E(w)<�] > 1��

return w

�!

hlrt

wrapper

Figure 3: The wrapper induction algorithm.

con�dence (�) parameters.

With this framework in place, we now present the

wrapper induction algorithm; see Fig. 3. Wrapper in-

duction proceeds by accumulating a set E of labeled ex-

ample pages. On each iteration, BuildHLRT is called

with E , which returns wrapper w. Learning stops when

w satis�es the PAC bound. In Secs. 4{6, we describe the

algorithm's main components:

BuildHLRT constructs an hlrt wrapper from a set of

labeled example pages; see Sec. 4.

Pr[E(w)<�] > 1�� is a PAC-theoretic termination con-

dition, testing whether enough examples have been

seen to be con�dent that a satisfactory wrapper has

been learned; see Sec. 5.

LabelOracle is a function from a page to a label. In Sec. 6

we describe how to compose a correct labeling oracle

from (possibly imperfect) heuristic knowledge.

4 Building hlrt wrappers

BuildHLRT takes as input a set of labeled pages, and

returns an hlrt wrapper that is consistent with each

labeled page. A wrapper is consistent with a labeled

page if it generates the label for the page. Fig. 4 shows

the BuildHLRT algorithm.

BuildHLRT reasons about the conditions that must

hold if wrapper hh; t; `

1

; r

1

; : : : ; `

K

; r

K

i is to be consis-

tent. For example, in Fig. 1(b), the string <I> is a valid

value for `

2

, because <I> actually precedes every instance

of the second attribute. Such constraints apply to each

r

k

, and to each `

k

for k > 1.

BuildHLRT is complicated by the fact that `

1

, t, and

h interact. For example, to determine whether <B> is

acceptable as `

1

(even though the head and tail contain

<B>), BuildHLRT must �nd an h and t such that <B> does

in fact reliably mark the start of the �rst attribute. In

this case, h = <P> and t = <HR> are satisfactory. Lines (a{

d) in Fig. 4 capture the constraints that `

1

, t, and h must

satisfy. BuildHLRT examines all possible combinations of

`

1

, h, and t, stopping when it �nds values that jointly

satisfy these constraints.

To summarize, BuildHLRT iterates over all choices for

the 2K+2 delimiters, stopping when a consistent wrap-

per is encountered. BuildHLRT's search is made more

e�cient by decomposing the constraint satisfaction prob-

BuildHLRT(labeled pages E = f: : : ; hP

n

; L

n

i ; : : :g)

Note that each label L

n

partitions page P

n

into its

attributes, separated by the strings between tuples

and between the K attributes within a tuple.

for k = 1 to K

r

k

 any common pre�x of the strings following each

(but not contained in any) attribute k

for k = 2 to K

`

k

 any common su�x of the strings preceding each

attribute k

for each common su�x `

1

of the pages' heads

for each common substring h of the pages' heads

for each common substring t of the pages' tails

if (a) h precedes `

1

in each of the pages' heads; and

(b) t precedes `

1

in each of the pages' tails; and

(c) t occurs between h and `

1

in no page's head; and

(d) `

1

doesn't follow t in any inter-tuple separator

then return hh; t; `

1

; r

1

; : : : ; `

K

; r

K

i

Figure 4: The BuildHLRT algorithm.

lem into three independant subproblems: �nding values

for (1) the r

k

; (2) the `

k

(k>1); and (3) h, t, and `

1

.

In

[

Kushmerick, 1997

]

, we prove that: (1) BuildHLRT

is sound (if BuildHLRT returns a wrapper, then it is con-

sistent) and complete (if a consistent wrapper exists, Bui-

ldHLRT �nds it); and (2) under reasonable assumptions,

BuildHLRT runs in time O(KNMS

3

), where each tuple

has K attributes, the shortest of the N example pages

has length S, and M is maximum number of tuples in

any single example.

Appendix A formally describes the conditions under

which an hlrt wrapper is consistent with a labeled page.

5 PAC analysis

PAC analysis answers the question, `How many exam-

ples must a learner see to be con�dent that its hypoth-

esis is good enough|i.e., to be probably approximately

correct?'; see

[

Kearns & Vazirani, 1994

]

for an introduc-

tion. A PAC model de�nes an error metric over hy-

pothesis: E(w) is the probability that hypothesis w will

incorrectly label the next instance. The learning task is

then analyzed in order to bound the number of exam-

ples which ensure that Pr[E(w)> �] < �, for any given

accuracy parameter � and con�dence parameter �. In

[

Kushmerick, 1997

]

, we prove the following theorem.

Theorem 1 (hlrt sample complexity) Suppose

BuildHLRT(E) returns wrapper w, where E contains col-

lectively T tuples, each with K attributes. If

�

1 � 2

�

1�

�

2

�

T

�

2K

�

1 � 2

�

1�

�

2

�

jEj

�

2

> 1��;

then Pr[E(w)>�] < �, for any 0 < � < 1 and 0 < � < 1.

For example, with � = � = 0:1, K = 4, and an average

of 5 tuples/page, BuildHLRT must examine at least 72

examples to satisfy the PAC criteria.



This bound is relatively tight compared to typical PAC

results. For example, the number of possible hlrt wrap-

pers is in�nite, but our bound does not depend on the

number of wrappers. Thus clearly the stated bound is

tighter than obtainable under simple PAC models (e.g.,

[

Valiant, 1984; Blumer et al., 1987

]

), in which sam-

ple complexity grows with the number of hypotheses.

The bound is also tighter than obtainable using Vapnik-

Cherv�onenkis analysis

[

Haussler, 1988

]

. To understand

these results, recall that BuildHLRT is essentially com-

puting common pre�xes and su�xes of sets of strings,

which are highly constrained after relatively few exam-

ples; see

[

Kushmerick, 1997

]

for a detailed discussion.

6 Composing oracles

A key to induction is an oracle that labels examples. So

far, we have assumed that LabelOracle is provided as in-

put. We now describe how to compose LabelOracle from

modular heuristic knowledge, which we call recognizers .

A recognizer �nds instances of a particular attribute on

a page. For example, a country name recognizer would

identify the four countries contained in Fig. 1(b)'s html.

These recognized instances are then corroborated to la-

bel the entire page. For example, given a recognizer for

countries and another for country codes, corroboration

produces an oracle that labels pages containing pairs of

these attributes.

Corroboration is trivial if each recognizer is perfect.

3

But an important feature of our approach is that it han-

dles imperfect recognizers. Recognizers are either perfect

(accept all positive instances and reject all negative in-

stances of their target attribute), incomplete (reject all

negative instances but reject some positive instances),

unsound (accept all positive instances but accept some

negative instances), or unreliable (reject some positive

instances and accept some negative instances).

We require that each recognizer be annotated with the

kind of error it makes. We expect this annotation to be

natural for many kinds of recognizers. For example, a

company name recognizer based on Fortune-500 data is

incomplete, while a country code recognizer accepting

any digit sequence is unsound. The intent is that rec-

ognizers are reusable across domains; a company name

recognizer, for example, can be used with any informa-

tion resource displaying companies.

Recall that LabelOracle is a function from a page to a

label for the page. A label is an array, where rows cor-

respond to tuples, and columns are attributes. A recog-

nizer is a function from a page to a set of instances (sub-

sequences of the page). The set of recognized instances

is a column of the overall label array. The corroboration

problem, then, is to build the entire label array from the

individual columns. Note that the attributes' ordering

within tuples is not part of the input; the corroboration

algorithm must determine this ordering.

3

Wrappers are needed even with perfect recognizers, be-

cause recognizers might be slow, while wrappers must be fast.

Ctry

incomp

10{15

50{55

+

Code

perfect

18{20

38{40

58{60

+

Cap

unsound

5{7

19{25

22{28

42{48

44{49

59{65

62{68

70{75

)

Ctry Code Cap

10{15 18{20 22{28

? 38{40 42{48�44{49

50{55 58{60 62{68�70{75

(a) (b) (c) (d)

Figure 5: Corroborating (a{c) yields (d).

The basic idea of corroboration is that the location of

some instances greatly constrains the possible location of

others. Suppose recognizer A is unsound and identi�es

an instance at position 10{20, while perfect recognizer

B �nds an instance at 14{16. Since attributes never

overlap, the A at 10{20 must be a false positive (FP)

and thus must be ignored, while the B at 14{16 is a true

positive (TP).

In the remainder of this section, we describe corrobo-

ration by walking through an example, present the Cor-

rob corroboration algorithm, and describe how our work

is extended to handle imperfect recognizers.

Example. Fig. 5 extends the country/code example to

include an additional attribute, the country's capital.

4

Corroboration begins by noting the type of error made

by each recognizer: in this simple example, assume the

recognizer for the codes is perfect, but the country recog-

nizer is incomplete and the capital recognizer is unsound.

Next, note that since the Code recognizer is perfect,

all Code instances are TPs. Thus Code can be simply

copied to the label array. The incomplete Ctry column

is almost as easy: it is copied verbatim, but Code is used

to align each Ctry instance. This leaves a \hole" in the

Ctry column. Next, the corroborator processes the un-

sound Cap column. 5{7 must be a FP, because were it

a TP, Code would have included an additional instance

prior to 5. Next, since 19{25 overlaps withCode's 18{20,

19{25 must be a FP. Since 22{28 is the only remaining

possibility for the �rst tuple's Cap instance, 22{28 must

be a TP. However, for the second tuple, there is no way to

choose between 42{48 and 44{49: one must be a TP and

the other a FP, but there is no way to decide. Corrob-

oration thus uses 42{48�44{49, indicating that exactly

one of the two instances is a TP. Finally, corroboration

rejects 59{65 because it overlaps with 58{60.

The Corrob algorithm. Fig. 6 shows Corrob, an al-

gorithm for corroborating imperfect recognizers, for the

case when at least one recognizer is perfect.

5

As indi-

cated in the example, Corrob builds the label array by

4

The indices in this example do not match Fig. 1(b).

5

People can be used as perfect recognizers, though we seek

to automate wrapper construction as much as possible.



Corrob(recognizers f: : : ; R

k

; : : :g, instances f: : : ; I

k

j

; : : :g)

Notation: I

k

j

is the j

th

instance recognized by R

k

.

A BuildArray(fI

k

j

: R

k

is perfect or incompleteg)

for each I

k

j

such that R

k

is unsound or unreliable

if I

k

j

is possibly a TP (based on the TPs in A), then

m RowOf(I

k

j

; A)

A

m;k

 A

m;k

� I

k

j

return A

BuildArray(necessarily TP instances f: : : ; I

k

j

; : : :g)

Build array with each I

k

j

installed in the correct cell.

RowOf(possibly TP instance I

k

j

, array A)

Determine the row m of A to which I

k

j

belongs, which is

always determined when at least one R

k

is perfect.

Figure 6: The Corrob algorithm.

�rst installing instances recognized by perfect or incom-

plete recognizers. These TPs are then used to categorize

the remaining instances as either necessarily FPs (mean-

ing they can be ignored), or possibly TPs (meaning they

are inserted using `�'). In

[

Kushmerick, 1997

]

, we de-

scribe Corrob in more detail and prove that it is correct.

Handling mistakes. Note that Corrob's output might

contain attributes that are missing (`?' indicates at-

tributes falsely rejected by their recognizers) or ambigu-

ous (`�' indicates under-constrained attributes). But

BuildHLRT assumes that LabelOracle produces a perfect

label. We now describe how to extend our work to han-

dle this discrepancy.

Missing attributes require only minor changes to Build-

HLRT: the algorithm must simply generalize from fewer

examples. For example, recall the original country/code

resource in Fig. 1. Suppose that corroboration yields

a label that is correct except that the country Congo

is missing. In this case, when learning `

1

, the algo-

rithm generalizes from just the three occurrences of

</I><BR>+<B>

6

that precede the recognized instances of

the �rst attribute, and the algorithm may well fail to

generate the correct wrapper. Only if the �rst coun-

try name is correctly recognized on a subsequent exam-

ple page will BuildHLRT realize that `

1

must be a suf-

�x of <HTML><TITLE>Some Country� � �Codes</B><P>+<B> as

well as of </I><BR>+<B>.

The PAC model must also be extended to accommo-

date missing attributes. To do so, we generalize Thm. 1

so that, instead of assuming exactly N head and tail and

T left and right delimiter examples, the model counts the

actual numbers, based on the non-missing attributes. So,

in the previous example, there are four examples for l

2

,

r

2

and t, but only three for l

1

and r

1

, and zero for h.

Ambiguity requires more substantial changes. There

are two kinds of ambiguity. First, as described earlier,

Corrob uses `�' to indicate that more than one recog-

nized instance is consistent with a particular cell in the

label array. Second, recall that Corrob must determine

the ordering of attributes within tuples. But the recog-

6

`+' indicates a carriage return character.

nized instances may be consistent with more than one

ordering. For example, in Fig. 5, a valid label exists

for the ordering (Cap, Ctry, Code) as well as for (Ctry,

Code, Cap). (We previously ignored ordering ambiguity

to simplify the presentation of Corrob.)

We extend BuildHLRT to handle both types of ambigu-

ity as follows. An ambiguous label actually corresponds

to a set of unambiguous labels, one for each way to re-

solve each ambiguity. Exactly one such label is correct;

the rest either contain FPs or corresponds to an incorrect

attribute ordering. Faced with ambiguity, BuildHLRT it-

erates over each possibility, stopping when a wrapper

can be induced.

Clearly the number of such possibilities grows expo-

nentially in the number of ambiguities. In practice this

growth is tolerable for both unsound and incomplete rec-

ognizers, even with very high error rates; see Sec. 7.

However, Corrob is impractical for unreliable recogniz-

ers, because the number of ambiguities grows quickly

with an unreliable recognizer's error rate.

We extend the PAC model to handle ambiguous labels

by accounting for situations in which BuildHLRT consid-

ers an incorrect way to resolve a label's ambiguity, and

yet a consistent wrapper exists anyway. For example,

in Fig. 5(d), if the second tuple's Cap attribute is actu-

ally 42{48 rather than 44{49, but BuildHLRT tries 44{49

�rst and successfully �nds a wrapper, then BuildHLRT

has probably made a mistake. Similarly, if BuildHLRT

considers the ordering (Cap, Ctry, Code) before (Ctry,

Code, Cap), then BuildHLRT is probably wrong if it

�nds a consistent wrapper.

We model this e�ect by assuming that such a situation

happens with probability at most � per opportunity, and

thus the left-hand side of the bound in Thm. 1 is multi-

plied by (1��)

R

, where R is the number of opportunities

that a mistake of this type could have occurred as Build-

HLRT was enumerating the possible labels. In practice,

we �nd that � is extremely close to zero and R is rela-

tively small, and thus ambiguity has a negligible e�ect

on the PAC results. In

[

Kushmerick, 1997

]

, we compare

this noise model to others in the PAC literature.

7 Empirical evaluation

In this section, we present preliminary evidence demon-

strating the feasibility of hlrt learning. Our Lisp im-

plementation requires between 4 and 40 SGI Indy CPU

seconds per example page, depending on the domain.

Normalizing for the number of attributes (K) and the

size of the example pages, our system requires about

0.21 CPU sec. per attribute per KB of example data.

Our �rst experiment veri�es the utility of the hlrt

bias. Learnability aside, can a signi�cant fraction of in-

teresting information resources be wrapped by hlrt?

We surveyed 100 Internet resources selected randomly

from an independent organization's index (search.com),

and found that 48% can be wrapped by hlrt. We take

this result to be evidence that hlrt is genuinely useful.

Our second experiment measures the robustness of the



system to the recognizers' error rates. We tested our sys-

tem on (i) the okra email service, okra.ucr.edu/okra;

and (ii) the bigbook telephone directory, bigbook.com.

By hand, we constructed perfect recognizers for each

attribute; okra has four attributes and bigbook has

six. As a baseline, we ran our system with these perfect

recognizers. We then increased the error rates up to 40%

(creating both incomplete and unsound recognizers for

each attribute) and increased the number of imperfect

recognizers from zero until all but one were imperfect.

7

We tested our system using two termination conditions:

(a) we ran the system until the PAC criteria was satis�ed

(for � = � = 0:1); and (b) we required that the learned

wrapper be 100% correct on a suite of test pages.

Fig. 7 shows the number of pages needed to induce

a wrapper, as a function of the error rate, for each ter-

mination condition, and for each domain. Each curve

within a graph represents a di�erent number of imperfect

recognizers. For example, the points marked \perfect"

represent trials in which all recognizers are perfect, while

the points marked \30% error rate of each recognizer"

on the \2 imperfect recognizers" curves indicate trials

in which two of the recognizers are imperfect (yielding

either 30% FPs or 30% FNs) while the remaining rec-

ognizers are perfect. Thus in each graph, increasing the

abscissa or examining curves with additional imperfect

recognizers corresponds to trials in which the recognizers

make more mistakes.

Figs. 7(i{ii.b) indicate that, from a practical perspec-

tive, relatively few examples are needed before the sys-

tem learns the correct wrapper; across all conditions,

about 4.9 examples su�ce for okra and 29 for bigbook.

We conclude that the number of examples required is

small enough that hlrt wrapper induction is practical,

even for extremely high recognizer error rates.

Figs. 7(i{ii.a) show that the PAC bound is relatively

loose. Across all conditions, about 105 examples are

needed required to satisfy the PAC criteria. Thus the

PAC bound is too loose by about an order of magnitude.

We conclude that the current PAC model is too weak to

tightly constrain the induction process. Nevertheless,

since wrapper construction is intended to be an o�-line

process, the bound is not so loose as to be useless.

Finally, we have developed wien (pronounced \Vi-

enna"), a wrapper induction environment. Using a Web

browser, a user shows wien an example information re-

source page, and then uses the mouse to label the page.

wien then tries to learn a wrapper for the resource.

When the user shows wien a second example, it uses

the learned wrapper to automatically label the new ex-

ample. The user then corrects any mistakes, and wien

generalizes from both examples. This process repeats

until the user is satis�ed. wien provides a complete im-

plementation of BuildHLRT, though the user is assumed

to label pages perfectly, so wien implements neither at-

tribute recognition nor corroboration.

7

Recall that Corrob is impractical for unreliable recogniz-

ers and requires at least one perfect recognizer.
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Figure 7: E�ect on learning curve of recognizer error,

in the (i) okra and (ii) bigbook domains, for the (a)

PAC and (b) 100% accurate termination conditions.

wien and the experimental data are available at

www.cs.washington.edu/homes/nick/research/wrappers.

8 Related work

As suggested at the outset, wrapper construction is

motivated by the software engineering issues involved

with deploying software systems that rely on external

information resources; examples include

[

Chawathe et

al., 1994; Etzioni & Weld, 1994; Arens et al., 1996;

Kirk et al., 1995

]

. While data interchange protocols (e.g.

kqml

[

Finin et al., 1994

]

) have been proposed to address

these issues, they require cooperation on the part of in-

formation providers, and such cooperation is rare.

From a formal perspective, in Sec. 1 we discussed the

relationship between hlrt and FSA induction.

From an application perspective, our work is similar to

[

Ashish & Knoblock, 1997

]

. Their system learns a more

expressive wrapper class than hlrt, but relies on many



heuristics that are speci�c to html. In contrast, our sys-

tems treats html tags just as ordinary text. Moreover,

their system requires human intervention to correct its

mistakes, while our corroboration process is intended to

correct mistakes automatically. A second related appli-

cation is shopbot

[

Doorenbos et al., 1997

]

. Though in

many respects shopbot is more ambitious, its wrapper

language is less expressive than hlrt.

Finally, our recognition knowledge is similar to work

on semantically labeling natural text, such as the MUC-6

\Named Entity" task

[

DARPA, 1995

]

, though relatively

little work has been done on corroborating multiple such

knowledge sources.

9 Conclusions

Wrapper induction is a new technique for automatically

constructing wrappers. We have made three contri-

butions. First, we have formalized the wrapper con-

struction problem as induction. Second, we have de-

�ned the hlrt bias, which is e�ciently learnable in this

framework. Third, we have shown how to use heuristic

knowledge to compose the algorithm's oracle. Though

our work has involved primarily Internet information re-

sources, we expecte that our results are applicable to

similar information-extraction tasks in other domains.

We intend to extend our framework in several ways.

In addition to the biases shown in Fig. 2, we want to de-

sign wrappers that can handle non-tabular pages, such

as pages organized hierarchically. The research issues in-

volve exploring the tradeo� between expressiveness and

learnability. We also hope to tighten the PAC model so

it is more useful in practice as well as more predictive of

observed learning curves.
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A hlrt consistency conditions

In this Appendix, we list the conditions under which

hlrt wrapper w = fh; t; `

1

; r

1

; : : : ; `

K

; r

K

g outputs label

L = fhhb

1;1

; e

1;1

i, : : : , hb

1;K

; e

1;K

ii, : : : , hhb

M;1

; e

M;1

i,

: : : , hb

M;K

; e

M;K

iig for page P . This notation indicates

that that P containsM tuples havingK attributes each,

where the k

th

attribute of the m

th

tuple begins at index

b

m;k

of P and ends at e

m;k

. Note that L partitions P as

follows (`�' indicates concatenation): P = S

0;K

�A

1;1

�S

1;1

�

A

1;2

� � � � �S

1;K�1

�A

1;K

�S

1;K

� � � � �A

M;1

�S

M;1

�A

M;2

� � � � �

S

M;K�1

�A

M;K

�S

M;K

. The A

m;k

are the attribute values:

A

m;k

= P [b

m;k

; e

m;k

]. The S

m;k

separate the tuples,

and attributes within a tuple: S

m;k

= P [e

m;k

; b

m;k+1

]

(except that S

0;K

= P [0; b

1;1

], S

M;K

= P [e

M;K

; jP j],

and S

m;K

� S

m+1;0

= P [e

m;K

; b

m+1;1

]).

Under this notation, w is consistent with P and L i�:

1. the `

k

immediately precede their attributes

(S

0;K

=h)=`

1

6= ] ^ 8

m;k>1

jS

m;k�1

=`

k

j = 0

2. the r

k

follow (but don't occur within) their attributes

8

m;k

r

k

�((A

m;k

�S

m;k

)=r

k

) = S

m;k

3. h occurs in the head and t occurs in the tail

S

0;K

=h 6= ] ^ S

M;K

=t 6= ]

4. t never precedes `

1

in an inter-tuple separator

8

m<M

S

m;K

=t 6= ] ) j`

1

j > jt�(S

m;K

=t)j

5. t doesn't occur between h and `

1

in the head

(S

0;K

=h)=t 6= ] ) j`

1

j > jt�((S

0;K

=h)=t)j

6. t precedes `

1

in the tail

S

M;K

=`

1

6= ] ) jt�(S

M;K

=t)j > j`

1

�(S

M;K

=`

1

)j

(where s=s

0

is the substring of s after the �rst occurrence

of s

0

, with s=s

0

= ] indicating that s doesn't contain s

0

).
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