In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, August 1995.

Efficient Decision-Theoretic Planning: Techniques and Empirical
Analysis

Peter Haddawy AnHai Doan
Department of EE&CS
University of Wisconsin-Milwaukee
Milwaukee, WI 53201
{anhai, haddawy}@cs.uwm.edu

Abstract

This paper discusses techniques for perform-
ing efficient decision-theoretic planning. We
give an overview of the DRIPS decision-
theoretic refinement planning system, which
uses abstraction to efficiently identify opti-
mal plans. We present techniques for au-
tomatically generating search control infor-
mation, which can significantly improve the
planner’s performance. We evaluate the effi-
ciency of DRIPS both with and without the
search control rules on a complex medical
planning problem and compare its perfor-
mance to that of a branch-and-bound deci-
sion tree algorithm.

1 Introduction

In the framework of decision-theoretic planning, uncer-
tainty in the state of the world and in the effects of ac-
tions are represented with probabilities; and the plan-
ner’s goals, as well as tradeoffs among them, are rep-
resented with a utility function over outcomes. Given
this representation, the objective is to find an opti-
mal or near optimal plan. Finding the optimal plan
requires comparing the expected utilities of all pos-
sible plans. Doing this explicitly 1s computationally
prohibitive in all but the smallest of domains. This 1s
due to the large space of possible plans that must be
searched and to the fact that probabilistic plan evalu-
ation entails high computational cost.

Researchers have taken various approaches to dealing
with this complexity. One approach has been to focus
on solving part of the problem by working with proba-
bilities and categorical goals [10, 6] or by planning with
goal-directed utility functions but under complete cer-
tainty [13]. These approaches are able to gain some
efficiency by exploiting the structure that arises due
to the use of categorical goals, deterministic actions,
or restrictions on the form of the utility function.

A second popular approach has been to work with a
constrained and highly structured problem representa-

Richard Goodwin
School of Computer Science
Carnegie Mellon University
5000 Forbes Ave. Pittsburgh, PA 15213

rich@cs.cmu. edu

tion, exemplified by the discrete Markov process-based
planners [2, 1]. The model assumes a finite state space
and a limited class of utility functions. Even so, exist-
ing algorithms for both completely and partially ob-
servable Markov processes have exponential running
time in terms of the number of domain attributes and
are thus applicable for only small domains.

A third approach uses qualitative techniques to filter
out classes of obviously bad plans, thus avoiding costly
plan evaluation [11]. While such qualitative domi-
nance proving can be highly efficient, it requires much
structure and is typically not powerful enough to iden-
tify the optimal plan. At some point one must resort to
quantitative reasoning about expected utility in order
to evaluate tradeoffs.

In large domains we expect that even if qualitative
techniques are used as a filter, the remaining space of
possible plans will be too large to exhaustively exam-
ine. To search such a space effectively, we have devel-
oped the DRIPS decision-theoretic refinement planning
system which obtains its efficiency by exploiting in-
formation provided in an abstraction hierarchy. The
ability to structure actions into an abstraction hierar-
chy requires the domain to contain actions that can be
grouped according to similarity but imposes no other
requirements concerning the structure of the domain
or the utility function. By using abstraction, the plan-
ner can eliminate suboptimal classes of plans without
explicitly examining all plans in the class.

A decision-theoretic planning problem can be charac-
terized in terms of a number of parameters. We have a
set of states of the world, which may not be completely
observable, a set of actions from which plans can be
constructed, a class of utility functions for which we
can plan, and some time horizon over which we will
consider plans. In this paper we allow the state space
to be infinite. States are only partially observable. We
assume a finite set of actions and plans. A plan is a
sequence of actions. We do not restrict the allowable
forms of the utility function. The planning horizon is
assumed to be finite. Given this framework, we are
interested in finding the optimal plan.

The rest of this paper 1s organized as follows. We first

warehouse=0 time=time+70
8 | fuel =fuel-5
tons—delivered = tons—delivered+

(.9) tons—in—truck

sunny =1,
warehouse=1|

warehouse=0 time=time+70
fuel = fuel-3
tons—delivered = tons—delivered+

(.9) tons-in—truck

warehouse = 0 time = time+70
fuel = fuel-5
tons—delivered = tons—delivered+

tons—in—truck

—_ sunny =0, 1

warehouse = 1

warehouse = 0
Figure 1: Action “Deliver-tomato”.

present the representational framework used through-
out the paper. We then present an overview of the
DRIPS planner and of the abstraction theory used by
the planner to prune the space of plans. In the next
section we present two methods for efficiently control-
ling the plan elaboration and pruning process. We
then empirically evaluate the efficiency of DRIPS by ap-
plying it to the medical planning problem of selecting
the optimal test/treat strategy for managing patients
suspected of having deep-vein thrombosis (DVT) of
the lower extremities. We show that DRIPs signifi-
cantly outperforms a standard branch-and-bound de-
cision tree evaluation algorithm on this domain and
compare the efficiency of the planner with and with-
out the search control. We finish with a discussion of
future research.

2 Representation

World Model We describe the world in terms of
chronicles, where a chronicle is a complete specifica-
tion of the world throughout time. We take time to
be continuous and we describe chronicles by specify-
ing the values of discrete and continuous attributes at
various times, for example fuel(ty) = 10. We express
uncertainty concerning the state of the world with a
set of probability distributions over chronicles. We ex-
press such a set by assigning probability intervals to
(attribute, value) pairs at various times.

Action Model An action is represented by a finite
set of tuples {¢;, pi, e;) called branches, where the ¢; are
a set of mutually exclusive and exhaustive conditions,
the p; are probabilities, and the e; are effects. The
intended meaning of an action is that if the condition
¢; 1s satisfied at the beginning of the action then with
probability p; the effect e; will be realized immediately
following the action. This representation form is used
in [10] and utilized by work in Markov Decision Pro-
cess [2, 1]. In that work an action condition or effect is
specified by a set of propositional assignments, such as
painted N — hold-block. We extend the representation

by also allowing metric assignments in action condi-
tions and effects, such as fuel(ts) = fuel(t;) — 5; we
further allow branch probabilities p; to be represented
by intervals instead of single numeric points. These re-
laxations substantially enhance the expressiveness of
the representation. We assume that changes to the
world are limited to those effects explicitly described
in the agent’s action descriptions.

Figure 1 shows an example of an action description.
The action Deliver-tomato describes the activity of
delivering tomatoes from a warehouse to the mar-
ket. The action is conditioned on the weather and
the start location. The first tuple, for example, says
that if the weather is sunny and the start location is
at the warehouse (sunny = 1, warehouse = 1) then
with the probability .8 the action takes 70 units of
time (time = time + 70), consumes 5 units of fuel
(fuel = fuel —5), 10% of the tomatoes in the truck
are spoiled because of the sun (ton — delivered =
ton — delivered + .9+ ton — intruck), and after the ac-
tion the location of the truck is not at the warehouse
(warehouse = 0). Notice that propositional assign-
ments such as warehouse = 0 are represented in a
format identical with that of metric assignments.

3 Decision-Theoretic Refinement
Planning

3.1 Abstracting Actions

The DRIPS planner primarily uses two types of abstrac-
tion: interaction-abstraction and sequential abstrac-
tion. The idea behind inter-action abstraction is to
group together a set of analogous actions. The set is
characterized by the features common to all the ac-
tions in the set. We then can plan with the abstract
action and infer properties of a plan involving any of
its instances. Formally, an inter-action abstraction of
a set of actions {a',a? ...a"} is an action that repre-
sents the digjunction of the actions in the set. The
actions in the set are called the instantiations of the
abstract action and are considered to be alternative
ways of realizing the abstract action. Thus the a’ are
assumed to be mutually exclusive.

To create an inter-abstraction of a set of actions
{ai,as,...,an} we do the following. Group the
branches of the action descriptions into disjoint sets
such that each set contains at most one branch from
each action description. For each set s that contains
fewer than n branches; add n — |s| branches, each with
the effect of one of the branches already in the set and
with condition False and probability zero. The effect
of an abstract branch is any sentence entailed by each
of the effects of the branches in the set. The condition
is the disjunction of the conditions on the branches
in the set. The probability is specified as a range: the
minimum of the probabilities of the branches in the set
and the maximum of the probabilities of the branches
in the set.

A sequential abstraction is essentially a macro oper-
ator that specifies the end effects of a sequence of
actions, as well as the initial conditions under which
those effects are achieved, without specifying changes
that occur as intermediate steps due to the individ-
ual actions within the sequence. Thus the information
about the state of the world during the execution of
the sequence of actions is abstracted away. We ab-
stract an action sequence ajas by pairing every branch
of a; with every branch of a; and create an abstract
branch for each pairing. The condition on the ab-
stract branch is the conjunction of the conditions on
the paired branches; the probability is the product of
the probabilities on the paired branches; and the effect
is the composition of the effects.

We have implemented tools that automatically create
inter-action abstractions [5] and sequential abstrac-
tions [3]. For a general theory of action abstraction
Whi([:h] includes intra-action and sequential abstraction
see |4].

3.2 The DrRIPS Planner

A planning problem is described in terms of an ini-
tial state distribution, a set of action descriptions,
and a utility function. The space of possible plans is
described by an abstraction/decomposition network,
supplied by the user. An abstract action has one or
more sub-actions, which themselves may be abstrac-
tions or primitive actions. A decomposable action has
a subplan that must be executed in sequence. The de-
scription of the abstract actions are created by inter-
action abstraction and the descriptions of the decom-
posable actions are created by sequential abstraction.
An example network is shown in Figure 3. A plan is
simply a sequence of actions obtained from the net.
The planning task is to find the sequence of actions
for those represented in the network that maximizes
expected utility relative to the given probability and
utility models.

DRIPS finds the optimal plan by building abstract
plans, comparing them, and refining only those that
might yield the optimal plan. It begins with a set
of abstract plans at the highest abstraction level, and
subsequently refines the plans from more general to
more specific. Since projecting abstract plans results
in inferring probability intervals and attribute ranges,
an abstract plan is assigned an expected utility inter-
val, which includes the expected utilities of all possible
instances of that abstract plan. An abstract plan can
be eliminated if the upper bound of its expected utility
interval is lower than the lower bound of the expected
utility interval for any other plan. Eliminating an ab-
stract plan eliminates all its possible instantiations.
When abstract plans have overlapping expected util-
ity intervals, the planner refines one of the plans by
instantiating one of its actions. Successively instanti-
ating abstract plans will narrow the range of expected
utility and allow more plans to be pruned.

Given the abstraction/decomposition network, we
evaluate plans at the abstract level, eliminate subop-
timal plans, and refine remaining candidate plans fur-
ther until only optimal plans remain. The algorithm
works as follows.

1. Create a plan consisting of the single top-level ac-
tion and put 1t into the set plans.

2. Until there is no abstract plan left in plans,

e Choose an abstract plan P. Refine P by re-
placing an abstract action in P with all its
instantiations, or its decomposition, creating
a set of lower level plans {Py,Ps,...,P,}.

e Compute the expected utility of all newly cre-
ated plans.

e Remove P from

{P1,P2,...,P,}.

e Eliminate suboptimal plans in plans.

plans and add

3. Return plans as the set of optimal plans.

Since DRIPS only eliminates plans that it can prove are
suboptimal and if run to completion it explores the
entire space of possible plans, it is guaranteed to find
the optimal plan or plans. Notice that the algorithm
can be stopped at any time to yield the current set
of candidate plans. This feature can be exploited to
flexibly respond to time constraints.

4 Control Strategies

The run time efficiency of the DRIPS planner depends
on effectively controlling the search through the space
of abstract plans. The DRIPs algorithm contains two
non-deterministic choice points in its second step. The
first choice is to select a plan from the set of abstract
plans with overlapping expected utility. The second
choice is to select an abstract action within the plan
for expansion.

Consider selection of the plan to be refined. There
are two ways a potentially optimal plan can be elim-
inated from consideration: either the upper bound of
the plan 1s lowered below the highest lower bound or
the highest lower bound is raised above the level of
the upper bound of the plan. Notice that since the
abstract plan with the maximal upper bound on ex-
pected utility may contain an optimal primitive plan,
that abstract plan must be expanded to insure that
we have found the complete set of optimal plans. So
at any point in the search the abstract plan with the
current maximal upper bound will eventually need to
be expanded. Thus the strategy of always expanding
a non-primitive plan with the maximum upper bound
on expected utility will lead to the optimal solution
length.

The selection of an action to expand is more problem-
atic. Selecting actions that when expanded produce
plans with greater reductions in the range of expected

utility facilitates pruning and leads to more efficient
planning. In this section we present and discuss three
approaches to selecting actions for expansion. The first
approach uses a simple heuristic, the second uses sup-
plied priorities, and the third uses sensitivity analysis.

The default action selection method uses a simple
heuristic that chooses the first abstract action in the
plan for expansion, since picking a specific initial ac-
tion can help to differentiate the set of abstract plans.
This method is domain independent, and requires no
additional effort on the part of the domain designer. In
practice, we have found that the heuristic performs sig-
nificantly better than random action selection. How-
ever, the first action heuristic is not a well informed
heuristic and cannot take advantage of the structure
of the domain to guide the search. For the purposes
of this paper, we use this heuristic as a strawman to
provide a baseline against which to compare the per-
formance of the other two action selection methods.

A fixed priority action selection method allows the do-
main designer to assign a priority to each abstract ac-
tion. At each choice point, the action with the high-
est priority is selected for expansion. Ties are broken
by selecting the first action with the highest priority.
This method allows the domain designer to encode ex-
tra information about the domain that can server as a
better informed heuristic. Like the default method, it
is cheap to compute. The disadvantage of this method
is that it places an extra burden on the domain de-
signer to set the priorities. One method we have used
to set priorities i1s to assign low priority to actions
that have similar instantiations and higher priority to
actions with dissimilar instantiations. Preferentially
refining actions with dissimilar instantiations should
lead to less overlap in the expected utility of the sub-
plans. We observe the performance of the planner on
example problems to validate the priority assignments.

4.1 Sensitivity Analysis

The third method of selecting actions for expansion
uses a sensitivity analysis to select actions to which
the bounds on expected utility are most sensitive. The
sensitivity analysis uses the structure of the actions in
the domain and the utility function to adapt the search
control to the specific abstract plan to be expanded.
Tailoring the search control in this way produces a
more informed heuristic and should lead to less search.
The disadvantage of this method is that the sensitivity
analysis involves some computational overhead. The
added cost must be traded off against any reduction
in the amount of search needed.

The sensitivity analysis used 1s structural, based on the
method used to select plans for expansion. Plans se-
lected for expansion are those with the highest bound
on expected utility. If an action expansion creates sub-
plans with the same upper bound on expected utility,
then the subplans will be immediately selected for fur-
ther expansion. Preferentially expanding actions that

can cause larger changes in the upper bound of ex-
pected utility should reduce the likelihood that the
sub-plans will be chosen for further expansion. This
should lead to increased search efficiency.

In the rest of this section, we present sensitivity anal-
ysis for a general utility model proposed [7]. The ex-
pected utility of a plan p is the sum of the utilities
of the possible chronicles weighted by the probability
of each chronicle EU(p) = Zce{chronicles} U(e)- P(e).

Utility of each chronicle, U(e), is the weighted sum of
the utility of goal satisfaction UG and residual utility
UR, U(e) = UG(c) + k,UR(c).

The utility functions, UG and UR, form part of the
problem description input to the planner. The sensi-
tivity analysis requires two additional functions that
give the possible change in the upper bound of the
utility functions as a result of expanding an action.
The AUG™ (chronicle, action, plan) function returns
the maximum change in the upper bound on utility
of goal achievement for a chronicle if the given ac-
tion in the given plan is expanded. A second function,
AU R (chronicle, action, plan), similarly returns the
maximum change in the upper bound on the resid-
ual utility. The AUGT and AUR' functions can be
derived from the UG and UR functions respectively.
However, since the UG and UR functions can be arbi-
trarily complex, the two additional functions must be
supplied by the domain designer.

TestResult = G
cost = cost + [120 300]

[.9.95]

(051 | TestResult=©

cost = cost + [120 300]

Test_Action

TestResult = P
cost = cost + [120 300]

TestResult =6
cost = cost + [120 300]

Figure 2: Abstract test action representing tests with
different costs and different false negative probabili-
ties.

To get an idea of what 1s involved in creating the
AUGT and AURT functions, consider the abstract
test action in figure 2. The abstract test action has sev-
eral possible instantiations that account for the range
in the cost and the range in the probability of a false
negative. Further suppose that the UR function is:
UR(¢) = —(cost+ COST _FATALITY) if the patient
dies and UR(c) = —(cost) otherwise. The chronicle
passed to the AURY can be used to determine which
branch of the action the chronicle corresponds to. The
assignments of cost and TestResult in that branch give
the effect that the action can have on the plan. In this
example, the possible change in the UR value corre-

sponds to the difference in the costs of the tests ($300-
§120) = $180.

A third function, A P(chronicle, action, plan), returns
the maximum change in the upper and lower bound
of the probability of a chronicle that can result from
expanding the given action. This function depends
only on the structure of the actions and not on the
form of the utility function. It is implemented domain
independently in the planner. In the medical example
above, refining the test action could reduce the range
in the probability of a false negative.

The overall sensitivity of the upper bound on expected
utility can be calculated by combining the A functions.
The following equation gives the least upper bound on
utility

ﬁ(c, a,p) = (UG*(c) — AUG+(C, a,p)) +
K, - (URY(c) = AURY(¢)),

where UGT and URT represent the current upper
bounds on UG and U R, respectively. Calculating the
effect on probability is more complicated. The upper
bound on expected utility can be lowered either by de-
creasing upper bound on the probability of high utility
chronicles or increasing the lower bound on the proba-
bility of low utility chronicles. Let the function P give
the probability of each chronicle, with the probabil-
ity bounds adjusted by up to AP and subject to the
condition that the sum of the probabilities be 1. The
overall sensitivity is then the upper bound on expected
utility minus the least upper bound on the expected
utility after action expansion,

sensitivity(a,p) =
EUY — min {ub (Z ﬁ(c, a,p)- ﬁ(c, a,p)) } .

When selecting an action for expansion, the compu-
tation needed to expand the action and evaluate the
subplans needs to be taken into account. The final
weighting for each action is the ratio of the sensitivity
divided by the cost of expanding the action. For sim-
plicity, we estimate the cost by counting the number of
sub-plans that would be have to be evaluated, which
is equal to the number of instantiations of the action.
The action with the highest weighting is then selected
for expansion.

5 Empirical Analysis

5.1 Comparing DRIPS with Branch and
Bound Algorithms

Appropriate management of patients with suspected
acute deep venous thrombosis (DVT) of the lower ex-
tremities is an important and complex clinical prob-
lem. To evaluate the effectiveness of DRIPS, we con-

structed a model for diagnosis and treatment of DVT?,
based on data from an article that compared various
different management strategies [8]. To encompass all
of the strategies described in the original model, our
model incorporated up to four tests, with a maximum
of three 7-day waiting periods between tests. The
test procedures included contrast venography (Veno)
and two non-invasive tests (NIT): impedance plethys-
mography (IPG) and real-time ultrasonography (RUS).
Treatment, which consisted solely of anticoagulation
therapy, included unconditional actions (e.g., Treat
All) and conditional actions (e.g., Treat if thigh DVT
seen on venography [Treat if Veno Thigh+]). The util-
ity function used for the analysis was defined as the
sum of the costs of tests and treatment and the costs
associated with the state of the patient at the end of
the plan.

A portion of the abstraction/decomposition network
for the DVT domain is shown in Figure 3?2. The
most abstract action, Manage DVT, is an abstrac-
tion of six actions: No_Tests_and_Treat, Veno_Tests,
NIT Tests, Two_Tests, Three_Tests, Four_Tests. (The
number of tests represents the length of the longest al-
lowed sequence of tests.) Each of these actions further
decomposes into a sequence of actions. For example,
NIT Tests decomposes into NIT, Treat_NIT. NIT can be
instantiated as IPG or RUS. Our model for manage-
ment of suspected DVT encompassed 6,206 concrete
plans; for example, one complete plan (an instance
of the Two_Tests action) is “IPG, Wait_7d_if_NIT-,
Veno _if_NIT-, Treat_if _Veno_Any+.”

We ran DRIPS with several variations of the utility
function and in all cases i1t successfully identified the
optimal plan. This was verified by comparison with
a decision-tree evaluation algorithm. The results pro-
duced by Dprips differed from those reported in the
reference manuscript [8]. In reviewing these results,
we discovered that DRIPS had uncovered an error in
the original study [9].

In evaluating this model, DRIPS evaluated only 655
abstract and concrete plans out of a total of 6,206,
yielding a pruning rate of 89%.% In order to demon-
strate the efficiency of DRIPS in practice, we compared
its performance on several variations of this problem
to that of a standard branch-and-bound algorithm for
evaluating decision trees. Figure 4.a shows the run-
ning time for DRIPS and the running time for the deci-
sion tree branch-and-bound algorithm at values of cost

of fatality ranging from $50,000 to $500,000. DRIPS

!The pRIPS code and the DVT domain are available via
www at http://www.cs.uwm.edu/faculty /haddawy.

21t should be noted that the network structure followed
naturally from our understanding of the problem and thus
took very little time to produce, but producing the abstract
action descriptions was a rather laborious task.

®On the clinical planning problem of finding the optimal
test/treat strategy for diabetic patients suspected of having
a foot infection, DRIPS evaluated only 13 out of 258 possible
plans, achieving a pruning rate of 95%.

No Tests and Treat

NIT Tests TwoTests ThreeTests Four Tests

NoTests Treat None/All Veno TreatVeno NIT Treat NIT
Two Tests Maybe Wait
NIT Maybe Wait Test if Treat Veno NIT Don't Wait Wait 7d Wait 7d if NIT—
Treat None/All Treat Veno NIT
Tréat None Treat All Treat None/All Tréat if Veno PG RUS
Test if
LN Treat if Treat if
g AN Veno Thigh+ Veno Any+
Test if NIT— Veho if NIT+
RN Treat Veno NIT
Venoif NIT— NIT if NIT— T
. : : . Treat NondAII Treat if Veno Tréat if NIT or Veno
IPGif NIT— RUSIf NIT—

Figure 3: Abstraction/decomposition network. Abstraction relations are shown with dashed lines and decom-
position relations are shown with solid lines. Actions shown in bold have decompositions or abstractions which

are displayed elsewhere in the figure.

outperformed the branch-and-bound algorithm at all
values. In the most extreme case, the running time
of DRIPS was only 15% that of the branch-and-bound
algorithm.

To examine how the efficiency of the two approaches
varies as a function of problem size, we applied each
approach to four versions of the DVT domain of in-
creasing size. Figure 4.b shows the running times per
plan for DRIPs and the branch-and-bound algorithm
for each of the domains. Notice that the running
time per plan for the branch-and-bound algorithm in-
creases markedly as a function of problem size while
the running time per plan for DRIPS actually decreases.
This means that for this domain the DRIPS algorithm
scales up much more effectively then the branch-and-
bound algorithm. Figure 4.c shows that the memory
usage of DRIPS also compares favorably to that of the
branch-and-bound algorithm over this same suite of
problems. In the most extreme case, DRIPS uses only
4.4% as much memory as the branch-and-bound algo-
rithm. This can be explained by the fact that at any
time DRIPS projects and evaluates only a small, con-
stant number of plans, while evaluating the decision
tree requires keeping track of all subtrees projected.

5.2 Comparing Control Strategies

The comparisons of the DRIPS algorithm with the deci-
sion tree algorithm in the previous section made use of
the fixed priority control strategy. In this section, we
repeat some of the tests to compare the different DRIPS
control strategies. The results are shown in Figure 5.

For a small domain size, search control has little ef-
fect on efficiency. The results for the smallest DVT
domain given in Figure 5.a show that all the strategies
expand about the same number of plans and that run-
ning times are comparable. For this particular domain,
the optimal strategy evaluates from 10 to 16 plans and
all of the strategies perform nearly optimally.

In larger domains, search control becomes more crit-
ical. The results for the largest DVT domain, Fig-
ure 5.b, show a wide divergence in both the number of
plans evaluated and in the running time. In the larger
domain, pruning can significantly reduce the amount
of search needed and effective search control leads to
better pruning.

In larger versions of the DVT domain, the fixed prior-
ity control strategy does significantly better than the
default first action heuristic. Fixed priority control
adds little overhead and evaluates significantly fewer
plans to produce a much improved running time. The
performance of the strategy is significantly better for
utility functions with a high cost of fatality, as is the
default strategy. This can be partly accounted for by
the fact that the domain designer only assigned prior-
ities to some of the more significant abstract actions.
In cases where priorities are equal or not assigned, the
fixed priority strategy falls back to the default strategy.
The first action heuristic does well for utility functions
with a high cost of fatality because the value of better
information increases since the cost of making a mis-
take is so high. The first actions in a treatment plan
tend to be tests, and creating plans that use differ-
ent tests can significantly differentiate their expected

14000

g 12000 |:| DRIPS
g Decision tree|
'S 10000
O go00
6000
4000
0
Cost of fatallty ($thouwnds)
40000
i = DRIPS
B 35000 | BE Decision tree
c
(=}
30 ‘H 30000
g 28 %
& 26| | C3 DRIPS § 25000
E z; Bl Decision tree =
5 2.0 e 20000
g 5
16 15000
1.4
12
1.0 10000
0.8
0.6
5000
0.4
0.2
0 0
158 1022 6202 37310 158 1022 6206 37310
(b) Number of plans (©) Number of plans

Figure 4: (a) Running times for DRIPS and a branch-
and-bound decision tree evaluation algorithm for var-
ious costs of fatality. (b) Running times per plan and
(¢) memory consumption for DRIPS and the branch-
and-bound algorithm for problems of increasing size.
Memory consumption values represent the maximum
number of world states that need to be stored at one
time by each algorithm.

utilities and lead to better pruning.

The sensitivity analysis based control strategy also
does significantly better than the default control strat-
egy over the entire range of utility functions for large
domains. The performance of this strategy is almost
constant since the strategy adapts the search control
to the changing utility function. As a result, the sen-
sitivity analysis strategy does significantly better than
the fixed priority strategy for lower costs of fatality, es-
pecially in terms of the number of plans evaluated. For
higher costs of fatality, the fixed priority scheme only
expands a few more plans and since it has a lower over-
head, the running time is better. The running time of
the sensitivity analysis strategy could be improved by
optimizing the sensitivity analysis code or by doing
only a partial sensitivity analysis. For example, the
sensitivity could be calculated relative to some frac-
tion of the most likely chronicles. The speedup would
be linear in the inverse of the fraction of chronicles
used, but this would have to be traded off against any
degradation in the quality of search control.

6 Discussion and Future Research

The efficiency of our approach depends largely on how
domain regularities are exploited to build the abstrac-
tion hierarchy. The applicability and the performance
of the planner would be improved if methods could be
devised to perform tight abstraction, and loss due to
abstraction could be quantified. Devising such proce-
dures and loss estimates has been shown to be possible
for a limited class of domains [1]. In more complex do-
mains with more expressive utility functions it is much
harder to work out efficient abstraction procedures, al-
though relatively good abstraction hierarchy can still
be built by exploiting simple regularities in the domain
and heuristics given by domain experts. If we know,
for example, that two alternative actions differ only
in the value of an attribute, say cost, and the change
in the value of cost produces very little change in the
value of the utility function, then the abstraction of the
two actions will be tight. The sensitivity analysis pre-
sented in Section 4.1 exploites such simple domain and
utility regularities to control plan elaboration. We are
currently working on methods for automatically gener-
ating good abstractions for use by the DRIPS planner.
The method starts by assigning weights to the domain
attributes by analyzing the utility function and the
primitive action descriptions. A clustering algorithm
then uses the primitive action descriptions and weights
to group together similar actions.

A significant contribution of our approach is the ability
to perform decision theoretic planning in richer do-
mains and utility models than those in the Markov
approach. Since existing algorithms for the Markov
models have exponential running time in the number
of domain attributes, and do not exploit much of the
domain regularities it would be interesting to compare
our approach with these methods.

To further improve the efficiency of DRIPS, we are cur-
rently working on a technique that exploits stochas-
tic dominance to eliminate suboptimal plans without
computing their expected utilities. A relation called
stochastic dominance can be established between the
probability distributions of two random variables if the
two distributions satisfy certain constraints [12]. Ran-
dom variables representing domain attributes at dif-
ferent time points are typically related to one another
by formulas via action effect assignments, and trans-
formations caused by actions often create dominance
situations, which can be verified fairly easily without
knowing the exact probability distributions of the ran-
dom variables. For any two plans p; and ps we can
then try to locate two joint probability distributions
P and @ over a subset of domain attributes such that
P and @) are obtained at some timepoint during pro-
jecting p; and po, respectively, and P dominates ().
The dominance of P over () can be used to to prove
that p; has a higher expected utility than ps (or vice
versa) [12]; p» can then be eliminated from further
consideration.

[thefirst action heuristics

2100
1900
1700

running time (msec)

1500

1300
1500

cost of fatality ($000)

20
15
10

running time (msec)
7

El fixed priority [sensitivity analysis

4300000 K
3300000, \
2300000 \

1300000

300000 = =
50

cost of fatality ($000)

4000
3000
2000
1000

number of plans evaluated

1500

cost of fatality ($000)
(3

number of plans evaluated

1500
cost of fatality ($000)

(b)

Figure 5: Results showing running time and number of plans evaluated versus the cost of fatality (a) for a small
DVT domain (b) for a DVT domain of 6,206 plans.

We have successfully applied this technique to a vari-
ety of domains to reduce the number of plans before
applying the DRIPs algorithm. For example, in the
DVT domain the number is reduced from 6,206 to 232.
Further results and detail will be reported in a future

paper.

References

(1]

C. Boutilier and R. Dearden. Using abstractions for
decision-theoretic planning with time constraints. In
Proceedings of the Twelfth National Conference on
Artificial Intelligence, pages 1016-1022, Seattle, July
1994.

T. Dean, L. Pack Kaelbling, J. Kirman, and A. Nichol-
son. Planning with deadlines in stochastic domains.
In Proceedings of the Eleventh National Conference on
Artificial Intelligence, pages 574-579, July 1993.

A. Doan and P. Haddawy. Generating macro opera-
tors for decision-theoretic planning. In Working Notes
of the AAAI Spring Symposium on Extending Theo-
ries of Action, Stanford, March 1995.

A.H. Doan and P. Haddawy. Decision-theoretic refine-
ment planning: Principles and application. Technical
Report TR-95-01-01, Dept. of Elect. Eng. & Com-
puter Science, University of Wisconsin-Milwaukee,
January 1995. Available via anonymous FTP from
pub/tech_reports at ftp.cs.uwn.edu.

M.G. Finigan. Knowledge acquisition for decision-
theoretic planning. In Proceedings MAICSS 95, pages
98-102, Carbondale, 1L, April 1995.

R.P. Goldman and M.S. Boddy. Epsilon-safe planning.
In Proceedings of the Tenth Conference on Uncertainty

[10]

[11]

[12]

[13]

in Artificial Intelligence, pages 253-261, Seattle, July
1994.

P. Haddawy and S. Hanks. Utility models for goal-
directed decision-theoretic planners. Technical Re-
port 93-06-04, Department of Computer Science and
Engineering, University of Washington, June 1993.
Available via anonymous FTP from “ftp/pub/ai/ at
cs.washington.edu.

Hillner BE, Philbrick JT, Becker DM. Optimal
management of suspected lower-extremity deep vein
thrombosis: an evaluation with cost assessment of 24

management strategies. Arch Intern Med, 152:165—
175, 1992.

CE Kahn, Jr and P Haddawy. Management of sus-
pected lower-extremity deep venous thrombosis (let-
ter). Archives of Internal Medicine, 155:426, February
1995.

N. Kushmerick, S. Hanks, and D. Weld. An algorithm
for probabilistic least-commitment planning. In Pro-
ceedings of the Twelfth National Conference on Arti-
ficial Intelligence, pages 1073-1078, Seattle, 1994.

M.P. Wellman. Formulation of Tradeoffs in Planning
Under Uncertainty. Pitman, London, UK, 1990.

G. A. Whitmore and M. C. Findlay. Stochastic Dom:-
nance: An Approach to Decision Making Under Risk.
D. C. Health and Company, Lexington, MA, 1978.

M. Williamson and S. Hanks. Optimal planning with
a goal-directed utility model. In Proceedings of the
Second International Conference on Artificial Intel-
ligence Planning Systems, pages 176-181, Chicago,
June 1994.

