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Abstract

Ontologies play a prominent role in the Semantic Web. They make possible the widespread

publication of machine-understandable data, opening myriad opportunities for automated infor-

mation processing. However, because of the Semantic Web's distributed nature, data on it will

inevitably come from many di�erent ontologies, and information processing across ontologies is

not possible without knowing the semantic mappings between their elements. Manually �nding

such mappings is tedious, error-prone, and clearly not possible at the Web scale. Hence, the

development of tools to assist in the ontology mapping process is crucial to the success of the

Semantic Web.

We describe GLUE, a system that employs machine learning techniques to �nd such map-

pings. Given two ontologies, for each concept in one ontology GLUE �nds the most similar

concept in the other ontology. We give well-founded probabilistic de�nitions to several practical

similarity measures, and show that GLUE can work with all of them. This is in contrast to

most existing approaches, which deal with a single similarity measure. Another key feature of

GLUE is that it uses multiple learning strategies, each of which exploits well a di�erent type

of information either in the data instances or in the taxonomic structure of the ontologies. To

further improve matching accuracy, we extend GLUE to incorporate commonsense knowledge

and domain constraints into the matching process. For this purpose, we show that relaxation

labeling, a well-known constraint optimization technique used in computer vision and other

�elds, can be adapted to work eÆciently in our context. Our approach is thus distinguished in

that it works with a variety of well-de�ned similarity notions and that it eÆciently incorporates

multiple types of knowledge. We describe a set of experiments on several real-world domains,

and show that GLUE proposes highly accurate semantic mappings.

1 Introduction

The current World-Wide Web has well over 1.5 billion pages [3], but the vast majority of them are

in human-readable format only (i.e., HTML). As a consequence, machines cannot understand and

process this information, and much of the potential of the Web has so far remained untapped.

In response, researchers have created the vision of the Semantic Web [6], where data has struc-

ture and ontologies describe the semantics of the data. Ontologies allow users to organize infor-

mation into taxonomies of concepts, each with their attributes, and describe relationships between

concepts. When data is marked up using ontologies, machines can better understand the semantics
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Figure 1: Computer Science Department Ontologies

of the data and therefore more intelligently locate and integrate data for a wide variety of tasks.

The following example illustrates the vision of the semantic web.

Example 1.1 Suppose you want to �nd out more about someone you met at a conference. You

know that his last name is Cook, and that he teaches Computer Science at a nearby university, but

you do not know which one. You also know that he just moved here from Australia, where he had

been an associate professor at his alma alter.

On the World-Wide Web of today you will have trouble �nding this person. This is because

the above information is not contained within a single Web page, thus making keyword search

ine�ective. On the Semantic Web, however, you should be able to quickly �nd the answers. A

marked-up directory service makes it easy for your personal softbot to �nd nearby Computer Science

departments. These departments have marked up data using some ontology such as the ones in

Figure 1. Here the data is organized into a taxonomy that includes courses, people, and professors.

Professors have attributes such as name, degree, and degree-granting institution. Such marked-up

data makes it easy for your softbot to �nd a professor with the last name Cook. Then by examining

the attribute \granting institution", the softbot quickly �nds the alma mater CS department in

Australia. Here, the softbot learns that the data has been marked up using an ontology speci�c

to Australian universities, such as the one in Figure 1, and that there are many entities named

Cook. However, knowing that \associate professor" is equivalent to \senior lecturer", the bot can

select the right subtree in the departmental taxonomy, and zoom in on the old homepage of your

conference acquaintance. 2

The Semantic Web thus o�ers a compelling vision, but it also raises many diÆcult challenges.

Researchers have been actively working on these challenges, focusing on 
eshing out the basic
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architecture, developing expressive and eÆcient ontology languages, building techniques for eÆcient

marking up of data, and learning ontologies (e.g., [15, 8, 29, 22, 4]).

A key challenge in building the Semantic Web that has received relatively little attention is

�nding semantic mappings among the ontologies. Given the de-centralized nature of the develop-

ment of the semantic web, there will be an explosion in the number of ontologies. Many of these

ontologies will describe similar domains, but using di�erent terminologies, and others will have

overlapping domains. To integrate data from disparate ontologies, we must know the semantic cor-

respondences between their elements [6, 35]. For example, in the conference-acquaintance scenario

described earlier, in order to �nd the right person, your softbot must know that \associate profes-

sor" in the US corresponds to \senior lecturer" in Australia. Thus, the semantic correspondences

are in e�ect the \glue" that hold the ontologies together into a \web of semantics". Without them,

the semantic web is akin to an electronic version of the Tower of Babel. Unfortunately, manually

specifying such correspondences is time-consuming, error-prone [27], and clearly not possible on the

Web scale. Hence, the development of tools to assist in ontology mapping is crucial to the success

of the Semantic Web [35].

In this paper we describe the GLUE system, which applies machine learning techniques to

semi-automatically create such semantic mappings. Since taxonomies are central components of

ontologies, we focus �rst on �nding correspondences among the taxonomies of two given ontologies:

for each concept node in one taxonomy, �nd the most similar concept node in the other taxonomy.

The �rst issue we address in this realm is: what is the meaning of similarity between two

concepts? Clearly, many di�erent de�nitions of similarity are possible, each being appropriate

for certain situations. Our approach is based on the observation that many practical measures

of similarity can be de�ned based solely on the joint probability distribution of the concepts in-

volved. Hence, instead of committing to a particular de�nition of similarity, GLUE calculates the

joint distribution of the concepts, and lets the application use the joint distribution to compute a

particular similarity measure. Speci�cally, for any two concepts A and B, we compute P (A;B),

P (A;B); P (A;B), and P (A;B), where a term such as P (A;B) is the probability that an instance

in the domain belongs to concept A but not to concept B. An application can then de�ne similarity

to be a suitable function of these four values. For example, a similarity measure we use in this

paper is P (A \B)=P (A [B), otherwise known as the Jaccard coeÆcient [36].

The second challenge we address is how to compute the joint distribution of any two given

concepts A and B. Under certain general assumptions (discussed in Section 4), a term such as

P (A;B) can be approximated as the fraction of instances that belong to both A and B (in the data

associated with the taxonomies or, more generally, in the probability distribution that generated

it). Hence, the problem reduces to deciding for each instance if it belongs to A \B. However, the

input to our problem includes instances of A and instances of B in isolation. GLUE addresses this

problem using machine learning techniques as follows: it uses the instances of A to learn a classi�er
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for A, and then classi�es instances of B according to that classi�er, and vice-versa. Hence, we have

a method for identifying instances of A \B.

Applying machine learning to our context raises the question of which learning algorithm to use

and which types of information to use in the learning process. Many di�erent types of information

can contribute toward deciding the membership of an instance: its name, value format, the word

frequencies in its value, and each of these is best utilized by a di�erent learning algorithm. GLUE

uses a multi-strategy learning approach [12]: we employ a set of learners, then combine their

predictions using a meta-learner. In previous work [12] we have shown that multi-strategy learning

is e�ective in the context of mapping between database schemas.

Finally, GLUE attempts to exploit available domain constraints and general heuristics in order

to improve matching accuracy. An example heuristic is the observation that two nodes are likely

to match if nodes in their neighborhood also match. An example of a domain constraint is \if node

X matches Professor and node Y is an ancestor of X in the taxonomy, then it is unlikely that Y

matches Assistant-Professor". Such constraints occur frequently in practice, and heuristics are very

commonly used when manually mapping between ontologies. Previous works have exploited only

one form or the other of such knowledge and constraints, in restrictive settings [28, 25, 20, 24]. Here,

we develop a unifying approach to incorporate all such types of information. Our approach is based

on relaxation labeling, a powerful technique used extensively in the vision and image processing

community [16], and successfully adapted to solve matching and classi�cation problems in natural

language processing [30] and hypertext classi�cation [10]. We show that relaxation labeling can be

adapted eÆciently to our context, and that it can successfully handle a broad variety of heuristics

and domain constraints.

In the rest of the paper we describe the GLUE system and the experiments we conducted to

validate it. Speci�cally, the paper makes the following contributions:

� We describe well-founded notions of semantic similarity, based on the joint probability distri-

bution of the concepts involved. Such notions make our approach applicable to a broad range

of ontology-matching problems that employ di�erent similarity measures.

� We describe the use of multi-strategy learning for �nding the joint distribution, and thus the

similarity value of any concept pair in two given taxonomies. The GLUE system, embodying

our approach, utilizes many di�erent types of information to maximize matching accuracy.

Multi-strategy learning also makes our system easily extensible to additional learners, as they

become available.

� We introduce relaxation labeling to the ontology-matching context, and show that it can

eÆciently exploit a broad range of common knowledge and domain constraints to further

improve matching accuracy.

� We describe a set of experiments on several real-world domains to validate the e�ectiveness
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of GLUE. The results show the utility of multi-strategy learning and relaxation labeling, and

that GLUE can work well with di�erent notions of similarity.

In the next section we de�ne the ontology-matching problem. Section 3 discusses our approach

to measuring similarity, and Sections 4-5 describe the GLUE system. Section 6 presents our exper-

iments. Section 7 reviews related work. Section 8 discusses future work and concludes.

2 The Ontology-Matching Problem

We now introduce ontologies, then de�ne the problem of ontology matching. An ontology speci�es

a conceptualization of a domain in terms of concepts, attributes, and relations [14]. The concepts

provided model entities of interest in the domain. They are typically organized into a taxonomy tree

where each node represents a concept and each concept is a specialization of its parent. Figure 1

shows two sample taxonomies for the CS department domain (which are simpli�cations of real

ones).

Each concept in a taxonomy is associated with a set of instances. For example, concept

Associate-Professor has instances \Prof. Cook" and \Prof. Burn" as shown in Figure 1.a. By

the taxonomy's de�nition, the instances of a concept are also instances of an ancestor concept. For

example, instances of Assistant-Professor, Associate-Professor, and Professor in Figure 1.a are also

instances of Faculty and People.

Each concept is also associated with a set of attributes. For example, the concept Associate-

Professor in Figure 1.a has the attributes name, degree, and granting-institution. An instance that

belongs to a concept has �xed attribute values. For example, the instance \Professor Cook" has

value name = \R. Cook", degree = \Ph.D.", and so on. An ontology also de�nes a set of relations

among its concepts. For example, a relation AdvisedBy(Student,Professor) might list all instance

pairs of Student and Professor such that the former is advised by the latter.

Many formal languages to specify ontologies have been proposed for the Semantic Web, such

as OIL, DAML+OIL, SHOE, and RDF [8, 2, 15, 7]. Though these languages di�er in their termi-

nologies and expressiveness, the ontologies that they model essentially share the same features we

described above.

Given two ontologies, the ontology-matching problem is to �nd semantic mappings between

them. The simplest type of mapping is one-to-one (1-1) mappings between the elements, such as

\Associate-Professor maps to Senior-Lecturer", and \degree maps to education". Notice that map-

pings between di�erent types of elements are possible, such as \the relation AdvisedBy(Student,Professor)

maps to the attribute advisor of the concept Student". Examples of more complex types of map-

ping include \name maps to the concatenation of �rst-name and last-name", and \the union of

Undergrad-Courses and Grad-Courses maps to Courses". In general, a mapping may be speci�ed as

a query that transforms instances in one ontology into instances in the other [9].

5



In this paper we focus on �nding 1-1 mappings between the taxonomies. This is because the

taxonomies are central components of ontologies, and successfully matching them would greatly

aid in matching the rest of the ontologies. Extending matching to attributes and relations and

considering more complex types of matching is the subject of ongoing research.

There are many ways to formulate a matching problem for taxonomies. The speci�c problem

that we consider is as follows: given two taxonomies and their associated data instances, for each

node (i.e., concept) in one taxonomy, �nd the most similar node in the other taxonomy, for a

pre-de�ned similarity measure. This is a very general problem setting that makes our approach

applicable to a broad range of common ontology-related problems on the Semantic Web, such as

ontology integration and data translation among the ontologies.

Data instances: GLUE makes heavy use of the fact that we have data instances associated with

the ontologies we are matching. We note that many real-world ontologies already have associated

data instances. Furthermore, on the Semantic Web, the largest bene�ts of ontology matching come

from matching the most heavily used ontologies; and the more heavily an ontology is used for

marking up data, the more data it has. Finally, we show in our experiments that only a moderate

number of data instances is necessary in order to obtain good matching accuracy.

3 Similarity Measures

To match concepts between two taxonomies, we need a notion of similarity. We now describe the

similarity measures that GLUE handles; but before doing that, we discuss the motivations leading

to our choices.

First, we would like the similarity measures to be well-de�ned. A well-de�ned measure will

facilitate the evaluation of our system. It also makes clear to the users what the system means by

a match, and helps them �gure out whether the system is applicable to a given matching scenario.

Furthermore, a well-de�ned similarity notion may allow us to leverage special-purpose techniques

for the matching process.

Second, we want the similarity measures to correspond to our intuitive notions of similarity. In

particular, they should depend only on the semantic content of the concepts involved, and not on

their syntactic speci�cation.

Finally, it is clear that many reasonable similarity measures exist, each being appropriate to

certain situations. Hence, to maximize our system's applicability, we would like it to be able to

handle a broad variety of similarity measures. The following examples illustrate the variety of

possible de�nitions of similarity.

Example 3.1 In searching for your conference acquaintance, your softbot should use an \exact"

similarity measure that maps Associate-Professor into Senior Lecturer, an equivalent concept. How-
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ever, if the softbot has some postprocessing capabilities that allow it to �lter data, then it may

tolerate a \most-speci�c-parent" similarity measure that maps Associate-Professor to Academic-

Sta�, a more general concept. 2

Example 3.2 A common task in ontology integration is to place a concept A into an appropriate

place in a taxonomy T . One way to do this is to (a) use an \exact" similarity measure to �nd the

concept B in T that is \most similar" to A, (b) use a \most-speci�c-parent" similarity measure to

�nd the concept C in T that is the most speci�c superset concept of A, (c) use a \most-general-

child" similarity measure to �nd the concept D in T that is the most general subset concept of A,

then (d) decide on the placement of A, based on B, C, and D. 2

Example 3.3 Certain applications may even have di�erent similarity measures for di�erent con-

cepts. Suppose that a user tells the softbot to �nd houses in the range of $300-500K, located in

Seattle. The user expects that the softbot will not return houses that do not satisfy the above

criteria. Hence, the softbot should use exact mappings for price and address. But it may use ap-

proximate mappings for other concepts. If it maps house-description into neighborhood-info, that is

still acceptable. 2

Most existing works in ontology (and schema) matching do not satisfy the above motivating

criteria. Many works implicitly assume the existence of a similarity measure, but never de�ne

it. Others de�ne similarity measures based on the syntactic clues of the concepts involved. For

example, similarity is de�ned to be the dot product of the two TF/IDF vectors representing the

concepts, or a function based on the common tokens in the names of the concepts. Such similarity

measures are problematic because they depend not only on the concepts involved, but also on their

syntactic speci�cations.

Distribution-based Similarity Measures

We now give precise similarity de�nitions and show how our approach satis�es the motivating

criteria. We begin by modeling each concept as a set of instances, taken from a �nite universe of

instances. In the CS domain, for example, the universe consists of all entities of interest in the

world: professors, assistant professors, students, courses, and so on. The concept Professor is then

the set of all instances in the universe that are professors. Given this model, the notion of the

joint probability distribution between any two concepts A and B is well de�ned. This distribution

consists of the four probabilities: P (A;B); P (A;B); P (A;B), and P (A;B). A term such as P (A;B)

is the probability that a randomly chosen instance from the universe belongs to A but not to B,

and is computed as the fraction of the universe that belongs to A but not to B.

Many practical similarity measures can be de�ned based on the joint distribution of the concepts
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involved. For instance, a possible de�nition for the \exact" similarity measure in Example 3.1 is

Jaccard-sim(A;B) = P (A \B)=P (A [B) = P (A;B)=[P (A;B) + P (A;B) + P (A;B)]: (1)

This similarity measure is known as the Jaccard coeÆcient [36]. It takes the lowest value 0 when

A and B are disjoint, and the highest value 1 when A and B are the same concept. Most of our

experiments will use this similarity measure.

A de�nition for the \most-speci�c-parent" similarity measure in Example 3.2 is

MSP (A;B) =

(
P (AjB) if P (BjA) = 1

0 otherwise
(2)

where the probabilities P (AjB) and P (BjA) can be trivially expressed in terms of the four joint

probabilities. This de�nition states that if B subsumes A, then the more speci�c B is, the higher

P (AjB), and thus the higher the similarity value MSP (A;B) is. Thus it suits the intuition that

the most speci�c parent of A in the taxonomy is the smallest set that subsumes A. An analogous

de�nition can be formulated for the \most-general-child" similarity measure.

Instead of trying to estimate speci�c similarity values directly, GLUE focuses on computing the

joint distributions. Then, it is possible to compute any of the above mentioned similarity measures

as a function over the joint distributions. Hence, GLUE has the signi�cant advantage of being able

to work with a variety of similarity functions that have well-founded probabilistic interpretations.

4 The GLUE Architecture

We now describe GLUE in detail. The basic architecture of GLUE is shown in Figure 2. It consists

of three main modules: Distribution Estimator, Similarity Estimator, and Relaxation Labeler.

The Distribution Estimator takes as input two taxonomies O1 and O2, together with their data

instances. Then it applies machine learning techniques to compute for every pair of concepts hA 2

O1; B 2 O2i their joint probability distribution. Recall from Section 3 that this joint distribution

consists of four numbers: P (A;B); P (A;B); P (A;B), and P (A;B). Thus a total of 4jO1jjO2j

numbers will be computed, where jOij is the number of nodes (i.e., concepts) in taxonomy Oi. The

Distribution Estimator uses a set of base learners and a meta-learner. We describe the learners

and the motivation behind them in Section 4.2.

Next, GLUE feeds the above numbers into the Similarity Estimator, which applies a user-supplied

similarity function (such as the ones in Equations 1 or 2) to compute a similarity value for each

pair of concepts hA 2 O1; B 2 O2i. The output from this module is a similarity matrix between

the concepts in the two taxonomies.

The Relaxation Labeler module then takes the similarity matrix, together with the domain-

speci�c constraints and the heuristic knowledge, and searches for the mapping con�guration that
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Figure 2: The GLUE Architecture

best satis�es the domain constraints and the common knowledge, taking into account the observed

similarities. This mapping con�guration is the output of GLUE.

We now describe the Distribution Estimator. First, we discuss the general machine-learning

technique used to estimate joint distributions from data, and then the use of multi-strategy learning

in GLUE. Section 5 describes the Relaxation Labeler. The Similarity Estimator is trivial because

it simply applies a user-de�ned function to compute the similarity of two concepts from their joint

distribution, and hence is not discussed further.

4.1 The Distribution Estimator

Consider computing the value of P (A;B). This joint probability can be computed as the fraction

of the instance universe that belongs to both A and B. In general we cannot compute this fraction

because we do not know every instance in the universe. Hence, we must estimate P (A;B) based

on the data we have, namely, the instances of the two input taxonomies. Note that the instances

that we have for the taxonomies may be overlapping, but are not necessarily so.

To estimate P (A;B), we make the general assumption that the set of instances of each input

taxonomy is a representative sample of the instance universe covered by the taxonomy. This is a

standard assumption in machine learning and statistics, and seems appropriate here, since there is

no reason to suppose that the available instances were generated in some unusual way. We denote

by Ui the set of instances given for taxonomy Oi, by N(Ui) the size of Ui, and by N(UA;B
i ) the

number of instances in Ui that belong to both A and B.
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Figure 3: Estimating the joint distribution of concepts A and B

With the above assumption, P (A;B) can be estimated by the following equation:1

P (A;B) = [N(UA;B
1 ) +N(UA;B

2 )] = [N(U1) +N(U2)]; (3)

Computing P (A;B) then reduces to computing N(UA;B
1 ) and N(UA;B

2 ). Consider N(UA;B
2 ).

We can compute this quantity if we know for each instance s in U2 whether it belongs to both A

and B. One part is easy: we already know whether s belongs to B { if it is explicitly speci�ed as

an instance of B or of any descendant node of B. Hence, we only need to decide whether s belongs

to A.

This is where we use machine learning techniques. Speci�cally, we partition U1, the set of

instances of ontology O1, into the set of instances that belong to A and the set of instances that

do not belong to A. Then, we use these two sets as positive and negative examples, respectively,

to train a classi�er for A. Finally, we use the classi�er to predict whether instance s belongs to A.

In summary, we estimate the joint probability distribution of A and B as follows (the procedure

is illustrated in Figure 3):

1. Partition U1, into U
A
1 and UA

1 , the set of instances that do and do not belong to A, respectively

(Figures 3.a-b).

2. Train a learner L for instances of A, using UA
1 and UA

1 as the sets of positive and negative

training examples, respectively.

3. Partition U2, the set of instances of taxonomy O2, into U
B
2 and UB

2 , the set of instances that

do and do not belong to B, respectively (Figures 3.d-e).

4. Apply learner L to each instance in UB
2 (Figure 3.e). This partitions UB

2 into the two sets

UA;B
2 and UA;B

2 shown in Figure 3.f. Similarly, applying L to UB
2 results in the two sets UA;B

2

and UA;B
2 (Figure 3.f).

1Notice that N(UA;B
i )=N(Ui) is also a reasonable approximation of P (A;B), but it is estimated based only on the

data of Oi. The estimation in (3) is likely to be more accurate because it is based on more data, namely, the data of
both O1 and O2.
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5. Repeat Steps 1-4, but with the roles of taxonomies O1 and O2 being reversed, to obtain the

sets UA;B
1 , UA;B

1 , UA;B
1 , and UA;B

1 .

6. Finally, compute P (A;B) using Formula 3. The remaining three joint probabilities are com-

puted in a similar manner, using the sets UA;B
2 ; : : : ; UA;B

1 computed in Steps 4-5.

By applying the above procedure to all pairs of concepts hA 2 O1; B 2 O2i we obtain all joint

distributions of interest.

4.2 Multi-Strategy Learning

Given the diversity of machine learning methods, the next issue is deciding which one to use for

the procedure we described above. A key observation in our approach is that there are many

di�erent types of information that a learner can glean from the training instances, in order to make

predictions. It can exploit the frequencies of words in the text value of the instances, the instance

names, the value formats, the characteristics of value distributions, and so on.

Since each learner is best at utilizing only certain types of information, GLUE follows [12] and

takes a multi-strategy learning approach. In Step 2 of the above estimation procedure, instead of

training a single learner L, we train a set of learners L1; : : : ; Lk, called base learners. Each base

learner exploits well a certain type of information from the training instances to build prediction

hypotheses. Then, to classify an instance in Step 4, we apply the base learners to the instance

and combine their predictions using a meta-learner. This way, we can achieve higher classi�cation

accuracy than with any single base learner alone, and therefore to better approximations of the

joint distributions.

The current implementation of GLUE has two base learners, Content Learner andName Learner,

and a meta-learner that is a linear combination of the base learners. We now describe these learners

in detail.

The Content Learner: This learner exploits the frequencies of words in the textual content of

an instance to make predictions. Recall that an instance typically has a name and a set of attributes

together with their values. In the current version of GLUE, we do not handle attributes directly;

rather, we treat them and their values as the textual content of the instance2. For example,

the textual content of the instance \Professor Cook" is \R. Cook, Ph.D., University of Sidney,

Australia". The textual content of the instance \CSE 342" is the text content of this course'

homepage.

The Content Learner employs the Naive Bayes learning technique [13], one of the most popular

and e�ective text classi�cation methods. It treats the textual content of each input instance as a

bag of tokens, which is generated by parsing and stemming the words and symbols in the content.
2However, more sophisticated learners can be developed that deal explicitly with the attributes, such as the XML

Learner in [12].

11



Let d = fw1; : : : ; wkg be the content of an input instance, where the wj are tokens. To make

a prediction, the Content Learner needs to compute the probability that an input instance is an

instance of A, given its tokens, i.e., P (Ajd).

Using Bayes' theorem, P (Ajd) can be rewritten as P (djA)P (A)=P (d). Fortunately, two of these

values can be estimated using the training instances, and the third, P (d), can be ignored because it

is just a normalizing constant. Speci�cally, P (A) is estimated as the portion of training instances

that belong to A. To compute P (djA), we assume that the tokens wj appear in d independently of

each other given A (this is why the method is called naive Bayes). With this assumption, we have

P (djA) = P (w1jA)P (w2jA) � � � P (wkjA);

where P (wj jA) is estimated as n(wj ; A)=n(A). n(A) is the total number of token positions of all

training instances that belong to A, and n(wj ; A) is the number of times token wj appears in all

training instances belonging to A. Even though the independence assumption is typically not valid,

the Naive Bayes learner still performs surprisingly well in many domains, notably text-based ones

(see [13] for an explanation).

We compute P (Ajd) in a similar manner. Hence, the Content Learner predicts A with proba-

bility P (Ajd)., and A with the probability P (Ajd).

The Content Learner works well on long textual elements, such as course descriptions, or el-

ements with very distinct and descriptive values, such as color (red, blue, green, etc.). It is less

e�ective with short, numeric elements such as course numbers or credits.

The Name Learner: This learner is similar to the Content Learner, but makes predictions

using the full name of the input instance, instead of its content . The full name of an instance is the

concatenation of names leading from the root of the taxonomy to that instance. For example, the

full name of instance with the name s4 in taxonomy O2 (Figure 3.d) is \G B J s4". This learner

works best on speci�c and descriptive names. It does not well with names that are too vague or

vacuous.

The Meta-Learner: The predictions of the base learners are combined using the meta-learner.

The meta-learner assigns to each base learner a learner weight that indicates how much it trusts

that learner's predictions. Then it combines the base learners' predictions via a weighted sum.

For example, suppose the weights of the Content Learner and the Name Learner are 0.6 and 0.4,

respectively. Suppose further that for instance s4 of taxonomy O2 (Figure 3.d) the Content Learner

predicts A with probability 0.8 and A with probability 0.2, and the Name Learner predicts A with

probability 0.3 and A with probability 0.7. Then the Meta-Learner predicts A with probability

0:8 � 0:6 + 0:3 � 0:4 = 0:6 and A with probability 0:2 � 0:6 + 0:7 � 0:4 = 0:4.

In the current GLUE system, the learner weights are set manually, based on the characteristics

of the base learners and the taxonomies. However, they can also be set automatically using a

machine learning approach called stacking [37, 34], as we have shown in [12].
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5 Relaxation Labeling

We now describe the Relaxation Labeler, which takes the similarity matrix from the Similarity Esti-

mator, and searches for the mapping con�guration that best satis�es the given domain constraints

and heuristic knowledge. We �rst describe relaxation labeling, then discuss the domain constraints

and heuristic knowledge employed in our approach.

5.1 Relaxation Labeling

Relaxation labeling is an eÆcient technique to solve the problem of labeling the nodes of a graph,

given a set of constraints. The key idea behind this approach is that the label of a node is typically

in
uenced by the features of the node's neighborhood in the graph. Examples of such features are

the labels of the neighboring nodes, the percentage of nodes in the neighborhood that satisfy a

certain criteria, and the fact that a certain constraint is satis�ed or not.

Relaxation labeling exploits this observation. The in
uence of a node's neighborhood on its label

is quanti�ed using a formula for the probability of each label as a function of the neighborhood

features. Relaxation labeling assigns initial labels to nodes based solely on the intrinsic properties

of the nodes. Then it performs iterative local optimization. In each iteration it uses the formula to

change the label of a node based on the features of its neighborhood. This continues until labels

do not change from one iteration to the next, or some other convergence criterion is reached.

Relaxation labeling appears promising for our purposes because it has been applied successfully

to similar matching problems in computer vision, natural language processing, and hypertext clas-

si�cation [16, 30, 10]. It is relatively eÆcient, and can handle a broad range of constraints. Even

though its convergence properties are not yet well understood (except in certain cases) and it is

liable to converge to a local maxima, in practice it has been found to perform quite well [30, 10].

We now explain how to apply relaxation labeling to the problem of mapping from taxonomy O1

to taxonomy O2. We regard nodes in O2 as labels, and recast the problem as �nding the best label

assignment to nodes in O1, given all knowledge we have about the domain and the two taxonomies.

Our goal is to derive a formula for updating the probability that a node takes a label based

on the features of the neighborhood. Let X be a node in taxonomy O1, and L be a label (i.e., a

node in O2). Let �K represent all that we know about the domain, namely, the tree structures of

the two taxonomies, the sets of instances, and the set of domain constraints. Then we have the

following conditional probability

P (X = Lj�K) =
X
MX

P (X = L;MX j�K)

=
X
MX

P (X = LjMX ;�K)P (MX j�K); (4)

where the sum is over all possible label assignments MX to all nodes other than X in taxonomy
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O1. Assuming that the nodes' label assignments are independent of each other given �K , we have

P (MX j�K) =
Y

(Xi=Li)2MX

P (Xi = Lij�K): (5)

Consider P (X = LjMX ;�K). MX and �K constitutes all that we know about the neighborhood

ofX. Suppose now that the probability ofX getting label L depends only on the values of n features

of this neighborhood, where each feature is a function fi(MX ;�K ;X; L). As we explain in the next

section, each such feature corresponds to one of the heuristics or domain constraints that we wish

to exploit. Then

P (X = LjMX ;�K) = P (X = Ljf1; : : : ; fn): (6)

If we have access to previously-computed mappings between taxonomies in the same domain,

we can use them as the training data from which to estimate P (X = Ljf1; : : : ; fn) (see [10] for

an example of this in the context of hypertext classi�cation). However, here we will assume that

such mappings are not available. Hence we use alternative methods to quantify the in
uence

of the features on the label assignment. In particular, we use the sigmoid or logistic function

�(x) = 1=(1 + e�x), where x is a linear combination of the features fk, to estimate the above

probability. This function is widely used to combine multiple sources of evidence [5]. The general

shape of the sigmoid is as shown in Figure 4. Thus:

P (X = Ljf1; : : : ; fn) / �(�1 � f1 + � � �+ �n � fn); (7)

where / denotes \proportional to", and the weight �k indicates the importance of feature fk.

The sigmoid is essentially a smoothed threshold function, which makes it a good candidate for

use in combining evidence from the di�erent features. If the total evidence is below a certain value,

it is unlikely that the nodes match; above this threshold, they probably do.

14



Constraint Types Examples

Neighborhood
Two nodes match if their children also match.
Two nodes match if their parents match and at least x% of their children also match.
Two nodes match if their parents match and some of their descendants also match.

   
D

om
ai

n-
In

de
pe

nd
en

t

Union  If all children of node X match node Y, then X also matches Y.

Subsumption
 If node Y is a descendant of node X, and Y matches PROFESSOR, then it is unlikely that X matches ASSISTANT-PROFESSOR.
 If node Y is NOT a descendant of node X, and Y matches PROFESSOR, then it is unlikely that X matches FACULTY.

Frequency  There can be at most one node that matches DEPARTMENT-CHAIR.

D
om

ai
n-

D
ep

en
de

nt

Nearby
 If a node in the neighborhood of node X matches ASSOCIATE-PROFESSOR, then the chance that X matches PROFESSOR
isincreased.

Table 1: Examples of constraints that can be exploited to improve matching accuracy.

By substituting Equations 5-7 into Equation 4, we obtain

P (X = Lj�K) /
X
MX

�

 
nX

k=1

�kfk(MX ;�K ;X; L)

! Y
(Xi=Li)2MX

P (Xi = Lij�K): (8)

The proportionality constant is found by renormalizing the probabilities of all the labels to sum

to one. Notice that this equation expresses the probabilities P (X = Lj�K) for the various nodes

in terms of each other. This is the iterative equation that we use for relaxation labeling.

In our implementation, we optimized relaxation labeling for eÆciency in a number of ways

that take advantage of the speci�c structure of the ontology mapping problem. Space limitations

preclude discussing these optimizations here, but see Section 6 for a discussion on the running time

of the Relaxation Labeler.

5.2 Constraints

Table 1 shows examples of the constraints currently used in our approach and their characteristics.

We distinguish two types of constraints: domain-independent and -dependent constraints. Domain-

independent constraints convey our general knowledge about the interaction between related nodes.

Perhaps the most widely used such constraint is the Neighborhood Constraint: \two nodes match

if nodes in their neighborhood also match", where the neighborhood is de�ned to be the children,

the parents, or both [28, 20, 25] (see Table 1). Another example is the Union Constraint: \if all

children of a node A match node B, then A also matches B". This constraint is speci�c to the

taxonomy context. It exploits the fact that A is the union of all its children. Domain-dependent

constraints convey our knowledge about the interaction between speci�c nodes in the taxonomies.

Table 1 shows examples of three types of domain-dependent constraints.

To incorporate the constraints into the relaxation labeling process, we model each constraint ci

as a feature fi of the neighborhood of node X. For example, consider the constraint c1: \two nodes
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Taxonomies # nodes # non-leaf
nodes

depth
# instances

in
taxonomy

max # instances
at a leaf

max #
children
of a node

# manual
mappings
created

Cornell 34 6 4 1526 155 10 34Course Catalog
I Washington 39 8 4 1912 214 11 37

Cornell 176 27 4 4360 161 27 54Course Catalog
II Washington 166 25 4 6957 214 49 50

Standard.com 333 30 3 13634 222 29 236Company
Profiles Yahoo.com 115 13 3 9504 656 25 104

Table 2: Domains and taxonomies for our experiments.

are likely to match if their children match". To model this constraint, we introduce the feature

f1(MX ;�K ;X; L) that is the percentage of X's children that match a child of L, under the given

MX mapping. Thus f1 is a numeric feature that takes values from 0 to 1. Next, we assign to fi a

positive weight �i. This has the intuitive e�ect that, all other things being equal, the higher the

value fi (i.e., the percentage of matching children), the higher the probability of X matching L is.

As another example, consider the constraint c2: \if node Y is a descendant of node X, and

Y matches PROFESSOR, then it is unlikely that X matches ASSISTANT-PROFESSOR". The

corresponding feature, f2(MX ;�K ;X; L), is 1 if the condition \there exists a descendant of X that

matches PROFESSOR" is satis�ed, given theMX mapping con�guration, and 0 otherwise. Clearly,

when this feature takes value 1, we want to substantially reduce the probability that X matches

ASSISTANT-PROFESSOR. We model this e�ect by assigning to f2 a negative weight �2.

6 Empirical Evaluation

We have evaluated GLUE on several real-world domains. Our goals were to evaluate the matching

accuracy of GLUE, to measure the relative contribution of the di�erent components of the system,

and to verify that GLUE can work well with a variety of similarity measures.

Domains and Taxonomies: We evaluated GLUE on three domains, whose characteristics are

shown in Table 2. The domains Course Catalog I and II describe courses at Cornell University

and the University of Washington. The taxonomies of Course Catalog I have 34 - 39 nodes, and

are fairly similar to each other. The taxonomies of Course Catalog II are much larger (166 - 176

nodes) and much less similar to each other. Courses are organized into schools and colleges, then

into departments and centers within each college. The Company Pro�le domain uses ontologies

from Yahoo.com and TheStandard.com and describes the current business status of the companies.

Companies are organized into sectors, then into industries within each sector3.

In each domain we downloaded two taxonomies. For each taxonomy, we downloaded the entire

3Many ontologies are also available from research resources (e.g., DAML.org, semanticweb.org, OntoBroker [1],
SHOE, OntoAgents), they currently have no or very few data instances.
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Figure 5: Matching accuracy of GLUE.

set of data instances, and performed some trivial data cleaning such as removing HTML tags and

the phrase \course not o�ered" from the instances. We also removed instances of size less than

130 bytes, because they tend to be empty or vacuous, and thus do not contribute to the matching

process. We then removed all nodes with fewer than 5 instances, because such nodes cannot be

matched reliably due to lack of data.

Similarity Measure & Manual Mappings: We chose to evaluate GLUE using the Jaccard

similarity measure (Section 3), because it corresponds well to our intuitive understanding of sim-

ilarity. Given the similarity measure, we manually created the correct 1-1 mappings between the

taxonomies in the same domain, for the evaluation purposes. The rightmost column of Table 2

shows the number of manual mappings created for each taxonomy. For example, we created 236

one-to-one mappings from Standard to Yahoo, and 104 mappings in the reverse direction. Note

that in some cases there were nodes in a taxonomy for which we could not �nd a 1-1 match. This

was either because there was no equivalent node (e.g., School of Hotel Administration at Cornell

has no equivalent counterpart at the University of Washington), or when it impossible to determine

an accurate match without additional domain expertise.

Domain Constraints: We speci�ed domain constraints for the relaxation labeler. For the

taxonomies in Course Catalog I, we speci�ed all applicable subsumption constraints (see Table 1).

For the other two domains, because their sheer size makes specifying all constraints diÆcult, we

speci�ed only the most obvious subsumption constraints (about 10 constraints for each taxonomy).

For the taxonomies in Company Pro�les we also used several frequency constraints.

Experiments: For each domain, we performed two experiments. In each experiment, we applied

GLUE to �nd the mappings from one taxonomy to the other. The matching accuracy of a taxonomy

is then the percentage of the manual mappings (for that taxonomy) that GLUE predicted correctly.
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6.1 Matching Accuracy

Figure 5 shows the matching accuracy for di�erent domains and con�gurations of GLUE. In each

domain, we show the matching accuracy of two scenarios: mapping from the �rst taxonomy to the

second, and vice versa. The four bars in each scenario (from left to right) represent the accuracy

produced by: (1) the name learner alone, (2) the content learner alone, (3) the meta-learner using

the previous two learners, and (4) the relaxation labeler on top of the meta-learner (i.e., the complete

GLUE system).

The results show that GLUE achieves high accuracy across all three domains, ranging from 66

to 97%. In contrast, the best matching results of the base learners, achieved by the content learner,

are only 52 - 83%. It is interesting that the name learner achieves very low accuracy, 12 - 15% in

four out of six scenarios. This is because all instances of a concept, say B, have very similar full

names (see the description of the name learner in Section 4.2). Hence, when the name learner for

a concept A is applied to B, it will classify all instances of B as A or A, which is clearly often

incorrect and leads to poor estimates of the joint distributions. The poor performance of the name

learner underscores the importance of data instances in ontology matching.

The results clearly show the utility of the meta-learner and relaxation labeler. Even though

in half of the cases the meta-learner only minimally improves the accuracy, in the other half it

makes substantial gains, between 6 and 15%. And in all but one case, the relaxation labeler further

improves accuracy by 3 - 18%, con�rming that it is able to exploit the domain constraints and

general heuristics. In one case (from Standard to Yahoo), the relaxation labeler decreased accuracy

by 2%. The performance of the relaxation labeler is discussed in more detail below. In Section 6.4

we identify the reasons that prevent GLUE from identifying the remaining mappings.

In the current experiments, GLUE utilized on average only 30 to 90 data instances per leaf node

(see Table 2). The high accuracy in these experiments suggests that GLUE can work well with only

a modest amount of data.

6.2 Performance of the Relaxation Labeler

In our experiments, when the relaxation labeler was applied, the accuracy typically improved

substantially in the �rst few iterations, then gradually dropped. This phenomenon has also been

observed in many previous works on relaxation labeling [16, 19, 30]. Because of this, �nding the

right stopping criterion for relaxation labeling is of crucial importance. Many stopping criteria

have been proposed, but no general e�ective criterion has been found.

We considered three stopping criteria: (1) stopping when the mappings in two consecutive

iterations do not change (the mapping criterion), (2) when the probabilities do not change, or (3)

when a �xed number of iterations has been reached.

We observed that when using the last two criteria the accuracy sometimes improved by as much
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Figure 6: The accuracy of GLUE in the Course Catalog I domain, using the most-speci�c-parent
similarity measure.

as 10%, but most of the time it decreased. In contrast, when using the mapping criterion, in all but

one of our experiments the accuracy substantially improved, by 3 - 18%, and hence, our results are

reported using this criterion. We note that with the mapping criterion, we observed that relaxation

labeling always stopped in the �rst few iterations.

In all of our experiments, relaxation labeling was also very fast. It took only a few seconds in

Catalog I and under 20 seconds in the other two domains to �nish ten iterations. This observation

shows that relaxation labeling can be implemented eÆciently in the ontology-matching context. It

also suggests that we can eÆciently incorporate user feedback into the relaxation labeling process

in the form of additional domain constraints.

We also experimented with di�erent values for the constraint weights (see Section 5), and found

that the relaxation labeler was quite robust with respect to such parameter changes.

6.3 Most-Speci�c-Parent Similarity Measure

So far we have experimented only with the Jaccard similarity measure. We wanted to know whether

GLUE can work well with other similarity measures. Hence we conducted an experiment in which

we used GLUE to �nd mappings for taxonomies in the Course Catalog I domain, using the following

similarity measure:

MSP (A;B) =

(
P (AjB) if P (BjA) � 1� �

0 otherwise

This measure is the same as the the most-speci�c-parent similarity measure described in Section 3,

except that we added an � factor to account for the error in approximating P (BjA).

Figure 6 shows the matching accuracy, plotted against �. As can be seen, GLUE performed

quite well on a broad range of �. This illustrates how GLUE can be e�ective with more than one

similarity measure.
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6.4 Discussion

The accuracy of GLUE is quite impressive as is, but it is natural to ask what limits GLUE from ob-

taining even higher accuracy. There are several reasons that prevent GLUE from correctly matching

the remaining nodes. First, some nodes cannot be matched because of insuÆcient training data.

For example, many course descriptions in Course Catalog II contain only vacuous phrases such as

\3 credits". While there is clearly no general solution to this problem, in many cases it can be

mitigated by adding base learners that can exploit domain characteristics to improve matching ac-

curacy. And second, the relaxation labeler performed local optimizations, and sometimes converged

to only a local maxima, thereby not �nding correct mappings for all nodes. Here, the challenge

will be in developing search techniques that work better by taking a more \global perspective", but

still retain the runtime eÆciency of local optimization.

We note that some nodes cannot be matched automatically because they are simply ambigu-

ous. For example, it is not clear whether \networking and communication devices" should match

\communication equipment" or \computer networks". A solution to this problem is to incorporate

user interaction into the matching process [27, 12, 38].

Finally, GLUE currently tries to predict the best match for every node in the taxonomy. However,

in some cases, such a match simply does not exist (e.g., unlike Cornell, the University of Washington

does not have a School of Hotel Administration). Hence, an additional extension to GLUE is to

make it be aware of such cases, and not predict an incorrect match when this occurs.

7 Related Work

GLUE is related to our previous work on LSD [12], whose goal is to semi-automatically �nd schema

mappings for data integration. There, we had a mediated schema, and our goal was to �nd mappings

from the schemas of a multitude of data sources to the mediated schema. The observation was that

we can use a set of manually given mappings on several sources as training examples for a learner

that predicts mappings for subsequent sources. LSD illustrated the e�ectiveness of multi-strategy

learning for this problem. Here, since our problem is to match a pair of ontologies, we need to obtain

the training examples for the learner automatically. In addition, since we are dealing with a more

expressive formalism (ontologies versus schemas), the role of constraints is much more important,

and GLUE innovates by using relaxation labeling for this purpose. Finally, LSD did not consider in

depth the semantics of a mapping, as we do here.

We now describe other related work to GLUE from several perspectives.

Ontology Matching: Many works have addressed ontology matching in the context of ontology

design and integration (e.g., [11, 23, 27, 26]). These works do not deal with explicit notions

of similarity. They use a variety of heuristics to match ontology elements. They do not use
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machine learning and do not exploit information in the data instances. However, most of them

[11, 23, 27] have powerful features that allow for eÆcient user interaction. Such features are

important components of a comprehensive solution to ontology matching, and hence should be

added to GLUE in the future.

Several recent works have attempted to further automate the ontology matching process. The

Anchor-PROMPT system [28] exploits the general heuristic that paths (in the taxonomies or on-

tology graphs) between matching elements tend to contain other matching elements. The HICAL

system [33] exploits the data instances in the overlap between the two taxonomies to infer map-

pings. [17] computes the similarity between two taxonomic nodes based on their signature TF/IDF

vectors, which are computed from the data instances.

Schema Matching: Schemas can be viewed as ontologies with restricted relationship types. The

problem of schema matching has been studied in the context of data integration and data translation

(see [32] for a survey). Several works [25, 20, 24] have exploited variations of the general heuristic

\two nodes match if nodes in their neighborhood also match", but in an isolated fashion, and not

in the same general framework we have in GLUE.

Notions of Similarity: The similarity measure in [33] is based on � statistics, and can be

thought of as being de�ned over the joint probability distribution of the concepts involved. In [18]

the authors propose an information-theoretic notion of similarity that is based on the joint distri-

bution. These works argue for a single best universal similarity measure, whereas GLUE allows for

application-dependent similarity measures.

Ontology Learning: Machine learning has been applied to other ontology-related tasks, most

notably learning to construct ontologies from data and other ontologies, and extracting ontology

instances from data [29, 22, 31]. Our work here provides techniques to help in the ontology con-

struction process [22]. [21] gives a comprehensive summary of the role of machine learning in the

Semantic Web e�ort.

8 Conclusion and Future Work

The vision of the semantic web is grand. With the proliferation of ontologies on the semantic

web, the development of automated techniques for ontology matching will be crucial to its success.

We have described an approach that applies machine learning techniques to propose such seman-

tic mappings. Our approach is based on well-founded notions of semantic similarity, expressed

in terms of the joint probability distribution of the concepts involved. We described the use of

machine learning, and in particular, of multi-strategy learning, for computing concept similarities.

This learning technique makes our approach easily extensible to additional learners, and hence

to exploiting additional kinds of knowledge about instances. Finally, we introduced relaxation

21



labeling to the ontology-matching context, and showed that it can eÆciently exploit a variety of

heuristic knowledge and domain-speci�c constraints to further improve matching accuracy. Our

experiments showed that we can accurately match 66 - 97% of the nodes on several real-world do-

mains. Aside from striving to improve the accuracy of our methods, our main line of future research

involves extending our techniques to handle more sophisticated mappings between ontologies (i.e.,

non 1-1 mappings), and exploiting more of the constraints that are expressed in the ontologies (via

attributes and relationships, and constraints expressed on them).
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