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Abstract
The goal of a data integration system is to provide a uni-

form interface to a multitude of data sources. Given a user
query formulated in this interface, the system translates it
into a set of query plans. Each plan is a query formulated
over the data sources, and specifies a way to access sources
and combine data to answer the user query.

In practice, when the number of sources is large, a data-
integration system must generate and execute many query
plans with significantly varying utilities. Hence, it is cru-
cial that the system finds the best plans efficiently and ex-
ecutes them first, to guarantee acceptable time to and the
quality of the first answers. We describe efficient solutions
to this problem. First, we formally define the problem of
ordering query plans. Second, we identify several interest-
ing structural properties of the problem and describe three
ordering algorithms that exploit these properties. Finally,
we describe experimental results that suggest guidance on
which algorithms perform best under which conditions.

1. Introduction
The goal of a data integration system is to provide a uni-

form interface to a multitude of data sources, thereby free-
ing the user from laborious manual interaction with the in-
dividual sources. The system provides this interface by al-
lowing users to pose queries through a mediated schema,
which is a virtual schema that captures the salient aspects
of the application domain.

A data integration system typically consists of three main
components: query reformulator, optimizer, and execution
engine. Given a user query formulated in the mediated
schema, the query reformulator translates it into a set of
query plans. Each plan is a query formulated over the data
sources, and specifies a way to access sources and combine
data to answer the user query.

Example 1.1 Consider a data integration system that an-
swers queries related to movies. Suppose the system can
access sources V1; V2; V3 that contain tuples hactor;moviei
and sources V4; V5; V6 that contain tuples hmovie; reviewi.
Given a query asking for reviews of movies starring Harri-
son Ford, the reformulator may generate nine query plans,
each accessing a source among V1 � V3 to ask for the ti-
tles of movies starring Ford, then feeding these titles into a
source among V4 � V6 to obtain the reviews.2

Each query plan is then given to the query optimizer,
which produces a physical query execution plan. A physical
plan specifies exactly how the query plan is to be evaluated,
including the order of the operations and the specific algo-
rithm used for every operation (e.g., algorithms for joins,
selections). Finally, the query execution plans are evaluated
by the query execution engine. It is important to note that
since sources may be incomplete, no single query plan is
guaranteed to produce all the answers. Hence, the answer
to a user query is the union of the output of all query plans.

Much research effort in data integration has concentrated
on reformulation and optimization issues. Several algo-
rithms to reformulate user queries have been proposed (e.g.,
[15, 5, 19]). Optimization is recognized as crucial to build-
ing practical data integration system, and hence has led to
many works at all three levels of query evaluation: reformu-
lation [4, 5, 7, 12], optimization [9, 23, 12], and execution
[20, 11, 2].

At the reformulation level, most optimization ap-
proaches have focused on minimizing the cost to obtain all
answers from the sources. In many data integration appli-
cations, however, the time to and the quality of the first an-
swers is the most important. This is because for applica-
tions with a large number of sources, typically the number
of query plans is very large and plan evaluation is costly, so
executing all query plans is expensive and often infeasible.
Furthermore, query plans tend to vary significantly in their
utility (e.g., coverage, execution time, monetary cost, etc.),
depending on which sources they access [13, 18].

Hence, an important optimization problem at the query-
reformulation level is to find query plans in decreasing or-
der of their utility, so that the data integration system can
focus on and execute the best plans first. Query execution
can then be aborted as soon as the user has found a satis-
factory answer, or when allotted resource limits have been
reached.

Example 1.2 Consider plan coverage, defined as the num-
ber of tuples returned by a plan that haven’t been returned
by any plan executed previously [6, 7, 12]. If sources have
equal access cost, then executing query plans in the de-
creasing order of their coverage returns as many answers
as possible as soon as possible. Consequently, it maximizes
the likelihood of obtaining a satisfactory answer early [6].
If sources have differing access cost, however, then prefer-



ences over coverage and cost can be modeled with the utility
measure u(p) = � � coverage(p) + � � cost(p), where �
and � are constants specifying the tradeoffs [18]. Executing
plans in the decreasing order of this utility value balances
the desires of obtaining as many answers as possible with
paying as little cost as possible.2
Several recent works have addressed the plan-ordering
problem [6, 17, 13, 18, 22]. However, they dealt with re-
strictive data integration settings and considered only spe-
cific classes of utility measures. In this paper we address
the general problem of plan ordering. We seek to modify
the query-reformulation algorithm to output query plans in
decreasing order of their utility, for a broad variety of utility
functions. Since the time to execute plans is much higher
than the time to find plans, we focus on finding the first few
best plans. The rest of the plans can be found while the
execution has begun.

Our contributions are as follows. First, we formally
define the plan-ordering problem. Unlike most existing
works, our definition does not assume any specific util-
ity class. Second, we identify several interesting struc-
tural properties of the problem that provide insights into
effective algorithms, then describe three plan-ordering al-
gorithms that exploit these properties. Specifically, we de-
scribe a greedy algorithm that when applicable takes time
linear wrt the number of sources to find the first several best
plans, and two algorithms that use abstraction ideas from
AI decision-theoretic planning. Finally, we describe exper-
imental results that show that for several problem classes
our abstraction-based algorithms can find the first several
best plans very fast. The results also suggest guidance on
which algorithms perform best under which conditions.

2. Background & Problem Definition
We now introduce a prototypical data integration archi-

tecture. Next, we discuss generating a set of query plans
given a user query. Finally, we define the problem of order-
ing query plans.

Mediated-Schema and Source Relations: We model a
data integration domain with a set of mediated-schema re-
lations (or schema relations for short). For example, the
movie domain described in the introduction can be mod-
eled with the schema relations in Figure 1. We model the
contents of each data source with a source relation. We
adopt the local-as-view approach [15, 12, 7] and describe
each source relation in terms of a conjunction of schema re-
lations. The meaning of such a source description is that
all the tuples that are found in the source satisfy the con-
junction. For example, the source description V1(A;M) :–
play-in(A;M), american(M ) in Figure 1 says that this
source stores a relation V1 with tuples hA;Mi such that ac-
tor A plays in the American movie M . Note that V1 may
not necessarily contain all such tuples. Figure 1 lists the
descriptions of six movie data sources.

Schema relations:          Source relations:     
play-in(A,M)                   V1(A,M) :- play-in(A,M), american(M)
review-of(R,M)               V2(A,M) :- play-in(A,M), russian(M)
american(M)                    V3(A,M) :- play-in(A,M)
russian(M)                       V4(R,M) :- review-of(R,M)
                                         V5(R,M) :- review-of(R,M)
                                         V6(R,M) :- review-of(R,M)
Sample query: 
Q(M,R) :- play-in(Ford,M), review-of(R,M)
                     Bucket B1       Bucket B2
                     {V1, V2, V3}     {V4, V5, V6}

Figure 1. The data integration domain of movies.

User Queries and Conjunctive Query Plans: A
user query can be expressed as a conjunctive query
Q(Y ) :– R1(Y1); : : : ; Rm(Ym), where Ri are schema re-
lations, Yi and Y denote tuples of variables and constants,
and Y � [mi=1Yi. We refer to Ri(Yi) as the i-th subgoal of
the query. For example, a query asking for all tuples hM;Ri
such that R is a review of movie M starring Harrison Ford
might be formulated as query Q shown in Figure 1.

A conjunctive query plan p (or plan p when there is
no ambiguity) has the form p(Y ) :– V1(U1); : : : ; Vn(Un)
where each Vi is a source relation corresponding to a data
source, and the Ui denote tuples of variables and constants.
The meaning of plan p is that it accesses and combines data
from the sources V1; : : : ; Vn, to produce tuples Y in re-
sponse to query Q(Y ). For example, p :– V1V4 is a plan
that answers query Q in Figure 1. A plan is sound if all an-
swers it produces are answers to the user query. The union
of the output tuples of all sound plans is the answer to the
query.

Generating Query Plans: For ease of exposition, we
shall use the bucket algorithm [16] to reformulate a user
query into a set of sound query plans. We show in Section 7
how our plan-ordering algorithms can be adapted to work
with other query-reformulation algorithms.

The bucket algorithm creates for each schema relation R
(i.e., a subgoal) of the query a bucket, which is the set of all
sources that can return tuples that satisfy R. For query Q
in Figure 1, it creates two buckets B1 and B2 as shown in
that figure. Next, the algorithm combines sources, one from
each bucket, to form plans. Combining sources from buck-
ets B1 and B2 forms nine plans: V1V4; V1V5; : : : ; V3V6.
Finally, the algorithm tests each plan and outputs only the
sound ones.

We now consider how to modify the bucket algorithm
to output sound plans in decreasing order of their utility.
Notice that, in practice, when the number of sources is large,
there will be many query plans in the Cartesian product of
the buckets. The bucket algorithm must test each of these
plans for soundness. Hence, if we order plans only after
all sound query plans have been generated, finding the first
several best plans will be significantly delayed.

We can address this problem as follows. First we create



the buckets. Then we order plans in the Cartesian product of
the buckets. If a plan coming out of the ordering algorithm
is found to be sound, it is optimized for execution; other-
wise, it is thrown away, and next plan is requested from
the ordering algorithm. With this strategy we still execute
all sound plans, and only sound plans, in the decreasing
order of their utility. Furthermore, if sound plans are dis-
tributed uniformly over the plan ordering, then with a very
high probability we shall find sound plans in the first sev-
eral plans output by an ordering algorithm. For example,
even when only 20% of plans are sound (which is unusu-
ally low), we still find a sound plan in the first 20 plans with
probability 1� 0:820 = 0:99. Hence, if we can find the first
20 plans fast, without examining all plans in the Cartesian
product, then with a very high probability we would quickly
find the first best sound plan.

In this paper we adopt the above strategy. So given a
query we assume the buckets have been created, and we
are concerned only with ordering plans that are created by
taking the Cartesian product of the buckets. Our focus is to
find the first several plans in the ordering very fast, without
generating all plans in the Cartesian product.

Utility and the Plan-Ordering Problem: The utility of
a plan is commonly defined as a number that indicates the
relative “worth” of the plan. Most existing works assume
that the utility of a plan can be computed solely from the
intrinsic properties of that plan. In many data integration
settings, however, this utility value depends not only on the
plan itself, but also on the plans previously executed and
the user query (see the examples below). Hence, we adopt
a general notion of utility, and define the utility of a plan p
with respect to a set of plans fp1; : : : ; plg and a query Q to
be a number indicating the relative “worth” of p, given that
plans p1; : : : ; pl have been executed. We denote this utility
value as u(pjp1; p2; :::; pl; Q).

Example 2.1 Consider the total processing cost of a plan
(e.g., execution time or monetary fee). When there is no
caching, the cost of a plan is independent of any other plan.
When caching is used, however, the cost of a plan may de-
crease (thus its utility increases) because a plan just exe-
cuted has cached the results of some operations that this
plan uses.

As another example, consider plan coverage [6, 7, 12,
21], which measures the number of “useful” tuples returned
by a plan. Clearly, the coverage of a plan varies depending
on which other plans have been executed and if they have
accessed any source that overlaps sources accessed by this
plan. Hence, following [6], we define the coverage of a plan
p with respect to a set of plans fp1; : : : ; png and a query
Q(Y ) to be the probability that a tuple chosen randomly
among all tuples Y that satisfy Q will be returned by plan p
and not by any plan pi, i 2 [1; n].2

We now define the plan-ordering problem as follows:
given a set of query plans that answer a user query, find the
best plan p1 (i.e., the one with the highest utility), then the
next best plan p2, assuming that p1 has been executed, then
the next best plan p3, assuming that p1 and p2 have been
executed, and so on, up to plan pk, for a given k. Formally,

Definition 2.1 (Plan-Ordering Problem) Given a query
Q, a utility measure u, and a number k, let S be the set
of query plans generated in response to Q. Find the k
plans with the highest utility in S in the decreasing or-
der of their utility. That is, find an ordering fp1; : : : ; pkg,
pi 2 S; i 2 [1; k], such that for each i 2 [1; k]:

u(pijp1; : : : ; pi�1; Q) = max
p2(Snfp1;:::;pi�1g)

u(pjp1; : : : ; pi�1; Q):

Section 7 reviews different variations of this definition,
which have been addressed by the related work. The plan-
ordering problem is challenging for two reasons. First, the
utility of a plan may depend on the plans preceding it in the
ordering. Hence, in these cases we simply cannot compute
plan utilities in isolation, then sort the plans. Second, in
the presence of a large number of sources, the set of plans
is typically huge, making brute-force methods infeasible in
all but the most trivial applications. Therefore, it is impor-
tant to find key problem properties that enable us to design
efficient solutions. In the next section we discuss four such
problem properties.

3. Problem Properties
Utility Monotonicity: First, we discuss utility mono-
tonicity, which when holds allows us to order plans by local
comparisons of sources. Suppose we want to order plans in
the Cartesian product of buckets B1 and B2 (Figure 1) in
increasing order of their cost. Suppose also that the cost of
any plan ViVj is cost(ViVj) = ci + cj , where accessing a
source Vi (Vj) incurs a constant cost ci (cj). Then it is im-
mediately obvious that given any plan, replacing a source
in that plan with another source that has lower cost yields
a better plan. Hence, there is a very effective greedy strat-
egy to find the first best plan: find the source with the least
cost from each bucket, then return the plan formed from the
found sources.

This example motivates the notion of utility monotonic-
ity. We say a utility function u is monotonic wrt a subgoal t
of query Q iff (1) given any bucket B t for this subgoal, we
can find a total order� on Bt such that for any two sources
Vti � Vtj in Bt, replacing Vtj by Vti in any plan yields a
plan with higher utility, and (2) Property 1 holds regardless
of the set of plans already executed. If u is monotonic wrt
all subgoals of Q then we say it is fully monotonic wrt Q.
The cost measure ci + cj is fully monotonic.

As another example, consider cost measure (from [23]):

cost(ViVj) = (h+ �i � ni) + (h+ �j � nj); (1)



which applies if we retrieve all movies starring Ford from
Vi, all tuples hM;Ri from Vj , then join them at the system
site. Here h is the overhead cost of accessing a source, � i is
the cost of transmitting a movie item from Vi to the system
site, ni is the number of items output by Vi; and �j and nj
are analogous items for Vj .

This cost measure is fully monotonic because, intu-
itively, we can decrease cost(ViVj) by decreasing term
�i � ni independently of term �j � nj , and vice versa.
Clearly, any cost measure that is a linear combination of
independent terms, where each term represents the cost of a
constituent source, is fully monotonic.

Now consider cost measure (also from [23]):

cost(ViVj) = (h+�i �ni)+ (h+�j � (nj �ni=N)); (2)

which applies if we retrieve all movies starring Ford from
Vi, then perform the join between them and tuples hM;Ri
at Vj . Here the parameters are defined as in (1), andN is the
total number of movies across the sources. The term (n j �
ni=N) is an estimation of the number of items output by
Vj . This cost measure is monotonic wrt the second subgoal,
but not to the first subgoal. However, if transmission costs
� are the same across all sources, then it is also monotonic
wrt the first subgoal, and thus is fully monotonic.

The above examples show that there are many practical
utility measures that are fully monotonic. For these util-
ity measures, we can apply algorithm Greedy described in
Section 4 to efficiently order plans. However, there are also
many utility measures that are not fully monotonic, such
as plan coverage and the utility measures described in Sec-
tion 6. To efficiently order plans for such utility measures,
we exploit different problem properties, which we describe
next.

Source Similarity: We say two sources are similar if re-
placing one source by another in any plan changes the utility
of that plan very little. Large data integration domains tend
to have many similar sources. For example, consider the
domain of digital cameras. The hundreds of online sources
that sell digital cameras can be naturally divided into sev-
eral groups. At one end, we have small resellers that offer
cameras at steep discount prices, but have poor customer
service. We also have small, specialized stores that deal
exclusively with cameras; they charge higher prices, but
have excellent customer service. At the other end of the
spectrum, we have large national chains that sell electronic
goods, such as Best Buy and Circuit City. They carry exten-
sive offerings of products, with reasonable customer service
and average to high prices. In between, we have stores such
as Target, Wal-Mart, and Costco, which also provide rea-
sonable customer service, but do not offer high-end cam-
eras. Besides resellers, there are at least 30–40 sites that
review digital cameras (see consumersearch.com). These
sites can also be naturally divided into several groups, such

as free sites (e.g., dpreview.com), and sites that charge a fee
(e.g., consumerreports.org).

The presence of many similar sources makes large data
integration domains especially suited to abstraction tech-
niques based on source similarity. Similar sources can be
grouped and reasoned with as with a single source. For ex-
ample, suppose the user wants to buy a high-end camera and
greatly values good customer service. Then by examining
the characteristics of the reseller groups, a data integration
system will know that it should first consider large national
electronic chains, or small, specialized stores. It knows to
exclude the other groups without having to examine each
individual reseller in that group, thus obtaining substantial
computational savings. In Section 5.2 we introduce iDrips
and Streamer, two algorithms that exploit such techniques
to order plans.

Plan Independence and Utility-Diminishing Returns:
Two additional properties that prove especially useful are
plan independence and utility-diminishing returns. The
Streamer algorithm exploits these properties in conjunc-
tion with abstraction to efficiently order plans.

Two plans are said to be independent of each other iff the
utility of a plan does not depend on whether the other has
been executed. Often, there exists an efficient and sound
(but perhaps not complete) procedure to infer the indepen-
dence of a plan pair simply by inspecting their constituent
sources. This is important because some algorithms we in-
troduce later rely on such procedures to obtain plan inde-
pendence information efficiently. For example, in the case
of plan coverage, we can show that two plans are indepen-
dent of each other if there are at least two corresponding
constituent sources that do not overlap and contribute some
attribute values to the output tuples of the plans.

Utility-diminishing returns refers to the property that the
utility of a plan does not increase if it is “pushed” further
down the plan ordering. This property holds for plan cov-
erage because the number of new tuples returned by a plan
can not increase as we execute more plans.

4. The Greedy Algorithm
This algorithm applies when the utility measure is fully

monotonic. We now explain its working via a simple ex-
ample. We use the term plan space to refer to the set
of plans formed by taking the Cartesian product of a set
of buckets. In Figure 2, buckets B1 = fV1; V2; V3g and
B2 = fV4; V5; V6g form a plan space S1. Suppose we
want to apply Greedy to S1. Since full monotonicity holds,
Greedy finds the best plan using a simple strategy: finds
the best source in each bucket, then returns the plan formed
from the found sources. Let this plan be V1V5.

Greedy now proceeds to find the second best plan. First,
it removes the best plan V1V5 from plan space S1. As we
show shortly, this removal splits S1 into the set of plan
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Figure 2. Removing plan V1V5 from the plan space
S1 results in two plan spaces S3 and S5.

spaces fS3; S5g that together contain all plans in S1 except
plan V1V5. Next, Greedy finds the best plan for S3 and the
best plan for S5, using the same greedy strategy described
above. Finally, it compares these two best plans and returns
the one with the highest utility as the second best plan. It
proceeds in a similar manner to find subsequent best plans.

We now explain how Greedy removes plan V1V5 from
plan space S1. The basic idea is recursive splitting starting
with the first bucket. Greedy splits the first bucket into two
buckets: fV1g and fV2; V3g. This splits S1 into two smaller
plan spaces S2 and S3. Next, it focuses on S2, because S2

contains plan V1V5. Greedy splits the second bucket of S2

into two buckets: fV5g and fV4; V6g, thus splitting S2 into
two plan spaces S4 and S5. Finally, it removes S4, which
contains exactly V1V5. The end result of removing V1V5
from S1 is then the two plan spaces S3 and S5.

In [3] we formally describe Greedy and prove that,
given a fully monotonic utility measure, Greedy returns
the correct order of the first k best plans, where k is a pre-
specified threshold. We also prove that Greedy runs in
O(mn2k2) time, where m is the largest bucket size and n
is the query length.

5. Abstraction-Based Algorithms
We now consider the case in which utility monotonicity

does not hold. Since large data integration domains tend to
have many similar sources, as we have argued in Section 3,
we consider the use of similarity-based abstraction. First,
we introduce Drips, a planning algorithm that uses abstrac-
tion to find the best plan from a set of plans [10]. Then
we describe iDrips and Streamer, two algorithms we have
developed that extend Drips to order plans.

5.1. Drips: An Abstraction-Based Planner
The basic idea of Drips is to group and abstract sources

so that it can create abstract plans during the planning pro-
cess. Each abstract plan represents a set of concrete (query)
plans, and has as its utility a real-valued interval that con-
tains the utility of all concrete plans in the set. We say that
a plan p dominates a plan q if there is at least one concrete
plan p0 2 p whose utility is not less than the utility of all

concrete plans in q. During the planning process, if Drips
finds a plan pair (p; q) with the respective utility intervals
[lp; hp] and [lq; hq ] such that lp � hq then Drips eliminates
q, and thus all concrete plans represented by q, from fur-
ther consideration. Notice that the elimination of q takes
place without having to explicitly compute the utility of the
concrete plans associated with it, hence the computational
savings.

We explain Drips with the following example. Suppose
the utility is plan coverage and the set of plans is given as the
Cartesian product of two buckets, each consisting of three
sources as shown in Figures 3.a and 3.d. Here sources are
represented with circles, the overlaps of which mean over-
laps of the actual sources.

Drips proceeds in two stages. In the first stage, it it-
eratively groups and abstracts sources in each bucket. For
the bucket in Figure 3.a, it abstracts two sources V1 and
V2 into the abstract source V12, which is then abstracted
with V3 to yield the final abstract source V123 for this
bucket, as shown in Figure 3.b. A similar abstraction pro-
cess is shown in Figure 3.c for the second bucket. The
abstract plan V123V456 represents all nine concrete plans
fV1; V2; V3g � fV4; V5; V6g.

In the second stage, Drips iteratively refines, evaluates,
and eliminates abstract plans until it finds the best plan. It
starts by refining the top abstract plan V123V456 into a set of
lower-level abstract plans by replacing an abstract source in
this plan with its component sources. Let’s say Drips picks
V123 and refines it into the two component sources V12 and
V3, yielding two plans V12V456 and V3V456.

Assume Drips computes the coverage of these two plans
to be [0.1,0.7] and [0.5,0.8], respectively. Since these in-
tervals overlap, Drips cannot eliminate either plan. It then
picks a plan, say V12V456, and refines it into V1V456 and
V2V456. Assume the coverage of these plans are [0.4,0.6]
and [0.1,0.3], respectively, then Drips can eliminate V 2V456
because this plan is dominated by V1V456.

We now have two plans left: V3V456 and V1V456. Drips
picks V3V456 and refines it into V3V4 and V3V56. Assume
the coverage of these plans are 0.8 and [0.6,0.7], respec-
tively. Then V3V4 dominates V3V56 and V3V56 in turn
dominates V1V456, and Drips can eliminate both dominated
plans. Since Drips now has only plan V3V4 left and it is a
concrete plan, Drips returns V3V4 as the plan with the high-
est coverage, and as the first plan in the ordering.

Note that in total we need to compute the coverage of
only six plans to find the best plan out of nine. This rep-
resents a saving of 33% over the brute-force approach in
terms of the number of plans evaluated. Even though the
six plans evaluated include abstract plans, evaluating an ab-
stract plan is just slightly more expensive than evaluating a
concrete plan, because the former can be carried out just like
the latter, but with interval rather than point arithmetic; see
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Figure 3. Concrete and abstract sources in two
buckets for a query in the movie domain.

Appendix A.3 of [3] for more details. Furthermore, source
abstraction in Drips can be done efficiently using a variety
of heuristics [10].

5.2. Abstraction-Based Plan Ordering
Drips is not suited for data integration because it finds

only the first plan in the ordering. We have developed two
algorithms that extend Drips to find subsequent plans.

The iDrips Algorithm: This algorithm is a straightfor-
ward extension of Drips. It begins by applying Drips to find
the first best plan, then removes that plan from the original
plan space. This removal results in a set of new plan spaces
that together contain all plans from the original plan space,
except for the first best plan. In the next iteration, iDrips
reabstracts the sources in the new plan spaces, then applies
Drips to find the second best plan, and so on.

In each iteration, while comparing plans iDrips implic-
itly establishes many dominance relations of the form “plan
p is better than plan q”, which it then discards at the end
of that iteration. In the next iteration iDrips completely re-
builds the abstract plan space and may reestablish the same
dominance relations. Thus in finding the next best plan,
iDrips duplicates a lot of the work done in previous itera-
tions. This observation led to the development of the second
abstraction-based algorithm, Streamer, which is a more so-
phisticated extension of Drips.

The Streamer Algorithm: This algorithm is applicable
if utility-diminishing returns holds. It abstracts sources only
once, at the beginning. It then exploits plan independence
and diminishing-returns properties to keep track of domi-
nance relations among abstract plans, and reuses these rela-
tions in the search for the next best plans.

The Streamer algorithm is shown in Figure 5, and we
shall explain its working on the example of Section 5.1.

Finding the Best Plan & Creating Dominance Relations:
Initially, after abstracting the sources, Streamer proceeds
exactly like Drips: it starts with the top plan V123V456 and
refines this plan into V3V456 and V12V456 (Figures 4.a and
4.b, and Step 2.c of Figure 5). Next, it refines V12V456 into
V1V456 and V2V456. At this point unlike Drips which elimi-
nates V2V456 because it is dominated by V1V456, Streamer
does not eliminate any plan; it simply creates a domination
link from V1V456 to V2V456 (Figure 4.c and Step 2.b of Fig-
ure 5), denoted as V1V456 ! V2V456. We associate each
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Figure 4. Stages of the domination graph created
by Streamer on the example in Figure 3. The set
associated with a link is shown next to that link.

link p ! q with a set (of plans) denoted as E(p; q). When
a link is initially created, its set of plans is empty and is not
shown in Figure 4. We will describe shortly how this set
is maintained and what purpose it serves. Streamer thus
maintains a dominance graph whose nodes are plans and
whose edges are domination links specifying dominance re-
lationships.

Next, Streamer picks V3V456 and refines it into V3V4
and V3V56 (Figure 4.d and Step 2.c of Figure 5). Re-
call from the previous section that V3V4 dominates V3V56,
which in turn dominates V1V456. But again, instead of
eliminating dominated plans as in Drips, Streamer creates
dominance links pointing from dominating plans to domi-
nated ones (Step 2.b). At this point, the only nondominated
plan, V3V4, is a concrete plan, and so is returned as the best
plan (line 1 of Step 2.d).

Removing the Best Plan: Once V3V4 has been returned,
Drips terminates, but Streamer continues on to find subse-
quent plans. First, it removes V3V4 from the dominance
graph, thus removing all links originating from this plan
(Figure 4.e and line 1 of Step 2.d of Figure 5). However,
removing a plan might change the utility of the remaining
plans, thus rendering some domination links invalid. For
example, after removing V3V4 the coverage of V2V4 will
change because these two plans overlap (V3 and V2 overlap
in Figure 3). So suppose initially V2V4 dominates a plan q
and we have the link V2V4 ! q, then after removing V3V4,
V2V4 may no longer dominate q and the link may become
invalid.

Finding the Second Best Plan & Recycling Dominance
Relations: After removing V3V4, Streamer needs to
recheck the validity of each remaining link. To do this
Streamer uses information on plan independence. It
checks the validity of a link p! q by adding V3V4 to the set
E(p; q), then checking if there is a concrete plan s 2 p that
is independent of all concrete plans inE(p; q). If Streamer
finds such a plan then it concludes that link p ! q is still
valid. This is true because (a) at the time link p ! q was
created, s dominates q; (b) since that time only plans in



Input: Query Q, utility measure u, set of buckets B1; : : : ; Bm, and a threshold k; Output: The best k plans in B1 � : : :� Bm , in decreasing order of utility
1. Foreach bucket Bi do create top abstract source Ti. Put top plan P = T1 : : : Tm into a dominance graph G. Set u(P ) nil:

2. Loop until the best k plans have been returned:

(a) Foreach nondominated plan a in G such that u(a) is nil do recompute u(a).
(b) Foreach pair of nondominated plans b; c 2 G such that u(b) = [lb; hb], u(c) = [lc; hc], and lb � hc do create link b! c and set E(b; c) ;.
(c) If exist abstract, nondominated plans in G then

Pick one such plan, say p; refine p into p1; : : : ; pl ; set u(pi) nil; and add fp1; : : : ; plg to G.
Foreach plan p0 2 G st p! p0 , and for each plan pi; i 2 [1; l], st CheckValidity(pi; E(p; p0)) = true do create pi ! p0 , and set E(pi; p

0) E(p; p0).
Remove plan p from G and go back to Step 2.a.

(d) If there are no abstract nondominated plans in G then pick any nondominated plan d 2 G and output d as the next best plan. Remove d from G.
Foreach link q ! q0 in G if CheckValidity(q;E(q; q0) [ fdg) = true then add d to E(q; q0) else remove q ! q0 from G.
Foreach plan e 2 G such that e and d are not independent do set u(e) nil.

Algorithm CheckValidity(plan r, set of concrete plans F ): Return true iff there exists a concrete plan r0 2 r such that r0 is independent of all concrete plans f 2 F .

Figure 5. A description of Streamer

E(p; q) have been removed, and s is independent of these
plans, so the utility of s hasn’t changed; and (c) the utility
of any plan in q cannot increase because the utility model
provides diminishing returns1.

Returning to our example, we can easily check that af-
ter removing V3V4 all three links shown in Figure 4.e are
still valid. For example, link V3V56 ! V1V456 is valid be-
cause plan V3V6 2 V3V56 is independent of plan V3V4 in
E(V3V56; V1V456). This is so because V6 and V4 do not
overlap.

Having checked the validity of links (line 2 of Step 2.d of
Figure 5), Streamer picks a nondominated plan, say V3V56
in Figure 4.e, and refines it into V3V5 and V3V6. Assume
Streamer computes the coverage of these two plans to be
0.7 and 0.65. Then Streamer finds that V3V5 dominates
V3V6 and so creates the link V3V5 ! V3V6 (Figure 4.f).
Notice that the set E of this link is empty because the link
was just created.

At this point, the only nondominated plan in the graph
is the concrete plan V3V5, so Streamer returns it as the
next best plan and removes it from the dominance graph.
After that Streamer checks and removes invalid links as
in the case of removing V3V4. The dominance graph af-
ter removing invalid links is shown in Figure 4.g. Link
V1V456 ! V2V456 is still valid because plan V1V6 is inde-
pendent of both plans in the set E of that link. Other links
are invalid and are removed from the graph. Streamer then
continues on to find the next best plan, and so on.

In [10] the authors show that Drips always terminates,
returning the best plan. This result can be used to prove that
when utility-diminishing returns holds, Streamer returns
the correct order of the first k best plans, for a given k value.

6. Empirical Evaluation
We have performed experiments to evaluate iDrips and

Streamer. We did not consider Greedy because it clearly
outperforms the other algorithms when applicable. Both
iDrips and Streamer return the correct plan ordering, so we
evaluate them with respect to running time. Our goals were
to examine which algorithm is appropriate under which

1For example, after removing a plan r, the coverage of any plan t re-
mains unchanged if t is independent of r, and decreases otherwise.

conditions, and to show that there are practical utility mea-
sures that are not fully monotonic, for which iDrips and
Streamer can quickly find the first several best plans.

Since none of the related algorithms in the literature is
directly comparable with our algorithms (see Section 7),
we compared them with PI, the best brute-force algorithm
that also computes the exact plan ordering. PI serves as a
reference point for our experiments. In each iteration, PI
uses plan independence information to decide the utility of
which plans may have changed and thus need to be recom-
puted.

We experimented with four utility measures for which
full monotonicity does not hold. The first one is plan cover-
age, which was mentioned in Section 2, and is described in
detail in Appendix A of [3]. The second one is the cost
measure (2) in Section 3, where transmission costs vary
across sources. The third one is the same as (2), except that
now accessing a source may fail with a probability. The
fourth one is the average monetary cost per output tuple:
u(p) = Cost(p)=NumOutputTuples(p), where Cost(p)
is computed using (2), andNumOutputTuples(p) is com-
puted as in [23]. For the experiments we use synthetic data
and a simple abstraction heuristic that groups sources based
on their similarity wrt the number of expected output tuples.
A detailed description of the utility measures, the data, and
the abstraction heuristic can be found in [3].

The graphs in Figure 6 plot the time it takes from when
the query is issued until the the first k best plan have been
found, against the bucket size, for various utility measures.
We do not count the time it takes to generate the buckets,
because this step can be done efficiently and takes the same
time for all three algorithms. Experiments were run on a
Pentium III 500 Dell Dimension with 128 MB RAM and
Linux Red Hat 5.2. We now discuss experimental results
for each utility measure in turn.

Plan Coverage: Figures 6.a-c show the followings. First,
Streamer performs very well compared to PI in finding
the first several plans. This is because the abstraction
heuristic Streamer uses is very effective in finding the
first plan: across all runs the number of plans evaluated
by Streamer in the first iteration is less than 4% of the
number of plans evaluated by PI. Furthermore, since the
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Figure 6. Experimental results with query length 3 for various utility measures: (a)-(c) plan coverage, (d)-(i)
cost with source failure, and (j)-(l) average monetary cost.

abstraction heuristic is effective, the size of the dominance
graph of Streamer increases only slowly as Streamer out-
puts plans. Hence the overhead of Streamer (in maintain-
ing dominance graph, abstracting sources, and refining and
eliminating plans) also increases only slowly.

Second, iDrips also achieves good performance in find-
ing the first several best plans, but not as good as Streamer.
This is because Streamer was able to recycle many domi-
nance relations. Consequently, in each iteration it reevalu-
ated far fewer plans than iDrips did.

And finally, iDrips performs worse than PI at finding the
100-th plan (Figure 6.c). This is because as the number of
output plans increases, the abstraction heuristic of grouping
together sources of similar amount of output tuples grad-
ually loses its usefulness: sources with roughly the same
amount of output tuples are no longer “similar” in contribut-
ing a roughly equal number of new tuples to the answer.
As the abstraction heuristic becomes less accurate, iDrips
is able to prune fewer abstract plans. Eventually, it ends up
evaluating more plans than PI.

The results in Figures 6.a-c are obtained at the overlap
rate 0.3, that is, each source in a bucket overlaps with 30%
of other sources in the bucket. We experimented with other
overlap rate and observed the same trends reported above.
We also observed that Streamer’s relative performance
compared to PI in finding subsequent plans decreases as
the degree of plan independence decreases (i.e., as the over-
lap rate increases). This is because as the overlap rate in-
creases, it invalidates more and more dominance relations,
so Streamer can recycle fewer and fewer dominance re-
lations. Consequently, Streamer’s runtime increases sub-
stantially, whereas PI’s runtime increases at a lower rate.

Cost Measure (2) & Cost with Probability of Source
Failure: Experimental results for these two cost measures
are very similar, so we report only the results for cost with
probability of source failure. We ran experiments with both
the no-caching and caching options to evaluate the algo-
rithms at different degrees of plan independence.

Figures 6.d-f show the results for the no-caching case.
Here, full plan independence and thus utility-diminishing

returns hold. Hence, in addition to iDrips and PI, Streamer
is also applicable. The results show that Streamer per-
forms substantially better than iDrips and PI, and finds the
first several plans very fast. Again, as in the case of plan
coverage, Streamer’s abstraction heuristic is very effective
in finding the first plan, and it is able to recycle many dom-
inance relations in subsequent iterations.

Figures 6.g-i show the result when we cache the results
of source operations. The cost of a subsequent source op-
eration is set to zero if its result has been cached. Con-
sequently, there is some plan dependence in the domain: a
plan is independent of another plan only if they do not share
any source operation. Furthermore, here utility-diminishing
returns does not hold, and hence Streamer is not applica-
ble. The results show that iDrips performs very well com-
pared to PI and finds the first several plans very fast. This
is because iDrips’s abstraction heuristic remains fairly ef-
fective even after a substantial number of plans has been
found, so iDrips evaluates very few plans in each iteration
as compared to PI.

Average Monetary Cost per Tuple: Figures 6.j-l show
the results for both no-caching and caching cases. The
graphs show that both Streamer and iDrips perform worse
than PI in finding the first several plans. Here, the ab-
straction heuristic is not as effective as the ones in previous
utility cases, so Streamer and iDrips still evaluate fewer
plans than PI, but not much fewer. Therefore the computa-
tional gain in plan evaluation is small. Furthermore, since
the overhead is roughly proportional to the number of plans
evaluated, and the number of plans evaluated is large, the
overhead is also large, thus offsetting the gains.

We also experimented with different domain & source
parameters, and abstraction heuristics, but observed the
same trends discussed above. We also experimented with
varying query length from 1 to 7, and observed the same
trends, but with increasing performance gaps as the query
length increases.

Summary: From the experiments, we can draw the fol-
lowing conclusions. First, for several problem classes
Streamer and iDrips substantially outperformed PI and



found the first several plans very fast, without generating
the complete set of sound plans.

Second, performance of Streamer and iDrips depends
on the tradeoff between the number of plans evaluated and
the overhead of maintaining dominance graph and refining
and eliminating plans. In general, they are appropriate when
the domain is amenable to abstraction and an effective ab-
straction heuristic is used, so that they evaluate few plans
and incur little overhead.

Third, iDrips performs best when it can find an efficient
abstraction heuristic, not only for finding the first plan, but
also for subsequent plans.

Finally, Streamer performs best when it is difficult to
find an efficient heuristic for iDrips (e.g., in the case of plan
coverage), and the degree of plan dependence is relatively
small, so that Streamer can recycle many dominance rela-
tions.

7. Discussion & Related Work
We now address several limitations of our approach and

discuss related work. First, throughout the paper we have
used the bucket algorithm to generate plans, we now show
how the plan-ordering algorithms can be adapted to handle
other plan-generation methods. Consider the inverse-rule
algorithm [5]. This algorithm creates inverse rules, which
specify for each schema relation all different ways to obtain
tuples from the sources. The algorithm then forms a data-
log plan by adding the rules to the original query. Executing
the datalog program produces all the answers for the query.
When user queries are conjunctive (as is the case consid-
ered in this paper), the inverse rules that cover the same
schema relation naturally form a bucket. Hence, we can ap-
ply our plan-ordering algorithms to these buckets, much in
the same way we apply them in conjunction with the bucket
algorithm.

The case of recursive datalog plans [12] is not handled
by our current framework, due to its lack of a treatment for
recursive plans. However, we note that [8] has extended
Drips to successfully handle recursive plans. This work
thus serves as a good starting point on future research to
extend iDrips and Streamer to the recursive case.

Another recently proposed plan-generation algorithm is
minicon [19]. This algorithm creates MCDs, each of which
in effect refers to a source that covers a set of query sub-
goals. It then combines the MCDs to form plans: a set of
MCDs that together cover all subgoals forms a sound plan.
We can easily modify this algorithm to work with our or-
dering algorithms as follows. First, we change it to pro-
duce generalized buckets, where each bucket covers a set of
subgoals (as opposed to a single subgoal in the bucket algo-
rithm). Then we create plan spaces, each of which is a set of
buckets that together cover all subgoals. Finally, we apply
the plan-ordering algorithms to the plan spaces. Changes to

minicon are simple, and modifying the ordering algorithms
to handle a set of plan spaces (instead of one) is trivial. It
is important to note that the plan spaces of minicon contain
only sound plans. Hence, here we do not have to test plans
output by the ordering algorithm for their soundness, as in
the case with the bucket algorithm.

Query Optimization: Research on query optimization
for data integration fall into three groups.

Works at Query-Reformulation Level: Several works [4, 7,
12] translate the user query into a query plan, then use local
completeness assertions [14] to remove redundant parts of
the query plan. The query plan in these works corresponds
to the union of our query plans. So they optimize the cost
to get all answers from the sources. In contrast, by order-
ing query plans we focus on optimizing the cost to the first
answers.

Ordering query plans was proposed in [15], and was sub-
sequently investigated in [6, 17, 13, 18, 22]. In [6] the
authors consider a restricted data integration setting where
each query plan accesses a single source. They described
several algorithms that were designed to work specifically
with source coverage. These algorithms output approximate
plan orderings, whereas ours output exact orderings.

In [17, 13] the authors address the same plan-ordering
problem as ours. In [13] they develop a branch-and-bound
algorithm to significantly speed up plan ordering. However,
this algorithm differs from ours in two important aspects.
First, it does not deal with the case when the utility of a
plan depends on the plans already executed (i.e., it assumes
full plan independence). Second, it is designed to return all
k plans at once, for a given k. It is not clear if the algorithm
can be modified to output plans incrementally. Hence, these
works are not directly comparable to ours. In [18] the au-
thors address a related but different problem. They seek to
find the best parallel query plan, one that allows access-
ing multiple sources for each query subgoal. Their utility
measure is a linear combination of execution time and (the
log of) plan coverage. The linear-combination nature of the
utility measure allows them to design an efficient System-R
style algorithm to find the best parallel plan. In [22] the au-
thors seek to find the best parallel plan that maximizes plan
coverage, under a given cost limit. An interesting twist in
this work is that they also consider the case of intermittent
source unavailability.

Works at Query-Optimization Level: In [12], the authors
present a method for ordering the access to sources to re-
duce the execution cost. In [9] the Garlic system finds the
query execution plan with the least cost using a cost-based
optimizer for traditional databases. In [23] the authors dis-
cuss generating efficient execution query plans for fusion
queries, a subclass of the data integration problem. In [1]
the authors propose generating an initial solution plan, then



iteratively rewriting the current solution in order to improve
it. All these works focus on minimizing the cost to get all
answers, rather than the cost to the first answers.

Works at Query-Execution Level: During execution even the
best plan (i.e., the first one in the ordering) may still turn out
to be inefficient due to unexpected network delay or inaccu-
rate source statistics. To address such issues, several works
[20, 11, 2] propose techniques on adapting query execution
plans and interleaving planning and execution. These works
are similar to ours in that they also aim to minimize time to
the first answers. However, they perform such optimiza-
tion at the query-execution level, whereas ours works at the
query-reformulation level.

8. Conclusions
Data integration systems play an important role in help-

ing users obtain information efficiently from a multitude of
data sources. In the presence of large number of sources,
however, data integration systems must process a huge
number of query plans. The query plans are costly to evalu-
ate, and vary significantly in their utility. Hence, it is crucial
that such systems generate the best plans quickly and exe-
cute them first, in order to guarantee acceptable time to and
the quality of the first answers.

In this paper we have made several contributions toward
solving this problem. First, we provided a formal definition
of the problem as ordering query plans in decreasing order
of their utility. Unlike most existing works, our problem
definition does not assume any particular utility class and
does not assume complete plan independence. Second, we
identified four interesting problem properties and developed
three plan-ordering algorithms that exploit these properties.
Our theoretical and experimental results show that for a va-
riety of problem classes, our algorithms find the best query
plans very quickly. The results also suggest guidance on
which algorithms performing best under which conditions.
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