
User-Centric Research Challenges in
Community Information Management Systems

AnHai Doan1, Philip Bohannon2, Raghu Ramakrishnan2

Xiaoyong Chai1, Pedro DeRose1, Byron J. Gao1, Warren Shen1

1 University of Wisconsin-Madison,2 Yahoo! Research

Abstract

In Cimple, a joint project between Wisconsin and Yahoo! Research, we are building systems that man-
age information for online communities. In this paper we discuss the fundamental roles users play in
such systems, then the difficult user-centric research challenges raised by these roles, with respect to
contributing to the system, accessing and using it, and leveraging the social interaction of users.

1 Introduction

In numerous online communities (e.g., those of database researchers, movie fans, and biologists) members often
want to discover, query, and monitor relevant community information. Community information management
systems(or CIM systemsfor short) aim to address such information needs [13]. First-generation CIM systems
fall roughly into two classes: message boards and structured portals. In message-board systems (e.g., Usenet,
Yahoo! Groups, DBworld), users exchange messages on activetopics and the history of these messages provides
a searchable repository of community knowledge. In contrast, portal systems include most enthusiast Web sites
(e.g.,shakespeare-online.com) and provide structured contents. While some portals (e.g.Citeseer [16]) have
successfully presented automatically crawled content to users, most portal sites are maintained by a few system
builders.

In Cimple, a joint project between Wisconsin and Yahoo! Research, we are developing techniques to build
next-generation CIM systems [13]. Our first goal is to support collaborative contribution and managementof
a wide range of content (e.g., text, structured data, images). Our second goal is to minimize the information
gathering load on community members by integratingcrawled Web content. For example, in theDBLife pro-
totype (see [12] and http://dblife.cs.wisc.edu), built asa part of theCimple project, information of use to the
database research community is crawled on a nightly basis. The challenge then is to integrate this data with the
community-contributed text and structured data, while keeping quality high.

Several current projects are similar toCimple in spirit, or share many of the goals. Examples include Im-
pliance, MAFIA, and Avatar projects at IBM Almaden [8, 15, 23], BlogScope at the University of Toronto
[7], BlogoCenter at UCLA [1], Dataspaces and PayGo at Google[19, 27], SHARQ and ORCHESTRA at the
University of Pennsylvania [32, 9], Libra at MSR-Asia [28],related efforts at the University of Washington,
MSR-Redmond [11, 17], Siemens Research [33], and many others (e.g., [6, 25], see also [14]). A key com-
monality underlying many of these projects is theactive and diverse rolesusers play in building and using the

Copyright 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1



systems. Consequently, we believe that for these emerging “Web 2.0” projects, it is important to discuss which
fundamental roles users play, and what user-centric challenges these roles entail.

In this paper we contribute to this broader discussion, drawing from our initial experience inCimple. We be-
gin by observing that CIM users often play three fundamentalroles:active contributors, information explorers,
andsocial players. First, CIM users often act as active contributors, editingand supplying the system with data,
code, and domain knowledge. Second, CIM users often have ill-defined information needs (e.g., find interesting
relationships betweenX andY ), or have precise information needs but do not know how to express them in
structured query formats, or are too “lazy” to express them.Consequently, they often behave as information
explorers. Finally, CIM users operate in a social context, in that they often interact with other users in the same
community and that the CIM data captures many of such interactions.

We then discuss the user-centric challenges raised by the above observations. We consider in particular three
key challenges: (1) how to make it easy for users to contribute data, code, and knowledge to the system, (2) how
can users easily access and query the system, and move seamlessly from one query mode to another, and (3)
how to motivate users to interact more, then capture and exploit such interactions. Finally, we discussreputation
management, explanation, andundo, capabilities that we believe are critical to address the above challenges.

2 The Fundamental Roles of CIM Users

We now briefly describe CIM systems, then the roles their users play. To build a CIM system, such as the one
for the database research community, a builder (who is a community expert) deploys an initial generic system
and supplies it with a set of relevant data sources (e.g., researcher homepages, DBworld mailing list, conference
pages, etc.). The system then proceeds in three main steps [13]:

• Crawl, extract, and integrate the data: The system crawls the sources at regular intervals to obtaindata
pages, then extracts mentions of relevant entities from thepages. Example mentions include people names
(e.g., “Jim Gray” and “J. N. Gray”), conference names, and paper titles. Next, it integrates these mentions
into entities, and discovers relationships among them (e.g., “Jim Gray gave a talk at SIGMOD-04”), thus
transforming the raw data into an entity-relationship (ER)data graph.

• Provide user services over the data: Next, the system provides a variety of user services over theER
data graph. For example, the system may create for each user entity X a superhomepagewhich contains
all information aboutX that the system finds from the raw community data. Other example services
include browsing, keyword and structured querying, and monitoring.

• Mass collaboration: Finally, the system solicits and leverages the feedback of community users to further
improve and evolve. For example, the system may publish eachuser superhomepage (as described earlier)
in wiki format, then allow users to correct and add information. A user may also suggest a new data source
for the system to crawl. As yet another example, if the systeminfers bothX andY to be PC chairs of
SIGMOD-04, a user may flag these inferences as incorrect, andsupply the domain constraint that each
SIGMOD conference has just one PC chair.

TheCimple project [13] (see also http://www.cs.wisc.edu/˜ anhai/projects/cimple) describes CIMS in more de-
tails. Within this project, to validate and drive CIMS research, we have also been buildingDBLife, a prototype
system that manages the data of the database research community (see [12] and http://dblife.cs.wisc.edu). For
CIM systems, we observe the following user roles.

Active Contributors: CIM users often want to contribute data, code, and knowledgeto the system. InDBLife,
for example, users sent us URLs of new data sources, voted on whether a picture claimed to represent a person

2



X is truly X, and inquired about supplying new codes for keyword search,mention disambiguation, among
others.

User willingness to contribute of course has been observed in numerous Web 2.0 efforts. The amount
of contribution has also been observed to follow a Zipfian distribution: a relatively small percentage of users
contribute very actively, followed by a long tail of users who contribute little or nothing (e.g., see [5]). Our initial
experience suggests that this will also hold for CIMS. Consequently, we roughly divide human participants of a
CIM system into three categories: (a)builders: a small, perhaps 1-3 person, team which deploys and maintains
the hardware and software (analogous to the DBA of an RDBMS),(b) editors: a core of perhaps 10-20 highly
motivated persons who actively contribute to the system, and (c) users: the rest of the community. When there
is no ambiguity, we use “users” to refer to all three categories.

While users are willing to contribute in many Web 2.0 efforts, as noted above,in CIM contexts it is par-
ticularly important that they do so. This is because, by nature, CIM data comes from multiple heterogeneous
sources. They are often incomplete, only partially correct, and semantically ambiguous. Hence, it is vital that
users contribute so that the data can be gradually cleaned, disambiguated, and augmented, especially in cases
where it is very difficult for systems, but relatively easy for human users to make a decision. For example, it is
very difficult for DBLife to decide that a picture ofX is indeedX, whereas it would be easy for users who know
X. As another example, a user can quickly tell the system that “Alon Halevy” and “Alon Levy” are the same
person, saving it much effort in attempting to determine so.Note that this is in sharp contrast to RDBMS set-
tings, where the data often has a closed-world well-defined semantics. Many data management settings outside
RDBMS however have semantic problems (e.g., CIM, but also schema matching, data integration, data cleaning,
dataspaces, and model management), and thus can significantly benefit from user participations.

Information Explorers: Recent work has addressed the needs of users who approach structured data sources
with vague queries, by supporting keyword queries over structured data (e.g., [4, 21, 20, 18, 31]). Similarly, CIM
users often have diverse, ill-defined information needs. Many times a CIM user does not yet know exactly what
he or she wants (e.g., knowing only that he or she wants to find something interesting on topicX). Hence, the
user will start with keyword search and browsing, in an exploratory fashion. This is especially true in scientific
data management. Eventually the user may “zoom in” on a precise information need (e.g., find all papers on
topicX thatY andZ wrote in 2004), at which point he or she may want to switch to a structured query interface.
So a major problem is how to ensure a smooth transition acrossheterogeneous query and browsing interfaces,
with minimal user effort.

Even if a CIM user starts with a precise information need, he or she often is too “lazy” to compose a
structured (e.g., SQL) query, or simply does not know how to do it. In DBLife, for example, few users appear
to be willing to take the effort to compose a structured query, or know how to compose asyntactically correct
one. This is an acute problem, because it severely limits theutility of all the structured data thatDBLife has
extracted and integrated. Consequently, finding a way to allow lay or “lazy” users to ask structured queries in
CIM contexts is very important, if we want to maximize the full utility of structured CIM data.

Social Players: CIM users operate within a community. They are often aware ofand interact with other users,
and such interactions are often captured in the data managedby a CIM system. Exploiting such data on social
interaction can often significantly improve the quality of CIMS. For example, inDBLife, interaction in form of
citations, paper review, tagging, etc. can help identify topic experts, and help improve ranking the results of
keyword searches. Hence, a key challenge is how to encouragesuch social interactions, and how to capture and
exploit them.

Finally, as we have alluded to several times, CIM users oftenvary significantly in their degree of motivation
and technical expertise. While we expect that a relatively small core of users (e.g., the builders and editors, as
described earlier) are highly motivated and technically literate, the vast majority of users will just want to use the

3



system quickly if the need arises, then “move on with their lives”. This exacerbates the user-centric challenges
facing CIM systems, as we discuss next.

3 User-Centric Research Challenges

We now discuss the user-centric challenges, focusing in particular on user contribution, user services, and social
interaction. Then we touch on reputation management, explanation, and undo, capabilities that are central to
address the above challenges.

3.1 Effective User Contribution

Since user contribution is important for CIM, but the vast majority of users are reluctant to contribute, we must
make it very easy for users to provide or modify system components. We focus on three main components: data,
code, and domain knowledge.

Data: A user should be able to supply or edit any kind of data, using whichever user interface that he or she
finds most convenient. The system then processes the data to its best ability. Example data include URL for a
new data source, raw data pages (e.g., a page listing accepted SIGMOD papers), structured data, natural text,
and tags, among others. Example user interfaces include form, GUI and wiki. OurCimple experience suggests
that wiki pages can provide a good baseline user interface, in that anything can be posted in wiki pages and can
be easily edited. For instance, ifDBLife displays user superhomepages in wiki format, then it is relatively easy
for a user to correct and add information (especially natural text). Other interfaces can excel in certain cases.
For example, a form interface is especially well suited for tagging data pieces with small text fragments.

In the above context, a major challenge is to translate user actions in an interface into actions over the
underlying data. For example, conceptually aDBLife superhomepage describes a portion of the underlying ER
data graph. Now suppose a user has revised a superhomepage (in wiki format). Then we must infer from the
revised wiki page the exact sequence of actions the user intended to do over the ER data graph (e.g., remove a
node, rename an edge, etc.). This inference is non-trivial because user edits often are ambiguous: the same edit
can be mapped into multiple possible sequences of actions over the underlying data. Another challenge is that
users often want to enter the datatogether with some context information. For example, when a user enters a
page that contains a list of names, he or she may also want to say that these are the names of persons who are on
the PC of SIGMOD-04.

Code: In practice, the code of a CIM system must often be tweaked to fine-tune the system performance. To-
day such tweaking is typically done by a small team of developers, incorporating suggestions from the members
at large, in a slow and tedious process. This process can be improved markedly if we can open up certain parts
of the code base for the multitude of members to edit.

To illustrate, consider extracting person names from the raw data pages. A common method is to start with a
dictionary of names (e.g., “David Smith”, “Michael Jones”,etc.), perturb each name to generate variations (e.g.,
“D. Smith”, “Smith, D”), then find occurrences of the variations in the raw pages. The method perturbs each
name using thesame set of generic perturbation rules. This often turns out to be insufficient. We found that
when deployed inDBLife the method often had to be tweaked. It missed for example cases where a personX
has an unusual nicknameY . Whenever this was pointed out to us byX or someone who knowsX, someone on
our development team would have to tweak the code, to add the nicknameY for X.

Clearly, allowing users to edit the code in such cases can drastically reduce the workload of the development
team. Toward this goal, first we must make it very easy for users to edit the code. But it is unlikely that we can
allow any user to edit codedirectly, as this can quickly result in corrupted code. A possible initial solution then

4



is to (a) decompose the code into a sequence of tasks, (b) materialize theoutputof each task, then (c) allow users
to edit only these outputs. For example, the name extractor described above can be decomposed into a sequence
of two tasks: generating variations for each name, then finding occurrences of the variations. Thus, the name
extractor shouldmaterializethe set of variations it generates for each name, and expose these materialized sets
to the users, so that they can edit (e.g., add the nicknameY to the set forX). In general, we can identify certain
“edit points” in the code, make sure that the code “materializes” these edit points, then expose them (e.g., via a
wiki interface) to allow users to edit.

Another possible solution (to make it easy to edit code indirectly) is to definemultiple choicesat certain
points in the code. The default code always takes the defaultchoices. But users can select other choices, thereby
changing the execution flow of the code. For example, consider a module that matches person names, e.g.,
deciding if “D. Smith” and “David Smith” refer to the same person. This module may use the default choice
of always applying thesamematching methodm to all superhomepages. But it should also offer several other
matching methods, and allow users to choose a particular matching method for a particular superhomepage, if
the user so desires. Thus, while examining a superhomepageH, a user may decide to examine the code that
matches names withinH, then decide that a matching methodm′ (offered in the code) is actually more accurate
for H. Consequently, the user tells the system (perhaps via a radio-button interface) that, whenever matching
names withinH, it should use the matching methodm′ instead of the default methodm.

This last example illustrates the power of collaborative code editing in CIM settings. In such settings, the
small team that writes the initial code simply cannot examine all superhomepages to write appropriate code for
each superhomepage. But they can write the code in a way that makes it easy later for community users to adapt
the code to the peculiarities of each superhomepage.

To address malicious code editing, an initial solution is tolimit code editing to only “trusted” users (e.g.,
editors). Even in this case, distributed code editing is already very useful, as it spreads the workload over
multiple people. It is also very important to develop an undocapability, so that undesired changes to the code
can be undone easily. We discuss this capability in more details in Section 3.4.

Domain Knowledge: When a CIM user finds something incorrect, he or she often knows some domain knowl-
edge that can be used to flag it as incorrect or to fix it. For example, when a user sees that the system claims
bothA andB chair SIGMOD-04, he or she may be able to supply the knowledgethat “only one person chairs a
SIGMOD conference”. We found such cases commonly occur inDBLife. Thus, just as domain knowledge (e.g.,
integrity constraints) plays an important role in RDBMS, italso plays an important role in CIMS. Consequently,
it is important to find ways to allow users to express a broad variety of domain knowledge. The key challenge is
to make it very easy for lay users to do this.

A possible solution is to cast each piece of domain knowledgeas a constraintQ op v, whereQ is a query
template formulated in a structured language (e.g, SQL),op refers to a predefined operator (e.g., =,<, etc.), and
v is a value. The user then interacts with the system to construct Q, then selectop andv. For example, to express
the constraint “only one person chairs a SIGMOD conference”, the user constructs a templateQ that finds the
number of chairs of any given SIGMOD conference, then setsop to be=, andv to be 1. Another solution is
for the system to solicit domain knowledge from the user. Forexample, while constructing a profile of a typical
database researcher, a system may infer a constraint such as“no database researcher has published four or more
SIGMOD papers in a year”. It can then ask users to verify this constraint with answer “yes” or “no”.

3.2 Effective User Services

As discussed earlier, CIM users often have ill-defined information needs, or do not know how to formulate the
need in a structured query, or are too “lazy” to do so. Within this context, we must make it very easy for users to
access and utilize the system. We now discuss the challengesin doing so, focusing on querying, context-sensitive
services, and system access.

5



Querying: A user should be able to query the system using whichever query mode he or she finds most
convenient, and should be able to switch seamlessly among them, with minimal effort. Example query interfaces
include keyword search, GUI search, and structured querying. How to query effectively in each of these modes
remains a major challenge. For example, while much work has addressed “plain-vanilla” keyword search (which
returns a ranked list of data pages), no satisfactory solution exists today that can be adapted to work effectively,
with minimal tuning, in a CIM domain. Similarly, much work has addressed keyword search over structured
data, but no consensus has emerged on the most effective solution. Furthermore, how to execute structured
queries over extracted structured data has received relatively little attention (with some exceptions [11, 22]).
This last problem is difficult because the extracted structured data is often incomplete and imprecise.

Another major challenge is how to make smooth transition from one query mode to another. To move from
a less structured query mode to a more structured one, a common solution is to interact with the user to refine
the query [23, 26]. In the Avatar project [23], for example, when a user asks a keyword query “tom phone” over
a corpus of emails, the system returns a ranked list of emailsthat contain these words. But it also provides an
opportunity for the user to move to more structured querying, by asking if the user means to find emails that
contain the phone number of Tom, or to find emails that come from Tom and contain the word “phone”. There
are often numerous possible structured-query interpretations for a keyword query. Hence a key difficulty facing
this solution is how to select only the most likely interpretations, to show the user. User modeling (e.g., [3]) may
help facilitate this selection. To move from a more structured query mode to a less structured one (e.g., when the
more structured query does not produce any result and hence must be “relaxed”, or when it cannot be executed
over a text corpus), a common solution is to “collapse” the structured query, for example, into a set of keywords
[30, 24]. The key issue is then how to select a good set of keywords.

Yet another major challenge is that once a CIM system has compiled a structured database, how can it enable
users to easily pose structured queries over the database? For example, a user may want to know the average
number of citations per paper for a particular researcherX. Clearly the system cannot expect that most users
will be able to write a structured query (e.g., in SQL) expressing this information need. A possible solution is
then for the system to interact with the user in a GUI fashion to construct a structured query.

Another possible solution is to generate form interfaces that capture the types of structured queries that
we expect users will commonly ask. This is also the preferredapproach for today RDBMS applications (e.g.,
amazon.com provides a small set of form interfaces for users to query about books). CIM users however often
have ill-defined and exploratory information needs (as discussed in Section 2). Consequently they often want to
ask a far wider and more unpredictable range of structured queries. Thus, the CIM system may have to generate
a very large number of form interfaces. Hence, for this approach to work, the system must be able to index these
interfaces, and then return the most relevant ones, given a user’s keyword query.

Context-Sensitive Services: To minimize user efforts and maximize their utilization of aCIM system, the
system should provide context-sensitive services. For example, when the user accesses a page that contains
publications, the system can consider all actions (querying, monitoring, etc.) that a user may want to do with
those publications, then offer to execute those actions. These offers can be listed, e.g., on the right side of the
page, similar to the way advertisements are displayed in search engine result pages. The key challenge here is to
decide on which services to offer that would maximize users’utilization of the system, a challenge that is akin
to deciding which advertisements to display in a search result page.

Easy Access to the System: Finally, we cannot just rely on users going to the system frontpage to ask queries
or to browse. Most users today suffer from information overload. It is likely that they will just use a major
search engine (e.g., Google, Yahoo) most of the time to search for information, an observation also made by
[26]. Hence, it is very important that we “open up” a CIM system for major search engines to crawl and index,
so that when a user asks a keyword query that can potentially be answered by the system, then the search engine

6



will return a page of the system in the top few results. The keychallenges then are (a) how to maximize the
chance that search engines will place a CIM system page high in the ranked list, if by accessing that page, the
user can fulfill his or her information need, and (b) once the user has accessed the page, how to enable the user
to quickly express his or her information need, then answer it.

3.3 Encouraging, Capturing, and Exploiting Social Interactions

So far we have discussed CIM users in isolation. But a distinguishing characteristic of CIM settings is that the
users form a community: they often interact with one another, and such interactions are often captured in the
data. Hence, we should design CIM systems such that they encourage such social interactions, capture them,
and exploit them.

To encourage social interactions, CIM systems can employ a plethora of social tools such as those that allow
users to tag, blog, comment, bookmark, form mailing lists, etc. And indeed many current social networking
systems deploy such tools. The main problem is that we simplydo not know when a particular tool will work
(in that many users will use it). Hence, we foresee two major challenges. The first challenge is to develop more
social tools, on the ground that expanding the tool collection makes it more likely that users will find something
they like, and thus initiating more social interaction. Thesecond challenge is to develop a mechanism to system-
atically deploy combinations of social tools in a CIM setting, evaluate their effectiveness in encouraging user
participation, and then retain and improve the best ones.

Many CIM users also interactoutsidethe system, but traces of such interactions are often captured in the
raw data. For example, ifX appears on the PC of a workshop organized byY , then it is likely thatX andY

have exchanged emails and are sharing some common interests. Hence, another challenge is to mine such social
interactions from the raw community data. While mining social interactions is not a new topic, a distinguishing
aspect of CIM settings is the abundance oftemporal data. CIM systems crawl and archive community data
over time (e.g.,DBLife has crawled and archived the data of the database research community over the past 2.5
years). Exploiting the temporal aspect of this data may allow us to infer social interactions and their strengths
more accurately.

Once social interactions have been captured or inferred, they can be exploited for many purposes, such
as enhancing keyword search, identifying experts, finding emerging hot trends, viral marketing of ideas and
services, among others. This has been a very active area of research (e.g., see the proceedings of recent WWW,
KDD, database, and AI conferences). In CIM contexts, since feeding data into the system and querying it pose
major difficulties (as discussed in Sections 3.1 and 3.2), animportant challenge is to find out how to exploit
social interactions to address these difficulties.

3.4 The Enablers: Reputation Management, Explanation Generation, and Undo

We have discussed user contribution, user services, and social interaction. These challenges share a set of core
problems, and hence it is important that we develop effective solutions to these problems. We consider in
particular reputation management, explanation generation, and undo.

Reputation management means knowing how much to trust any user X and to manageX ’s contributions to
the CIM system. Much work has addressed reputation management (e.g., [2, 29]), but no consensus has emerged
on the best method, and it is unlikely that a single silver bullet exists. Hence, like the case for social tools, an
important challenge is to develop solutions that deploy reputation management tools, evaluate them, and retain
and improve the best ones.

Explanation generation means that the system can explain toa user why a particular inference is made (e.g.,
why X is a PC member of conferenceY ) or not made (e.g., why didn’t the system infer thatZ is also a PC
member ofY ). We found that users asked many such questions in theDBLife context, either because they simply
wanted to know, or because they used the explanations to decide on how much to trust the inference made by the

7



system. We ourselves also often asked such questions for debugging purposes. Hence, providing explanations
is important for the effective development and utilizationof CIM systems. Further, showing explanations also
often allows better user corrections. For example, if a useronly says “this output is wrong”, the system has to
infer which operator or datum involved in producing that output is the culprit. However, if the user can see an
explanation, he or she may be able to pinpoint the error for the system.

Providing explanations on why a particular inference is made can utilize lineage (a.k.a. provenance [10, 34])
maintained by the system. The problem of providing explanations on why a particular inference isnot made
appears to be far harder, and has received little attention.

Finally, the undo capability allows users to roll the systemback to a previous state. This capability is
absolutely critical. As one user explained to us “without knowing that I can undo, I will not be willing to
experiment with the features that the system provides”. As Wikipedia demonstrates, undo is also important
for managing malicious users. To enable this capability, a CIM system must logeverything, including all user
interactions. Then, the system must decide how much to allowusers to undo. The problem is that if the system
allows users to undo deep into the “past”, it must limit concurrent editing of users, or risks losing user edits that
build on a “transaction” that is later undone. How to strike the right balance here is a difficult question.

4 Concluding Remarks

As our field expands beyond managing structured data, to consider unstructured data in “Web 2.0” contexts, it
is important that we discuss how the role of users has fundamentally changed in the new contexts, and what
user-centric challenges those changes entail.

In this paper we have contributed to this broader discussion, drawing from our initial experience in the
Cimple project on community information management systems. We described how users of such systems
often act as active contributors, information explorers, and social players. For the role of active contributors, the
key challenge is to enable users to supply or edit any kind of data, code, and domain knowledge, using whichever
user interfaces they find most convenient. For the role of information explorers, the key challenge is to enable
users to query the system using whichever query mode they findmost convenient, and to switch seamlessly
between the query modes with minimal effort. For the role of social players, the key challenge is to develop a
broad range of social tools and mechanisms to select the mosteffective tools. Finally, we made the case that
reputation management, explanation generation, and undo are critical in addressing the above challenges.

References

[1] http://oak.cs.ucla.edu/blogocenter.

[2] B. Adler and L. Alfaro. A content-driven reputation system for Wikipedia. InProc. of WWW-07, 2007.

[3] E. Agichtein. Web information extraction and user modeling: towards closing the gap.IEEE Data Engineering
Bulletin, 28(4), 2005.

[4] S. Agrawal, S. Chaudhuri, and G. Das. DBexplorer: A system for keyword search over relational databases. InProc.
of ICDE-02, 2002.

[5] R. Almeida, B. Mozafari, and J. Cho. On the evolution of Wikipedia. InProc. of the Int. Conf. on Weblogs and Social
Media, 2007.

[6] S. Amer-Yahia. A database solution to search 2.0 (keynote talk). InProc. of WebDB-07, 2007.

[7] N. Bansal and N. Koudas. Blogscope: Spatio-temporal analysis of the blogosphere. InProc. of WWW-07, 2007.

[8] B. Bhattacharjee, J. Glider, R. Golding, G. Lohman, V. Markl, H. Pirahesh, J. Rao, R. Rees, and G. Swart. Impliance:
A next generation information management appliance. InCIDR, 2007.

8



[9] S. Boulakia, O. Biton, S. Davidson, and C. Froidevaux. Bioguidesrs: Querying multiple sources with a user-centric
perspective. InBioinformatics, 2007.

[10] P. Buneman and W. Tan. Provenance in databases (tutorial). In Proc. of SIGMOD-07, 2007.

[11] M. Cafarella, C. Re, D. Suciu, O. Etzioni, and M. Banko. Structured querying of Web text data: A technical challenge.
In Proc. of CIDR-07, 2007.

[12] P. DeRose, W. Shen, F. Chen, Y. Lee, and D. Burdick. DBLife: A community information management platform for
the database research community (demo). InProc. of CIDR-07, 2007.

[13] A. Doan, R. Ramakrishnan, F. Chen, P. DeRose, Y. Lee, R. McCann, M. Sayyadian, and W. Shen. Community
information management.IEEE Data Engineering Bulletin, Special Issue on Probabilistic Databases, 29(1), 2006.

[14] A. Doan, R. Ramakrishnan, and S. Vaithyanathan. Managing information extraction (tutorial). InProc. of SIGMOD-
06, 2006.

[15] Mehmet Altinel et. al. Mafia: A mashup fabric for intranet applications (demo). InProc. of VLDB-07, 2007.

[16] C. Giles, K. Bollacker, and S. Lawrence. Citeseer: an automatic citation indexing system. InProc. of DL-98, 1998.

[17] M. Gubanov and P. Bernstein. Structural text search andcomparison using automatically extracted schema. InProc.
of WebDB-06, 2006.

[18] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRank: Ranked keyword search over xml documents. In
Proc. of SIGMOD-03, 2003.

[19] A. Halevy, M. Franklin, and D. Maier. Principles of dataspace systems (invited paper). InProc. of PODS-06, 2006.

[20] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword search in relational databases. InProc. of VLDB-02,
2002.

[21] A. Hulgeri and C. Nakhe. Keyword searching and browsingin databases using BANKS. InProc. of ICDE-02, 2002.

[22] A. Jain, A. Doan, and L. Gravano. SQL queries over unstructured text databases. InProc. of ICDE-07 (poster), 2007.

[23] R. Krishnamurthy, S. Raghavan, J. Thathachar, S. Vaithyanathan, and H. Zhu. Avatar information extraction system.
IEEE Data Engineering Bulletin, Special Issue on Probabilistic Databases, 29(1), 2006.

[24] J. Liu, X. Dong, and A. Halevy. Answering structured queries on unstructured data. InProc. of WebDB-06, 2006.

[25] J. Luxenburger and G. Weikum. Exploiting community behavior for enhanced link analysis and web search. InProc.
of WebDB-06, 2006.

[26] J. Madhavan, A. Halevy, S. Cohen, X. Dong, S. Jeffery, D.Ko, and C. Yu. Structured data meets the Web: A few
observations.IEEE Data Engineering Bulletin, 29(4), 2006.

[27] J. Madhavan, S. Jeffery, S. Cohen, X. Dong, D. Ko, C. Yu, and A. Halevy. Web-scale data integration: You can only
afford to pay as you go. InProc. of CIDR-07, 2007.

[28] Z. Nie, J. Wen, and W. Ma. Object-level vertical search.In Proc. of CIDR-07, 2007.

[29] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman. Reputation systems.Communications of the ACM,
43(12):45–48, 2000.

[30] P. Roy, M. Mohania, B. Bamba, and S. Raman. Toward automatic association of relevant unstructured content with
structured query results. InProc. of CIKM-05, 2005.

[31] M. Sayyadian, A. Doan, and L. Gravano. Efficient keywordsearch over heterogeneous relational databases. InProc.
of ICDE, 2007.

[32] N. Taylor and Z. Ives. Reconciling changes while tolerating disagreement in collaborative data sharing. InProc. of
SIGMOD-06, 2006.

[33] F. Wang, C. Rabsch, P. Kling, P. Liu, and P. John. Web-based collaborative information integration for scientific
research. InProc. of ICDE-07, 2007.

[34] J. Widom. Trio: A system for integrated management of data, accuracy, and lineage. InProc. of CIDR-05, 2005.

9


