
Falcon: Scaling Up Hands-Off Crowdsourced
Entity Matching to Build Cloud Services

[Technical Report]

Sanjib Das1, Paul Suganthan G. C.1, AnHai Doan1, Jeffrey F. Naughton1,
Ganesh Krishnan2, Rohit Deep2, Esteban Arcaute2, Vijay Raghavendra2, Youngchoon Park3

1University of Wisconsin-Madison, 2@WalmartLabs, 3Johnson Controls

ABSTRACT
Many works have applied crowdsourcing to entity match-
ing (EM). While promising, these approaches are limited in
that they often require a developer to be in the loop. As
such, it is difficult for an organization to deploy multiple
crowdsourced EM solutions, because there are simply not
enough developers. To address this problem, a recent work
has proposed Corleone, a solution that crowdsources the en-
tire EM workflow, requiring no developers. While promis-
ing, Corleone is severely limited in that it does not scale to
large tables. We propose Falcon, a solution that scales up
the hands-off crowdsourced EM approach of Corleone, us-
ing RDBMS-style query execution and optimization over a
Hadoop cluster. Specifically, we define a set of operators and
develop efficient implementations. We translate a hands-off
crowdsourced EM workflow into a plan consisting of these
operators, optimize, then execute the plan. These plans in-
volve both machine and crowd activities, giving rise to novel
optimization techniques such as using crowd time to mask
machine time. Extensive experiments show that Falcon can
scale up to tables of millions of tuples, thus providing a
practical solution for hands-off crowdsourced EM, to build
cloud-based EM services.
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1. INTRODUCTION
Entity matching (EM) finds data items that refer to the

same real-world entity, such as (David Wood, UMich) and
(Dave K. Wood, UM). In the past few years crowdsourcing,
which “farms out” certain parts of a problem to a crowd
of workers to solve, has become quite popular, and many
crowdsourced EM solutions have been proposed (e.g., [50,
52, 4, 35, 48, 32]).

While promising, these solutions are limited in that they
crowdsource only parts of the EM workflow, requiring a de-
veloper who knows how to code and match to execute the re-
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maining parts. For example, several recent solutions require
a developer to write heuristic rules, called blocking rules, to
reduce the number of candidate pairs to be matched, then
train and apply a matcher to the remaining pairs to predict
matches (see Section 2). The developer must know how to
code (e.g., to write rules in Python) and match entities (e.g.,
to select learning models and features).

As such, it is very difficult for an organization to concur-
rently deploy multiple crowdsourced EM solutions, because
crowdsourcing each still requires a developer and there are
simply not enough developers (see Example 1 below). To
address this problem, a recent work has introduced Corleone
[20], a solution that crowdsources the entire EM workflow,
thus requiring no developers. For example, in the blocking
step, instead of asking a developer to come up with block-
ing rules, Corleone asks a crowd to label certain tuple pairs
as matched/no-matched, uses these pairs to learn a classi-
fier, then extracts blocking rules from the classifier. Other
steps in the EM workflow also heavily use crowdsourcing,
but no developers. Thus, Corleone is said to perform hands-
off crowdsourcing for entity matching.

As described, Corleone is highly promising. But it suffers
from a major limitation: it does not scale to large tables, as
the following example illustrates.

Example 1. We are in the process of setting up a center
to provide data science services to UW-Madison. Among
others, we seek to provide EM services to hundreds of do-
main scientists. Such users often do not know how to, or
are reluctant to, deploy EM systems locally (such systems
often require a Hadoop cluster, as we will see). So we want
to provide such EM services on the cloud, supported in the
backend by a cluster of machines at our institute.

During any week, we may have tens of submitted EM tasks
running. Many of these tasks require blocking, but the users
do not know how to write blocking rules (which often in-
volve string similarity functions, e.g., edit distance, Jaccard,
TF/IDF), and we simply cannot afford to ask our two busy
developers to assist the users in all of these tasks.

Thus, we planned to deploy the hands-off solution of Cor-
leone. A user can just submit the two tables to be matched on
a Web page and specify the crowdsourcing budget. We will
run Corleone internally, which uses the crowd to match. (In
fact, if users do not want to engage the crowd, they can la-
bel the tuple pairs themselves. Most users we have talked to,
however, prefer if possible to just pay a few hundred crowd-
sourcing dollars to obtain the result in 1-2 days.)

As described, Corleone seems perfect for our situation.



Unfortunately, it executes mostly a single-machine in-memory
EM workflow, and does not scale at all to tables of moder-
ate and large sizes. Our users often need to match tables
of 50-200K tuples each (and some have tables of millions
of tuples), e.g., an applied economist studying non-profit or-
ganizations in the US must match two lists of hundreds of
thousands of organizations. For such tables, Corleone took
weeks, a simply unacceptable time (and use of machine re-
sources).

The above example shows that Corleone is highly promising
for certain EM situations, e.g., EM as a service on the cloud,
but that it is critical to scale Corleone up to large tables, to
make such cloud-based services a reality.

To address this problem, in this paper we introduce Falcon
(fast large-table Corleone), a solution that scales up Corleone
to tables of millions of tuples.

We begin by identifying three reasons for Corleone’s be-
ing slow. First, it often performs too many crowdsourcing
iterations without a noticeable accuracy improvement, re-
sulting in large crowd time and cost. Second, many of its
machine activities take too long. In particular, in the block-
ing step Corleone simply applies the blocking rules to all
tuple pairs in the Cartesian product of the two input tables
A and B. This is clearly unacceptable for large tables. Fi-
nally, when Corleone performs crowdsourcing, the machines
sit idly, a waste of resources. If we can “mask the machine
time” by scheduling as many machine activities as possible
during crowdsourcing, we may be able to significantly reduce
the total run time.

We then describe how Falcon addresses the above prob-
lems. It is difficult to address all three simultaneously. So
Falcon provides a relatively simple solution to cap the crowd-
sourcing time and cost to an acceptable level (for now), then
focuses on minimizing and masking machine time.

Challenges: Realizing the above goals raised three chal-
lenges. First, we do not want to scale up a monolithic stand-
alone EM workflow. Rather, we want a solution that is mod-
ular and extensible so that we can focus on scaling up pieces
of it, and can easily extend it later to more complex EM
workflows. To address this, we introduce an RDBMS-style
execution and optimization framework, in which an EM task
is translated into a plan composed of operators, then opti-
mized and executed. Compared to traditional RDBMSs,
this framework is distinguished in that its operators can use
crowdsourcing.

The second challenge is to provide efficient implementa-
tions for the operators. We describe a set of implementations
in Hadoop that significantly advances the state of the art.
We focus on the blocking step as this step consumes most of
the machine time. Current Hadoop-based solutions to ex-
ecute blocking rules either do not scale or have considered
only simple rule formats. We develop a solution that can
efficiently process complex rules over large tables. Our solu-
tion uses indexes to avoid enumerating the Cartesian prod-
uct, but faces the problem of what to do when the indexes
do not fit in memory. We show how the solution can nimbly
adapt to these situations by redistributing the indexes and
associated workloads across the mappers and reducers.

Finally, we consider the challenge of optimizing EM plans.
We show that combining machine operations with crowd-
sourcing introduces novel optimization opportunities, such
as using crowd time to mask machine time. We develop

masking techniques that use the crowd time to build indexes
and to speculatively execute machine operations. We also
show how to replace an operator with an approximate one
which has almost the same accuracy yet introduces signifi-
cant additional masking opportunities. To summarize, our
main contributions are:

• We show that for important emerging topics such as
EM as a cloud service, Corleone is ideally suited, but
must be scaled up to make such services a reality.

• We show that an RDBMS-style execution and opti-
mization framework is a good way to address scaling
for crowdsourced EM, and we develop the first end-to-
end solution to scale up hands-off crowdsourced EM.

• We define a set of operators and plans for crowdsourced
EM that uses machine learning.

• We develop a Hadoop-based solution to execute com-
plex rules over the Cartesian product of two tables
(without materializing the Cartesian product), a prob-
lem that arises in many settings (not just in EM). The
solution significantly advances the state of the art.

• We develop three novel optimization techniques to mask
machine time by scheduling certain machine activities
during crowdsourcing activities.

Finally, extensive experiments with real-world data sets (us-
ing real and synthetic crowds) show that Falcon can effi-
ciently perform hands-off crowdsourced EM over tables of
1.0M - 2.5M tuples at the cost of $54 - $65.5.

2. RELATED WORK
Parallel Execution of DAGs of Operators: Several
pioneering works have developed platforms for the specifica-
tion, optimization, and parallel execution of directed acyclic
graphs (DAGs) of operators (e.g., [26, 43, 25, 19]).

While highly scalable for many applications, these plat-
forms are not applicable to our context for two reasons.
First, it is difficult to encode our workflows, which are spe-
cific to learning-based EM, in their DAG languages. For ex-
ample, some platforms consider only key-based blockers, i.e.,
grouping tuples with the same key into blocks [26]. Falcon
however learns a more general kind of blockers called rule-
based blockers, which cannot be easily encoded using the
current operators of these platforms. Similarly, crowd-based
active learning (to learn blockers/matchers) is common in
Falcon, but difficult to encode in the current platforms.

Second, even if we can encode our workflows (using UDFs,
say), the platforms cannot execute them scalably because
they do not yet have scalable solutions for rule-based block-
ing. In most cases, rule-based blocking will be treated as a
“blackbox”UDF to be applied to all tuple pairs in the Carte-
sian product of the input tables, an impractical solution.

RDBMS-Style Solutions for Data Cleaning: Several
such solutions have been developed, e.g., Ajax, BigDansing,
and Wisteria [18, 26, 22]. Compared to these works, Falcon is
novel in four aspects. First, Falcon focuses on learning-based
EM (which uses active learning to learn blockers/matchers).
It provides eight “atomic” operators that we believe are ap-
propriate for (a) modeling such EM processes, (b) facili-
tating efficient operator implementation, and (c) providing



opportunities for inter-operator optimization. In contrast,
current works either do not consider learning-based EM [26],
or define operators at granularity levels that are too coarse
for the above purposes [18, 22]. For example, feature vector
generation, a very common step in learning-based EM, is
not modeled as an atomic operation. As another (extreme)
example, Ajax uses just a single operator called Match to
model the entire EM process.

Second, current works consider only certain types of block-
ing, such as key-based ones [26]. However, such blocking
types are not accurate for many real-world data sets, due to
dirty/missing data (see Section 3.2). As a result, Falcon con-
siders a far more general type of blocking called rule-based
blocking and develops efficient MapReduce solutions.

Third, current works do not provide comprehensive end-
to-end solutions for parallel crowdsourced EM. Ajax consid-
ers neither parallel processing nor crowdsourcing. BigDans-
ing develops a highly effective parallel platform but does
not consider crowdsourcing. Wisteria crowdsources only the
matching step and provides parallel processing for a limited
set of blockers and matchers (e.g., only for string similar-
ity join-style blockers). In contrast, Falcon can handle more
general types of blockers and matchers. It crowdsources and
provides parallel processing (where necessary) for all steps
of the EM process. It also provides effective novel optimiza-
tions, e.g., masking machine time using crowd time.

Finally, both Ajax and BigDansing require users to man-
ually specify blockers/matchers. In contrast, Falcon auto-
matically learns them. Wisteria also considers learning, but
it supports only learning the matchers.

Blocking: Key-based blocking (KBB) partitions tuples
into blocks based on associated keys (the subsequent match-
ing step then considers only tuples within each block). As
such, KBB is highly scalable and is employed in many recent
works [26, 13, 55, 9, 7]. Our experience however suggests
that it is not always accurate on real-world data, in that it
can “kill off” too many true matches (see Section 3.2). As a
result, we elect to use rule-based blocking (RBB), as used in
Corleone. RBB subsumes KBB, i.e., each KBB method can
be expressed as an RBB rule. RBB proves highly accurate
in our experiments (Section 11), but is challenging to scale.
As far as we can tell, Falcon provides the first MapReduce
solution to scale such rules (each being a Boolean expression
of predicates).

Recent work has also examined scaling up sorted neighbor-
hood blocking [28] and meta-blocking [13, 55], which com-
bines multiple blocking methods in a scalable fashion. Such
methods are complementary to our work here, and can po-
tentially be used in future versions of Falcon.

Similarity Joins: Falcon is also related to scaling up
similarity joins (SJs) [47, 54, 44, 53, 49] and theta joins [37].
To avoid examining all tuple pairs in the Cartesian product,
work on SJs uses inverted indexes [45], prefix filtering [5],
partition-based filtering [11], and other pruning techniques
[54] (see [56] for a recent survey). Some have considered
special similarity functions such as Euclidean distance [46]
and edit distance [53, 49]. Most works however consider join
conditions of just a single predicate [47, 54] or a conjunction
of predicates [30], and develop specialized solutions for these.
In contrast, Falcon develops general solutions to handle far
more powerful join conditions in our blocking rules, which
are Boolean expressions of predicates.

Active Learning and Optimizing: Like Falcon, [35] also
proposes using active learning to reduce the number of tuple
pairs to be labeled by the crowd. However, it applies learn-
ing to the Cartesian product, and thus does not scale to large
tables. The idea of combining and optimizing crowd- and
relational operators is also discussed in [41]. But as far as we
know, Falcon is the first work to do so for crowdsourced EM.
Further, some works on optimizing crowd operators have fo-
cused on minimizing cost [34, 42], minimizing crowd latency
[23], or studying the trade-offs between the two [14]. These
works are complementary to ours, which focuses on mini-
mizing the machine time. As far as we know, no other work
has proposed the “masking machine time” optimizations in
Section 10.2.

Crowdsourced RDBMSs: Finally, works have proposed
crowdsourced RDBMSs [16, 34, 40, 41] and have addressed
crowdsourcing enumeration, select, max, count, and top-
k queries, among others (e.g., [17, 39, 21, 31, 10, 38, 1]).
Crowdsourced joins (CSJs) which at the heart solve the EM
problem, have been addressed in [16, 33, 34, 14, 51]. Initial
CSJ works [16, 33] however crowdsource all tuple pairs in
the Cartesian product of the two tables and hence do not
scale. Recent CSJ works [14, 34] ask users to write filters
to reduce the number of tuple pairs to be crowdsourced.
Such hand-crafted filters can be difficult to write and us-
ing them severely limits the applicability of crowdsourced
RDBMSs. Falcon can automatically learn such filters (i.e.,
blocking rules) using crowdsourcing, and thus can poten-
tially be used to perform CSJ over large tables.

3. PROBLEM DEFINITION
We now briefly describe Corleone [20], analyze its limita-

tions, and define the problem considered in this paper.

3.1 The EM Workflows of Corleone
Many types of EM tasks exist, e.g., matching across two

tables, within a single table, matching into a knowledge base,
etc. Corleone (and Falcon) consider one such kind of tasks:
matching across two tables. Specifically, given two tables A
and B, Corleone applies the EM workflow in Figure 1 to find
all tuple pairs (a ∈ A, b ∈ B) that match. This workflow
consists of four main modules: Blocker, Matcher, Accuracy
Estimator, and Difficult Pairs’ Locator.

The Blocker generates and applies blocking rules to A×B
to remove obviously non-matched pairs (Figure 2.b shows
two such rules). Since A × B is often very large, consider-
ing all tuple pairs in it is impractical. So blocking is used
to drastically reduce the number of pairs that subsequent
modules must consider. The Matcher uses active learning
to train a random forest classifier [3], then applies it to the
surviving pairs to predict matches. The Accuracy Estimator
computes the accuracy of the Matcher. The Difficult Pairs’
Locator finds pairs that most likely the current Matcher has
matched incorrectly. The Matcher then learns a better ran-
dom forest to match these pairs, and so on, until the esti-
mated matching accuracy no longer improves.

Corleone is distinguished in that the above four modules
use no developers, only crowdsourcing. For example, to per-
form blocking, most current works would require a devel-
oper to examine Tables A and B to come up with heuristic
blocking rules (e.g., “If prices differ by at least $20, then two
products do not match”), code the rules (e.g., in Python),



Figure 1: The EM workflow of Corleone.

then execute them over A and B. In contrast, the Blocker
in Corleone uses crowdsourcing to learn such blocking rules
(in a machine-readable format), then automatically executes
those rules. Similarly, the remaining three modules also
heavily use crowdsourcing but no developers.

Corleone can also be run in many different ways, giving
rise to many different EM workflows. The default is to run
multiple iterations until the estimated accuracy no longer
improves. But the user may also decide to just run until
a budget (e.g., $300) has been exhausted, or to run just
one iteration, or just the Blocker and Matcher, or just the
Matcher if the two tables are relatively small, making block-
ing unnecessary, etc.

3.2 The EM Workflows Considered by Falcon
In this paper, as a first step, we will consider EM work-

flows that consist of just the Blocker followed by the Matcher,
or just the Matcher. (Virtually all current works consider
similar EM workflows.) As we will see, these workflows al-
ready raise difficult scaling challenges. Considering more
complex EM workflows is ongoing work.

We now describe the Blocker and the Matcher, focusing
only on the aspects necessary to understand Falcon (see [20]
for a complete description).

The Blocker: The key idea underlying this module is to
use crowdsourced active learning to learn a random forest
based matcher (i.e., binary classifier) M [3], then extract
certain paths of M as blocking rules.

Specifically, learning on A×B is impractical because it is
often too large. So this module first takes a small sample of
tuple pairs S from A × B (without materializing the entire
A×B), then uses S to learn matcher M .

To learn, the module first trains an initial random forest
matcherM , usesM to select a set of controversial tuple pairs
from sample S, then asks the crowd to label these pairs as
matched / no-matched. In the second iteration, the module
uses these labeled pairs to re-train M , uses M to select a
new set of tuple pairs from S, and so on, until a stopping
criterion has been reached.

At this point the module returns a final matcher M , which
is a random forest classifier consisting of a set of decision
trees. Each tree when applied to a tuple pair will predict if
it matches, e.g., the tree in Figure 2.a predicts that two book
tuples match only if their ISBNs match and the number of
pages match. Given a tuple pair p, matcher M applies all
of its decision trees to p, then combines their predictions to
obtain a final prediction for p.

Next, the module extracts all tree branches that lead from
the root of a decision tree to a“No”leaf as candidate blocking
rules. Figure 2.b shows two such rules extracted from the
tree in Figure 2.a. The first rule states that if two books do
not agree on ISBNs, then they do not match.

Next, for each extracted blocking rule r, the module com-
putes its precision. The basic idea is to take a sample T

Figure 2: (a) A decision tree learned by Corleone
and (b) blocking rules extracted from the tree.

from S, use the crowd to label pairs in T as matched / no-
matched, then use these labeled pairs to estimate the pre-
cision of rule r. To minimize crowdsourcing cost and time,
T is constructed (and expanded) incrementally in multiple
iterations, only as many iterations as necessary to estimate
the precision of r with a high confidence (see [20]).

Finally, the Blocker applies a subset of high-precision block-
ing rules to A× B to remove obviously non-matched pairs.
The output is a set of candidate tuple pairs C to be passed
to the Matcher.

The Matcher: This module applies crowdsourced active
learning on C to learn a new matcher N , in the same way
that the Blocker learns matcher M on sample S. The mod-
ule then applies N to match the pairs in C.

Reasons for Not Using Key-Based Blocking: Recall
that we plan to learn blocking rules such as those in Figure
2.b. As we will see in Section 7, it is a major challenge to ex-
ecute such rules over two tables A and B efficiently, without
enumerating the entire Cartesian product as Corleone does.

Given this, one may ask why consider rule-based block-
ing (RBB) at all. In particular, many recent works have
used key-based blocking (KBB, see the related work sec-
tion), where tuples are grouped into blocks based on asso-
ciated keys, and only tuples in each block are considered
in the subsequent matching step. As such, KBB is highly
scalable.

It turns out that KBB does not work well for many data
sets, due to dirty data, variations in data values, and missing
values. For example, on the Products, Songs, and Citations
data sets in Section 11, our extensive effort at KBB pro-
duces recalls of 72.6%, 98.6%, and 38.8% (recall measures
the fraction of true matches that survive the blocking step;
ideally we want 100% recall). In contrast, rule-based block-
ing produces recalls of 98.09%, 99.99%, and 99.67%.

Thus, we decide to use rule-based blocking. This does not
mean we execute blocking rules on the materialized Carte-
sian product, like Corleone. Instead, we analyze the rules,
build indexes over the tables, then use them to quickly iden-
tify only a small fraction of tuple pairs to which the rules
should be applied (see Section 7). In particular, it can be
shown that when a blocking rule performs key-based block-
ing (e.g., the first rule in Figure 2.b, “(isbn match = N) →
No”, considers only tuples that share the same ISBN), our



solution in Section 7 reduces to current key-based blocking
solutions on MapReduce.

3.3 Limitations of Corleone
Corleone is highly promising because it uses only crowd-

sourcing to achieve high EM accuracy at a relatively low cost
[20]. However it suffers from a major limitation: it does not
scale to large tables. The largest table pair in [20] is 2.6K
tuples × 64K tuples.

Several real-world applications that we have been working
with, however, must match tables ranging from 100K to sev-
eral millions of tuples. On two tables of 100K tuples each,
Corleone had to be stopped after more than a week, with
no result. Clearly, we must drastically scale up Corleone to
make it practical.

To scale, our analysis reveals that we must address three
problems. First, we must minimize the crowd time of Cor-
leone. As described earlier, the Blocker and Matcher crowd-
source in iterations (until reaching a stopping criterion).
Each iteration requires the crowd to label a certain num-
ber of tuple pairs (e.g., 20). The number of iterations can
be quite large (e.g., close to 100 for the Blocker in certain
cases), thus incurring a large crowd time (and cost).

Second, we must minimize the machine time of Corleone.
The single biggest “consumer” of machine time turned out
to be the step of executing the blocking rules. For this step
Corleone applies the rules to each tuple pair in A×B. This
clearly does not scale, e.g., two tables of 100K tuples each al-
ready produce 10 billion tuple pairs, too large to be exhaus-
tively enumerated. Given the single-machine in-memory na-
ture of Corleone, certain other steps also consume consider-
able time, e.g., the set C of tuple pairs output by the Blocker
is often quite large (often in the tens of millions), making
active learning on C very slow.

Finally, Corleone performs crowdsourcing and machine ac-
tivities sequentially. For example, in each iteration of active
learning in the Blocker, the machine is idle while Corleone
waits for the crowd to finish labeling a set of tuple pairs.
Thus, we should consider masking the machine time, by
scheduling as many machine activities as possible during
crowdsourcing. As we will see in Section 10.2, this raises
very interesting optimization opportunities, and can signifi-
cantly reduce the total execution time.

3.4 Goals of Falcon
It is difficult to address all of the above performance fac-

tors simultaneously. So as a first step, in Falcon we will
develop a relatively simple solution to keep the crowd time
(and cost) at an acceptable level (for now), then focus on
minimizing and masking machine time.

Keeping Crowd Time Manageable: The total crowd
time tc is the sum of tab, crowd time for active learning of
the Blocker, ter, crowd time for evaluating the blocking rules
of the Blocker, and tam, crowd time for active learning of
the Matcher.

We observe that active learning in the Blocker and Matcher
can take up to 100 iterations. Yet after 30 iterations or so the
accuracy of the learned matcher stays the same or increases
only minimally. As a result, in Falcon we stop active learning
when the stopping criterion is met or when the number of
iterations has reached a pre-specified threshold k (currently
set to 30). This caps the crowd times tab and tam. As for
ter, we can show that:

Proposition 2. The procedure of evaluating blocking rules
(described in [20]) is guaranteed to execute at most 20 iter-
ations per rule.

Proof. We prove that evaluating the blocking rules is
guaranteed to execute at most 20 iterations per rule. Section
4.2 of Corleone describes in detail the algorithm for evalu-
ating a set of rules V by the crowd. Briefly, for each rule
R ∈ V , the following 3-step loop is executed:

1. Randomly select b examples in cov(R,S), get these
examples labeled by crowd, then add the labeled ex-
amples to set X (initially empty).

2. Let |cov(R,S)| = m, |X| = n, and n− be the number
of examples in X that are labeled “not matched”. Esti-
mate the precision of rule R over S as P = n−/n, with

an error margin ε = Z(1−δ)/2

√(
P (1−P )

n

)(
m−n
m−1

)
.

3. If P ≥ Pmin and ε ≤ εmax then stop and retain R. If
(a) (P + ε) < Pmin, or (b) ε ≤ εmax and P < Pmin,
then stop and drop R. Otherwise return to Step 1.

Note that for each rule, this algorithm proceeds in iter-
ations and stops either by retaining or dropping the rule.
Also observe (from Step 3) that if ε ≤ εmax, then the algo-
rithm either retains the rule (if P ≥ Pmin) or drops the rule
(if P < Pmin). In either case, it terminates the iterations
for the rule.

So we can compute the minimum n that will guarantee
ε ≤ εmax as follows:

ε = Z(1−δ)/2

√
P (1− P )

n
· m− n
m− 1

(from step 2 of algorithm)

≈ Z(1−δ)/2

√
P (1− P )

n
(m >> n,

m− n
m− 1

≈ 1)

≤ Z(1−δ)/2

√
1

4n
(0 ≤ P ≤ 1, P (1− P ) ≤ 1

4
)

ε ≤ εmax =⇒ Z(1−δ)/2

√
1

4n
≤ εmax =⇒ n ≥

Z2
(1−δ)/2

4ε2max

Corleone (and hence Falcon) uses the following parameter
setting: εmax = 0.05, and δ = 0.95. With this parameter
setting, we get n ≥ 384.

This means that when at least 384 examples are labeled
by the crowd, it is guaranteed that ε ≤ εmax and hence the
algorithm retains or drops the rule. In the current setting,
to get 384 examples labeled, Falcon will run for 20 iterations
(since it gets b = 20 examples labeled by the crowd per
iteration).

Hence, the procedure for evaluating blocking rules in Fal-
con is guaranteed to execute at most 20 iterations per rule.

As a result, we can estimate an upper bound on the total
crowd time (regardless of the table sizes):

Proposition 3. For active learning in the Blocker and
Matcher, let k be the upper bound on the number of itera-
tions, q1 be the number of pairs to be labeled in each itera-
tion, and ta be the average time it takes the crowd to label a
pair (e.g., the time it takes to obtain three answers from the
crowd, then take majority voting). For rule evaluation in the
Blocker, let n be the number of rules to be evaluated, and q2
be the number of pairs to be labeled in each iteration. Then
the total crowd time tc is upper bounded by ta(2kq1+20nq2).



In practice, when crowdsourcing tables of several million
tuples each, we found tc in the range 9h 59m - 15h 48m
on Mechanical Turk. While still high, this time is already
acceptable in many settings, e.g., many users are satisfied
with letting the system run overnight. Thus, we turn our
attention to reducing machine time, which poses a far more
serious problem as it can easily consume weeks. But before
that, we discuss capping the crowd cost.

Computing the Upper Bound on the Crowd Cost:
Since we impose a threshold on the maximal number of iter-
ations, the crowd cost is capped. Specifically, the crowd cost
of the current Falcon is capped at $349.6 (we shall describe
the exact formula shortly), regardless of the table sizes. Our
experiments in Section 11 incur costs of only $54 - 65.5, far
below the above cap. Note that we use the same crowdsourc-
ing strategies as Corleone uses for al matcher and eval rules
(see [20]).

Currently in Falcon, the crowd cost is capped at:

Cmax = (2 ∗ nm ∗ vm + k ∗ ne ∗ ve) ∗ h ∗ q ∗ c,

where nm is the maximum number of iterations of al matcher,
vm is the maximum number of answers obtained from the
crowd per question during al matcher, k is the maximum
number of rules evaluated during eval rules, ne is the max-
imum number of iterations per rule during eval rules, ve is
the maximum number of labels asked from the crowd per
question during eval rules, h is the number of HITs posted
per iteration of al matcher or eval rules, q is the number of
questions per HIT, and c is the monetary reward to a crowd
worker per answer.

In our settings, nm = 29 (the first iteration is with the
seed pairs, vm = 3, k = 20, ne = 5, ve = 7 (due to the
strong majority scheme described in [20]), h = 2, q = 10,
and c = $0.02. This produces Cmax = $349.60.

Note that currently we have capped the number of iter-
ations per rule to 5 in the eval rules operator. However,
it is worth noting that even without the cap, eval rules is
guaranteed to not proceed beyond 20 iterations per rule, as
shown in Proposition 2.

Minimizing and Masking Machine Time: Let tm
be the total machine time (i.e., the sum of the times of
all machine activities). The total time of Corleone is (tc +
tm). We seek to minimize this time by (a) minimizing tm,
and (b) masking, i.e., scheduling as many machine activities
as possible during crowd activities. This will result in a
(hopefully far smaller) total time (tc + tu), where tu < tm is
the total time of machine activities that cannot be masked.

We will seek to preserve the EM accuracy of Corleone,
which are shown to be already quite high in a variety of ex-
periments [20]. Yet we will also explore optimization tech-
niques that may reduce this accuracy slightly, if they can
significantly reduce (tc + tu).

Reasons for Focusing on Machine Time: As hinted
above, we focus on machine time for several reasons. First,
for now machine time is the main bottleneck. It often takes
weeks on moderate data sets, rendering Corleone unusable.
On the other hand, crowd time (say on Mechanical Turk) is
already in the range of being acceptable for many applica-
tions. So our first priority is to reduce machine time to an
acceptable range (say hours), to be able to build practical
systems.

Second, Section 11 shows that we have achieved this goal,
reducing machine time from weeks to 52m - 2h 32m on sev-
eral data sets. Since crowd time on Mechanical Turk was
11h 25m - 13h 33m, it may appear that the next goal should
be to minimize crowd time because it makes up a large por-
tion of total time. This however is not quite correct. As we
discuss in Section 11.1, crowd time can vary widely depend-
ing on the platform. In fact, we describe an application on
drug matching that uses in-house crowds, where crowd time
was only 1h 37m, but machine time was 2h 10m, constitut-
ing a large portion (57%) of the total run time. For such
applications further optimizing machine time is important.

Finally, once we have made major progress on reducing
machine time, we fully intend to focus on crowd time, po-
tentially using the techniques in [23].

4. THE FALCON SOLUTION
4.1 Adopting an RDBMS Approach

Recall that Falcon considers EM workflows consisting of
the Blocker followed by the Matcher, or just the Matcher if
the tables are small. A straightforward solution is to just
optimize these two stand-alone monolithic EM workflows.

This solution however is unsatisfying. First, soon we may
want to add more operators (e.g., the Accuracy Estimator),
resulting in more kinds of EM workflows. Second, we fo-
cus for now on machine time, but soon we may consider
other objectives, e.g., minimizing crowd time/cost, maxi-
mizing accuracy, etc. In fact, users often have differing pref-
erences for trade-offs among accuracy, cost, and time. It
would be difficult to extend an “opaque” solution focusing
on stand-alone monolithic EM workflows to such scenarios.
Finally, the Blocker and Matcher actually share common
operations, e.g., crowdsourced active learning. An opaque
solution makes it hard to factor out and optimize such com-
monalities.

For these reasons, we propose that Falcon adopt an RDBMS
approach. Specifically, (1) we will identify a set of basic
operators that underlie the Blocker and Matcher (as well
as constitute a big part of other modules, e.g., Accuracy
Estimator). We will compose these operators to form EM
workflows. (2) We will develop efficient implementations of
these operators, using Hadoop. And (3) we will develop both
intra- and inter-operator optimization techniques for the re-
sulting EM workflow, focusing on rule-based optimization
for now (and considering cost-based optimization in the fu-
ture).

We now define a set of operators and show how to compose
them to form EM workflows, henceforth called EM plans.
Sections 5-10 describe efficient implementations of opera-
tors, then plan generation, execution, and optimization.

4.2 Operators
We have defined the following eight operators that we be-

lieve are sufficient to compose a wide variety of EM plans.

sample pairs: takes two tables A,B and a number n, and
outputs a set S of n tuple pairs (a, b) ∈ A×B. This operator
is important because we want to learn blocking rules on the
sample S instead of A×B, as learning on A×B is impractical
for large A and B.

gen fvs: takes a set S of tuple pairs and a set F of m
features, then converts each pair (a, b) ∈ S into a feature



Figure 3: The two plan templates used in Falcon.

vector 〈f1(a, b), . . . , fm(a, b)〉, where each feature fi ∈ F is a
function that maps (a, b) into a numeric score. For example,
a feature may compute the edit distance between the values
of the attributes title of a and b. This operation is important
because we want to learn blocking rules (during the block-
ing stage) and a matcher (during the matching stage), and
we need feature vectors to do the learning. (Section 10.1
discusses how Falcon generates features.)

al matcher: Suppose we have taken a sample S from
A × B and have converted S into a set S′ of feature vec-
tors. This operator performs crowdsourced active learning
on S′ to learn a matcher M . Specifically, it trains an ini-
tial matcher M , uses M to select a set of controversial pairs
from S′, asks the crowd to label these pairs, uses them to
improve M , and so on, until reaching a stopping criterion.

get blocking rules: extracts a set of blocking rules from a
matcher M (typically output by operator al matcher). This
operator assumes that M is such that we can extract rules
from it. To be concrete, in this paper we will assume that
M is a random forest, from which we can extract a set of
blocking rules {R1, . . . , Rn} such as those shown in Figure
2.b. Each rule Ri is of the form

pi1(a, b) ∧ . . . ∧ pimi
(a, b)→ drop (a, b), (1)

where each predicate pij(a, b) is of the form [f ij (a.x, b.y) opij v
i
j ].

Here f ij is a function that computes a score between the val-
ues of attribute x of tuple a ∈ A and attribute y of tuple
b ∈ B (e.g., string similarity functions such as edit distance,
Jaccard). Thus predicate pij compares this score via opera-

tion opij (e.g., =, <, ≤) with a value vij .

eval rules: takes a set of blocking rules, computes their
precision and coverage, then retains only those with high
precision and coverage. Precisions are computed using crowd-
sourcing. This operator is important because some blocking
rules may be imprecise, i.e., eliminating too many matching
tuples when applied to A×B.

select opt seq: Let R be the set of n blocking rules out-
put by eval rules. Then there are

∑n
k=0

(
n
k

)
∗k! possible rule

sequences, each containing a subset of rules in R. Executing
a rule sequence R̄ on a tuple pair means executing each rule
in R̄ in that order, until a rule “fires” or all rules have been
executed. It turns out that the rule sequences of R can vary
drastically in terms of precision, selectivity, and run time.
Thus this operator returns a rule sequence R̄∗ from R that
when applied to A×B would minimize run time while max-
imizing precision and selectivity (i.e., it would produce a set

of tuple pairs C that is as small as possible and yet contains
as many true matching pairs as possible).

apply blocking rules: applies a sequence of blocking
rules R̄ to two tables A and B, producing a set of tuple
pairs C ⊆ A × B to be matched in the matching stage.
Applying R̄ in a naive way to all pairs in A × B is clearly
impractical. So this operator uses indexes to apply R̄ only
to certain tuple pairs, on a Hadoop cluster (see Section 7.3).

apply matcher: applies a matcher to a set of tuple pairs
C, where each pair is encoded as a feature vector, to predict
“matched”/“not matched” for each pair in C.

4.3 Composing Operators to Form Plans
The above eight operators (together with relational opera-

tors such as selection, join, and projection) can be combined
in many different ways to form EM plans. As a first step, in
this paper we will consider the two common plan templates
in Figure 3, which correspond to the EM workflows that
use both the Blocker and Matcher, and just the Matcher,
respectively.

The first plan template (Figure 3.a, where operators with
crowd symbol use crowdsourcing) performs both blocking
and matching. Specifically, we apply sample pairs to Tables
A and B to obtain a sample S, then convert S into a set of
feature vectors S′. Next, we do crowdsourced active learning
on S′ to obtain a matcher M . Next we extract blocking rules
R from M , then use crowdsourcing to evaluate and retain
only the best rules E. Next, we select the best rule sequence
F from E, then apply F on Tables A and B to obtain a set
of tuple pairs C. Finally, we convert C into a set of feature
vectors C′, do crowdsourced active learning on C′ to learn
a matcher N , then apply N to match pairs in C′.

The second plan template (Figure 3.b) performs only match-
ing. It computes the Cartesian product C of A and B, con-
verts C into a set of feature vectors C′, does crowdsourced
active learning on C′ to learn a matcher N , then applies N
to match pairs in C′.

Falcon selects the first plan template if it deems Tables A
and B sufficiently large, necessitating blocking, otherwise it
selects the second plan template (see Section 10.1).

In the next few sections we describe how to implement
the operators efficiently. First we focus on the four op-
erators sample pairs, select opt seq, apply blocking rules,
and gen fvs as implementing them is most challenging. Then
we discuss the rest of the operators.

5. SAMPLING INPUT TABLES
The sample pairs operator samples a set S from A×B, so



that subsequent operators can learn on S. To sample, first
we must decide on a size. We want S (when encoded as a
set of feature vectors) to fit in memory, and large enough so
that we can learn effective blocking rules, yet not too large
so that learning would be slow. Our experiments show |S|
in the range 500K-1M to be reasonable (see Section 11.4).

Let n be the size of S. We now consider sampling n pairs
from A × B. Naively, we can randomly sample tuples from
A and B, then take their Cartesian product to be S. Ran-
dom tuples from A and B however are unlikely to match,
so S may contain very few positive (i.e., matching) pairs,
rendering learning ineffective.

To address this, Corleone randomly samples n/|A| tuples
from B (the larger table), then takes the Cartesian product
of these with A to be S. If B has a reasonable number
of tuples that have matches in A and if these tuples are
distributed uniformly in B, then this strategy ensures that
S contains a reasonable number of matches.

It turns out this solution does not work for large A and B.
First, if A is larger than n (as in some of our experiments),
the solution is not applicable. Second, even if A is smaller
than n, it may not be much smaller, in which case we sample
very few tuples from B. For example, if |A| = 500K and
n = 1M , then we sample only 2 tuples from B. This can
produce very few matches in S, especially if we unluckily
pick two tuples from B that have no matches in A.

To address this, we develop the following solution. First,
we create an inverted index on A, the smaller table. Specif-
ically, we convert each tuple a in A into a document d(a)
that contains only the (white space delimited) tokens in the
string attributes of a (we use a procedure that analyzes the
tables to recognize string attributes). Then we build an in-
verted index I with entries 〈w : id1, . . . , idk〉, indicating that
token w appears in the documents of the tuples id1, . . . , idk
in A.

Next, we randomly select n/y tuples from B (where y is a
tunable parameter, currently set to 100). For each selected
tuple b ∈ B, we select y tuples from A (to be paired with
b) as follows. First, we convert b into a document d(b) that
contains only the tokens in the string attributes of b (similar
to the way tuples of A have been converted). Next, we use
the inverted index I to find the set X of tuples a in A whose
documents d(a) share at least a token with d(b). We sort
the tuples in X in decreasing order of the number of tokens
shared with b, then select the top y1 = min(y/2, |X|) tuples
from X. Next, we randomly select (y − y1) tuples from the
remaining tuples of A. We then pair these y selected tuples
with b. The sample S contains all such pairs, for all n/y
selected tuples b in B.

Intuitively, we have constructed S such that for each tuple
b selected from B, we have tried to pair it with (1) roughly
y/2 tuples from A that are likely to match (judged by the
number of shared tokens), and (2) roughly y/2 random tu-
ples from A. Thus we try to get a reasonable number of
matches into S yet keep it as representative of A × B as
possible.

Section 11.4 shows that this simple and fast sampling
strategy is highly effective, in that the blocking rules learned
on the samples achieve high recall of 98.09%-99.99% on our
data sets (recall measures the fraction of true matches that
survive blocking). We implement this strategy using two
MapReduce jobs, to create the inverted index and to gener-
ate the pairs of S, respectively.

6. SELECTING OPTIMAL RULE SEQUENCE
Given a set of blocking rules R, this operator finds the

optimal rule sequence with respect to precision, selectivity,
and run time, which are defined as follows:

Definition 4. Let X̄ be a rule sequence and Y be a set of
tuple pairs. Precision prec(X̄, Y ) is the fraction of negative
predictions X̄ made on Y that are indeed negative. Selec-
tivity sel(X̄, Y ) is the number of pairs in Y that survive X̄
(which drops all pairs predicted negative) divided by |Y |. Fi-
nally, run time time(X̄, Y ) is the average run time of X̄ on
a tuple pair in Y . 2

We then define an overall score for X̄ on Y as follows:

score(X̄, Y ) = α∗prec(X̄, Y )−β∗sel(X̄, Y )−γ∗time(X̄, Y ),

where α, β, γ can be tuned by the application, e.g., those
that must minimize the matches lost to blocking can choose
a high weight for α, memory-constrained applications that
can process only a small candidate set can choose a high β,
whereas real-time applications that must perform blocking
fast can choose a high γ.

Let p(R) be the set of all rule sequences of R. Our prob-
lem is to find the rule sequence R̄ ∈ p(R) that maximizes
score(R̄, A × B). Since we cannot realistically enumerate
A × B, we develop an approximate solution by finding the
rule sequence R̄ ∈ p(R) that maximizes score(R̄, S), where
S is the sample produced by sample pairs from A×B.

To solve this problem, we will enumerate all possible sub-
sets of R, find the optimal sequence for each subset, then
compare them to find the globally optimal sequence. Since
eval rules outputs only a small set of rules, e.g., up to 20 in
the current Falcon, the number of subsets of R is relatively
small (e.g., 220), and direct enumeration is fast.

So the main problem left is to find the optimal sequence
for a given subset of rules. Suppose this subset has k rules,
then there are k! sequences. It is not difficult to see that
these sequences have the same precision and selectivity, but
can differ drastically in run time (depending on how time
intensive and how selective the rules in the sequence are,
and how these rules are ordered in the sequence). Thus, our
goal is to find the sequence with minimal run time.

This problem is NP-hard as shown in [2]. Specifically,
[2] shows how the problem of ordering pipelined filters for
stream processing (when the stream and filter characteristics
have stabilized) reduces to the min-sum set cover problem,
which is known to be NP-hard [36, 15]. Although [2] shows
the problem of ordering a set of pipelined filters (for stream
processing) to be NP-hard, the problem at the core is the
same as ours. To elaborate, [2] considers the problem of
optimally ordering a set of n filters F1, F2, ..., Fn in conjunc-
tion, where each filter Fi takes a stream tuple t as input and
returns either true or false. If Fi returns false for tuple
t, then Fi is said to drop t. A tuple is emitted in the final
result if and only if all n filters return true. The goal is to
optimally order the n filters so that the expected time to
process an incoming tuple t is minimized. This problem is
equivalent to our problem of selecting an optimal sequence
of rules because we can view each rule as a filter that passes
or drops a tuple pair.

The work [36] also proves that any polynomial time algo-
rithm to solve the min-sum set cover problem can at best
provide a constant-factor approximation algorithm guaran-
tee. To this end [2] proposes a 4-approximation greedy algo-



rithm to optimally order pipelined filters for data streams.
We adapt this greedy algorithm as a solution to our problem.
Specifically, given a set T = {R1, R2, ..., Rm} of rules, we
first choose ruleRi that maximizes [1−sel(Ri, S)]/time(Ri, S),
then choose rule Rj (j 6= i) that maximizes the quantity
[1−sel([Ri, Rj ], S)/sel(Ri, S)]/time(Rj , S), then choose the
rule Rk (k 6= j, k 6= i) that maximizes the quantity [1 −
sel([Ri, Rj , Rk], S)/sel([Ri, Rj ], S)]/time(Rk, S), and so on.
The chosen rules form the optimal sequence [Ri, Rj , Rk, . . .].

What makes the problem hard is the fact that the rules in
the sequence can be correlated, i.e., non-independent. For
example, many rules may share the same feature (e.g., Jac-
card(a.title, b.title)) and hence are correlated. When the
rules are independent, the optimal ordering of rules in a se-
quence can be computed in polynomial time. Most previous
work [6, 24, 29] on related problems (e.g., pipelined filters,
ordering selection and join conditions in SQL queries) makes
the independence assumption and uses the rank -based or-
dering technique. The solution there is to order the rules in
decreasing order of rank, where for a rule Ri, rank(Ri) =
[1 − sel(Ri)]/time(Ri). Note that our greedy algorithm
described above also simplifies to the rank -based solution
when rules are independent. This is because if two rules
Ri and Rj are independent, we can write sel([Ri, Rj ]) =
sel(Ri)sel(Rj). However, the assumption that rules are in-
dependent is not very realistic as it is pretty common for
rules to share the same or related features. Nevertheless,
the approximate solution (given by the above algorithm)
seems to work well in practice (see Section 11.2).

After we have obtained an optimal sequence for each sub-
set of rules, we want to find the globally optimal sequence.
Recall that the globally optimal sequence is the one that has
maximal score. However, in order to compute the score for
a sequence, we must compute its precision, selectivity, and
run time. To compute these, we first need to compute the
coverage and selectivity of a rule, as described next.

Coverage of a Rule: For each rule Ri ∈ R, we
have already computed (when extracting the top rules from
the random forest) the coverage of rule Ri over sample S,
cov(Ri, S), which is the set of tuple pairs in S that Ri would
“drop”. For each rule Ri, Falcon maintains cov(Ri, S) in the
form of a bitmap Bi of size |S|. Each bit bj in Bi indicates
whether for the jth tuple pair in S, the rule Ri would “drop”
it (bit 1), or “keep” it (bit 0). Maintaining these bitmaps
helps Falcon compute the coverages of rule sequences effi-
ciently (as we shall see shortly).

Selectivity of a Rule: Having computed the coverage
of a rule Ri, Falcon computes the selectivity of the rule as
sel(Ri, S) = 1− |cov(Ri, S)|/|S|.

Coverage of a Sequence: Coverage of a rule sequence R̄
on S, cov(R̄, S), is the set of pairs in S that R̄ would “drop”.
R̄ would “drop” a tuple pair if any one rule Ri ∈ R̄ would
“drop” it. So it is not hard to see that this can easily be
computed by OR-ing the bitmaps Bi of each rule Ri in R̄.

Selectivity of a Sequence: Having computed the cov-
erage of a sequence, Falcon computes the selectivity of a
sequence as sel(R̄, S) = 1− |cov(R̄, S)|/|S|.

Run Time of a Sequence: Falcon estimates the run time
of a sequence R̄ = [R1, .., Rm] from the run times and selec-
tivities of its sub-sequences as time(R̄, S) = time(R1, S) +

sel(R1, S)∗time(R2, S)+sel([R1, R2], S)∗time(R3, S)+...+
sel([R1, ..., Rm−1], S)∗cost(Rm, S). Falcon estimates the run
times of sequences in a bottom-up fashion proceeding from
shorter sequences to longer ones.

Precision of a Sequence: To compute the actual pre-
cision, prec(R̄, S), we need the true labels of all pairs in
cov(R̄, S). However, we do not have these labels. So we
estimate the precision of a rule sequence from the estimated
precisions of its constituent rules. Note that we have ob-
tained estimates of the precision of the constituent rules
from crowd-based evaluation (in eval rules operator). Us-
ing these we can compute a lower bound on the estimate of
precision, prec(R̄, S), of a rule sequence R̄ = [R1, ..., Rm] as:

prec(R̄, S) ≥ 1−

m∑
i=1

|cov(Ri, S)|(1− prec(Ri, S))

|cov([R1, ..., Rm], S)| .

The above lower bound can be easily established using math-
ematical induction on m; we omit this for space reasons.
We use the lower bound on prec(R̄, S) as the substitute for
prec(R̄, S).

7. APPLYING THE BLOCKING RULES
In this section we will focus on apply blocking rules op-

erator which consumes by far the most of machine time, and
is also the most difficult to implement.

Recall that apply blocking rules takes two tables A and
B, and a sequence of rules R̄ = [R1, . . . , Rn], where each
rule Ri is of the form shown in Formula 1, then outputs all
tuple pairs (a, b) ∈ A×B that satisfy at least one rule in R̄.

Example 5. Consider the sequence of two rules [R1, R2]
in Figure 4.a. Rule R1 states that two books do not match if
their titles are not sufficiently similar (using a Jaccard sim-
ilarity function over the two titles tokenized as two sets of
words). Rule R2 states that two books do not match if they
disagree on years and their prices differ by at least $10 (here
exact match(a.year, b.year) returns 1 if the years match and
0 otherwise, and abs diff(a.price, b.price) returns the abso-
lute difference in prices).

In what follows we describe the limitations of the current
solutions for this operator, the key ideas underlying our so-
lution, then the implementation of these ideas.

7.1 Limitations of Current Solutions
We discussed earlier that Corleone applies the rules to all

tuple pairs in A×B, using a single-machine implementation.
Clearly this does not scale. Hence it is natural to consider
using a Hadoop cluster, and in fact, two such solutions have
been proposed: MapSide and ReduceSplit [27].
MapSide assumes the smaller table fits in the memory of

the mappers, in which case it can execute a straightforward
map-only job to enumerate the pairs and apply the rules.
If neither table fits in memory, then ReduceSplit uses the
mappers to enumerate the pairs, then spreads them evenly
among the Reducers, which apply the rules.

As far as we can tell, these are state-of-the-art solutions
that can be applied to our setting. (The works [47, 54,
30] are related, but consider specialized types of rules and
develop specialized solutions for these. Hence they do not
apply to our setting that uses a far more general type of
rules.)



While more advanced than Corleone’s solution, bothMapSide
and ReduceSplit are severely limited in that they still enu-
merate the entire A× B, which is often very large (e.g., 10
billion pairs for two tables of 100K tuples each).

7.2 Key Ideas Underlying Our Solution
BothMapSide andReduceSplit assume the rules are“black-

boxes”, necessitating the enumeration of A×B. This is not
true in Falcon, where the rules use the features automati-
cally generated by Falcon (see Section 10.1), and these fea-
tures in turn often use well-known similarity functions, e.g.,
edit distance, Jaccard, exact match, etc. (see Example 5).
Thus, we can exploit certain properties of these functions to
build index-based filters, then use them to avoid enumerat-
ing A×B.

Example 6. Suppose we want to find all tuple pairs in
A×B that satisfy the predicate jaccard word(a.title, b.title)
> 0.6. It is well known that for a pair of string (x, y),
jaccard(x, y) ≥ t implies |y|/t ≥ |x| ≥ |y| · t [56]. This
property can be exploited to build a length filter for the above
predicate. Specifically, we build a B-tree index Il over the
lengths of attribute a.title (counted in words). Given a tuple
b ∈ B the filter uses Il to find all tuples a in A where the
length of a.title falls in the range [|b.title| · 0.6, |b.title|/0.6],
then returns only these (a, b) pairs. We can then evaluate
jaccard word(a.title, b.title) > 0.6 only on these pairs.

Realizing this idea in MapReduce however raises the chal-
lenge that the indexes may not fit into memory. So we
propose four solutions that balance between the amount
of available memory and the amount of work done at the
mappers and reducers, then develop rules for when to select
which solutions.

7.3 The End-to-End Solution
We now build on the above ideas to describe the end-to-

end solution for apply blocking rules.

1. Convert the Rule Sequence into a CNF Rule:
We begin by rewriting the rule sequence R̄ = [R1, . . . , Rn]
into a form that is amenable to distributed processing in
subsequent steps. Specifically, we first rewrite R̄ as a single
“negative” rule P in disjunctive normal form (DNF):

[p11(a, b) ∧ . . . ∧ p1m1
(a, b)] ∨ . . . ∨ [pn1 (a, b) ∧ . . . ∧ pnmn

(a, b)]

→ drop (a, b).

Then we convert this negative rule into a “positive” rule Q
in conjunctive normal form (CNF):

[q11(a, b) ∨ . . . ∨ q1m1
(a, b)] ∧ . . . ∧ [qn1 (a, b) ∨ . . . ∨ qnmn

(a, b)]

→ keep (a, b) as they may match,

where each predicate qij is the complement of the correspond-

ing predicate pij in the “negative” rule P .

Example 7. The rule sequence [R1, R2] in Figure 4.a is
converted into the “positive” rule Q in CNF in Figure 4.b.

2. Analyze CNF Rule to Infer Index-Based Filters:
Next, we analyze the CNF rule to infer index-based filters.
Work on string matching has studied several such filters for
similarity functions (e.g., [45, 5]). Falcon builds on this work.
It currently uses eight similarity functions (e.g., edit dis-
tance, Jaccard, overlap, cosine, exact match, etc.), and five
filters. The filters are discussed in detail in Section 7.4.

Example 8. Consider again rule Q in Figure 4.b. Falcon
assigns three filters to predicate jaccard word(a.title, b.title) >
0.6: length filter, prefix filter, and position filter [56]. Falcon
assigns an equivalence filter to exact match(a.year, b.year) =
1. Given a tuple b ∈ B, this filter uses a hash index to find all
tuples in A that have the same year as b.year. Finally, Fal-
con assigns a range filter to abs diff(a.price, b.price) < 10.
Given a tuple b ∈ B, this filter uses a B-tree index to find
all tuples in A whose prices fall into the range (b.price −
10, b.price+ 10).

Once we have inferred all filters for ruleQ, we execute several
MapReduce (MR) jobs to build the indexes for these filters
(more details in Section 7.5).

3. Apply the Filters to the Rule Sequence: Let
F and I be the set of filters and indexes that have been
constructed for rule Q, respectively. We now consider how to
use MapReduce to apply F to A×B (without materializing
A × B) to find a set of tuple pairs that may match, then
apply Q to these pairs. A reasonable solution is to copy
the set of indexes I to each of the mappers, use I to quickly
locate candidate pairs (a, b), send them to the reducers, then
apply Q to these pairs.

A challenge however is that I (which can be as large as
3G in our experiments) may not fit into the memory of each
mapper. So we propose four solutions that balance between
the amount of memory available for the indexes at the map-
pers and the amount of work done at the reducers. Section
10.1 discusses how to select among these four solutions.

(a) apply-all: This solution loads the entire set of indexes
I into the memory of each mapper, which uses I to locate
pairs (a, b) that may match. The reducers then apply rule
Q to these pairs (see the pseudo code in Algorithm 1).

Example 9. Consider three mappers into whose memory
we already load indexes I (Figure 4.c). We first partition ta-
ble A three ways and sending each partition to a mapper. We
do the same for table B. Now consider Mapper 1. For each
arriving tuple a ∈ A, it emits a key-value pair 〈aid, a〉, where
aid is the ID of a. For each arriving tuple b ∈ B, Mapper 1
applies the filters by using I to find a set of IDs of tuples in
A that may match with b. Let these IDs be aid1, . . . , aidn.
Then Mapper 1 emits key-value pairs 〈aid1, b〉, . . . , 〈aidn, b〉
(we discuss below optimizations to avoid emitting multiple
copies of the same tuple). The other mappers proceed simi-
larly.

Each emitted key-value pair is sent to one of the two re-
ducers. For example, for a particular key aid, Reducer 1 re-
ceives all key-value pairs with that key: 〈aid, a〉, 〈aid, b1〉, . . . ,
〈aid, bm〉 (see Figure 4.c). Then this reducer can apply rule
Q to the pairs (a, b1), . . . , (a, bm).

(b) apply-greedy: loads only the indexes of the most se-
lective conjunct of rule Q into the mappers’ memory. The
mappers apply only the filters of this conjunct. The reducers
then apply Q to all surviving pairs. The selectivity of each
conjunct in Q can be computed from the selectivity of the
corresponding rule in R̄. Section 6 shows how to estimate
rule selectivities when we evaluate the rules on sample S.

(c) apply-conjunct: uses multiple mappers, each loading
into memory only the indexes of one conjunct (of rule Q).
There are at most as many mappers as the number of con-
juncts (no mapper for those conjuncts whose indexes do not



Figure 4: (a) A rule sequence, (b) the same rule sequence converted into a single “positive” rule, and (c) an
illustration of how apply all works.

Algorithm 1 apply-all

1: Input: Tables A and B, Rule sequence R, L: set of length in-
dexes, O: set of token orderings, P : set of inverted indexes (on
prefix tokens), H: set of hash indexes, and T : set of tree indexes

2: Output: Candidate tuple pairs C
3:
4: map-setup: /* before running map function */
5: Load L,O, P , H, and T into memory
6: Q ⇐ Translate R into a positive rule in CNF
7:
8: map(K: null, V : record from a split of either A or B):
9: if V ∈ B then
10: /* Q = q1 ∧ q2... where each qi is pi1 ∨ pi2 ...*/
11: CQ ⇐

⋂
q∈Q (

⋃
p∈q FindProbableCandidates(V , p))

12: for each a.id ∈ CQ, emit (a.id, V )
13: else /* V ∈ A */
14: emit(V.id, V )
15: end if
16:
17: reduce(K′: a.id where a ∈ A, LIST V ′: contains a ∈ A and a

set of B tuples, CB):
18: for each b ∈ CB do
19: if (a, b) does not satisfy rule sequence R, emit (a, b)
20: end for

Procedure FindProbableCandidates(b, p)

1: Input: b ∈ B, p: predicate of the form sim(a.col1, b.col2) op v
2: Output: Cp = {a.id|a ∈ A, (a, b) passes all filters}
3: if sim = ExactMatch then
4: Hp ⇐ Get hash index for p from H
5: Cp ⇐ Probe Hp with b.col2
6: else if sim ∈ {AbsDiff, RelDiff} then
7: Tp ⇐ Get tree index for p from T
8: Cp ⇐ Probe Tp with range [b.col2− v, b.col2 + v]
9: else /* sim ∈ {Jaccard, Dice, Overlap, Cosine, Levenshtein} */
10: {Pp, Lp, Op} ⇐ Get inverted index, length index and token

ordering for p from P,L and O
11: l ⇐ Compute prefix length of b.col2 using v
12: bl ⇐ Get prefix tokens of b.col2 using l and Op

13: Cp ⇐ Probe Pp with bl, apply position and length filters
using Pp and Lp

14: end if
15: return Cp

fit into the mappers’ memory). The reducers first perform
intersection on the pairs surviving various mappers, then
apply Q to the pairs in the intersection.

(d) apply-predicate: is similar to apply conjunct, except
that here each mapper loads the indexes of one predicate (of
rule Q), and the reducers need to process the pairs surviv-
ing the mappers in a more complicated fashion (than just
taking intersection as in apply conjunct).

Optimizations: We have extensively optimized the above
solutions as follows:

1. Load Balancing at Map Phase: In the default
mode some mappers process only tuples from A and
some process only tuples from B. This incurs highly
unbalanced loads. This is because the map tasks that
process A tuples complete very fast (because the pro-
cessing is trivial; see lines 13-14 of Algorithm 1) whereas

the map tasks that process B tuples run longer (be-
cause the processing is more involved; see lines 9-12
of Algorithm 1). This leads to under-utilization of the
resources. To address this, we have optimized so that
each mapper processes both A’s and B’s tuples in a
way that evens out the loads. Specifically, we create
one combined file with interleaved A and B tuples (de-
pending on the ratio of sizes of A and B). This com-
bined file is then distributed on HDFS. When running
the jobs, splits of this combined file are sent to map-
per nodes. As a result each mapper now has to process
both A and B tuples thereby leading to better utiliza-
tion of resources.

2. Reducing Intermediate Output Size: In the de-
fault mode, each mapper outputs the entire tuple as
value. For A tuples, this is still fine because each A tu-
ple is output only once. Each B tuple however can be
output multiple times (depending upon the number of
candidate A matches coming from indexes). This can
sometimes result in huge intermediate output leading
to increased I/O and network overhead. To prevent
this, we minimize the intermediate output size, e.g.,
by passing only the IDs of the B tuples to the reduc-
ers, instead of passing the entire B tuples. However to
do that, we have to load an index (on ID) of B tuples
in memory of every Reducer node. This is needed be-
cause we need the entire B tuple when applying the
rule sequence in the reducer. Due to this overhead we
apply this optimization only if index for B fits in mem-
ory of a reducer node, and the selectivity of the rule
sequence is above a pre-specified threshold (indicat-
ing that the intermediate output can be huge). Note
that this optimization is in addition to using Hadoop’s
built-in feature of compressing the intermediate out-
put.

3. Optimizations on Rule Sequence: We also op-
timize the application of the rule sequences to tuple
pairs. For example, we cache and reuse computations
such as Jaccard word(a.title, b.title) (as the same rule
or two different rules may refer to this), and we sim-
plify predicate expressions such as f < 0.5 AND f <
0.2 into f < 0.2. We do this simplification only for
predicates that have <, ≤, >, and ≥ operators. The
implementation is straightforward. We parse a rule to
first collect all unique features referenced in the rule.
For each unique feature f we examine all its predicates
of the form f < v or f ≤ v to determine the minimal
v (say v1) and the operator (< or ≤) associated with
v1 (say op1). Similarly, we examine all the predicates
of the form f > v or f ≥ v to determine the maximal



v (say v2) and the operator (> or ≥) associated with
v2 (say op2). Finally, we replace all the predicates in-
volving f and operators <, ≤, >, and ≥ in the rule
with f op1 v1 AND f op2 v2.

7.4 Using Filters to Apply Blocking Rules
We now describe in detail the filters and indexes used in

Falcon. We associate one or more filters with each predicate
qij in Q. A filter is a necessary (but not sufficient) condition

for a tuple pair (a, b) to satisfy the predicate qij(a, b). In
other words, if the filter does not pass (a, b) then it is guar-
anteed that qij(a, b) is not satisfied. But if the filter passes

(a, b), then qij(a, b) must be evaluated to see if it is satisfied.
For example, if the predicate is [Jaccard(a.x, b.y) ≥ 0.6],

then a “share-token” filter is f1 = “a.x and b.y must share at
least one token”, and a“length”filter is f2 = length(a.x)/0.6 ≥
length(b.y) ≥ 0.6 ∗ length(a.x).

We build on prior work [12] to come up with the various
filters that can be constructed and indexes that can be cre-
ated to quickly find tuple pairs that satisfy the filters. Below
are the five filters (and the corresponding indexes) that we
consider in our implementations.

1. Equivalence Filter: requires that “a.x” and “b.y” are
equivalent for the predicate f(a.x, b.y) op v to be sat-
isfied on pair (a, b). It is implemented using a hash
index on “a.x”, and is used for predicates that use
exact match similarity function.

2. Range Filter: requires that “b.y” lie within a range
of “a.x” for the predicate to be satisfied. It is imple-
mented using a B-tree index over “a.x”, and is used for
predicates involving abs diff and rel diff .

3. Length Filter: requires that a constraint on the lengths
of “a.x” and “b.y” be satisfied for the predicate to be
satisfied. It is implemented using a length index on
length(a.x) (probed using length(b.y)), and is used for
predicates involving Jaccard, overlap, Dice, cosine
and Levenshtein.

4. Prefix Filter: requires that there must be at least
one shared token in the prefixes of “a.x” and “b.y” for
the predicate to be satisfied. Note that the tokens of
“a.x” and “b.y” are first re-ordered based on a global
token ordering and then prefixes of the re-ordered to-
kens are considered. This filter is implemented using
an inverted index over the prefixes of re-ordered tokens
of “a.x”, and used for predicates involving Jaccard,
overlap, Dice, cosine and Levenshtein.

5. Position Filter: requires that at least a certain num-
ber of tokens be shared between the prefixes of “a.x”
and “b.y”. It is implemented using an inverted index
on the prefixes of “a.x” (the same index constructed
for prefix filters) and a length index (constructed for
length filters). It is used for predicates involving Jaccard,
overlap, Dice, cosine and Levenshtein.

Since filters have been extensively used in string matching
and set similarity joins, we point the reader to [12] for more
details. Next we describe how we construct indexes in Falcon
to implement the various filters.

7.5 Building Indexes for Filters in MapReduce
Once we have inferred all filters for rule Q, we run several

MapReduce (MR) jobs to build the indexes for these filters.
Specifically, we run 3 MR jobs sequentially to build all the
relevant indexes for rule Q.

Before running the first MR job, Falcon first analyzes
Q to determine all the unique attribute-tokenization pairs
(x, T ) used in Q. For example, if Q uses two features:
Dice 3gram(a.title, b.title) and Jaccard word(a.title, b.title),
then there are two unique attribute-tokenization pairs: (ti-
tle, word) and (title, 3gram).

For each attribute-tokenization pair (x, T ):

1. The first MR job counts the frequencies of all tokens
obtained by tokenizing (using T ) the values of attribute
x of all A tuples.

2. The second MR job sorts all the tokens obtained for
that (x, T ) pair in increasing order of frequencies to ob-
tain a global token ordering for that (x, T ) pair, which
will be used by the next MR job to construct inverted
indexes for prefix and position filters.

3. The third MR job tokenizes (using T ) values of at-
tribute x of each A tuple; reorders the tokens (using
the global token ordering output by the second MR
job); computes prefix length for that tuple; and in-
dexes the prefix of the reordered tokens.

In addition to constructing inverted indexes of prefix tokens,
the third MR job also simultaneously constructs the length
indexes (needed for length filter), hash indexes (for equiva-
lence filter) and B-tree indexes (for range filters). Note that
each MR job scans the table A only once.

8. GENERATING FEATURE VECTORS
Given a set S of tuple pairs and a set F of m features, this

operator converts each pair (a, b) ∈ S into a feature vector
〈f1(a, b), . . . , fm(a, b)〉. Given F , converting a set of pairs
into a set of feature vectors is straightforward (as we shall
see shortly). The key challenge, however, is to automati-
cally generate F . In prior EM work, selection of relevant
features is usually performed by a developer. But since a
crowdsourced join query must be executed in a hands-off
fashion (without requiring a developer), automatically gen-
erating features F becomes a necessity. Falcon addresses this
challenge by generating F based on the types (e.g., string,
numeric) and characteristics (e.g., short string, long string)
of the attributes of the two tables. The heuristic rules guid-
ing the generation process are shown in Figure 5. We next
describe generating features in detail.

Conceptually, a feature is a function that maps a tuple
pair (a, b) to a numeric score. However, in Falcon we cur-
rently only consider features of the form f(a, b) = sim(a.x, b.y),
where sim is a similarity function (e.g., Jaccard, edit dis-
tance), a.x is the value of attribute x of tuple a (from table
A), and b.y is the value of attribute y of tuple b (from table
B). For example, if we have inferred that attributes A.name
andB.name are of type string, we can generate features such
as jaccard(3gram(A.name), 3gram(B.name)), and
edit dist(A.name,B.name), etc. To decide on the set of rel-
evant features F = {f1, ..., fm}, Falcon first creates attribute
correspondences between the two tables A and B by pairing
string with string, numeric with numeric, etc.



Figure 5: Rules for feature generation.

Next, we scan through the tables to determine the char-
acteristics (e.g., single-word string, multi-word long string,
etc.) of every attribute. Next, for each attribute correspon-
dence (x, y), we include in F a set of features, each of the
form sim(a.x, b.y) where sim is a similarity function chosen
based on the rules in Figure 5. If x and y have different
attribute characteristics, we choose the characteristic that
is at a lower row in Figure 5.

Once we have selected F = {f1, ..., fm}, we want to gen-
erate the feature vector for every tuple pair (a, b) in S. This
step is trivially parallelizable. We implement it as a single
map-only job on a Hadoop cluster. In this job, each mapper
reads a pair (a, b) from S (residing on HDFS); computes a
feature value fi(a, b) for each feature fi ∈ F ; and outputs a
key-value pair where a composition of tuple IDs (〈a.id, b.id〉)
is the key, and the feature vector (〈f1(a, b), ..., fm(a, b)〉) is
the value.

9. IMPLEMENTING OTHER OPERATORS
We now briefly describe implementing the remaining four

operators: al matcher, get blocking rules, eval rules, and
apply matcher.

Operator al matcher: This operator performs crowd-
sourced active learning on a set of pairs V . It trains an ini-
tial matcher M , uses M to select a small set of controversial
pairs from V (currently set to 20), asks the crowd to label
these pairs, uses them to improve M , and so on. This oper-
ator was described in [20] and is straightforward to imple-
ment. We made only two small changes. First, we execute
pair selection on Hadoop, as it can be time consuming (Sec-
tion 10.2 shows further optimizations of this step). Second,
Corleone performs active learning until a convergence crite-
rion T is met. Falcon however stops active learning when
either T is met or the number of iterations reaches a pre-
specified threshold (currently set to 30). Our experiments
show that this limit has negligible effects on the accuracy
yet can significantly reduce the crowd time and cost.

Operator get blocking rules: This operator extracts
candidate blocking rules from a random forest. It is trivial
to implement on a single machine.

Operator eval rules: This operator uses crowdsourcing
to evaluate and retain only the most precise rules. It is
also described in [20] and is straightforward to implement.
Similar to al matcher, it also operates in iterations. Thus
we also impose a threshold on the maximal number of it-

erations, capping the crowd time and cost. Note that we
use the same crowdsourcing strategies as Corleone uses for
al matcher and eval rules (see [20]).

Operator apply matcher: This operator applies a trained
classifier to each tuple pair (encoded as a feature vector) in a
set C to predict match/no-match. It is highly parallelizable
and is implemented as a Map-only job on Hadoop.

10. PLAN GENERATION, EXECUTION,
AND OPTIMIZATION

10.1 Plan Generation and Execution
Given two tables A and B (to be matched), we generate a

plan p as follows. First, we analyzeA andB to automatically
generate a set of features F (see Section 8). Later, operators
such as gen fvs (Section 8) will need these features (e.g., to
convert tuple pairs into feature vectors).

Next, we estimate the size of A × B, where each pair is
encoded as a feature vector (using the features in F ). If
this size does not fit in the memory of machine nodes, then
blocking is likely to be necessary, so we generate the plan
in Figure 3.a. Otherwise we generate the plan in Figure
3.b. (Since we are currently using a rule-based optimization
approach, this is just a heuristic rule encoding the intuition
that in such cases the plan in Figure 3.b can do everything
solely in memory, and hence will be faster. In the future
we will consider a cost-based approach that selects the plan
with the estimated lower run time.)

Next, we replace each logical operator in p except operator
apply blocking rules with a physical operator. Currently
each such logical operator has just a single physical opera-
tor, so these replacements are straightforward. We cannot
yet replace apply blocking rules because this logical oper-
ator has six physical operators: four provided by us (e.g.,
apply all, apply greedy, etc.) and two from prior work:
MapSide and ReduceSplit (Section 7). Selecting the ap-
propriate physical operator requires knowing the index sizes
and the rule sequence R̄, which are unknown at this point.

So in the next step we execute all operators in p from
the start up to (and including) the operator right before
apply blocking rules. This produces the rule sequence R̄.
Next, we convert it into a single positive rule Q, then infer
filters and build indexes for Q, as described in Section 7.

Once index building is done, we select a physical operator
for apply blocking rules, i.e., select among the six methods
apply all, apply greedy, etc. as follows.



Figure 6: Three types of optimization solutions that use crowd time to mask machine time.

First, let c be the most selective conjunct in rule Q. Let
sel(c) and sel(Q) be the selectivities of c and Q, respectively
(see Section 6 on computing such selectivities). Clearly
sel(c) ≥ sel(Q). If sel(Q)/sel(c) exceeds a threshold (cur-
rently set to 0.8), then intuitively c is almost as selective as
the entire rule Q. In this case, we will select apply greedy.

Otherwise we proceed in this order (a) if the indexes for all
conjuncts fit in memory (of a mapper) then select apply all;
(b) if the indexes of at least one conjunct fit in memory
then select apply conjunct; (c) if the indexes of each pred-
icate fit in memory then select apply predicate; (d) if the
smaller table fits in memory then select MapSide, else se-
lect ReduceSplit.

After selecting a physical operator for apply blocking rules,
we execute it, then execute the rest of plan p. Of course, if p
does not involve blocking, then we do not have to deal with
the above issues, and plan execution is straightforward.

10.2 Plan Optimization
We now consider how to optimize plan p. The Falcon

framework raises many interesting optimization opportuni-
ties regarding time, accuracy, and cost. As a first step, in
this paper we will focus on a kind of optimization called
“using crowd time to mask machine time”.

To explain, observe that plan p currently executes ma-
chine and crowd activities sequentially, with no overlap. For
example, eval rules uses the crowd to evaluate blocking
rules. Only after this has been done would select opt seq
and apply blocking rules start, which execute machine ac-
tivities on a Hadoop cluster. Thus this cluster is idle dur-
ing eval rules. This clearly raises an opportunity: while
eval rules is performing crowdsourcing, if we can do some
useful machine activities on the idle cluster, we may be able
to reduce the total run time. To mask machine time, we
have developed three solutions, marked with (1), (2), and
(3) respectively in Figure 6.

• Solution (1) uses the crowd time in al matcher and
eval rules to build indexes for apply blocking rules.

• Solution (2) speculatively execute rules and matchers
for apply blocking rules and apply matcher.

• The above solutions are inter-operator optimizations.
Solution (3) in contrast is an intra-operator optimiza-
tion for al matcher. It interleaves “selecting pairs for
labeling” with “crowdsourcing to label the pairs”. As
such, it learns an approximate matcher but drastically
cuts down on pair selection time.

We now describe these solutions.

1. Building Indexes for apply blocking rules: Re-
call that apply blocking rules must build indexes for fil-
ters. There are two earlier operators in the plan pipeline,
al matcher and eval rules, where crowdsourcing is done

and the Hadoop cluster is idle. So we will move as much
index building activities to these two operators as possible.

In particular, while al matcher crowdsources, we still do
not know the rules that apply blocking rules will ultimately
apply. So we use the Hadoop cluster to build only generic in-
dexes that do not depend on knowing these rules, e.g., hash
and range indexes for numeric and categorical attributes,
and global token orderings for string attributes. This order-
ing will be required if later we decide to build indexes for
prefix and position filters [56].

After al matcher has finished crowdsourcing, it outputs a
matcher M . get blocking rules then extracts blocking rules
from M . Next, eval rules ranks then evaluates the top
20 rules using crowdsourcing. So while eval rules crowd-
sources, we already know that the rules apply blocking rules
ultimately uses will come from this set of 20 rules. So we use
the Hadoop cluster to build indexes for all predicates in all
20 rules (or for as many predicates as we can). Clearly, some
of these indexes may not be used in apply blocking rules.
But if some are used, then we have saved time.

2. Speculative Execution of Future Operations: Re-
call that eval rules uses crowdsourcing to evaluate 20 rules
and retain only the best ones. Then select opt seq exam-
ines these rules to output an optimal rule sequence R̄, which
apply blocking rules will execute.

While eval rules crowdsources the evaluation of the 20
rules, we use the idle Hadoop cluster to speculatively execute
these 20 rules (in practice we use the cluster to build indexes
first, then to speculatively execute the rules). If later it turns
out R̄ contains at least one rule that has been executed, then
we can reuse the result, saving significant time.

Specifically, we execute the 20 rules individually, in the
order that eval rules crowdsources (i.e., executing the most
promising rules first). When eval rules finishes, select opt seq
takes over and outputs an optimal rule sequence R̄, say
[R2, R1, R3]. At this point we start apply blocking rules
as usual, but modify it to use the speculative execution re-
sults as follows. Suppose the output of one or more rules
in R̄ has been generated. Then we pick the smallest output
then apply the remaining rules to it in a map-only job. For
example, suppose that the outputs O(R1), O(R3) of rules
R1, R3 have been generated, and that O(R3) is the smallest
output. Then we apply the sequence [R2, R1] to O(R3).

Now suppose none of the outputs of the rules in R̄ has
been generated, but we are still in the middle of running a
MapReduce (MR) job to execute a rule in R̄. Then reusing
becomes quite complex, as we want to keep the MR job run-
ning, but tell it that the rule sequence R̄ has been selected,
so that it can figure out how to execute R̄ while reusing
whatever partial results it has obtained so far.

Specifically, if the MR job is still in the map stage, then
a reasonable strategy is to let the mappers complete, then
tell the reducers to use R̄ to evaluate the tuple pairs. This
strategy resembles apply greedy. Thus, we use it if oper-



ator apply blocking rules has selected apply greedy as the
rule execution strategy. Otherwise, apply greedy has not
been selected, suggesting that similar strategies may also
not work well. In this case we kill the MR job and start
apply blocking rules as usual.

Now if the MR job is in the reduce stage, then it has al-
ready produced some part X of the output of a rule, say R1.
We then communicate the rule sequence R̄, say [R2, R1, R3],
to the reducers, so that for new incoming tuple pairs, the
reducers can apply R̄ and collect the output into a set of files
Y . We then run a map-only job to apply [R2, R3] to X to
obtain a set of files Z. The sets Y and Z contain the desired
tuple pairs (i.e., the correct output of apply blocking rules).

Finally, if none of the outputs of rules in R̄ has been gen-
erated, and none of these rules is currently being executed,
then we simply start apply blocking rules as usual. See Al-
gorithm 2 for the pseudo-code of this optimization.

In addition to speculatively executing blocking rules, we
speculatively execute matchers (in the matching phase). Re-
call that al matcher trains a new matcher in each iteration
of crowdsourced active learning. When it decides to stop, it
outputs the “best” matcher so far, which is then applied to
the candidate set of tuple pairs by the apply matcher oper-
ator. While al matcher crowdsources, the Hadoop cluster is
idle and can potentially be used to apply a matcher to the
candidate set. So in this optimization, we speculatively exe-
cute the apply matcher operator with the “best” matcher so
far (while al matcher is crowdsourcing). If the speculatively
executed matcher happens to be the final matcher output
by al matcher then we would have saved the apply matcher
run time. If not, we simply execute apply matcher as usual.

3. Masking Pair Selection in al matcher: Recall that
after apply blocking rules has applied a rule sequence R̄ to
Tables A and B to obtain a set of candidate tuple pairs
C, we convert C into a set of feature vectors C′, then use
al matcher to “active learn” a matcher on C′.

Specifically, al matcher iterates. In each iteration it (a)
applies the matcher learned so far to C′ and uses this re-
sult to select 20 “most controversial” pairs from C′, (b) uses
crowdsourcing to label these pairs, then (c) adds the labeled
pairs to the training data and retrains the matcher.

It turns out that when C′ is large (e.g., more than 50M
pairs), Step (a) can take a long time, e.g., 2 minutes per
iteration in our experiments; if al matcher takes 30 itera-
tions, this incurs 60 minutes, a significant amount of time.
Consequently, we examine how to minimize the run time of
Step (a). One idea is to do Step (a) during the time allot-
ted to crowdsourcing of Step (b). The problem, however, is
that Step (b) depends on Step (a): without knowing the 20
selected pairs, we do not know what to label in Step (b).

To address this seemingly insurmountable problem, we
propose the following solution. In the first iteration, we
select not 20, but 40 tuple pairs. Then we send 20 pairs to
the crowd to be labeled, as usual, keeping the remaining 20
pairs for the next batch. When we get back the 20 pairs
labeled by the crowd, we immediately send the remaining
20 pairs for labeling. During the labeling time we use the 20
pairs already labeled to retrain the matcher and select the
next batch of 20 pairs, and so on.

Thus the above solution masks the pair selection time us-
ing the pair labeling time. It approximates the original phys-
ical implementation of al matcher since it may not learn the

Algorithm 2 Speculative Rule Execution

1: Input: Tables A and B, a sorted list of blocking rules
[R1, R2, ..., Rk]

2: Output: Candidate tuple pairs C
3: for 1 ≤ i ≤ k do
4: jobi ⇐ Start execution of rule Ri on tables A and B
5: Wait till eval rules is complete or jobi is complete
6: if eval rules is complete then
7: R ⇐ Get the optimal sequence
8: if any of the rules R1, ..., Ri−1 is in R then
9: Kill jobi
10: m ⇐ argminj∈[1,i−1]|Cj |
11: C ⇐ Apply R− Rm to Cm in a map-only job
12: else if Ri ∈ R then
13: if jobi is in map phase then
14: if Apply-Greedy is chosen for R and Ri is most

selective in R then
15: Pass R to jobi and wait for jobi to complete
16: C ⇐ Fetch output of jobi
17: else
18: Kill jobi
19: C ⇐ Apply R to A and B
20: end if
21: else /* jobi is in reduce phase*/
22: Pass R to the reducer of jobi. jobi will now output

tuple pairs to a different file. Let jobi complete.
23: C1 ⇐ Fetch output of jobi before passing R
24: C2 ⇐ Fetch output of jobi after passing R
25: C

′
1 ⇐ Apply R− Ri to C1 in a map-only job

26: C ⇐ C
′
1 ∪ C2

27: end if
28: else /* None of the rules R1, ...Ri is in R */
29: Kill jobi
30: C ⇐ Apply R to A and B
31: end if
32: return C
33: end if
34: end for
35: /* We have speculatively executed all rules */
36: Wait till eval rules is complete
37: m ⇐ argminj∈[1,k]|Cj |
38: C ⇐ Apply R− Rm to Cm in a map-only job
39: return C

Dataset Table A Table B # of Correct Matches

Products 2,554 22,074 1,154

Songs 1,000,000 1,000,000 1,292,023

Citations 1,823,978 2,512,927 558,787

Table 1: Data sets for our experiment.

same matcher (because it selects 40 pairs in the first itera-
tion, instead of 20). Our experiments however show that this
loss is negligible, e.g., both matcher versions achieve 99.61%
F1 accuracy on the Songs data set, yet the optimized version
drastically reduces pair selection time, from 58m 32s to 2m
5s (see Section 11).

We use the above optimization for al matcher in the match-
ing stage, when it is applied to a large set of pairs (at least
50M in the current Falcon). We do not use it for al matcher
in the blocking stage as this operator is applied to a rela-
tively small sample of 1M tuple pairs, incurring little pair
selection time.

11. EMPIRICAL EVALUATION
We now empirically evaluate Falcon. We consider three

real-world data sets in Table 1. Products describes elec-
tronics products and was used in Corleone. Songs describes
songs within a single table and was obtained from the freely
available Million Song Dataset1. Citations describes cita-
tions in Citeseer and DBLP (see Figure 7 for the schemas).

1labrosa.ee.columbia.edu/millionsong



Figure 7: The schemas of the data sets.

Figure 8: Screenshot of a task to the crowd.

Songs and Citations have 1-2.5M tuples in each table, and
are far larger than those used in crowdsourced EM exper-
iments so far. We have made all three data sets publicly
available at [8].

Falcon applied the procedure described in Section 8 to gen-
erate features for these data sets. Overall, it generated 50/83
features for Products, 20/47 features for Songs, and 22/30
features for Citations. “50/83” for example means that 50
and 83 features were generated for the blocking and match-
ing steps, respectively. Note that only features involving
relatively fast string similarity measures were generated for
the blocking step (see Figure 5 for the list of string similarity
measures).

We used Mechanical Turk and ran Falcon on each data
set three times, paying 2 cents per answer. In each run we
used common turker qualifications to avoid spammers, such
as allowing only turkers with at least 100 approved HITs
and 95% approval rate. Figure 8 shows a screenshot of a
task presented to the crowd on the Songs data set. The
first half of the screen shows instructions to the crowd and
the bottom half asks the crowd if two given song tuples

match. A task contains 10 such tuple pairs. On Mechanical
Turk (MT) workers prefer tasks that contain multiple pairs
since it reduces the overhead. Thus, we present 10 pairs per
task, following the exact same crowdsourcing procedure of
Corleone.

We ran Hadoop on a 10-node cluster, where each node has
an 8-core Intel Xeon E5-2450 2.1GHz processor and 8GB of
RAM.

In addition to the above three data sets, we have re-
cently successfully deployed Falcon to solve a real-world drug
matching problem at a major medical research center. We
will briefly report on that experience as well.

11.1 Overall Performance
We begin by examining the overall performance of Falcon.

The first few columns of Table 2 show that Falcon achieves
high accuracy, 81.9% F1 on Products and 95.2-97.6% F1 on
Songs and Citations. Products is a difficult data set used in
Corleone, and the accuracy 81.9% here is comparable to the
accuracy of Corleone (86% F1 after the first iteration, see
[20]). Note that each row of Table 2 is averaged over three
runs. (Table 3 shows all nine runs. The results show that
while the candidate set size can vary across runs, affecting
the machine and crowd time, the cost and the F1 accuracy
stay relatively stable.)

The next column, labeled“Cost”, shows that this accuracy
is achieved at a reasonable cost of $54 - 65.5 (the numbers
in parentheses show the number of questions to the crowd).

The next two columns show the total machine time and
crowd time, respectively. Crowd time on Mechanical Turk is
somewhat high (11h 25m - 13h 33m), underscoring the need
for future work to focus on how to minimize crowd time.
Machine time is comparatively lower, but is still substantial
(52m - 2h 32m).

The next column, labeled “Total Time”, shows the total
run time of 11h 58m - 14h 37m. This time is often less than
the sum of machine time and crowd time, e.g., the Songs
data set incurs a “machine time” of 2h 7m and a “crowd
time” of 11h 25m; yet it incurs a “total run time” of only
11h 58m. This is because plan optimization was effective,
masking parts of the machine time by executing them during
the crowd time (see more below).

The last column shows the number of tuple pairs surviving
blocking: 536K - 51.4M. This number varies a lot, both
within and across data sets. Yet despite such drastic swings,
we have observed that Falcon stays relatively stable in terms
of accuracy and cost (see Table 3).

Drug Matching: Recently we have successfully deployed
Falcon to match drug descriptions across two tables for a ma-
jor medical research center. The tables have 453K and 451K
tuples. For privacy reasons we could not use Mechanical
Turk. So an in-house scientist labeled the data, effectively
forming a crowd of 1 person.

The scientist labeled 830 tuple pairs, incurring a crowd
time of 1h 37m. Machine time was 2h 10m, constituting
a significant portion (57%) of the total run time. Our op-
timizations reduced this machine time by 49%, to 1h 6m,
resulting in a total Falcon time of 2h 42m. The end result is
4.3M matches, with 99.18% precision and 95.29% recall on
a set-aside sample.

Discussion: The results suggest that Falcon can crowd-
source the matching of very large tables (of 1M-2.5M tuples



Dataset
Accuracy (%) Cost

(# Questions)
Run Time

Candidate Set Size
P R F1 Machine Time Crowd Time Total Time

Products 90.9 74.5 81.9 $57.6 (960) 52m 13h 7m 13h 25m 536K - 11.4M

Songs 96.0 99.3 97.6 $54.0 (900) 2h 7m 11h 25m 11h 58m 1.6M - 51.4M

Citations 92.0 98.5 95.2 $65.5 (1087) 2h 32m 13h 33m 14h 37m 654K - 1.06M

Table 2: Overall performance of Falcon on the data sets. Each row is averaged over three runs.

Dataset Runs
Accuracy (%) Cost

(# Questions)
Run Time

Candidate Set Size
P R F1 Machine Time Crowd Time Total Time

Products Run 1 92.6 74.9 82.8 $61.2 (1020) 31m 52s 12h 45m 22s 13h 1m 23s 536K

Products Run 2 88.4 75.1 81.2 $58.8 (980) 56m 9s 13h 57s 13h 18m 41s 5.3M

Products Run 3 91.8 73.4 81.6 $52.8 (880) 1h 6m 32s 13h 35m 57s 13h 56m 3s 11.4M

Songs Run 1 90.9 99.7 95.1 $56.4 (940) 3h 54m 4s 11h 59m 39s 12h 38m 55s 51.4M

Songs Run 2 98.2 99.6 98.9 $55.2 (920) 1h 23m 5s 11h 44m 36s 12h 18m 15.9M

Songs Run 3 98.9 98.7 98.8 $50.4 (840) 1h 4m 1s 10h 30m 4s 10h 57m 8s 1.6M

Citations Run 1 92.4 99.6 95.9 $52.8 (880) 1h 49m 18s 9h 59m 8s 10h 38m 26s 654K

Citations Run 2 93.4 96.8 95.1 $66.8 (1100) 3h 6m 12s 15h 48m 16h 27m 46s 835K

Citations Run 3 90.2 99.2 94.5 $76.8 (1280) 2h 40m 54s 14h 51m 47s 16h 44m 31s 1.06M

Table 3: All runs of Falcon on the data sets.

each) with high accuracy, low cost, and reasonable run time.
In particular, the run times 11h 58m - 14h 37m suggest
that Falcon can match large tables overnight, a time frame
already acceptable for many real-world applications. But
there is clearly room for improvement, especially for crowd-
sourcing time on Mechanical Turk (11h 25m - 13h 33m).

It is also important to note that crowd time can vary
widely, depending on the platform. For instance, many com-
panies have in-house dedicated crowd workers (often as con-
tractors) or use platforms such as Samasource and WorkFu-
sion that can provide dedicated crowds. Many applications
with sensitive data (e.g., drug matching) will use a “crowd”
of one or a few in-house experts. In such cases, the crowd
time can be significantly less than that on Mechanical Turk.
As a result, machine time can form a significant portion of
the total run time, thus requiring optimization.

11.2 Performance of the Components
We now “zoom in” to examine the major components of

Falcon. Recall that we run Falcon three times on each data
set. Table 4 shows the time of the first run on each data set,
broken down by operator.

Table 4 shows that five“machine”operators: sample pairs,
gen fvs, get block rules, sel opt seq, and apply matcher,
finish in seconds or minutes, suggesting that they have been
successfully optimized. The remaining three operators: the
two “crowd” operators, al matcher and eval rules, and the
“machine” operator apply block rules are the most time-
consuming. In what follows we will now zoom in on the
major operators described in detail in this paper.

Operator sample pairs: Recall that we run Falcon three
times on each data set. Table 4 shows the time of the first
run on each data set, broken down by operator. Column
“sample pairs” of this table shows that sampling is very fast,
taking just 1m 15s - 2m 23s. The candidate sets in the last
column of Table 2 contain tuple pairs surviving blocking.
These sets are just 0.01-0.95% of the size of A×B, and retain
98.09-99.99% of matching pairs. These results suggest that
our sampling solution is fast and effective, in that it helps
Falcon learn very good blocking rules.

Operators al matcher & eval rules: The first“al matcher”
column of Table 4 shows that the time we learn a matcher

via active learning in the blocking step is quite significant, 2h
23m - 8h 14m, due mainly to crowdsourcing. Similarly, col-
umn “eval rules” shows a high rule evaluation time of 46m
- 1h 48m, also due to crowdsourcing. This raises an op-
portunity for masking machine time, which we successfully
exploit. For example, column “apply block rules” show in
parentheses the unoptimized time of apply blocking rules:
1m 53s - 1h 13m 20s, which in certain cases is quite signif-
icant. Masking optimization however successfully reduced
these times to just 0 - 7m (the numbers outside parenthe-
ses).

The second“al matcher”column of Table 4 shows that the
time we learn a matcher in the matching step is also quite
significant, due partly to crowdsourcing and partly to pair
selection (see Section 10.2). Pair selection however was suc-
cessfully optimized. For example, for Songs the unoptimized
“al matcher” time is 6h 40m 34s (the number in parenthe-
ses). Pair selection optimization reduced this to 5h 12m 9s
(almost all of which is crowdsourcing time).

Operator sel opt seq: Column “sel opt seq” of Table 4
shows that selecting the optimal rule sequence is very fast,
taking milliseconds. To measure the impact of the opti-
mal sequence R̄, we examine what happens if instead of
executing R̄, we execute all the rules (deemed precise by
eval rules), top-1 rule, or top-3 rules (in the order produced
by eval rules). For all three data sets, executing R̄ produces
(a) the highest recall (e.g., on Products and Songs), or re-
call within 0.3% of the highest recall (e.g., on Citations), (b)
the lowest run time or run time within 4% of the lowest run
time, and (c) the second smallest candidate set or candidate
set of size within 25% of that of the smallest candidate set.
These results suggest that different rule sequences can vary
significantly in their effects, and that we successfully select
a good rule sequence.

Operator apply blocking rules: The numbers in paren-
theses in column “apply block rules” of Table 4 show that
this operator takes 1m 53s - 1h 13m 20s on three data sets,
suggesting that our Hadoop-based solution was able to scale
up to large tables. Masking optimization successfully re-
duced this time further, to just 0 - 7m, as shown in the
same column (outside the parentheses).



Dataset
sample gen

al matcher
get block

eval rules
sel opt apply block gen

al matcher
apply

pairs fvs rules seq rules fvs matcher

Products 1m 15s 34s 8h 14m 37s 2m 9s 46m 46s 130ms 0 (1m 53s) 49s 3h 54m 40s 33s

Songs 1m 29s 33s 5h 21m 29s 30s 1h 48m 19s 52ms 0 (5m 7s) 13m 5s 5h 12m 9s (6h 40m 34s) 1m 21s

Citations 2m 23s 36s 2h 23m 12s 45s 1h 10m 144ms 7m (1h 13m 20s) 55s 6h 53m 35s

Table 4: Falcon’s run times per operator on the data sets. Each row refers to the first run of each data set.

Dataset U O Reduction O − O1 O − O2 O − O3

Products 18m 16m 11% 17m 17m 16m
Songs 2h 12m 39m 70% 40m 43m 2h 7m
Citations 1h 46m 40m 62% 41m 1h 45m 40m

Table 5: Effect of optimizations on machine time.

For this operator, recall that we provided four solutions,
apply all (AA), apply greedy (AG), apply conjunct (AC),
and apply predicate (AP ), as well as rules on when to select
which solution. In addition, we also supplied two Hadoop-
based solutions from prior work: MapSide and ReduceSplit
[27]. We now examine the performance of these six solu-
tions. Recall that we ran Falcon three times on each data
set, resulting in nine runs. In all runs except two Falcon
correctly selected the best solution (i.e., the one with lowest
run time). For example, on a run of Songs, the times for
AA,AG,AC, and AP are 10m 19s, 1h 3m, 1h 40m, and 1h
45m, respectively, and Falcon correctly picked AA to run.
(MapSide and ReduceSplit did not complete on this data
set.)

In all nine runs, the best solution was either AA (4 times),
AG (3 times), or MapSide (2 times). Solutions MapSide
and ReduceSplit only worked on Products, the smallest data
set. For Songs and Citations they had to be killed as they
took forever trying to enumerate A×B.

For these nine runs, each mapper has 2G of memory, suf-
ficiently large for AA and AG to work. When we reduced
the amount of memory to 1G and 500M, AA,AG, and AC
did not work on Songs and Citations because there was not
enough memory to load the required indexes, butAP worked
well (AC did not appear to dominate in any experiment).

Overall, the results here suggest that (a) the solutions can
vary drastically in their run times, (b) Falcon often selected
the best solution, which is AA,AG, or AP depending on the
amount of available memory, and (c) prior solutions do not
scale as they enumerate A×B.

11.3 Effectiveness of Optimization
Recall that our goal is to minimize the machine time be-

yond the crowdsourcing time (i.e., the machine time that
cannot be masked). Column “U” of Table 5 shows this un-
optimized time, 18m - 2h 12m, for the first run of each data
set (recall that we run Falcon three times with real crowd
for each data set; the results are similar for other runs, and
we only show the first runs for space reasons). Column “O”
shows the optimized time 16m - 40m, a significant reduction,
ranging from 11% to 70% (see Column “Reduction”). This
result suggests that the current optimization techniques of
Falcon are highly effective.

The next three columns show the run time when we turned
off each type of optimization: index building (O1), specula-
tive execution (O2), and masking pair selection (O3). The
result shows that all three optimization types are useful,
and that the effects of some are quite significant (e.g., O2

on Citations and O3 on Songs).

Figure 9: Effect of crowd error rate on F1, run time,
and cost.

Figure 10: Performance of Falcon across varying
sizes of Songs and Citations data.

11.4 Sensitivity Analysis
We now examine the main factors affecting Falcon’s per-

formance.

Error Rate of the Crowd: First we examine how vary-
ing crowd error rates affect Falcon. To do this, we use the
random worker model in Corleone to simulate a crowd of
random workers with a fixed error rate (i.e., the probability
of incorrectly labeling a pair) [20]. Figure 9 shows F1, run
time, and cost vs. the error rate (the results are averaged
over three runs). We can see that as error rate increases
from 0 to 15%, F1 decreases and run time increases, but ei-
ther minimally or gracefully. Interestingly there is no clear
trend on cost. This is because in some cases (e.g., when the
error rate is high), active learning converged early, thereby
saving crowdsourcing costs. In any case, recall that there is
a cap of $349.6 on crowdsourcing cost (Section 3.4) and the
costs in Figure 9 remain well below that cap.

Size of the Tables: So far we have shown that Falcon
achieved good performance on tables of size 1-2.5M tuples.
We now examine how this performance changes as we vary
the table size. Figure 10 shows F1, run time, cost as we run
Falcon on 25%, 50%, 75%, and 100% of Songs and Citations
(using simulated crowd with 5% error rate and 1.5m latency
per a 10-question HIT; each data point is averaged over 3
runs). The results show that as table size increases, (a)
F1 remains stable or fluctuates in a small range. (b) run
time increases sublinearly, and (c) cost increases sublinearly
(recall that cost will not exceed the cap of $349.6).

Additional Experiments: As we varied the Hadoop
cluster size from 5 to 20 nodes, we found that the machine
time of Falcon (i.e., total time subtracting crowd time) de-
creases, as expected. But this decrease is largest from 5-node
to 10-node. Subsequent decrease is not as significant. For
example, the times of a run of Songs on a 5-, 10-, 15-, and
20-node cluster are 31m, 11m, 7m, and 6m, respectively.

We are also interested in knowing how sample size affects



Falcon. As we vary the sample size from 500K to 2M tuples,
we found that it has negligible effects on F1, and increases
total run time and cost very slightly. Based on this, we
believe a sample size of 1M (that we have used) or even
500K is a good default size.

Regarding memory size, its largest effect would be on
apply blocking rules, and we have discussed this earlier in
Section 11.2. Finally, we have experimented with varying
the maximal number of iterations for active learning. As
this number goes from 30 to 100, we found that (a) all active
learning in our experiments terminated before 100, (b) the
run time (including crowdsourcing time) increased signifi-
cantly, (c) yet F1 accuracy fluctuates in a very small range.
This suggests that capping the number of iterations at some
value, say 30 as we have done, is a reasonable solution to
avoid high run time and cost yet achieve good accuracy.

12. CONCLUSIONS
In this paper we have shown that for important emerging

topics such as EM as a service on the cloud, the hands-off
crowdsourcing approach of Corleone is ideally suited, but
must be scaled up to make such services a reality.

We have described Falcon, a solution that adopts an RDBMS
approach to scale up Corleone. Extensive experiments show
that Falcon can efficiently match tables of millions of tuples.
We are currently in the process of deploying Falcon as an
EM service on the cloud for data scientists.

Falcon also provides a framework for many interesting fu-
ture research directions. These include minimizing crowd
latency / monetary cost, examining more optimization tech-
niques (including cost-based optimization), extending Fal-
con with more operators (e.g., the Accuracy Estimator [20]),
and applying Falcon to other problem settings, e.g., crowd-
sourced joins in crowdsourced RDBMSs.
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