
Join Optimization of Information Extraction Output:
Quality Matters!

Alpa Jain1, Panagiotis G. Ipeirotis2, AnHai Doan3, Luis Gravano1

1Columbia University, 2New York University, 3University of Wisconsin-Madison

Abstract— Information extraction (IE) systems are trained
to extract specific relations from text databases. Real-world
applications often require that the output of multiple IE systems
be joined to produce the data of interest. To optimize the
execution of a join of multiple extracted relations, it is not
sufficient to consider only execution time. In fact, the quality of
the join output is of critical importance: unlike in the relational
world, different join execution plans can produce join results of
widely different quality whenever IE systems are involved. In this
paper, we develop a principled approach to understand, estimate,
and incorporate output quality into the join optimization process
over extracted relations. We argue that the output quality is
affected by (a) the configuration of the IE systems used to
process documents, (b) the document retrieval strategies used
to retrieve documents, and (c) the actual join algorithm used.
Our analysis considers several alternatives for these factors, and
predicts the output quality—and, of course, the execution time—
of the alternate execution plans. We establish the accuracy of our
analytical models, as well as study the effectiveness of a quality-
aware join optimizer, with a large-scale experimental evaluation
over real-world text collections and state-of-the-art IE systems.

I. INTRODUCTION

Many unstructured text documents contain valuable data that

can be represented in structured form. Information extraction

(IE) systems automatically extract and build structured relations

from text documents, enabling the efficient use of such data

in relational database systems. Real-world IE systems and

architectures, such as Avatar1, DBLife2, and UIMA [7], view

IE systems as blackboxes and “stitch” together the output from

multiple such blackboxes to produce the data of interest. A

common operation at the heart of these multi-blackbox systems

is thus joining the output from the IE systems. Accordingly,

recent work [7], [11], [17] has started to study this important

problem of processing joins over multiple IE systems.

Just as in traditional relational join optimization, efficiency

is, of course, important when joining the output of multiple

IE systems. Existing work [7], [17] has thus focused on this

aspect of the problem, which is critical because IE can be time-

consuming (e.g., it often involves expensive text processing

operations such as part-of-speech and named-entity tagging).

Unlike in the relational world, however, the join output quality
is of critical importance, because different join execution plans

might differ drastically in the quality of their output. Several

factors influence the output quality, as we discuss below. The

following example highlights one such factor, namely, how

errors by individual IE systems impact the join output quality.

1http://www.almaden.ibm.com/cs/projects/avatar
2http://www.dblife.cs.wisc.edu

SeekingAlpha

SymantecMicrosoft
Softricity

MergedWithCompany
Microsoft
Company

The Wall Street Journal

Microsoft
SoftricityMicrosoft

CEOMergedWithCompany

Microsoft

Richard ClarkMerck

CEOCompany
Steve Ballmer

CEOCompany

aQuantiveMicrosoft?

Symantec
Steve Ballmer
Steve Ballmer

Vadim ZlotnikovApple

Mergers Executives

Fig. 1. Joining information derived from multiple extraction systems.

Example 1: Consider two text databases, the blog entries

from SeekingAlpha (SA), a highly visible blog that discusses

financial topics, and the archive of The Wall Street Journal

(WSJ) newspaper. These databases embed information that can

be used to answer a financial analyst’s query (e.g., expressed in

SQL) asking for all companies that recently merged, including

information on their CEOs (see Figure 1). To answer such a

query, we can use IE systems to extract a Mergers〈Company,
MergedWith〉 relation from SA and an Executives〈Company,
CEO〉 relation from WSJ. For Mergers, we extract tuples such as

〈Microsoft, Softricity〉, indicating that Microsoft merged with

Softricity; for Executives, we extract tuples such as 〈Microsoft,

Steve Ballmer〉, indicating that Steve Ballmer has been a CEO

of Microsoft. After joining all the extracted tuples, we can

construct the information sought by the analyst. Unfortunately,

the join result is far from perfect. As shown in Figure 1, the

IE system for Mergers incorrectly extracted tuple 〈Microsoft,

Symantec〉, and failed to extract tuple 〈Microsoft, aQuantive〉.
Missing or erroneous tuples, in turn, hurt the quality of join

results. For example, the erroneous tuple 〈Microsoft, Symantec〉
is joined with the correct tuple 〈Microsoft, Steve Ballmer〉
from the Executives relation to produce an erroneous join tuple

〈Microsoft, Symantec, Steve Ballmer〉. �
A key observation that we make in this paper is that different

join execution plans for extracted relations can differ vastly in
their output quality. Therefore, considering the expected output

quality of each candidate plan is of critical importance, and is

at the core of this paper. The output quality of a join execution

plan depends on (a) the configuration and characteristics of the

IE systems used by the plan to process the text documents, and

(b) the document retrieval strategies used by the plan to retrieve

the documents for extraction. Previous work has recognized

the importance of output quality for single relations [10], [8].

Recent work [11] has also considered these two factors for

choosing a join execution plan over multiple extracted relations.

Unfortunately, earlier work has failed to consider a third,

important factor, namely, (c) the choice of join algorithm.

In this paper, we introduce and analyze three fundamentally

different join execution algorithms for information extraction

tasks, which differ in the extent of interaction between the

extraction of the relations (e.g., from independent extraction to

a completely interleaved extraction), or in the way we retrieve

and process database documents (e.g., scan- or query-based

retrieval). Our analysis reveals that the choice of join algorithm

plays a crucial role in determining the overall output quality

of a join execution plan, just as this choice crucially affects

execution time in a relational model setting. We will see that

even a simple two-way join has a vast execution plan space,

with each execution plan exhibiting unique output quality and

execution efficiency characteristics.

Understanding how join algorithms work, in concert with

other factors such as the choice of extraction systems and their

configurations, and the choice of document retrieval strategies,

is thus crucial to optimize the processing of a join query.

During optimization, we need to answer challenging questions:

How should we configure the underlying IE systems? What

is the correct balance between precision and recall for the

IE systems? Should we retrieve and process all the database

documents, or should we selectively retrieve and process only

a small subset? What join execution algorithm should we use,

and what is the impact of this choice on the output quality? To

answer these questions, we derive equations for the execution

efficiency and output quality of a join execution plan as a

function of the choice of IE systems and their configurations,

the choice of document retrieval strategies, and the choice

of join algorithm. To the best of our knowledge, this paper

presents the first holistic, in-depth study—incorporating all the

above factors—of the output quality of join execution plans.

A substantial challenge that we also address is defining and

extracting appropriate, comprehensive database statistics to

guide the join optimization process in a quality-aware manner.

As a key contribution of this paper, we show how to build

rigorous statistical inference techniques to estimate the param-

eters necessary for our analytical models of output quality;

furthermore, our parameter estimation happens efficiently, on-
the-fly during the join execution. As another key contribution,

we develop an end-to-end, quality-aware join optimizer that

adaptively changes join execution strategies if the available

statistics suggest that a change is desirable.

In summary, the main contributions of this paper are:

• We introduce a principled approach to estimate the output

quality of a join execution and incorporate quality into the

join optimization process over multiple extracted relations.

• We present an end-to-end, quality-aware join optimization

approach based on our analytical models, as well as effec-

tive methods to estimate all necessary model parameters.

• We establish the accuracy of our output quality models

and the effectiveness of our join optimization approach

through an extensive experimental evaluation over real-life

text collections and state-of-the-art IE systems.

II. RELATED WORK

Information extraction from text has received much attention

in the database, AI, Web, and KDD communities (see [3], [6]

for tutorials). The majority of the efforts have considered the

construction of a single extraction system that is as accurate as

possible (e.g., using HMMs and CRFs [3], [14]). Approaches
to improve the efficiency of the IE process have developed

specialized document retrieval strategies; one such approach

is the QXtract system [2], which uses machine learning to

derive keyword queries that identify documents rich in target

information. We use QXtract in our work.

Our earlier work [10], [12] studied the task of extracting

just one relation, not our join problem. Specifically, in [10]

we studied the document retrieval strategies considered in this

paper for the goal of efficiently achieving a desired recall for a

single-relation extraction task. The analysis in [10] assumes a

perfect IE system (i.e., all generated tuples are good). On the
other hand, in [12] we studied document retrieval strategies

for single-relation extraction while accounting for extraction

imprecision. Our current work builds upon the statistical models

presented in [10], [12], extending them for multiple IE systems.

Real-world applications often require multiple IE systems [6],

[17]. Hence, the problem of developing and optimizing IE

programs that consist of multiple IE systems has received

growing attention [16]. Some of the existing solutions write

such programs as declaratively as possible (e.g., UIMA [7],

GATE [5], Xlog [17]), while considering only the execution

time in their analysis.

In prior work [11], we presented a query optimization ap-

proach for simple SQL queries involving joins while accounting

for both execution time and output quality. Our earlier paper

considered only one simple heuristic to estimate the quality

of one simple join algorithm, namely, the IDJN algorithm,

discussed and analyzed in this paper (Section IV). Our current

work substantially expands on [11] by modeling an extended

family of join algorithms and showing how to pick the best

option dynamically. To the best of our knowledge, our current

work is the first to carry out an in-depth output quality analysis

of a variety of join execution plans over multiple IE systems.

III. UNDERSTANDING JOIN QUALITY

In this section, we provide background on the problem of

joining relations extracted from text databases. We discuss

important aspects of the problem that affect the overall quality
of the join results. We define the family of join execution plans

that we consider, as well as user-specified quality preferences.

A. Tuning Extraction Systems: Impact on Extraction Quality

Extraction is a noisy process, and the extracted relations

may contain erroneous tuples or miss valid tuples. An extracted

relation can be regarded as consisting of good tuples, which

are the correctly extracted tuples, and bad tuples, which are the

erroneous tuples. For instance, in Figure 1, Mergers consists

of one good tuple, 〈Microsoft, Softricity〉, and one bad tuple,

〈Microsoft, Symantec〉. To control the quality of such extracted

relations, IE systems often expose multiple tunable “knobs”

that affect the proportion of good and bad tuples in the IE

output. These knobs may be decision thresholds, such as the

minimum confidence required before generating a tuple from

text. We denote a particular configuration of such IE-specific

knobs by θ. In our earlier work [15], we showed how we can

robustly characterize the effect of such knob settings for an

individual IE system, which we briefly review next. Specifically,

given a knob configuration θ for an IE system, we can capture

the effect of θ over a database D using two values: (a) the

true positive rate tp(θ) is the fraction of good tuples that

appear in the IE output over all the good tuples that could be
extracted from D with the IE system across all possible knob

configurations, while (b) the false positive rate fp(θ) is the

fraction of bad tuples that appear in the IE output over all the

bad tuples that could be extracted from D with the IE system

across all possible knob configurations. To define tp(θ) and

fp(θ) we need to know the sets of all possible good and bad

tuples, which serve as normalizing factors for tp(θ) and fp(θ),
respectively. In practice, we estimate tp(θ) and fp(θ) using a

development set of documents and “ground truth” tuples [12].

B. Choosing Document Retrieval Strategies: Impact on Extrac-
tion Quality

Analogous to the above classification of the tuples extracted

by an IE system E from a database D, we can classify each

document in D with respect to E as a good document, if E
can extract at least one good tuple from the document, as a bad
document, if E can extract only bad tuples from the document,

or as an empty document, if E cannot extract any tuples—

good or bad—from the document. Ideally, when processing

a text database with an IE system, we should focus on good
documents and process as few empty documents as possible,

for efficiency reasons; we should also process as few bad
documents as possible, for both efficiency and output quality

reasons. To this end, several document retrieval strategies have

been introduced in the literature [10], [11]:

Scan (SC) sequentially retrieves and processes each document

in a database. While this strategy is guaranteed to process all

good documents, it also processes all the empty and bad ones,

and may then introduce many bad tuples.

Filtered Scan (FS) is another scan-based strategy; instead

of processing all available documents, FS uses a document

classifier to decide whether a document is good or not. FS
avoids processing all documents, and thus tends to have fewer

bad tuples in the output. However, since the classifier may also

erroneously reject good documents, FS might not include all

the good tuples in the output.

Automatic Query Generation (AQG) is a query-based strat-

egy that issues (automatically generated [2]) queries to the

database that are expected to retrieve good documents. For

example, AQG may derive—using machine learning—the query

[“executive” AND “announced”] to retrieve documents for

the Executives relation (see Example 1). This strategy avoids

processing all the documents, but might not include all the

good tuples in the output.

We now show that we can leverage these single-relation

document retrieval strategies to develop join execution plans

involving multiple extracted relations.

C. Choosing Join Execution Plans: User Preferences and
Impact on Extraction Quality

In this paper, we focus on binary natural joins, involving two

extracted relations; we leave higher order joins as future work.

As discussed above, and unlike in the relational world, different

join execution plans in our text-based scenario can differ not

only in their execution time, but also in the quality of the join

results that they produce. The output quality and, of course,

the execution time is affected by (a) the configuration of the IE

systems used to process the database documents, as argued in

Section III-A, and (b) the document retrieval strategies used to

select the documents for processing, as argued in Section III-B.

Interestingly, (c) the choice of join algorithms also has an

impact on the output quality and execution time, as we will

see. We thus define a join execution plan as follows:

Definition 3.1: [Join Execution Plan] Consider two
databases D1 and D2, as well as two IE systems E1 and E2.
Assume Ei is trained to extract relation Ri from Di (i = 1, 2).
A join execution plan for computing R1 �� R2 is a tuple
〈E1 〈θ1 〉,E2 〈θ2 〉, X1, X2, JN 〉, where θi specifies the knob
configuration of Ei (see Section III-A) and Xi specifies the
document retrieval strategy for Ei over Di (see Section III-B),
for i = 1, 2, while JN is the choice of join algorithm for the
execution, as we will discuss below. �

Given a join execution plan S over databases D1 and D2,

the execution time Time(S, D1, D2) is the total time required

for S to generate the join results from D1 and D2. We identify

the important components of execution time for different join
execution plans in Section V, where we will also analyze the

output quality associated with each plan.

We now introduce some additional notation that will be

needed in our output-quality analysis in the remainder of the

paper. Recall from Section III-A that the tuples that an IE

system extracts for a relation can be classified as good tuples or

bad tuples. Analogously, we can also classify the attribute value
occurrences in an extracted relation according to the tuples

where these values occur. Specifically, consider an attribute

value a and a tuple t in which a appears. We say that the

occurrence of a in t is a good attribute value occurrence if t is

a good tuple; otherwise, this is a bad attribute value occurrence.

Note that an attribute value might have both good and bad

occurrences. For instance, in Figure 1 the value “Microsoft” has

both a good occurrence in (good) tuple 〈Microsoft, Softricity〉
and a bad occurrence in (bad) tuple 〈Microsoft, Symantec〉.
We denote the set of good attribute value occurrences for an

extracted relation Ri by Agi and the set of bad attribute value

occurrences by Abi.

Consider now a join R1 �� R2 over two extracted relations

R1 and R2. Just as in the single-relation case, the join

TR1��R2 contains good and bad tuples, denoted as Tgood
��

and Tbad��, respectively. The tuples in Tgood
��

are the

result of joining only good tuples from the base relations; all

a
b
c
d
e

a
x
b
ec
e

R1 R2

a
b
c
e

R1 R2

Fig. 2. Composition of R1 �� R2 from extracted relations R1 and R2.

other combinations result in bad tuples. Figure 2 illustrates

this point using example relations R1 and R2, with 2 good

and 3 bad tuples each. In this figure, we have Ag1 = {a, c}
and Ab1 = {b, d, e} for relation R1, and Ag2 = {a, b} and

Ab2 = {x, c, e} for relation R2. The composition of the join

tuples yields |Tgood
��
| = 1 and |Tbad��| = 3.

User Preferences: In our IE-based scenario, there is a natural

trade-off between output quality and execution efficiency. Some

join execution plans might produce “quick-and-dirty” results,

while other plans might result in high-quality results that require

a long time to produce. Ultimately, the right balance between
quality and efficiency is user-specific, so our query model

includes such user preferences as an important feature. One

approach for handling these user preferences, which we follow

in this paper, is for users to specify the desired output quality—

which should be reached as efficiently as possible—in terms

of the minimum number τg of good tuples that they request,

together with the maximum number τb of bad tuples that they

can tolerate, so that |Tgood
��
| ≥ τg and |Tbad��| ≤ τb.3

Other cost functions can be designed on top of this lower

level model: examples include minimum precision at top-k
results, minimum recall at the end of the execution, or a goal
to maximize a weighted combination of precision and recall

within a pre-specified execution time budget. For conciseness

and clarity, in our work the user quality requirements are

expressed in terms of τg and τb, as discussed above.

IV. JOIN ALGORITHMS FOR EXTRACTED RELATIONS

As argued above, the choice of join algorithm is one of the

key factors affecting the result quality. We now briefly discuss

three alternate join algorithms, which we later analyze in terms

of their output quality and execution efficiency. Following

Section III-C, each join algorithm will attempt to meet the

user-specified quality requirements as efficiently as possible.

This goal is then related to that of ripple joins [9] for online

aggregation, which minimize the time to reach user-specified

performance requirements. Our discussion of the alternate join

algorithms builds on the ripple join principles.

As we will see, the join algorithms base their stopping

conditions on the user-specified quality requirements, given

as τg and τb bounds on the number of good and bad tuples

in the join output. Needless to say, the join algorithms do

not have any a-priori knowledge of the correctness of the

extracted tuples, so the algorithms will rely on estimates to

decide when the quality requirements have been met (see

Section V). Also, during execution a join algorithm might

3A natural alternative formulation is to specify the desired output quality
as percentages of the total number of tuples [10].

Input: number of good tuples τg , number of bad tuples τb , E1〈θ1〉, E2〈θ2〉
Output: R1 �� R2
Rj = ∅ /* tuples produced for R1 �� R2 */

Tr1 = ∅, Tr2 = ∅ /* tuples extracted for R1 and R2 */

Dr1 = ∅, Dr2 = ∅ /* documents retrieved from D1 and D2 */

while {estimated # good tuples in Rj < τg} AND {estimated # bad tuples in Rj ≤ τb} do
if |Dr1| < |D1| then

Retrieve an unseen document d from D1 and add to Dr1
Process d using E1 at θ1 to generate tuples t1

end
if |Dr2| < |D2| then

Retrieve an unseen document d from D2 and add to Dr2
Process d using E2 at θ2 to generate tuples t2

end
Tjoin = (t1 �� t2) ∪ (Tr1 �� t2) ∪ (t1 �� Tr2)
Tr1 = Tr1 ∪ t1
Tr2 = Tr2 ∪ t2
Rj = Rj ∪ Tjoin
if {|Dr1| = |D1|} AND { |Dr2| = |D2|} then

return Rj
end

end
return Rj

Fig. 3. The IDJN algorithm using Scan.

��

��

��

��

Fig. 4. Exploring D1 × D2 with IDJN using Scan.

estimate that the quality requirements cannot be met, in which

case the join optimizer may build on the current execution with

a different join execution plan or, alternatively, discard any

produced results and start a new execution plan from scratch

(see Section VI).

A. Independent Join

The Independent Join algorithm (IDJN) [11] computes a

binary join by extracting the two relations independently and

then joining them to produce the final output. To extract each

relation, IDJN retrieves the database documents by choosing

from the document retrieval strategies in Section III-A, namely,

Scan, Filtered Scan, and Automatic Query Generation.

Figure 3 describes the IDJN algorithm for the settings of

Definition 3.1 and for the case where the document retrieval

strategy is Scan. IDJN receives as input the user-specified

output quality requirements τg and τb (see Section III), and

the relevant extraction systems E1 〈θ1 〉 and E2 〈θ2 〉. IDJN

sequentially retrieves documents for both relations, runs the

extraction systems over them, and joins the newly extracted

tuples with all the tuples from previously seen documents.

Conceptually, the join algorithm can be viewed as “traversing”

the Cartesian product D1 × D2 of the database documents,

as illustrated in Figure 4: the horizontal axis represents the

documents in D1, the vertical axis represents the documents

in D2, and each element in the grid represents a document

pair in D1 × D2, with a dark circle indicating an already

visited element. (The documents are displayed in the order of

retrieval.) Figure 4 shows a “square” version of IDJN, which

retrieves documents from D1 and D2 at the same rate; we can

generalize this algorithm to a “rectangle” version that retrieves

documents from the databases at different rates.

The number of documents to explore will depend on the

user-specified values for τg and τb, and also on the choice of

the retrieval strategies for each relation. When using Filtered
Scan, we may filter out a retrieved document from a database

and, as a result, some portion of D1 × D2 will remain

Input: number of good tuples τg , number of bad tuples τb , E1〈θ1〉, E2〈θ2〉
Output: R1 �� R2
Rj = ∅ /* tuples produced for R1 �� R2 */

/* R1 is the outer relation and R2 is the inner relation */

Tr1 = ∅, Tr2 = ∅ /* tuples extracted for R1 and R2 */

Dr1 = ∅, Dr2 = ∅ /* documents retrieved from D1 and D2 */

while {estimated # good tuples in Rj < τg} AND {estimated # bad tuples in Rj ≤ τb} do
Qs = ∅ /* queries for the inner relation */

Retrieve an unseen document d from D1 and add to Dr1
Process d using E1 at θ1 to generate tuples t1
Generate keyword queries from t1 and add to Qs
Tr1 = Tr1 ∪ t1
Rj = Rj ∪ (t1 �� Tr2)
foreach query q ∈ Qs do

Issue q to D2 to retrieve unseen matching documents and add them to Dr2
Process all unprocessed documents in Dr2 using E2 at θ2 to generate tuples t2
Tr2 = Tr2 ∪ t2
Rj = Rj ∪ (Tr1 �� t2)

end
if |Dr1| = |D1| then

return Rj
end

end
return Rj

Fig. 5. The OIJN algorithm using Scan for the outer relation.

��

��

(a)

��

��

(b)

Fig. 6. Exploring D1 × D2 with (a) OIJN and (b) ZGJN.

unexplored. Similarly, when using Automatic Query Generation,

the maximum number of documents retrieved from a database

may be limited, resulting in a similar effect.

B. Outer/Inner Join

The IDJN algorithm does not effectively exploit any existing

keyword-based indexes on the text databases. Existing indexes

can be used to guide the join execution towards processing

documents likely to contain a joining tuple. The next join algo-

rithm, Outer/Inner Join (OIJN), shown in Figure 5, corresponds

to a nested-loop join algorithm in the relational world. OIJN

thus picks one of the relations as the “outer” relation and the

other as the “inner” relation. (Our analysis in Section V can

be used to identify which relation should serve as the outer

relation in a join execution.) OIJN retrieves documents for the

outer relation using one of the document retrieval strategies

and processes them using an appropriate extraction system.

OIJN then generates keyword queries using the values for the

joining attributes in the extracted outer relation. Using these

queries, OIJN retrieves and processes documents for the inner

relation that are likely to contain the “counterpart” for the

already seen outer-relation tuples.

Figure 6(a) illustrates the traversal through D1 ×D2 for the

OIJN algorithm: each querying step corresponds to a complete
probe of the inner relation’s database, which sweeps out an

entire row of D1 × D2. Thus, OIJN effectively traverses the

space, biasing towards documents likely to contain joining

tuples from the inner relation, which may result in an efficient

refinement over IDJN. However, the maximum number of

documents that can be retrieved via a query may be limited

by the search interface, which, in turn, limits the maximum

number of tuples retrieved using OIJN. The impact of this

limit on the number of matching documents is denoted in

Figure 6(a) as gray circles that depict some unexplored area

Input: number of good tuples τg , number of bad tuples τb , E1〈θ1〉 and E2〈θ2〉, Qseed
Output: R1 �� R2
Rj = ∅ /* tuples produced for R1 �� R2 */

Tr1 = ∅, Tr2 = ∅ /* tuples extracted from R1 and R2 */

Dr1 = ∅, Dr2 = ∅ /* documents retrieved from D1 and D2*/

Q1 = Qseed , Q2 = ∅ /* queries issued to D1 and D2 */

while Q1 �= ∅ OR Q2 �= ∅ do
if Q1 �= ∅ then

Pull next query q1 out of Q1
Issue q1 to D1 to retrieve unseen matching documents and add them to Dr1
Process all unprocessed documents in Dr1 using E1 at θ1 to generate tuples t1
Generate keyword queries from t1 and append to Q2
Tr1 = Tr1 ∪ t1
Rj = Rj ∪ (t1 �� Tr2)

end
if {estimated # good tuples in Rj ≥ τg} OR {estimated # bad tuples in Rj > τb} then

return Rj
end
if Q2 �= ∅ then

Pull next query q2 out of Q2
Issue q2 to D2 to retrieve unseen matching documents and add them to Dr2
Process all unprocessed documents in Dr2 using E2 at θ2 to generate tuples t2
Generate keyword queries from t2 and append to Q1
Tr2 = Tr2 ∪ t2
Rj = Rj ∪ (Tr1 �� t2)

end
if {estimated # good tuples in Rj ≥ τg} OR {estimated # bad tuples in Rj > τb} then

return Rj
end

end

Fig. 7. The ZGJN algorithm.

in the D1 × D2 space.

C. Zig-Zag Join

The Zig-Zag Join (ZGJN) algorithm generalizes the idea

of using keyword queries from OIJN, so that we can now

query for both relations and interleave the extraction of the

two relations; see Figure 7. Starting with one tuple extracted

for one relation, ZGJN retrieves documents—via keyword

querying on the join attribute values—for extracting the second

relation. In turn, the tuples from the second relation are used

to build keyword queries to retrieve documents for the first

relation, and the process iterates, effectively alternating the role

of the “outer” relation of a nested-loop execution over the two

relations. Conceptually, each step corresponds to a sweep of

an entire row or column of D1 ×D2, as shown in Figure 6(b).

Similarly to OIJN, ZGJN can efficiently traverse the D1 ×D2

space; however, just as for OIJN, the space covered by ZGJN

is limited by the maximum number of documents returned by

the underlying search interface.

V. ESTIMATING JOIN QUALITY

Each join execution plan (Definition 3.1) produces join

results whose quality depends on the choice of IE system—

and their tuning parameters (see Section III-A)—, document

retrieval strategies (see Section III-B), and join algorithms (see

Section IV). We now turn to the core of this paper, where we

present analytical models for the output quality of the join

execution plans. Specifically, for each execution plan we derive

formulas for the number |Tgood
��
| of good tuples and the

number |Tbad��| of bad tuples in R1 �� R2 that the plan

produces, as a function of the number of documents retrieved
and processed by the IE systems.

A. Notation

In the rest of the discussion, we consider two text databases,

D1 and D2, with two IE systems E1 and E2, where extraction

system Ei extracts relation Ri from Di (i = 1, 2). Table I

summarizes our notation for the good, bad, and empty database

documents, for the good and bad tuples and attribute values,

Symbol Description Symbol Description

Ri Extracted relations (i = 1, 2)

Ei Extraction system for Ri
Xi Document retrieval strategy for Ei

Di Database for extracting Ri Agi Good attribute values in Ri
Dgi Set of good documents in Di Abi Bad attribute values in Ri
Dbi Set of bad documents in Di gi(a) Frequency of a in Dgi
Dei Set of empty documents in Di bi(a) Frequency of a in Dbi
Dri Set of documents retrieved from Di Oi(a) Frequency of a in Dri

TABLE I

NOTATION SUMMARY.

as well as for their frequency in the extracted relations (see

Section III-C). Additionally, for a natural join attribute A4, we

denote the attribute values common to both extracted relations

R1 and R2 as follows: Agg = Ag1 ∩ Ag2, Agb = Ag1 ∩ Ab2,

Abg = Ab1 ∩Ag2, and Abb = Ab1 ∩Ab2. In Figure 2, Agg =
{a}, Agb = {c}, Abg = {b}, and Abb = {e}.

B. Analyzing Join Execution Plans: General Scheme

We begin our analysis by sketching a general scheme to

study the output of an execution plan in terms of its number

of good tuples |Tgood
��
| and bad tuples |Tbad��|. In later

sections, we will instantiate this general scheme for the various

join execution plans that we study.

Consider relations R1 and R2, to be extracted and joined

over a single common attribute A, and let a be a value of

join attribute A with g1(a) good occurrences in D1
5 and g2(a)

good occurrences in D2. Suppose that a join execution retrieves

documents Dr1 from D1 and documents Dr2 from D2, and

we observe gr1(a) good occurrences of a in Dr1 and gr2(a)
good occurrences of a in Dr2. Then, the number of good

join tuples with A = a is gr1(a) · gr2(a) (see Section III-C).

Generalizing this analysis to all good attribute occurrences

common to both relations (i.e., to the values in Agg) the total

number |Tgood
��
| of good tuples extracted for R1 �� R2 is:

|Tgood
��
| =

∑
a∈Agg

gr1(a) · gr2(a) (1)

where Agg is the set of join attribute values with good

occurrences in both relations (see Section V-A). Among

other factors, the values of gr1(a) and gr2(a) depend on the

frequencies g1(a) and g2(a) of a in the complete databases D1

and D2. As we will see in the next sections, we can estimate
the conditional expected frequency E[gri(a)|gi(a)] for each

attribute value given the configuration of the IE systems, the

choice of document retrieval strategy, and the choice of join

algorithm. Assuming, for now, that we know the conditional

expectations, we have:

E[|Tgood
��
|] =

∑
a∈Agg

E[gr1(a)|g1(a)] · E[gr2(a)|g2(a)]

4Without loss of generality, we assume a single join attribute A. We can
treat the union of multiple join attributes as a “conceptual” single attribute.

5Conceptually, gi(a) can be defined in terms of the number of good tuples
that contain attribute value a. For simplicity, we assume that each attribute
value appears only once in each document. This simplification significantly
reduces the complexity of the statistical model, without losing much of its
accuracy, since most of the attributes indeed appear only once in each document.
(We verified the latter experimentally.)

In practice, we do not know the exact frequencies g1(a) and

g2(a) for each attribute value. However, we can typically

estimate the probability Pr{gi} that an attribute value occurs
gi times in an extracted relation, using parametric or nonpara-

metric approaches (e.g., often the frequency distribution of

attribute values follows a power law [10]). So,

E[|Tgood
��
|] = |Agg|·

|Dg1|∑
g1=1

|Dg2|∑
g2=1

E[gr1|g1]·E[gr2|g2]·Pr{g1, g2}

The factor Pr{g1, g2} is the probability that an attribute value

has g1 good occurrences in D1 and g2 good occurrences

in D2. We make a simplifying independence assumption

so that Pr{g1, g2} = Pr{g1} · Pr{g2}. Alternatively, we

could assume that frequent attribute values in one relation

are commonly frequent in the other relation as well, and vice
versa6. In this scenario, we would have: Pr{g1} ≈ Pr{g2}
and Pr{g1, g2} ≈ Pr{g1} ≈ Pr{g2}.

To compute the number |Tbad��| of bad tuples in R1 �� R2

we proceed in the same fashion, with two main differences: we

need to consider three different classes of attributes, namely,

Agb, Abg, and Abb, and compute the expected number of bad
attribute occurrences in an extracted relation. Specifically,

|Tbad��| = Jgb + Jbg + Jbb

where Jgb = |Agb| · ∑|Dg1|
g1=1

∑|Db2|
b2=1 E[gr1

∣∣g1] · E[br2

∣∣b2] ·
Pr{g1, b2}. We can compute values for Jbg and Jbb using

|Abg| and |Abb|, respectively, along with appropriate tuple

cardinality values.

Using this generic analysis along with the expected frequen-

cies for the attribute occurrences, we can derive the exact

composition of R1 �� R2. We now complete and instantiate

this analysis for the alternate join algorithms of Section IV.

C. Independent Join

Our goal is to derive the expected frequency E[gr i] for good

attribute occurrences and E[br i] for bad attribute occurrences
in Ri after we have retrieved Dr i documents from Di, given

the frequencies of occurrence in Di (i = 1, 2). As IDJN

independently generates each relation, the analysis for E[gr1]
is the same as that for E[gr2], and depends on the choice

of document retrieval strategy and IE system configuration;

similarly, the analysis for E[br1] is the same as that for E[br2].
Hence, we ignore the relation subindex in the discussion.

We start by computing E[gr] for an attribute value a with

g(a) = g good occurrences. We focus only on the good docu-

ments Dg in D, as good occurrences only appear in the good

documents. We model a document retrieval strategy as sampling
processes over the good documents Dg [10]. After retrieving

Dgr good documents, the probability of observing k times the

good attribute occurrence a in the retrieved documents follows

a hypergeometric distribution, Hyper(|Dg|, |Dgr|, g, k), where

Hyper(D,S, g, k) =
(

g
k

) · (D−g
S−k

)
/
(
D
S

)
.

6This simplifying assumption may not always hold: for instance, a Movie
attribute value that appears in a single tuple of a Directors〈Movie, Director〉
relation might appear in many tuples of an Actors〈Movie, Actor〉 relation.

We process the retrieved documents Dgr using an IE system

E. As E is not perfect, even if we retrieve k documents that

contain the good attribute occurrences, E examines each of

the k documents independently and, with probability tp(θ) for

each document, outputs the occurrence. So, we will see good

occurrences in the extracted tuples only l ≤ k times, and l is

a random variable following the binomial distribution. Thus,

the expected frequency of a good attribute occurrence in an

extracted relation, after processing j good documents, is:

E[gr
∣∣|Dgr| = j]=

g∑
k=0

Hyper(|Dg|, j, g, k)·
k∑

l=0

l·Bnm(k, l, tp(θ))

where Bnm(n, k, p) =
(
n
k

) · pk · (1 − p)n−k is the binomial

distribution and g is the frequency of good attribute occurrences

in D. The derivation for bad attribute occurrences E[br] is

analogous to that for E[gr], but now a bad attribute occurrence

can be extracted from both good and bad database documents.

So far, the analysis implicitly assumed that we know the

exact proportion of the good and bad documents retrieved, i.e.,

|Dgr| and |Dbr|. In reality, though, this proportion depends

on the choice of document retrieval strategy. We analyze the

effect of a document retrieval strategy next.

Scan sequentially retrieves documents for E from database

D, in no specific order. Therefore, when Scan retrieves |Dr |
documents, E processes |Dgr| good documents, where |Dgr|
is a random variable that follows the hypergeometric distribu-

tion. Specifically, the probability of processing exactly j good

documents is Pr(|Dgr| = j) = Hyper(|D|, |Dr |, |Dg|, j).
We compute the probability of processing j bad documents

analogously.

Filtered Scan is similar to Scan, except that a document

classifier filters out documents that are not good candidates for

containing good tuples. Thus, only documents that survive the

classification step will be processed. Document classifiers are

not perfect either, and they are usually characterized by their

true positive rate Ctp and false positive rate Cfp . Intuitively,

for a classifier C, the true positive rate Ctp is the fraction of

documents in Dg classified as good, and the false positive rate

Cfp is the fraction of documents in Db incorrectly classified

as good. Therefore, the main difference from Scan is that now

the probability of processing j good documents after retrieving

|Dr | documents from the database is:

Pr(|Dgr| = j) =
|Dr |∑
n=0

Hyper(|D|, |Dr |, |Dg|, n)·Bnm(n, j, Ctp)

We compute the probability of processing j bad documents in

a similar way using Cfp .

Automatic Query Generation retrieves documents from D
by issuing queries designed to retrieve mainly good documents.

Consider the case where AQG has sent Q queries to the

database. If a query q retrieves g(q) documents and has

precision P (q), where P (q) is the fraction of documents

retrieved by q that are good, then the probability that a good

document is retrieved by q is
P (q)·g(q)

|Dg| . Assuming that the

queries sent by AQG are only biased towards documents in

Dg, the queries are conditionally independent within Dg. In

this case, the probability that a good document d is retrieved

by at least one of the Q queries is:

Prg(d) = 1 −
Q∏

i=1

(
1 − p(qi) · g(qi)

|Dg|
)

(2)

Since each document is retrieved independently of each other,

the number of good documents retrieved (and processed)

follows a binomial distribution, with |Dg| trials and Prg(d)
probability of success in each trial, so Pr(|Dgr| = j) =
Bnm(|Dg|, j, Prg(d)). The analysis is analogous for the bad

documents.

The execution time for an IDJN execution strategy follows

from the general discussion above. Consider the case when we

retrieve |Dr1| documents from D1 and |Dr2| documents from

D2 using Scan for both relations. In this case IDJN does not

filter or query for documents, so the execution time is:

Time(S, D1, D2) =
2∑

i=1

|Dr i| ·
(
tiR + tiE

)

where tiR is the time to retrieve a document from Di and tiE
is the time required to process the document using the Ei

IE system. For execution strategies that use Filtered Scan or

Automatic Query Generation, we compute the execution time

by considering the time tiF to filter a document, or the time

tiQ (together with the number of queries issued |Qsi|) to send

and retrieve the results of a query.

D. Outer/Inner Join

For OIJN, the analysis for the outer relation is the same as
that for an individual relation in IDJN: the expected frequency

of (good or bad) occurrences of an attribute value depends

solely on the document retrieval strategy and the IE system for

the outer relation. On the other hand, the expected frequency

of the attribute occurrences for the inner relation depends on

the number of queries issued using attribute values from the

outer relation, as well as on the IE system used to process

the matching documents. Our analysis focuses on the inner

relation; again, we omit the relation subindex, for simplicity.

Consider again an attribute value a with g(a) good occur-

rences in the database, and a query q generated from a that

has H(q) document matches and precision P (q), where P (q)
is the fraction of documents matching q that are good. Thus,

the set of good documents that can match q is Hg(q), with

|Hg(q)| = |H(q)| · P (q). When we issue q, the subset of

Hg(q) documents returned is limited by the search interface.

Specifically, if the search interface returns only the top-k
documents for a query, for a fixed value of k, we expect

to see k · P (q) good documents. An important observation

is that the documents that match q but are not returned in

the top-k results can also be retrieved by queries other than

q. Thus, when we issue Qs queries and retrieve Dgr good

documents, we can observe a from two disjoint sets: k · P (q),
the good documents in the top-k answers for q, and the rest,

Dgrrest = Dgr − k · P (q).

If Prq{grq|g(a), q} is the probability that we will observe

attribute value a a total of grq times in the top results for

q, and Prr{grrest |g(a), Dgrrest} is the probability that we

will observe attribute value a a total of grrest times in the

remainder documents, we have:

E[gr(a)
]

=
g(a)∑
l=0

l · (Prq{l|g(a), q} + Prr{l|g(a), Dgrrest})

For Prq{grq|g(a), q}, we model querying as sampling over

Hg(q) while drawing k · P (q) samples, and derive:

Prq{grq|g(a), q} =
g(a)∑
i=0

H
(
g(a), i

) · Bg(i, grq)

where H(k, i) = Hyper(|Hg(q)|, k ·P (q), k, i) and Bg(k, l) =
Bnm(k, l, tp(θ)).

For Prr{grrest |g(a), Dgrrest}, we observe that the total

number g(a) of documents in Dgrrest is the number of

documents containing a minus the good documents that

matched the query. Specifically, among documents not retrieved

via the query q, an attribute value can occur g′(a) times,

where g′(a) = g(a) · |Hg(q)|−k·P (q)
|Hg(q)| . We model the process

of retrieving documents for a, using queries other than q, as

sampling over Dg while drawing samples Dgrrest , and derive:

Prr{l|g(a), |Dgrrest | = j} =
g(a)∑
i=0

Hg (g′(a), i) · Bg(i, l)

where Hg(k, i) = Hyper(|Dg|, j, k, i). For E[br(a)], i.e., a

bad attribute value, we proceed similarly.

For execution time, if we retrieve Dro documents using

Scan for the outer relation and send Qs queries for the inner

relation, and retrieve Dr i documents, the execution time is:

Time(S,D1,D2)=|Dro|·(toR + toE)+|Dr i|·
(
tiR + tiE

)
+|Qs|·tiQ

where toR and toE are the times to retrieve and process,

respectively, a document for the outer relation, tiR and tiE
are the times to retrieve and process, respectively, a document

for the inner relation, and tiQ is the time to issue a query to the

inner relation’s database. The value for |Dro| is determined so

that the resulting join execution meets the user requirements.

E. Zig-Zag Join

To analyze the ZGJN algorithm, we define a zig-zag graph

consisting of two classes of nodes: attribute nodes (“a” nodes)

and document nodes (“d” nodes), and two classes of edges: hit
edges and generates edges. A hit edge A → D connects an

a node to a d node, and denotes that a generated a hit on d,

that is, d matches the query generated using a. A generates
edge d → a connects a d node to an a node and denotes that

processing d generated a.

As an example, consider the zig-zag graph in Figure 8

for joining Mergers and Executives from Example 1 on the

Company attribute. We begin with a seed query [“Microsoft”]

for Mergers and issue it to the D2 database. This query hits a

document d21. Processing d21 generates tuples for Executives,

which contain values Microsoft and AOL for Company. At this

Microsoft

AOL

Merck

Nike

Pepsico

21

23

24

22

11

11

12

AOL

Microsoft

IBM

Cisco

AT&T

2 1

Fig. 8. Sample zig-zag graph for Mergers �� Executives.

stage, the total number of attributes generated for Executives
is determined by the number of documents that matched the

query [“Microsoft”]. Next, we issue the query [“AOL”] to D1,

which retrieves documents d11 and d12. The total number of

documents retrieved from D1 is determined by the number of

attribute values generated for Executives in the previous step.

Processing d11 for Mergers generates a new attribute value,

AOL, which is used to generate new queries for D2, and the

process continues.

The above example shows that the characteristics of a ZGJN

execution are determined by the total number of attribute values

and documents that could be reached following the edges on

the zig-zag graph. Thus, the structure of the graph defines the

execution time and the output quality for ZGJN. We study

the interesting properties of a zig-zag graph using the theory

of random graphs [15]. Specifically, we build on the single-

relation approach in [10] to model our join scenario, and use

generating functions to describe the properties of a zig-zag
graph. We begin by defining two generating functions, h0(x),
which describes the number of hits for a randomly chosen
attribute value, and ga0(x), which describes the number of

attributes generated from a randomly chosen document.

h0(x) =
∑

k

pak · xk, ga0(x) =
∑

k

pdk · xk

where pak is the probability that a randomly chosen attribute

a matches k documents, and pdk is the probability that a

randomly chosen document generates k attributes. To keep the

model parameters manageable, we approximate the distribution

for pak with the attribute frequency distribution used by our

general analysis (Section V-B), as the two distributions tend

to be similar. Specifically, we derive the probability that an

attribute a matches k documents using the probability that a
is extracted from k documents.

Our goal, however, is to study the frequency distribution of

an attribute or a document chosen by following a random edge.

For this, we use the method in [15], [10] and define functions

H(x) and Ga(x) that, respectively, describe the attribute and

the document frequency chosen by following a random edge

on the zig-zag graph.

H(x) = x
h0

′(x)
h0

′(1)
, Ga(x) = x

ga0
′(x)

ga0
′(1)

where h0
′(x) is the first derivative of h0(x) and ga0

′(x) is the

first derivative of ga0(x). To distinguish between the relations,

we denote the functions using subindices: Hi(x) and Gai(x),
respectively, describe the attribute and the document frequency

distributions for Ri (i = 1, 2).

We will now derive equations for the number of documents

E[|Dr1|] and E[|Dr2|] retrieved from D1 and D2, respectively,

and the number of attribute values E[|Ar1|] and E[|Ar2|]
generated for relation R1 and R2, respectively. For our analysis,

we exploit three useful properties, Moments, Power, and

Composition of generating functions (see [15], [10]). The

distribution of the total number |Dr2| of documents retrieved

from D2 using attributes from R1 can be described by the

function Dr2(x) = H1(x). Further, the distribution of the

attribute values generated from a D2 document picked by

following a random edge is given by Ga2(x). Using the

Composition property, the distribution of the total number

of attribute values generated from Dr2 is given by the function

Ar2(x) = H1(Ga2(x)).
The total number |Ar2| of R2 attribute values that will

be used to derive the D2 documents is a random variable

with its distribution described by Ar2(x). Furthermore, the

distribution of the documents retrieved by an R2 attribute value

picked by following a random edge is described by H2(x).
Once again, using the Composition property, we describe the

distribution of the total number of D2 documents retrieved

using Ar2 attribute values using the generating function

Dr1(x) = Ar2(H2(x)) = H1(Ga2(H2(x))). To describe the

total number |Ar1| of R1 attribute values derived by processing

a Dr1 document, we compose Dr1(x) and Ga1(x), and define

Ar1(x) = Dr1(Ga1(x)) = H1(Ga2(H2(Ga1(x)))).
Next, we generalize the above functions for Q1 queries sent

from R1 attribute values and using the Power property:

Dr2(x) = [H1(x)]|Q1| , Ar2(x) = [H1(Ga2(x))]|Q1|

Finally, we compute the expected values E[|Dr2|] after we

have issued Q1 queries using R1 attribute values. For this, we

resort to the Moments property.

E[|Dr2|] =
[

d

dx
[H1(x)]|Q1|

]
x=1

E[|Ar2|] =
[

d

dx
[H1(Ga2(x))]|Q1|

]
x=1

Similarly, we derive values for E[|Dr1|] and E[|Ar1|].
We derived the total number of attributes E[|Ar1|] and

E[|Ar2|] for the individual relations, but we are interested

in the total number of good and bad attribute occurrences

generated for each relation. For this, we split the number

of attributes in a relation, using the fraction of good or bad

attribute occurrences in a relation. For instance,

E[|gr1|] = E[|Ar1|] · |Ag1|
|Ag1| + |Ab1|

Given the analysis above, we compute the execution time of a

zig-zag join that satisfies the user-specified quality requirements:

if we issue |Qsi| queries and retrieve |Dr i| documents for

relation Ri, i = 1, 2, the execution time is:

Time(S, D1, D2) =
2∑

i=1

|Dr i| ·
(
tiR + ·tiE

)
+ |Qsi| · tiQ

|Qs1| and |Qs2| are the minimum values required for the output

quality to meet the user-specified quality requirements.

To summarize, in this section we analyzed each join algo-

rithm for the various choices of document retrieval strategies

and IE system configurations. Our analysis resulted in formulas

for the join quality composition in terms of the number of

documents retrieved for each relation or the number of keyword

queries issued to a database. Conversely, this analysis can be

used to determine these input values for a given output quality.

VI. INCORPORATING OUTPUT QUALITY

INTO JOIN OPTIMIZATION

Our optimization approach applies the analysis from Sec-

tion V to our general goal of selecting a join execution strategy

for a given user-specified quality requirement. We now discuss

how we derive various parameters used in the analysis, and

present our overall optimization approach.

Estimating Model Parameters: The analysis in Section V

relies on three classes of parameters, namely, the retrieval

strategy-specific parameters, the database-specific parameters,

and the join algorithm-specific parameters. The retrieval

strategy-specific parameters are the precision p(qi) of each

query qi for AQG, or the classifier properties Ctp and Cfp for

FS; the database-specific parameters are |Dg|, |Db|, |Ag|, |Ab|,
as well as the document and attribute frequency distributions,

for each relation, and the values for |Agg|, |Agb|, |Abg|, and

|Abb|. Finally, the join-specific parameters are H(q) and P (q)
for OIJN and ZGJN. Of these, the retrieval strategy-specific

parameters and the join algorithm-specific parameters can be

easily estimated in a pre-execution, offline step [10]. On the

other hand, estimating the database-specific parameters is a

more challenging task [12].

We estimate the parameters for each relation, separately,

using maximum likelihood estimation (MLE) based on the

approach described in [12]. Our MLE model relies on the

analytical models in Section V, where we showed how to

estimate the output given the database-specific parameters;

to estimate parameters, we observe the output and infer the
database-specific parameter values that are the most likely to
generate the observed output. Due to space restrictions, we

cannot present our estimation process in detail, but we provide

the basic intuition behind it. Please refer to [13] for details.

While retrieving documents from database D, we observe

some attributes and their frequencies in the retrieved documents.

So, for an attribute ai obtained from Dr , we use s(ai) to denote

the number of documents in Dr that generated ai. These values

reveal information about the actual contents of the database.

Formally, we attempt to find the database specific parameters

that maximize the likelihood function:

L(parameters) =
∏

i

Pr{s(ai)|parameters}
To find the set of parameter values that maximize

L(parameters), we use the models from Section V to express

Pr{s(a)|parameters} as a function of the database parameters.

Using these derivations, we search the space of parameters to
find the values that maximize L. An important advantage

of our estimation method is that it does not require any

verification method to determine whether an observed tuple

is good or bad; the estimation methods derive a probabilistic

split of the observed tuples, thereby carrying out the parameter

estimation process in a stand-alone fashion. We define a similar

likelihood function for the document frequencies. Using the

estimated parameter values for each individual relation, we

then numerically derive the join-specific parameters [13].

Putting It All Together: Our optimizer takes as input the user-

provided minimum number of good tuples τg and the maximum

number of bad tuples τb, and picks an execution strategy to

efficiently meet the desired quality level. The optimizer begins

with an initial choice of execution strategy that uses IDJN and

SC for each relation. As the initial strategy progresses, the

optimizer derives the necessary parameters and determines a

desirable execution strategy for τg and τb, while periodically

(e.g., every 100 documents) checking the robustness of the

new estimates using cross-validation [10], [12], [13].

A fundamental task in the optimization process is to identify

the Cartesian space to explore for a given quality requirement.

Exhaustively “plugging in,” for each database in our output qual-

ity model in Section V, all possible values for |Dr | (0, . . . , |D|)
or |Qs| (0, . . . , |Ag|+|Ab|) is inefficient, so instead we resort to

a simple heuristic to minimize the sum of documents retrieved

and processed (and hence the total execution time), conditioned

on the product of the number of occurrences of good attribute

values in each relation. Specifically, we aim to reduce the

difference between the number of documents retrieved for

each relation, since intuitively we are minimizing the sum of

two numbers, conditioned on their product. Thus, we select

the number of documents for each database to be as close

as possible. Conceptually, this heuristic follows a “square”

traversal of the Cartesian space D1 × D2 (see Section IV).

VII. EXPERIMENTAL EVALUATION

We now describe the experimental settings and results.

IE Systems: We trained Snowball [1] for three rela-

tions: Executives〈Company ,CEO〉, Headquarters〈Comp−
any ,Location〉, and Mergers〈Company ,MergedWith〉, to

which we refer as EX, HQ, and MG, respectively. For θ
(Section III-A), we picked minSim, a tuning parameter exposed

by Snowball, which is the similarity threshold for extraction

patterns and the terms in the context of a candidate tuple.

Data Set: We used a collection of newspaper articles from

The New York Times from 1995 (NYT95) and 1996 (NYT96),

and from The Wall Street Journal (WSJ). The NYT96 database

contains 135,438 documents, which we used to train the

extraction systems and the retrieval strategies. To evaluate

the effectiveness of our approach, we used 49,527 documents
from NYT96, 50,269 documents from NYT95, and 98,732

documents from WSJ. We verified that the attribute and

document frequency distributions tend to be power-law for

our relations.

Retrieval Strategies: For FS, we used a rule-based classifier

created using Ripper [4]. For AQG, we used QXtract [2], which

relies on machine learning techniques to automatically learn

queries that match documents with at least one tuple. In our

case, we train QXtract to only match good documents, avoiding

the bad and empty ones.

Tuple Verification: To verify whether a tuple is good or

bad, we follow the template-based approach described in [11].

Additionally, we also use a web-based “gold” set from

www.thomsonreuters.com/.

Join Task: We defined a variety of join tasks involving

combinations of the three relations and the three databases.

For our discussion, we will focus on the task of computing

the join HQ �� EX, with NYT96 and NYT95 as the hosting

databases for HQ and EX, respectively.

Join Execution Strategies: To generate the join execution

strategies for a task, we explore various candidates for

individual relations and combine them using the three join

algorithms of Section IV. For each relation, we generate single-

relation strategies by using two values for minSim (i.e., 0.4

and 0.8) and combining each such configuration with the three

document retrieval strategies.

Metrics: To compare the execution time of an execution plan

chosen by our optimizer against a candidate plan, we measure

the relative difference in time by normalizing the execution time

of the candidate plan by that for the chosen plan. Specifically,

we note the relative difference as tc

to
, where tc is the execution

time for a candidate plan and to is the execution time for the

plan picked by the optimizer.

Accuracy of the Analytical Models: Our first goal was to

verify the accuracy of our analysis in Section V. For this, we
assumed perfect knowledge of the various database-specific

parameters: we used the actual frequency distributions for each

attribute along with the values for |Dg|, |Db|, and |De | for each

database. Given a join execution strategy, we first estimate the

output quality of the join, i.e., E[|Tgood
��
|] and E[|Tbad��|],

using the appropriate analysis from Section V, while varying

values for the number of retrieved documents from the database,

i.e., |Dr1| and |Dr2|. For each |Dr1| and |Dr2| value, we

measure the actual output quality for an execution strategy.

Figure 9 shows the actual and the estimated values for the

good (Figure 9(a)) and the bad (Figure 9(b)) join tuples

generated using IDJN, Scan for both relations, and minSim
= 0.4. Similarly, Figure 10 shows the same results for OIJN

when using Scan for the outer relation and minSim = 0.4 for

both relations. Then, Figure 11 compares the estimated and the

actual values for ZGJN, for minSim = 0.4. We performed similar

experiments for all other execution strategies. Additionally,

we also examined the accuracy of the estimated number of

documents for query-based join algorithms, i.e., for OIJN and

ZGJN. Figure 12 shows the expected and the actual number

of documents retrieved for varying number of queries issued

101

102

103

104

 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f t
up

le
s

Percent of documents processed

Estimated
Actual

(a)

102

103

104

105

 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f t
up

le
s

Percent of documents processed

Estimated
Actual

(b)
Fig. 9. Estimated and actual number of (a) good tuples and (b) bad tuples
for HQ �� EX, using IDJN with Scan and minSim = 0.4.

102

103

104

 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f t
up

le
s

Percent of documents processed

Estimated
Actual

(a)

102

103

104

105

 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f t
up

le
s

Percent of documents processed

Estimated
Actual

(b)
Fig. 10. Estimated and actual number of (a) good tuples and (b) bad tuples
for HQ �� EX, using OIJN with Scan and minSim = 0.4.

to each database, for ZGJN.

Overall, our estimates confirm the accuracy of our analysis.

Of these observations, we discuss the case for bad tuples for

OIJN (Figure 10(b)) and ZGJN (Figure 11(b)), where our model

overestimates the number of bad tuples. This overestimation

can be traced to a few outlier cases. To gain insight into this, we

compared the expected and the actual number of bad attribute

occurrences. We observed four main cases where our estimated

values were more than two orders of magnitude greater than

the actual values. These attribute values frequently appeared in

the database but were not extracted by the extraction system at

the minSim setting used in our experiments. For instance, one

such bad attribute occurrence, “CNN Center,” appears 895 and

2765 times in HQ and EX, respectively. When using OIJN and

processing 50% of the database documents for the outer relation,

our estimated frequencies of the bad occurrences of this value

was 28.3 and 29.7 times, respectively; in reality, this attribute
value was not extracted, thus resulting in an overestimate

of 812 join tuples. This difference is further expanded for

ZGJN due to a modeling choice: we assume that all queries

used in ZGJN will match some documents and the execution

will not stall. We can account for stalling by incorporating

the reachability of a ZGJN execution based on the single-

relation analysis in [10]. Overall, while our estimates have

non-negligible absolute errors, they identify the actual value

trends appropriately, and hence allow our query optimization

approach to pick desirable execution plans for a range of output

quality requirements, as discussed next.

Effectiveness of the Optimization Approach: After verifying

our modeling, we studied the effectiveness of our optimization

approach, which uses our models along with the parameter

estimation process outlined in Section VI. Specifically, we

examine whether the optimizer picks the fastest execution

strategy for a given output quality requirement. For this, we

101

102

103

 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f t
up

le
s

Percent of documents processed

Estimated
Actual

(a)

101

102

103

104

105

 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f t
up

le
s

Percent of documents processed

Estimated
Actual

(b)
Fig. 11. Estimated and actual number of (a) good tuples and (b) bad tuples
for HQ �� EX, using ZGJN with minSim = 0.4.

102

103

104

 10 20 30 40 50 60 70 80 90 100N
um

be
r o

f d
oc

um
en

ts
 re

tri
ev

ed

Percent of queries issued

Estimated
Actual

(a)

102

103

104

 10 20 30 40 50 60 70 80 90 100N
um

be
r o

f d
oc

um
en

ts
 re

tri
ev

ed

Percent of queries issued

Estimated
Actual

(b)
Fig. 12. Estimated and actual number of documents retrieved for (a) HQ and
(b) EX for HQ �� EX, using ZGJN with minSim = 0.4.

provided the optimizer with the two thresholds, τg and τb.

We report results for values of τg and τb for which the

optimizer picked a satisfactory plan (i.e., the chosen execution

matched the τg and τb quality requirements). In the future, we

will systematically examine our optimizer’s ability to identify

scenarios where no plan can match the quality requirements

(e.g., as would likely be the case for, say, τb = 0), as well as

those cases where our optimizer incorrectly predicts that no

plan could match the quality requirements.

To evaluate the choice of execution strategy for a specified

τg and τb pair, we compare the execution time for the chosen

plan S against that of the alternate executions plans that also

meet the τg and τb requirements. Table II shows the results for

HQ �� EX, for varying τg and τb. For each τg and τb pair, we

show the number of candidate plans that meet the τg and τb

requirement. Furthermore, we show the number of candidate

plans that result in faster executions than the plan chosen by

our optimizer and the number of candidate plans that result in

slower executions than the chosen plan. Finally, to highlight the

difference between the associated execution times, we show

the range of relative difference in time for both faster and

slower execution plans.

As shown in the table, our optimizer selects OIJN for low

values of τg and τb, and progresses towards selecting IDJN

coupled with AQG or FS, eventually picking IDJN coupled with

SC for high values of τg and τb. For most cases, our optimizer

selects an execution strategy that is the fastest strategy or

close to the fastest strategy, as indicated by having either no

candidates with faster executions than the chosen plan or a

small number of such executions. For cases where the chosen

plan is not the fastest option, the execution time of the faster

candidates is close to the one of the chosen plan, as indicated

by the relative difference values (e.g., a value of 1 indicates the

execution times for both the candidate and the chosen plans

were identical). An important observation is that the plans

Criteria Candidate Chosen plan # Faster # Slower Relative time range Relative time range
plans plans plans for faster plans for slower plans

τg τb JN θ1 θ2 X1 X2 min max min max
1 20 46 OIJN 0.4 0.4 FS (OIJN) 5 36 0.68 0.80 1.20 27.48
2 30 46 OIJN 0.8 0.4 AQG (OIJN) 10 32 0.19 0.75 1.78 11.91
2 50 47 OIJN 0.8 0.4 AQG (OIJN) 11 33 0.19 0.75 1.78 11.91
4 20 39 OIJN 0.4 0.4 FS (OIJN) 3 29 0.34 0.34 1.59 35.76
4 40 42 OIJN 0.4 0.4 FS (OIJN) 3 37 0.34 0.34 1.59 35.76
8 40 40 OIJN 0.8 0.4 AQG (OIJN) 3 33 0.19 0.19 1.15 22.20
8 80 44 OIJN 0.8 0.4 AQG (OIJN) 4 38 0.19 0.19 1.15 22.20

16 50 26 IDJN 0.4 0.4 FS AQG - 21 - - 1.22 11.62
16 80 36 IDJN 0.4 0.4 FS AQG 3 30 0.66 0.94 1.10 11.62
16 160 39 IDJN 0.4 0.4 FS AQG 3 34 0.66 0.94 1.10 11.62
32 84 26 IDJN 0.4 0.4 FS AQG - 22 - - 1.26 13.30
32 160 36 OIJN 0.8 0.4 AQG (OIJN) - 35 - - 1.55 20.62
32 320 40 OIJN 0.8 0.4 AQG (OIJN) - 39 - - 1.55 20.62
64 320 35 IDJN 0.8 0.4 AQG AQG - 34 - - 1.50 27.16
64 640 41 IDJN 0.8 0.4 AQG AQG - 40 - - 1.50 27.16
128 640 21 IDJN 0.4 0.4 FS AQG - 20 - - 1.19 9.41
128 1280 26 IDJN 0.4 0.4 FS AQG - 25 - - 1.19 9.41
256 1280 14 IDJN 0.4 0.4 SC AQG - 13 - - 1.18 2.89
256 2560 18 IDJN 0.4 0.4 SC AQG - 17 - - 1.01 2.89
512 1024 1 IDJN 0.8 0.8 SC SC - - - - - -
512 2560 3 IDJN 0.8 0.4 SC SC - 2 - - 1.02 1.15
512 5120 4 IDJN 0.4 0.4 FS SC - 3 - - 1.46 1.69
1024 5120 2 IDJN 0.8 0.4 SC SC 1 - 0.99 0.99 - -
1024 10240 2 IDJN 0.8 0.4 SC SC 1 - 0.99 0.99 - -

TABLE II

CHOICE OF EXECUTION STRATEGIES FOR DIFFERENT τg AND τb COMBINATIONS (SECTION III-C), AND COMPARING THE EXECUTION TIME OF THE CHOSEN

STRATEGY AGAINST THAT OF ALTERNATIVE EXECUTION STRATEGIES THAT ALSO MEET THE τg AND τb REQUIREMENTS, FOR HQ �� EX.

eliminated by the optimizer were an order of magnitude (10

to 35 times) slower than the chosen plans.

An intriguing outcome of our experiments is that the choices

for execution strategies do not involve ZGJN. Interestingly, for

our test data set, ZGJN is not a superior choice of execution

algorithm as compared to other algorithms. Intuitively, ZGJN

does not specifically focus on filtering out any bad documents;

therefore, ZGJN does not meet the quality requirements as

closely as other query-based strategies that use IDJN or OIJN

along with AQG or FS. Furthermore, the maximum number of

tuples that can be extracted using ZGJN is limited, which makes

it a poor choice for higher values of τg and τb. ZGJN would be

a competing choice for scenarios involving databases that only

provide query-based access (e.g., search engines or hidden-

Web databases) and also for cases where the generated queries

match a relatively large number of good documents. Extending

ZGJN to derive queries that focus on good documents remains

interesting future work.

VIII. CONCLUSIONS

We addressed the important problem of optimizing the

execution of joins of relations extracted from natural language

text. As a key contribution of our paper, we developed

rigorous models to analyze the output quality of a variety

of join execution strategies. We also showed how to use our

models to build a join optimizer that attempts to minimize

the time to execute a join while reaching user-specified result
quality requirements. We demonstrated the effectiveness of

our optimizer for this task with an extensive experimental

evaluation over real-world data sets. We also established that

the analytical models presented in this paper demonstrate a

promising direction towards building fundamental blocks for

processing joins involving information extraction systems.

IX. ACKNOWLEDGMENTS
This material is based upon work supported by a generous gift from Microsoft Research,
as well as by the National Science Foundation under Grants No. IIS-0811038, IIS-
0643846, and IIS-0347903. The third author gratefully acknowledges the support of an
Alfred Sloan fellowship, an IBM Faculty Award, and grants from Yahoo and Microsoft.

REFERENCES
[1] E. Agichtein and L. Gravano. Snowball: Extracting relations from large

plain-text collections. In DL, 2000.
[2] E. Agichtein and L. Gravano. Querying text databases for efficient

information extraction. In ICDE, 2003.
[3] W. Cohen and A. McCallum. Information extraction from the World

Wide Web (tutorial). In KDD, 2003.
[4] W. W. Cohen. Learning trees and rules with set-valued features. In IAAI,

1996.
[5] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: An

architecture for development of robust HLT applications. In ACL, 2002.
[6] A. Doan, R. Ramakrishnan, and S. Vaithyanathan. Managing information

extraction (tutorial). In SIGMOD, 2003.
[7] D. Ferrucci and A. Lally. UIMA: An architectural approach to unstruc-

tured information processing in the corporate research environment. In
Natural Language Engineering, 2004.

[8] R. Gupta and S. Sarawagi. Curating probabilistic databases from
information extraction models. In VLDB, 2006.

[9] P. Haas and J. Hellerstein. Ripple joins for online aggregation. In
SIGMOD, 1999.

[10] P. G. Ipeirotis, E. Agichtein, P. Jain, and L. Gravano. Towards a query
optimizer for text-centric tasks. ACM Transactions on Database Systems,
32(4), Dec. 2007.

[11] A. Jain, A. Doan, and L. Gravano. Optimizing SQL queries over text
databases. In ICDE, 2008.

[12] A. Jain and P. G. Ipeirotis. A quality-aware optimizer for information
extraction. ACM Transactions on Database Systems, 2009. To appear.

[13] A. Jain, P. G. Ipeirotis, A. Doan, and L. Gravano. Join optimization
of information extraction output: Quality matters! Technical Report
CeDER-08-04, New York University, 2008.

[14] I. Mansuri and S. Sarawagi. A system for integrating unstructured data
into relational databases. In ICDE, 2006.

[15] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with
arbitrary degree distributions and their applications. Physical Review E,
64(2), Aug. 2001.

[16] F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu, and S. Vaithyanathan.
An algebraic approach to rule-based information extraction. In ICDE,
2008.

[17] W. Shen, A. Doan, J. Naughton, and R. Ramakrishnan. Declarative
information extraction using Datalog with embedded extraction predicates.
In VLDB, 2007.

