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Abstract—We consider the problem of efficiently computing
weighted proximity best-joins over multiple lists, with applica-
tions in information retrieval and extraction. We are given a
multi-term query, and for each query term, a list of all its matches
with scores, sorted by locations. The problem is to find the overall
best matchset, consisting of one match from each list, such that
the combined score according to a scoring function is maximized.
We study three types of functions that consider both individual
match scores and proximity of match locations in scoring a
matchset. We present algorithms that exploit the properties of
the scoring functions in order to achieve time complexities linear
in the size of the match lists. Experiments show that these
algorithms greatly outperform the naive algorithm based on
taking the cross product of all match lists. Finally, we extend
our algorithms for an alternative problem definition applicable to
information extraction, where we need to find all good matchsets
in a document.

I. INTRODUCTION

Information retrieval today has gone far beyond finding

documents with matching keywords. Many systems have sig-

nificantly broadened the concept of a “match.” For exam-

ple, commercial search engine offerings, such as Powerset

(www.powerset.com) and AskMeNow (www.askmenow.com),

are able to handle questions such as “who invented dental

floss,” which cannot be answered by simply matching words

in a document with “who” in a black-or-white fashion. Recent

work from academia, by Chakrabarti et al. [7] and Cheng et

al. [8], has made significant inroads into question answering

and entity search (as opposed to document search). Critical

to their success is the joint consideration of the qualities of

“fuzzy” matches and the proximity among the matches.

To illustrate this approach, suppose we are interested in

finding partnerships between PC makers and sports. A user

may formulate this question as a three-term query: {“PC
maker,” “sports,” “partnership”}. Figure 1 shows a sample

document. While the document is obviously relevant, we want

to go a step further—respond to the question directly with an

answer, e.g.: Lenovo partners with NBA.

Simple keyword matching is clearly not enough to obtain

good answers. The document does not mention the word
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“sports,” but with additional background knowledge about

sporting events and organizations, we can match “NBA,”

“Olympic Games,” etc. As for “PC maker,” there is in fact an

exact match, but it does not help in answering the question.

With the knowledge of which companies are PC makers, we

can also match “Lenovo,” “Dell,” etc. We can match “laptop

maker” too, if we know that laptops and PCs are closely

related concepts. Finally, “partnership” matches with not only

“partner” and “partnership,” but also “deal” (though not as

perfectly). Note that the matches are naturally weighted (or

scored) by quality, as measured by how closely they relate to

the query terms, or how confident we are that they correspond

to the user’s intentions. For scoring individual matches, a vari-

ety of techniques exist, including natural language processing,

ontology, knowledge bases, named entity recognizers, etc.

Besides the individual match scores, another important fac-

tor considered by [7, 8] in assessing an answer is the proximity

among the matches that constitute the answer. Intuitively, we

are more confident in matches that are close together within

the document. For example, in Figure 1, one would guess that

{“Lenovo,” “NBA,” “partner”} have much tighter association

than {“Hewlett-Packard,” “Olympic Games,” “partnership”}.
Ideally, we would like to find a set of matches, one for each

query term, with high individual scores and close proximity to

each other. This operation is a natural and important primitive

in systems that jointly consider individual match scores and

proximity among matches.

Algorithmic Efficiency Algorithmically, finding the highest-

scoring answers within a document in this setting can be

thought of as a weighted proximity “best-join” over lists. The

input to the problem is a set of match lists, one for each query

term, which contains all matches for the term in a document.

Each match has two attributes: a location within the document,

and a score measuring the quality of the match with respect to

the query term. We join together matches across lists to form

answer matchsets. Figure 1 illustrates the concepts.

A scoring function is used to combine individual match

scores (weights) and the proximity of match locations in order

to score a matchset. We are then interested in identifying the

best (highest-scoring) matchsets in the document—hence the

name weighted proximity best-join.

Various functions have been proposed in the literature. For



As part of the new deal, Lenovo will become the official PC partner of the NBA, and 

it will be marketing its NBA affiliation in the U.S. and in China. The laptop maker

has a similar marketing and technology partnership with the Olympic Games. It 

provided all the computers for the Winter Olympics in Turin, Italy, and will also 

provide equipment for the Summer Olympics in Beijing in 2008...  Lenovo

competes in a tough market against players such as Dell and Hewlett-Packard. The 

Chinese PC maker, which bought the PC division of IBM…Chinese PC maker, which bought the PC division of IBM…

(Excerpt from CNET news)
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Fig. 1. An example illustrating our problem. Individual matches (underlined
in the accompanying text) are shown as points whose x-coordinates corre-
spond to match locations and y-coordinates correspond to individual match
scores. Two matchsets (out of many other possible ones) are circled.
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Fig. 2. Two matchsets with different degrees of clusteredness but equal-size
enclosing windows.

example, Chakrabarti et al. [7] handle questions involving

one “type” term (such as “who” or “physicist”) and regular

keyword terms. They decay the score of a match for the type

term over its distance to the matches for other terms. Cheng

et al. [8] consider queries with a general mix of “entity”

types and regular keyword terms. Within a document, each

matchset is scored by the product of the individual match

scores, multiplied by a decreasing function of the length of

the smallest window containing all matches.

Much work has gone into demonstrating the potential

of combining individual match scores and proximity, and

studying what matchset scoring functions produce the most

meaningful answers. However, few have considered the effi-

ciency of finding the best matchsets. A naive algorithm for

finding the best matchset in a document would enumerate

the cross product of all lists, evaluate the matchset scoring

function for every possible matchset, and then return the one

with the highest matchset score. This approach can be quite

expensive. The number of matches per list could be substantial,

especially since we look beyond exact keyword matches and

include fuzzy matches. The size of the cross product could be

exponential in the number of terms in the query, with basis of

the exponent being the average size of the match lists; even a

few query terms can blow up the running time dramatically.

Contributions In this paper, we focus on developing effi-

cient algorithms for finding high-scoring matchsets under dif-

ferent scoring functions. Specifically, we make the following

contributions.

First, we formalize the weighted proximity best-join prob-

lem and consider three types of scoring functions, window-

length, distance-from-median, and maximize-over-location. In-

spired by the scoring function from [8], window-length scoring

functions incorporate proximity by decaying the matchset

score with the length of the smallest window enclosing all

matches in the matchset. While simple and intuitive, window

length alone is not always enough. For example, although

the second matchset in Figure 2 is intuitively much better

than the first one, the scoring function fails to distinguish

them because their smallest enclosing windows are of the

same length. The other two scoring functions we consider

overcome this limitation: distance-from-median has a form

that can better capture the notion of proximity; maximize-

over-location provides an even tighter coupling of proximity

and individual match scores.

Second, we propose algorithms for computing the overall

best matchset in a document under the three types of scoring

functions, exploiting their respective properties for efficiency.

Despite the flexibility in our scoring function definitions,

our algorithms maintain good performance guarantees (that

running time is linear in the total size of match lists), and

substantially outperform the naive algorithm based on cross

product. These strong performance results make the proposed

scoring functions and associated algorithms practical additions

to the information retrieval toolbox.

Finally, although for questions such as “who invented dental

floss,” finding one best matchset within each document is

sufficient, it is not enough for some applications. For instance,

returning to the example of Figure 1, we might want to

extract all good matchsets for the query from the document.

These include not only {“Lenovo,” “NBA,” “partner”}, but
also {“Lenovo,” “Olympic Games,” “partnership”}, etc. Such
a need for extracting all good matchsets often arise in in-

formation extraction applications. We consider an alternative

problem definition that finds all matchsets that are “locally”

best (with respect to different locations within the document),

which can be further filtered to return matchsets with good

enough scores. We show how to modify our algorithms to

accomplish this new task while maintaining their linear com-

plexities in terms of the total size of the match lists.

II. PRELIMINARIES

Definition 1. A query Q consists of a set of query terms

q1, q2, . . . , q|Q|. Given a document, for each query term qj , a

match list Lj is a list containing all matches for qj in the

document, where each match m has a location loc(m) ∈ N,

and a score score(m, qj) ∈ R. Matches in each list are sorted

in increasing order of their locations.

A matchset M for query Q consists of |Q| matches

m1, m2, . . . , m|Q|, where each mj is a match for query term

qj (i.e., mj ∈ Lj). A (matchset) scoring function computes

the score of matchset M with respect to query Q, denoted

score(M, Q), as a function over loc(mj) and score(mj , qj)
for all j ∈ [1, |Q|].

In this paper, we assume that match lists (and the individual

match scores) are given. In practice, depending on the system

and application scenario, match lists can be either computed

online, by scanning an input document and matching tokens



against query terms, or derived from precomputed inverted

lists.1 Typically, the match lists are sorted in the increasing

order of match locations; therefore, we only assume that they

can be accessed in a sequential fashion.

In Sections III–V, we present three types of matchset

scoring functions and associated algorithms for finding an

overall best matchset (with the highest score) for a query Q
from its match lists. The problem is formalized below.

Definition 2 (Overall-Best-Matchset Problem). Given query

Q and associated match lists L1, . . . , L|Q|, the overall-best-

matchset problem finds a matchset with highest score, i.e.,

argmaxM∈L1×L2×···×L|Q|
score(M, Q).

As briefly discussed in Section I, a naive solution to

the overall-best-matchset problem is to consider all possible

matchsets (i.e., the cross product of all match lists), compute

their scores, and pick one with the highest score. The time

complexity is Θ(|Q|
∏|Q|

j=1 |Lj |), which will be slow if there

are more than just a couple of terms or some large match lists.

Our goal is to develop better solutions whose complexities are

linear in the total size of all match lists.

Finally, as noted in Section I, different applications may

find variations and refinements of the overall-best-matchset

problem more appropriate for their needs. We discuss how to

extend our algorithm to handle these cases in Section VII.

III. WINDOW-LENGTH (WIN) SCORING

As discussed in Section I, a natural way of scoring a

matchset is to add or multiply the individual match scores

together, and then penalize the result score by the length of

the smallest window containing all matches in the matchset.

We formalize this type of scoring functions below.

Definition 3 (Window-Length (WIN) Scoring Function).

Given a query Q and a matchset M = {m1, . . . , m|Q|}, the
window-length (WIN) scoring function has the following form:

scoreWIN(M, Q)
def

=

f
(

∑

j

gj(score(mj , qj)), max
j

(loc(mj)) − min
j

(loc(mj))
)

,

where:

• gj (1 ≤ j ≤ |Q|) are monotonically increasing functions.

• f(x, y) : R
+ × R

+ → R is monotonically increasing in

x and monotonically decreasing in y; i.e.,

∀y :
`

x ≥ x
′´ →

`

f(x, y) ≥ f(x′
, y)

´

;

∀x :
`

y ≥ y
′
´

→
`

f(x, y) ≤ f(x, y
′)

´

.

• f satisfies the optimal substructure property; i.e., ∀δ ≥ 0,

f(x, y) ≥ f(x′
, y

′) → f(x + δ, y) ≥ f(x′ + δ, y
′);

f(x, y) ≥ f(x′
, y

′) → f(x, y + δ) ≥ f(x′
, y

′ + δ).

1Cheng et al. [8] propose precomputing inverted lists for entity types.
Alternatively, a match list for a general concept (e.g., “PC maker”) can be
obtained by merging inverted lists of specific terms (e.g., “Lenovo,” “Dell,”
etc.). Chakrabarti et al. [7] take a hybrid approach.

We have intentionally left functions f and gj’s as unspec-

ified as possible. Specific choices of f and gj’s depend on

the application, and are beyond the scope of this paper. To

help make the definition more concrete, however, consider the

following scoring function, which approximates the one used

by Cheng et al. [8] by replacing their empirically measured

distance-decay function with exponential decay (and ignoring

their order and adjacency constraints):
`

Y

j

score(mj , qj)
´

× e
−α(maxj(loc(mj))−minj(loc(mj)))

, (1)

where α > 0. Exponential decay is a common choice for

distance-decay functions (e.g., in TeXQuery [3] and Objec-

tRank [4]). The empirically measured distance-decay functions

in [7, 8], although somewhat jagged, also resemble exponential

decays. Clearly, (1) is a WIN scoring function, where gj(x) =
ln(x) is monotonically increasing and f(x, y) = exp(x−αy)
is monotonically increasing in x, monotonically decreasing in

y, and satisfies the optimal substructure property.

Algorithm We give an algorithm that works for any WIN

scoring function as long as f satisfies the properties prescribed

in Definition 3.

The algorithm is based on dynamic programming. It exam-

ines all match lists in parallel, processing matches one at a time

in the increasing order of their locations. Let m(i) denote the i-
th match examined by the algorithm, and let l(i) = loc(m(i)).
At l(i), the algorithm finds the best partial matchsets at l(i),
formally defined as follows.

Definition 4 (Partial Matchsets). A (partial) P -matchset at

location l, where P ⊆ Q and P 6= ∅, consists of |P | matches,
one for each query term in P , all located at or before l.
The (WIN) score of a P -matchset MP at location l, denoted
s(MP , l), is defined as:

f
“

X

mj∈MP

gj(score(mj , qj)), l − min
mj∈MP

(loc(mj))
”

. (2)

A best P -matchset at l is one that maximizes s(MP , l).

Note that an overall best matchset M must be a best Q-

matchset at the last location of matches in M . Therefore, to

find the an overall best matchset, the algorithm can find a best

Q-matchset at each possible match location, and return the

matchset with the highest score after processing all matches.

Now, at the i-th match m(i), how does the algorithm find

a best P -matchset at l(i)? We show that it can be computed

from the best partial matchsets at the previous match location,

l(i−1). Let q(i) be the search term that m(i) matches. The set

of all P -matchsets at l(i) can be divided into two groups: those

that contain m(i) and those that do not.

First, consider M1, the group of P -matchsets at l(i) that do
not contain m(i). We claim that a best P -matchset at l(i−1)

would also be best among M1 at l(i). The reason is that M1

is the same as the set of P -matchsets at l(i−1). Their partial

matchset scores are affected only by increasing l in (2) by

l(i) − l(i−1). By the optimal substructure property of f , a best

P -matchset at l(i−1) remains best among M1 at l(i).

Second, consider M2, the group of P -matchsets at l(i) that
contain m(i) (this group would be empty if q(i) 6∈ P ). In



Algorithm 1: Computing overall best matchset for WIN.

MaxJoinWIN(Q, L1, . . . , L|Q|) begin1

M ← ⊥; S ← ⊥; // M : overall best matchset found so far; S: its score2

foreach nonempty P ⊆ Q do3

MP ← ⊥;4

gΣ
P ← ⊥; lmin

P ← ⊥; // score components for incremental computation5

foreach match m ∈ L1 ∪ · · · ∪ L|Q| in location order do6

qj ← the query term that m matches;7

g ← gj(score(m, qj)); l ← loc(m);8

foreach nonempty P ⊆ Q in decreasing sizes do9

if {qj} = P then10

if MP = ⊥ or f(gΣ
P , l− lmin

P ) < f(g, 0) then11

MP = {m}; // found best single-term matchset at l12

gΣ
P ← g; lmin

P ← l;13

else if qj ∈ P then14

if MP\{qj} = ⊥ then continue;15

if MP = ⊥ or f(gΣ
P , l− lmin

P ) < f(gΣ
P\{qj} + g, l− lmin

P\{qj}) then16

MP = MP\{qj} ∪ {m}; // update best P -matchset at l to have m17

gΣ
P ← gΣ

P\{qj} + g; lmin
P ← lmin

P\{qj};18

if MQ 6= ⊥ and (M = ⊥ or S < f(gΣ
Q, l− lmin

Q )) then19

M ←MQ ; S ← f(gΣ
Q, l − lmin

Q );20

return (M, S);21

end22

this case, a best P -matchset in M2 at l(i) can be found by

adding m(i) to a best (P \ {q(i)})-matchset at l(i−1). This

claim can be proved by a simple “cut-and-paste” argument.

Consider any matchset M ∈ M2. Since there are no matches

within (l(i−1), l(i)), M \ {m(i)} is a (P \ {q(i)})-matchset at

l(i−1). Hence, s(M \ {m(i)}, l(i−1)) ≤ s(M ′, l(i−1)), where
M ′ is a best (P \ {q(i)})-matchset at l(i−1). By the optimal

substructure property of f ,
s(M \ {m(i)}, l(i−1)) ≤ s(M ′

, l
(i−1))

⇒ s(M \ {m(i)}, l(i)) ≤ s(M ′
, l

(i))

⇒ s(M, l
(i)) ≤ s(M ′ ∪ {m(i)}, l(i)).

Therefore, M ′ ∪ {m(i)} is a best P -matchset in M2 at l(i).

To summarize, then, we can compute M
(i)
P , a best P -

matchset at l(i), by the following recurrence: M
(i)
P =

8

<

:

M
(i−1)
P , if q

(i)
6∈ P or s(M

(i−1)
P

, l
(i)

) > s(M
(i−1)

P\{q(i)}
∪ {m

(i)
}, l

(i)
);

M
(i−1)

P\{q(i)}
∪ {m(i)} otherwise.

Algorithm 1 implements this recurrence with dynamic

programming. It remembers, for every nonempty subset of

query terms P ⊆ Q, a best P -matchset at the previous

match location. From these matchsets, best P -matchsets at the

current match location are calculated. The algorithm exploits

the structure of the WIN scoring function to incrementally

compute the scores.

Discussion The space complexity of Algorithm 1 is

O(|Q|2|Q|), because we must remember one best partial

matchset for each subset of the query terms. The running time

is O(2|Q|
∑

j |Lj |), because each match requires O(2|Q|) time

to compute the best partial matchsets. Although the complexity

is still exponential in the number of query terms, the base

of the exponent is small and constant. In contrast, the naive

solution based on cross product is also exponential in |Q|, but
has a much larger base, |Lj|, the number of matches.

IV. DISTANCE-FROM-MEDIAN (MED) SCORING

As discussed in Section I, one problem with WIN is

that window length alone cannot fully capture the degree

of clusteredness in a matchset. The distance-from-median

(MED) scoring function in this section addresses this problem.

Intuitively, MED penalizes the score contribution of each

individual match in the matchset by its distance from median

location in the matchset. The longer the distance, the larger the

penalty. In Figure 2, MED would score the second matchset

higher because most of its matches are clustered around the

median location. Formally, we define MED as follows.

Definition 5 (Distance-From-Median (MED) Scoring Func-

tion). Given a query Q and a matchset M = {m1, . . . , m|Q|},
let median(M) denote the median of M ’s match locations,

i.e., median(M)
def

= median{loc(m) | m ∈ M}.2 The

distance-from-median (MED) scoring function has the follow-

ing form: scoreMED(M, Q)
def

=

f
(

∑

j

(

gj(score(mj , qj)) − |loc(mj) − median(M)|
))

,

where f and gj (1 ≤ j ≤ |Q|) are monotonically increasing

functions. We call cj(mj , l)
def

= gj(score(mj , qj))−|loc(mj)−
l| the distance-decayed score contribution (or contribution for

short) of match mj at location l.

Again, we have intentionally kept the definition general

by leaving functions f and gj’s unspecified. As a concrete

example, consider the following scoring function:
Y

j

`

score(mj , qj) × e
−α|loc(mj)−median(M)|´

, (3)

This scoring function multiplies together the individual match

scores, and weighs each of them down by exponentially

decaying it with rate α > 0 over its distance to the median

location. It can be seen as a natural extension of the WIN

scoring function in (1) inspired by Cheng et al. [8]. It is

not difficult to see that the above scoring function is a MED

scoring function, with f(x) = eαx and gj(x) = ln(x)/α.

Overall Algorithm We present an algorithm that works for

any MED scoring function, provided that f is monotonically

increasing. The observation underpinning the algorithm is

stated in the lemma below.

Definition 6 (Dominating Match). Given two matches m and

m′ for the same query term, we say that m dominates m′ at
location l if the (distance-decayed score) contribution of m is

greater than or equal to that of m′ at location l.
A match m is dominating at location l (for its query term)

if, at l, m dominates all matches for its query term (i.e., m
maximizes the contribution at l).

Lemma 1. Suppose that for a match mj in a matchset M ,

there exists a match m′j for the same query term qj , such that

m′ dominates m at median(M), i.e., cj(m
′, median(M)) ≥

2We define the median of a multiset of size n to be the ⌊n+1
2

⌋-th ranked
element when the elements are ranked by value, with the 1st ranked element
having the greatest value.



cj(m, median(M)). Then the matchset M ′ = M \ {mj} ∪
{m′j} has the same or a higher MED score than M .

Upon closer examination, the validity of this lemma is

far from obvious. The criterion by which we replace mj

with m′j is defined with respect to median(M). However,

this replacement may shift the median from median(M)
to median(M ′), where the MED score of M ′ is defined.

Therefore, it remains unclear whether the replacement could

net a loss in MED score. A non-trivial proof of Lemma 1 is

presented in the appendix.

By Lemma 1, we can always find an overall best matchset

M , such that for each match mj ∈ M , mj is dominating

at median(M) for its query term. This observation leads

to a simple and elegant solution for finding an overall best

matchset. We examine each match (from all match lists) in turn

in location order. Suppose we are examining a match m for

query term q. We simply find, for each query term other than q,
a dominating match at loc(m). In case of ties (where multiple

matches achieve the same maximum contribution), we always

pick one that succeeds m in processing order, if such a match

exists.3 Then, we check if the matchset consisting of m and

the |Q|−1 dominating matches indeed has its median located

at m. If yes, we have found a candidate overall best matchset;

if its score is higher than the highest we have encountered, we

remember it as the overall best matchset found so far. Once we

finish processing all matches, we will have found an overall

best matchset.

Precomputation A naive implementation of the above algo-

rithm would be quadratic in the size of the match lists, because

at each match location we need to find dominating matches

at this location for other query terms. Using a linear-time

precomputation step, we can make it a constant-time operation

to find a dominating match for a given query term at a given

location. Intuitively, the precomputation step computes, for

each match list Lj , a dominating match function Uj , which

returns a dominating match in Lj at a given location.4 We also

define, for each match list Lj , the contribution upper envelope

Sj(l)
def
= maxm∈Lj

cj(m, l), i.e., the maximum contribution at

l, which is achieved by Uj(l). Figure 3 illustrates these two

concepts. Given the simple shape of the contribution upper

envelope Sj , we can record Uj simply by a list of dominating

matches, one for each local maximum of Sj .
5

The precomputation step works as follows. For each match

list Lj , we process it sequentially while maintaining a stack

of matches. To process a match m, we check whether m
dominates the match at the top of the stack at loc(m). If

not, we discard m and move on. Otherwise, we pop from

the stack any match m′ that is dominated by m at loc(m′),
until the stack is empty or we encounter an m′ not dominated

3To guarantee that the algorithm will find an overall best matchset, we need
to consistently favor picking a dominating match that succeeds (or precedes)
the current match, for every match considered. Interested readers may refer
to our technical report [21] for details.

4Ties are broken by returning the dominating match that comes last in Lj .
5Strictly speaking, the list corresponds to the local maxima of Sj plus the

tie-breaking dominating matches.
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Fig. 3. Dominating match function Uj and contribution upper envelope
Sj for match list Lj under MED. The contribution of a match m peaks at
loc(m) and drops off with a slope of −1 as we move away.

Algorithm 2: Computing overall best matchset for MED.

MaxJoinMED(Q, L1, . . . , L|Q|) begin1

M ← ⊥; S ← ⊥; // M : overall best matchset found so far; S: its score2

foreach query term qj ∈ Q do3

Vj ← PrecomputeDomMatchFunc(Lj, qj); vlast
j ← ⊥;4

foreach match m ∈ L1 ∪ · · · ∪ L|Q| in location order do5

foreach query term qj ∈ Q do // advance the Vj ’s to loc(m)6

while Vj 6= ⊥ and head(Vj) ≤ loc(m) do7

vlast
j ← head(Vj); Vj ← rest(Vj);8

Mc ← {m}; // candidate matchset to be constructed around m9

cr ← 0; // number of matches in Mc following m in location order10

foreach query term qj other than the one m matches do11

m1 ← vlast
j ; m2 ← head(Vj);12

if m2 6= ⊥ and (m1 = ⊥ or dominates(m2, m1, qj , loc(m))) then13

Mc ←Mc ∪ {m2}; cr ← cr + 1;14

else15

Mc ←Mc ∪ {m1};16

if cr + 1 = ⌊ |Q|+1
2 ⌋ then // Mc is a candidate overall best matchset17

if M = ⊥ or scoreMED(Mc, Q) > S then18

M ←Mc ; S ← scoreMED(Mc, Q);19

return (M, S);20

end21

dominates(m, m′, qj , l) begin22

return cj(m, l) ≥ cj(m
′, l);23

end24

PrecomputeDomMatchFunc(Lj , qj) begin25

S ← empty stack;26

foreach match m ∈ Lj in order do27

if ¬dominates(m, top(S), qj , loc(m)) then continue;28

while dominates(m, top(S), qj , loc(top(S))) do pop(S);29

push(S, m);30

return S;31

end32

by m at loc(m′); we then push m onto the stack. After we

finish processing Lj , the stack contains, from bottom to top,

the list of matches representing a dominating match function

Uj , ordered by location. Denote this list by Vj .

With the precomputed Vj ’s, the main algorithm is now able

to find a dominating match for a given query term and a given

location in constant time. Recall that the algorithm processes

matches in location order, so it also issues requests for

dominating matches in location order. Conveniently, matches

in Vj’s are ordered by location too, allowing us to service all

requests for dominating matches by scanning Vj’s in parallel

with the match lists. The dominating match in Vj for a

particular location can be found by comparing the contribution

from up to two matches in Vj located closest to the given

location (one to the left and one to the right). The detailed

algorithm (including the precomputation step) is presented in

Algorithm 2.

Discussion Because of the precomputed Vj ’s, the space

complexity of Algorithm 2 is O(
∑

j |Lj |), i.e., linear in



the size of the match lists. The precomputation step takes

O(
∑

j |Lj |) time, since each match at most can be pushed

once and popped once. After precomputation, the algorithm

takes O(|Q|
∑

j |Lj|), because each match requires us to

construct and check a matchset. Overall, the running time is

O(|Q|
∑

j |Lj|).

V. MAXIMIZE-OVER-LOCATION (MAX) SCORING

MED uses the median location in a matchset as a reference

point to compute the distance-decayed score contributions of

individual matches. Another natural choice for a reference

point would be the location where the total contribution is

maximized (which is often not the median location). The

following definition formalizes this type of scoring functions.

Definition 7 (Maximize-Over-Location (MAX) Scoring Func-

tion). Given a query Q and a matchset M = {m1, . . . , m|Q|},
the maximize-over-location (MAX) scoring function has the

following form: scoreMAX(M, Q)
def

=

max
l

f
(

∑

j

gj

(

score(mj , qj), |loc(mj) − l|
)

)

,

where f is a monotonically increasing function, and gj(x, y)
(1 ≤ j ≤ |Q|) are monotonically increasing in x

and monotonically decreasing in y. We call cj(mj , l)
def

=
gj

(

score(mj , qj), |loc(mj) − l|
)

the (distance-decayed score)

contribution of match mj at location l.

While MED chooses the reference point based purely on the

locations of matches, MAX bases this choice on both match

locations and scores, by maximizing the matchset score over

all possible reference point location l. Consequently, MAX

tends to choose reference points near high-scoring matches.

This choice captures the intuition that we want to “anchor” a

matchset around matches we are most confident about.

We give two specific examples of a MAX scoring function.

The first one is essentially a generalization of the MED scoring

function in (3):

max
l

Y

j

`

score(mj , qj) × e
−α|loc(mj)−l|´

, (4)

where α > 0. Casting it in the terms of Definition 7, f(x) =
ex, and gj(x, y) = ln(x) − αy.
The second example is a variation of the above, where

we add (instead of multiply) the distance-weighted individual

match scores together:

max
l

X

j

`

score(mj , qj) × e
−α|loc(mj )−l|´

, (5)

where α > 0. In the terms of Definition 7, f is the identity

function, and gj(x, y) = xe−αy for this scoring function. This

function generalizes the scoring function of Chakrabarti et

al. [7], which simply sets l to be the location of the match for

the single “type” term in their query. We also use exponential

decay to approximate their empirically measured distance-

decay function.

In the remainder of this section, we first outline an approach

for computing the overall best matchset that works for any f
and gj’s. However, for a complex MAX scoring function, this
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Fig. 4. Dominating match function Uj and contribution upper envelope Sj

for match list Lj under the MAX scoring function (5). The contribution of a
match m peaks at loc(m) and drops off exponentially as we move away.

approach has high computational complexity. Next, we give an

efficient algorithm targeting MAX scoring functions satisfying

certain properties. In fact, scoring functions in both (4) and (5)

are amenable to the efficient algorithm.

A General Approach Recall from Section IV the concepts

of dominance (Definition 6), dominating match function (Uj),

and contribution upper envelope (Sj). Their respective defini-

tions are identical in this setting, except that we use the defi-

nition of contribution in Definition 7 instead of Definition 5.

Specifically, Uj(l) = argmaxm∈Lj
gj(score(m, qj), |loc(m)−

l|), and Sj(l) = maxm∈Lj
gj(score(m, qj), |loc(m)−l|). Note

that MAX’s definition of contribution is more general than

MED’s. Figure 3 is still a good illustration of Uj and Sj for

the MAX scoring function (4) (in the case of α = 1). On the

other hand, the MAX scoring function (5) have very differently

shaped contribution upper envelopes, illustrated in Figure 4.

The approach is to first compute Uj and Sj for each query

term qj . Next, compute lMAX = arg maxl

∑

j Sj(l). Then,

the matchset {U1(lMAX), . . . , U|Q|(lMAX)} is an overall best

matchset, as the lemma below shows (see [21] for proof).

Lemma 2. {U1(lMAX), . . . , U|Q|(lMAX)} is an overall best

matchset under the MAX scoring function.

Although conceptually simple, the above approach can be

expensive for MAX scoring functions with complex gj’s.

In particular, even though the contributions monotonically

decrease with distance, the rate of decrease may still fluctuate,

resulting in a complex Uj . The complexity of Uj can be

measured by the number of interval-match pairs needed to

represent it, where in each pair (I, m), I is maximal interval

such that for every location l ∈ I , Uj(I) = m. If the

contribution curves for different matches in a match list

intersect each other many times, as illustrated in Figure 5,

the number of interval-match pairs can be arbitrarily large (up

to the number of all possible locations). Furthermore, the cost

of computing lMAX = arg maxl

∑

j Sj(l) is linear in the total

number of interval-match pairs for representing Uj’s. Next, we

describe a more efficient algorithm that specializes in MAX

scoring functions with certain properties.

An Efficient Specialized Algorithm We consider two prop-

erties of the MAX scoring function that enable an efficient

algorithm with complexity linear in the size of match lists.

Definition 8 (At-Most-One-Crossing and Maximized-At–

Match). A contribution function cj is at-most-one-crossing if

for any two matches m and m′ from a same match list Lj ,
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the difference between their contributions, cj(m, l)−cj(m
′, l),

changes sign at most once over all possible location l. A

MAX scoring function is at-most-one-crossing its associated

contribution functions are at-most-one-crossing.

A MAX scoring function is maximized-at-match if for any

matchset M = {m1, . . . , m|Q|}, there exists mk ∈ M such

that scoreMAX(M, Q) = f
(
∑

j cj(mj , loc(mk))
)

.

Intuitively, the at-most-one-crossing property ensures the

simplicity of dominating match functions—no two contribu-

tion curves can cross more than once. It is easy to see that the

number of interval-match pairs needed to represent Uj is no

more than |Lj|, the size of the corresponding match list.

The maximized-at-match property simplifies the job of

computing lMAX. With this property, the MED score of an

overall best matchset is achieved at one of its match loca-

tions. Furthermore, every match in this matchset must be a

dominating match at this location for the corresponding match

list (otherwise, replacing that match with a dominating match

would give a better matchset). Therefore, instead of solving a

function minimization problem over the domain of all possible

locations, we only need to look for lMAX among the locations

of dominating matches.

These properties are not selected arbitrarily; in fact, func-

tions (4) and (5) both have these properties (see [21] for proof).

Lemma 3. The MAX scoring functions in (4) and (5) satisfy

both at-most-one-crossing and maximized-at-match properties.

The algorithm starts with a precomputation step that com-

putes and remembers the list of dominating matches Vj for

each match list Lj , by sequentially processing Lj while

maintaining a stack. This step is identical to the precompu-

tation step of Algorithm 2, except that different contribution

functions are used in testing dominance.

Next, the algorithm proceeds through the dominating

matches in Vj’s in location order. At each match location

loc(m), we consider the matchset consisting of a set of

dominating matches (one from each Vj ) for this location.

Identification of the dominating match in Vj for a given

location is again similar to Algorithm 2. If the matchset has

a higher score than what we have previously encountered, we

remember the matchset as the overall best found so far. An

overall best matchset will be found once we finish processing

all matches in Vj’s.

Because of space constraints, the detailed algorithm is

presented in [21]. It reuses many components of Algorithm 2

(with different contribution functions). Similar to Algorithm 2,

the space complexity is O(
∑

j |Lj |) (due to precomputation),

and the overall running time is O(|Q|
∑

j |Lj|).

VI. AVOIDING DUPLICATE MATCHES

Thus far, to simplify discussion, we have not yet con-

sidered the possibility of duplicates across match lists. In

many applications, however, such duplicates can arise. For

example, consider the query {“asia,” “porcelain”}. A single

token “china” matches both query terms, and would appear

as a match in match lists for both “asia” and “porcelain.”

In any given context, however, “china” can take on only one

meaning and therefore should not match both simultaneously.

A better matchset for the query would come from “fine

ceramics from Jingdezhen,” where “ceramics” is a match for

“porcelain” and “Jingdezhen” is a match for “asia.” However,

our earlier problem formulations would have deemed {“china,”
“china”} a better matchset, because “china” matches “asia”

better than “Jingdezhen” does, and, more importantly, the

duplicate matches incur less distance-based penalty.

To avoid duplicate matches, we modify our definition of

the overall-best-matchset problem as follows. We say that

a matchset is valid if it contains no duplicate matches. We

then restrict the matchsets considered in Definition 2 to valid

matchsets only. The best-matchset-by-location problem can be

similarly modified.

We present a simple and generic method that avoids du-

plicate matches for the overall-best-matchset problem. It is

generic in that it works with any duplicate-unaware algorithm.

The basic idea is to first run the duplicate-unaware algorithm

to find an overall best matchset. If it happens to be duplicate-

free, we are done. Otherwise, based on the duplicates in it,

we create modified problem instances and rerun the duplicate-

unaware algorithm over them.

The method is best illustrated by a simple example. Suppose

the duplicate-unaware algorithmA returns a matchset in which

matches m1 and m2 are duplicated: m1 is used to match query

terms q11 and q12, while m2 is used to match q21, q22, and

q23. We rerun A on 2 × 3 = 6 modified problem instances.

Each instance is created from the original problem instance

by removing m1 and m2 from match lists—specifically, m1

from one of {L11, L12}, and m2 from two of {L21, L22, L23}.
Each instance corresponds to a different way of ensuring that

m1 can match at most one of {q11, q12} and that m2 can

match at most one of {q21, q22, q23}. If for any modified

instance, A still returns matchset with duplicates, the method

is recursively applied to that instance. Finally, the method

returns the best duplicate-free matchset found by A among

all modified problem instances. Details are presented in [21].

The complexity of this method depends how many times

it invokes A. In the worst case, we may need to consider all

modified instances in which some subset of the duplicates is

removed. In practice, however, the method is very efficient

on realistic inputs. Even if the input text contains many

ambiguous tokens that could be duplicated in a matchset, we

only need to run the duplicate-unaware algorithm once as long

as the best matchset identified has no duplicates. Our method



takes full advantage of the common cases where duplicates

are rare in best matchsets and simple to correct.

Algorithms with better worst-case bounds are possible, but

are beyond the scope of this paper; we refer interested readers

to our technical report [21] for additional details.

VII. RETURNING BEST MATCHSET BY LOCATION

As motivated in Section I, for some applications it is not

enough to find just one best matchset over the entire match

lists. We now discuss a problem formulation that allows

multiple matchsets to be returned. The intuition is that multiple

desirable matchsets may occur throughout the input sequence,

and each of them is “locally optimal.” This intuition leads

us to the following problem formulation, which returns best

matchsets by their “anchor” locations.

Definition 9 (Anchor of a Matchset). The anchor location

of a matchset M = {m1, . . . , m|Q|}, denoted anchor(M), is
defined as follows. For WIN, the anchor location is the largest

match location in M , i.e., anchor(M) = maxj loc(mj). For
MED, the anchor location is the median match location in

M , i.e., anchor(M) = median(M). For MAX, the anchor

location is the location where the score is maximized, i.e.,

anchor(M) = arg maxlf
“

X

j

gj

`

score(mj , qj), |loc(mj) − l|
´

”

(cf. Definition 7).

Definition 10 (Best-Matchset-by-Location Problem). Given

query Q and associated match lists, the best-matchset-

by-location problem finds, for each possible anchor loca-

tion l, a best matchset M anchored at l; i.e., M =
arg maxanchor(M)=lscore(M, Q).

For the WIN scoring function, Algorithm 1 requires only

minor modification to solve the above problem. Recall that

Algorithm 1 processes matches in location order. When pro-

cessing a match m(i) for query term q(i), we would identify

the matchset consisting of m(i) and the best (Q \ {q(i)})-
matchset as a candidate matchset anchored at loc(m(i)). As
soon as we finish processing all matches located at loc(m(i)),
we can return the best candidate matchset located at loc(m(i)).
The complexity of the algorithm remains O(2|Q|

∑

j |Lj|).
For MED, we cannot directly extend Algorithm 2 to find

best matchsets by location. While Lemma 1 ensures that an

overall best matchset contains only dominating matches at its

anchor, a subtlety is that a “locally best” matchset M with

a specific anchor may in fact contain some non-dominating

matches. Nonetheless, it can be shown that every match in

M must dominate, at anchor(M), all other matches for the

same query term located on the same side of anchor(M);
there are up to 2|Q|−2 such candidate matches (other than the

anchor). Thus, after the precomputation step, when considering

each match m, we switch to dynamic programming to choose

|Q| − 1 candidate matches—⌊ |Q|2 ⌋ to the left of loc(m) and

the rest to the right—that, together with m, form the best

matchset anchored at loc(m). The complexity of this algorithm

is O(|Q|2
∑

j |Lj|). See [21] for details.

Finally, for MAX, we can solve the best-matchset-by-

location problem by a simple modification to the algorithm

in Section V. After precomputation, instead of going through

only the dominating matches in Vj’s, we go through all match

locations in the match lists, and compute, for each location l,
the best matchset anchored at l, which consists of dominating

matches at l. The Vj ’s are still used to identify dominating

matches. The complexity remains O(|Q|
∑

j |Lj |).

A Note on Streaming A related issue is whether we can de-

velop streaming algorithms for the best-matchset-by-location

problem. A streaming algorithm would make a single pass

over all match lists in parallel, and return a best matchset for

an anchor location once it has been identified.

For WIN scoring functions, Algorithm 1, extended for

the best-matchset-by-location problem as described above, is

streaming. A result matchset is returned as soon as its last

match is processed. The space required by the algorithm is

independent of the size of the input match lists.

For MED and MAX, however, the problem is fundamentally

not amenable to good streaming solutions. The reason is that

in a matchset, the anchor location comes before the last match

location, and the two can be arbitrarily far apart. In general, we

cannot return any result matchset until we have seen the end of

a match list, because the very last match in the list, no matter

how far from the anchor, may have an individual match score

just high enough to make this match part of the best matchset

at the anchor.6 In practice, however, incompatibility of MED

and MAX with streaming is not an issue for our applications.

The input match lists (e.g., derived from a document) are

finite, so even if they can be accessed only once, we can

cache them for later access. By further exploiting properties of

the scoring function and assuming upper bounds on individual

match scores (e.g., if all of them are in (0, 1]), it should be

possible to develop less blocking algorithms that prune their

state more aggressively and return result matchsets earlier;

they are an interesting direction for future work.

VIII. EXPERIMENTS

We implemented all proposed algorithms (with the

duplicate-handling method in Section VI) in C++. We also im-

plemented three naive algorithms NWIN, NMED, and NMAX,

which exhaustively generate all possible matchsets and pick

the one with the highest score for WIN, MED, and MAX

scoring functions, respectively. Analytically, their time com-

plexities are Θ(|Q|
∏|Q|

j=1 |Lj |) (Section II).

We conduct all our experiments on a single-core 3.6GHz
desktop computer running CentOS 5 with 1GB memory. We

measure the wall-clock time of execution when the computer

is otherwise unloaded. We exclude the time to generate input

match lists, since it is common to all algorithms. The execu-

tion times are quite consistent. We repeated the experiments

6For this very reason, modified MED and MAX algorithms for the best-
matchset-by-location problem, as described earlier, still make two passes over
the input match lists.



10 times for a large number of data points and found the

coefficient of variation to be only 5.7% on average.7

We evaluate our algorithms on three datasets: One is syn-

thetic; the other two are from TREC (trec.nist.gov) and

DBWorld (www.cs.wisc.edu/dbworld).

Synthetic Dataset We use a synthetic dataset generator to

control various factors influencing the performance of our

algorithms. In particular, we consider: number of query terms,

total size of the match lists in a document, frequency of

duplicates (cf. Section VI),8 and skewness in the sizes of match

lists (or the relative popularities of query terms).

Given a match location, the generator determines τ , the

number of matches (across match lists) at this location, accord-

ing to an exponential distribution with density p(τ) ∝ λe−λτ

over the range of τ between 1 and the number of query terms.

Larger λ means a higher probability of picking a smaller τ ,
and therefore a lower frequency of duplicates.

The skewness in the sizes of the match lists are controlled

by a Zipf distribution f(k; s) ∝ 1
ks , which states that the

popularity of a query term is inversely proportional to its

popularity rank k (with the most popular one ranked first)

raised to power s. Increasing s leads to more skewness in

sizes of the match lists.

The experiments below are run on synthetic datasets each

consisting of 500 documents, with an average of 1000 words

each. By default, the number of query terms is set to be 4;
the total size of the match lists is set at 30 per document;

parameter λ is set to 2.0 (which translates to a little less than

24% duplicates); parameter s is set to 1.1. The locations of

matches are chosen at random. Individual match scores are

drawn uniformly randomly from (0, 1]. All documents are

relevant to the query and each algorithm is run on every

document. For each algorithm, we report the total execution

time over the entire set of 500 documents.

First, we vary the number of terms in a query from 2 to

7 (Figure 6). Note the performance gain by the proposed

algorithms over their naive counterparts. The combinatorial

explosion of possible matchsets in the naive algorithms’ search

spaces lends an argument to this difference. NMED fares

worse than NWIN because of median calculation. NMAX is

even slower, because it does not know the anchor of a matchset

a priori (any match location in the matchset can potentially

maximize the total contribution); hence, it needs to compute

the total contribution at every match location in the matchset.

Among the three proposed algorithms, WIN fares worse than

MED and MAX because of an additional 2|Q| term in its

running time. However, this difference is not huge, because

the number of query terms in practice are not large enough to

induce a significant difference.

7Only 4 out of the 36 data points we measured had a coefficient of variation
greater than 10%, and the worst was no more than 27.3%, not significant
enough to affect the conclusions of our experiments.

8A match in some match list is counted as a duplicate if its location is
identical to at least one match from another match list. We define the frequency
of duplicates to be the number of duplicates divided by the total size of the
match lists.

Next, we vary the total size of the match lists per documents

from 10 to 40 (Figure 7). As the number of matches increases,

there is an exponential growth in the execution times of the

naive algorithms. In contrast, our proposed algorithms hold

steadily close to the horizontal axis. It does not take very long

match lists to realize significant performance advantages.

In the third experiment, we vary λ in the exponential

distribution from 1.0 to 3.0 (Figures 8 and 9); accordingly,

the frequency of duplicates changes roughly from 60% to

10%. This decrease causes fewer repetitions of our duplicate-

unaware algorithms by our duplicate-handling method (cf.

Section VI). In Figure 8, we see that even with an unreal-

istically high frequency of duplicates (60%), the duplicate-

unaware algorithms repeat only between 10 to 12 times on

an average. Since each repetition is efficient, the few number

of repetitions imply that the total execution times of our

approaches remain significantly better than naive ones even

with a lot of duplicates, as Figure 9 shows.

Finally, we vary s in the Zipf distribution controlling the

skewness in the size of posting lists (Figure 10). As skewness

increases, the number of possible matchsets, which is the

product of the sizes of the match lists, decreases. Therefore,

performances of the naive algorithms improve. However, they

remain worse than our algorithms, catching up only when

s = 4. With such extreme skewness, all match lists are of

size 1 except one match list.

TREC 2006 QA Dataset Our second dataset comes from

the question answering task of TREC 2006 [1]. This task

specifies a set of questions which need to be answered from

a collection of documents. Since the focus of our paper is

on algorithmic efficiency, the primary goal of this experiment

is to compare and understand the execution times of various

algorithms on a real dataset. Previous work, such as [7, 8], has

already demonstrated the effectiveness of the approach when

combined with methods of producing high-quality match lists

and individual scores. For this experiment, we implemented

a simple matcher to identify and score individual matches.

Two terms are considered to be matching if their WordNet

(wordnet.princeton.edu) graph distance d (in number of

edges) is no more than 3; we score this match by (1−0.3d).9

We use the stem of a word as returned by a standard Porter’s

stemmer in all our string comparisons.

For this experiment, we consider only factoid queries in

the TREC task, which expect a fact (as opposed to a list of

facts) as an answer, e.g., Where was Shakespeare born? All

factoid queries in this TREC task can be converted to multi-

term queries. Because of our limited WordNet-based matcher,

we do not consider queries whose query or answer terms do

not appear in WordNet. For example, Coriolanus is not in

WordNet, so we have no hope of identifying it as a play (let

alone Shakespeare’s). The seven queries we selected, shown in

Figure 12, form a representative sample of queries that can be

9The detailed scoring functions we used for this experiment are as follows.
For WIN, gj(x) = x/0.3 and f(x, y) = x − y. For MED, gj(x) = x/0.3
and f(x) = x. For MAX, we use Eq. (5) with α = 0.1.
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Fig. 10. Execution times when increasing the
skewness in the popularities of query terms.
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Fig. 11. Execution times over the TREC dataset
for queries selected in Figure 12.

handled by WordNet. For each query q, we run all algorithms

over the 1000 short documents (averaging 450-500 words per

document) associated with q by TREC.10 The fourth column

of the table in Figure 12 shows the average sizes of q’s match

lists in a document, and the fifth column shows the average

number of duplicate matches per document.

The running times (over all 1000 documents) are shown

in Figure 11 for each query and each algorithm. Note the

bars corresponding to naive algorithms for Q1 and Q2 are

truncated because they are off-scale (one to two orders of

magnitudes worse than our algorithms). Also, note that for

queries with three terms or less, the scoring functions WIN

and MED are actually identical; in these cases, we simply

invoke MED instead of WIN. Therefore, bars for WIN are

omitted for Q3–Q7 in Figure 11.

Whenever there are several match lists of moderate sizes

(Q1, Q2), or one good-size match list with enough “support”

from other lists (Q5 and to a lesser extent Q7), we see

significant performance advantages of our algorithms. For Q3,

Q4, and Q6, the naive algorithms perform well, because there

is a large skew in the popularities of terms in these queries

(cf. Figure 12), dramatically decreasing the total number of

possible matchsets. This issue can be addressed by a simple

fix to our algorithms: If all match lists but one contain no

more than one match each, we switch to a naive algorithm. In

any case, the saving is small compared with the differences in

performance of harder queries.

As discussed earlier, we do not intend this experiment to

evaluate the quality of information retrieval; nonetheless, we

make some observations here. For each scoring function, we

rank the documents by their overall best matchset scores. The

10Queries in the QA task are divided into groups based on topic. For each
topic, the QA task organizers provided a set of 1000 articles selected based
on the questions in the topic (see [1] for details).

fifth column of the table in Figure 12 shows, for each of the

scoring function, the “answer rank,” which is the rank of a

document in which the best matchset found is the correct

answer. Number of documents tied for this rank are indicated

in brackets. There was only one document with rank 1 for all

the queries, except for WIN’s execution on Q2. From the table,

we see very reasonable results despite our simple matcher.

DBWorld CFPs For this experiment, we collected messages

posted through the DBWorld mailing list during June 24-

26, 2008. Out of the total of 38 messages, 25 were emails

announcing conferences, workshops, or other such meeting

events. We execute the query {conference|workshop, date,

place} on these 25 documents. By finding the overall best

matchset in each document,11 we hope to extract the date and

the location of the meeting being announced.

The table below summarizes the results of this experiment:

avg. match list sizes per doc # dups avg. running time (ms) per doc

conference|workshop date place per doc WIN MAX NWIN NMED NMAX

13.2 12.7 73.5 0 0.8 3.2 27.2 61.2 95.2

Note that the performance of MED is not shown because we

can use WIN instead for a query with only three terms (as in

the case of Q3–Q7 in the TREC experiment). The significant

performance advantages of our algorithms over the naive ones

can be explained by the large average match list sizes. It turns

11Our matcher for conference|workshop is based on WordNet, which allows
us to match synonyms such as symposium. We added an edge between
conference and workshop in WordNet. The term conference itself is scored 1,
while any term directly connected to conference in WordNet is scored 0.7.
For date, we use a simple matcher that looks for month names and numbers
between 1990 and 2010; identified matches are scored 1. For place, if a
term can be found in the GeoWorldMap database (www.geobytes.com), we
consider it a match with score 1. If GeoWorldMap does not have the term,
we check if the term is directly connected to place in WordNet; if yes, it
is considered a match with score 0.7. We added an edge between university

and place in WordNet to improve accuracy. The three scoring functions are
exactly the same as those used in the TREC experiment.



answer rank

ID factoid query query match list sizes # dups MED MAX WIN

Q1 Leaning Tower of Pisa began to be built in what year? Leaning Tower of Pisa, began, build, year (2.9, 0.2, 8.3, 3.7) 0.6 1 1 1

Q2 What school and in what year did Hugo Chavez graduate from? Chavez, graduate, school, year (6.7, 5.2, 4.3, 4.6) 2.7 2(3) 1 1(2)

Q3 In what city is the lebanese parliament located? Lebanese Parliament, in, city (0.1, 11.9, 4.1) 0 1 1 1

Q4 In what country was Stonehenge built? country, Stonehenge, in (11.4, 0.04, 11.5) 0.8 1 1 1

Q5 When did Prince Edward marry? Prince Edward, marry, date (3.4, 2.1, 18.2) 0.7 1 1 1

Q6 Where was Alfred Hitchcock born? Alfred Hitchcock, born, city (3.6, 0.1, 8.4) 0 2(2) 2(2) 2(2)

Q7 Where is the IMF headquartered? IMF, headquarters, city (7.5, 1.0, 2.4) 0.4 1 1 1

Fig. 12. Selected queries from the TREC QA dataset.

out that CFPs contain a huge number of places because they

often list PC members’ affiliations. CFPs contain many dates

as well, e.g., abstract submission and camera-ready deadlines.

Even with our simple matchers, we achieve reasonable

accuracy. For 18 out of the 25 messages, all three scoring

functions correctly identify the matchset containing the desired

information. In 6 out of the remaining 7 messages, WIN is able

to obtain a correct partial (two-term) matchset for the message.

Meanwhile, MED and MAX are able to do so in 5 out of the

remaining 7 messages.12

IX. RELATED WORK

Many IR researchers [11, 9, 19, 18, 5, 20] have argued that

integrating proximity into document scoring functions helps

improving retrieval effectiveness. They are mostly concerned

with scoring a document, whereas as we score matchsets.

Nevertheless, many parallels can be drawn in the choices

of scoring functions. In [11] and [9], the shortest interval

containing a matchset is used as a measure of proximity,

analogous to our WIN. In [18], an influence function assigns

each position within the document a value that decreases

with the distance to the nearest occurrence of a query term;

documents are scored by combining the influence function of

each query term, analogous to our MAX. Among other works,

[19] and [5] measure pair-wise proximity in neighboring

matches while [20] first groups nearby matches into a span

and then measures the contribution of these spans.

More closely related to our work are systems for semantic

search, information extraction, question answering, and entity

search, e.g., [6, 14, 7, 8]. The Binding Engine [6] supports

queries involving concepts, but depends heavily on matches

being very close to each other. Avatar [14] maps rule-based

annotators into database queries, and relies on the underlying

database engine to process proximity-aware rules. We have

discussed [7, 8] throughout the paper. Different from our

work, these papers do not focus on developing new, efficient

algorithms for processing match lists.

With the rise of semi-structured data and advances in infor-

mation extraction, integration of database and IR techniques

has attracted much attention [22]. One line of research in

this direction is ranked keyword search over data with struc-

tures [3, 4, 15, 12, 16, 10, 17]. Some elements of the scoring

12One might wonder if a heuristic that simply returns the first date
in a document would work in this setting, without involving proximity.
Unfortunately, it turns out that this heuristic works poorly, because the first
date can often be something else, e.g., a new submission deadline in a deadline
extension announcement (in fact, out of the 25 messages, 7 fall into this case,
and our algorithms still manage to find correct answers for 6 of them).

functions, such as how to decay scores over distance and how

to combine individual match scores, resemble ours. However,

our problem has inherently lower complexity, because our

matches are located on a line instead of a graph. Therefore,

we are able to develop much more efficient algorithms.

The best-overall-matchset problem can be regarded as a

multi-way join followed by max-aggregation. There has been

a lot of work on rank-aware query processing [13], including

top-k joins. While the top-k join problem in its most general

form subsumes ours, the assumptions commonly made by

works in this area do not hold in our setting, so the solutions

are not compatible. Specifically, they assume that the input

lists are sorted by scoring attributes, and that the join scoring

function is monotone in all its inputs. In our setting, however,

the input to a matchset scoring function includes both scores

and locations of individual matches. While the match lists are

sorted by location, and our scoring function is monotone with

respect to the proximity among locations, it is not monotone

with respect to locations themselves.

Finally, the best-matchset-by-location problem may look

similar to a join-aggregation problem in stream processing [2].

However, our problem is fundamentally different, because of

the absence of a window in the stream processing sense and, in

the case of MED and MAX the possibility of a “later” match

contributing to the “current” answer (Section VII). Even for

WIN, where we do have a streaming solution, the problem is

not a stream processing one because the window in our scoring

function is used to score matchsets, instead of restricting what

matches can join. One could conceivably solve the problem by

stream processing using a large enough window (and assuming

some upper bounds on individual scores), but the solution still

will not be as efficient as ours.

X. CONCLUSION

Inspired by applications in information retrieval and extrac-

tion, we have introduced the problem of weighted proximity

best-joins, where input items have weight and location at-

tributes, and the results are ranked by a scoring function that

combines individual weights and the proximity among joining

locations. We have considered three types of scoring functions

that cover a number of variations used in applications. By

exploiting properties of these scoring functions, we develop

fast algorithms with time complexities linear in the size of their

inputs. The efficiency of our algorithms, in both theory and

practice, make them effective tools in scaling up information

retrieval and extraction systems with sophisticated criteria for

ranking answers extracted from documents.
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APPENDIX

Proof of Lemma 1. Let l = loc(mj), l′ = loc(m′j),
g = score(mj , qj), and g′ = score(m′j , qj). It is given that

∆ = (g′ −
˛

˛l
′ − median(M)

˛

˛) − (g − |l − median(M)|) ≥ 0.

Our goal is to show scoreMED(M ′, Q) ≥ scoreMED(M, Q).
Since f is monotonically increasing, an equivalent goal is to

show ∆1 + ∆2 ≥ 0, where

∆1 = (g′ −
˛

˛l
′ − median(M ′)

˛

˛) − (g − |l − median(M)|);

∆2 =
X

i6=j

|loc(mi) − median(M)| −
X

i6=j

˛

˛loc(mi) − median(M ′)
˛

˛ .

Note that if median(M ′) = median(M), then ∆1 + ∆2 ≥ 0
obviously holds, because ∆1 ≥ 0 (which follows from

∆ ≥ 0) and ∆2 = 0.
Without loss of generality, let us assume that δ =

median(M ′) − median(M) > 0 (the case where δ < 0 is

symmetric). First, to derive ∆2, consider the matches M∩M ′.

We show that they can be partitioned into two disjoint sets:

• L, matches in M ∩ M ′ that are ranked (by location) at

or below the median rank (⌊ |Q|+1
2 ⌋) in M ; and

• R, matches in M ∩ M ′ that are ranked (by location) at

or above the median rank (⌊ |Q|+1
2 ⌋) in M ′.

We note that L and R are disjoint, because all match locations

in L are no greater than median(M), while all match locations

in R are no less than median(M ′). We also note that L∪R =
M ∩M ′; i.e., M ∩M ′ contains no match that is both ranked

above the median in M and ranked below the median in M ′.

If there is such a match, its rank would have changed by at

least 2. However, for any match in M ∩M ′, its rank can only

change by at most 1, because the removal of mj can only

move the match up by at most 1 while the addition of m′j can

only move the match down by at most 1.
For matches in L, their distance to median(M) is δ less than

their distance to median(M ′); for matches in R, their distance

to median(M) is δ more than their distance to median(M ′).
Hence, ∆2 = δ(|R| − |L|).
Now, what are the sizes of L and R? We claim that |R| −

|L| ≥ −1. The reason is as follows. First, consider L. There

are a total of |Q| − ⌊ |Q|+1
2 ⌋ + 1 matches in M ranked at or

below the median of M . One of them must be mj ; otherwise,

it is impossible for median to move right with the removal of

mj and the addition of any m′j . Hence, |L| = |Q| − ⌊ |Q|+1
2 ⌋.

Next, consider R. There are a total of ⌊ |Q|+1
2 ⌋ matches in

M ′ ranked at or above the median of M ′. One of them must

be m′j ; otherwise, it is impossible for median to move right

with the removal of any mj and the addition of m′j . Hence,

|R| = ⌊ |Q|+1
2 ⌋−1, and |R|− |L| = 2⌊ |Q|+1

2 ⌋− |Q|−1 ≥ −1.
Therefore, ∆2 = δ(|R| − |L|) ≥ −δ.
Finally, let us derive ∆1. As argued above, m′j must be

ranked at or above the median of M ′, so |l′−median(M)|−
|l′ − median(M ′)| = δ. Therefore, ∆1 = ∆ + |l′ −
median(M)| − |l′ − median(M ′)| = ∆ + δ ≥ δ. Combining

with the fact that ∆2 ≥ −δ, we have ∆1 + ∆2 ≥ 0.


