On the Provenance of Non-Answers to Queries over
Extracted Data ~

Jiansheng Huang, Ting Chen, AnHai Doan, and Jeffrey F. Naughton

University of Wisconsin at Madison, USA.
{jhuang, tchen, anhai, naughton}@cs.wisc.edu

ABSTRACT

In information extraction, uncertainty is ubiquitous. For
this reason, it is useful to provide users querying extracted
data with explanations for the answers they receive. Pro-
viding the provenance for tuples in a query result partially
addresses this problem, in that provenance can explain why
a tuple is in the result of a query. However, in some cases
explaining why a tuple is not in the result may be just as
helpful. In this work we focus on providing provenance-style
explanations for non-answers and develop a mechanism for
providing this new type of provenance. Our experience with
an information extraction prototype suggests that our ap-
proach can provide effective provenance information that
can help a user resolve their doubts over non-answers to a

query.

1. INTRODUCTION

Search engines can help a user answer a question by lo-
cating information sources based on keywords, but not by
answering the question directly. As a simple example, a
search engine can lead one to a page giving weather infor-
mation about a city, but cannot directly answer the ques-
tion “what is the average low temperature in Santa Bar-
bara in May?” Information extraction (IE) addresses this
issue by bridging the gap between structured queries and
unstructured data. A sample of systems supporting IE in-
clude GATE [1], MALLET [2], MinorThird [4], ExDB [10],
DBLife [19], SQOUT [24], Avatar [27], and IWP [33]. The
number of large-scale IE applications is growing. Unfortu-
nately, information extraction is still an imprecise art, and
errors invariably creep into the structured data that is ex-
tracted from the unstructured sources. Helping IE users and
developers detect and understand such errors is imperative.

Two common techniques advocated for managing such
errors are probabilistic databases [31] and provenance [9].

*Funded by National Science Foundation Award SCI-
0515491, NSF Career 11S-0347903, an Alfred Sloan fellow-
ship, and an IBM Faculty Award.

Permission to copy without fee all or part of this materiganted provided
that the copies are not made or distributed for direct corialeadvantage,
the VLDB copyright notice and the title of the publicatiortéts date appear,
and notice is given that copying is by permission of the Veayde Data
Base Endowment. To copy otherwise, or to republish, to postesvers
or to redistribute to lists, requires a fee and/or speciangsion from the
publisher, ACM.

VLDB ‘08, August 24-30, 2008, Auckland, New Zealand

Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0@/

For example, Avatar and ExDB use probabilistic databases,
while DBLife uses provenance, and Trio [34] aims to com-
bine both. While these techniques have been helpful, neither
completely solves the problems arising from errors in data
extraction. Using probabilistic databases is problematic in
situations where it is difficult to assign probabilities to the
data items. More importantly, while probabilities can help
answer questions about how confident one is about a tuple
in an answer to a query, they do nothing to explain why
a tuple is or is not an answer to a query. The provenance
work to date solves half of this problem, in that it can justify
why a tuple appears as an answer to a query, but it has no
mechanisms for explaining why another tuple is not in the
result.

The desire for an explanation of non-answers to queries
arises naturally when querying extracted data. For example,
a user of DBLife may be surprised to find out that the system
believes that person x was not on the program committee
of conference y. In fact x may have actually been on the
program committee of y, but this fact does not appear in
the extracted data, perhaps due to bugs in extractors, or
inaccuracies in sources, or incomplete coverage of sources.
In such a case, it is important to help developers debug the
system and to help users understand why they got the result
they did. If, on the other hand, the “fact” really shouldn’t
be in the result, it is important to explain to the user why
this is the case so that they can gain confidence in the non-
answer. In both cases, the provenance of non-answers can
help, and that is the focus of this paper.

At first thought, the “provenance of non-answers” may
seem like a silly idea, because the “non-answers” to a query
can be a large or even infinite set, and even for a single non-
answer, there may be a large number of possible reasons
why it is not an answer. However, in practice this does not
mean that no useful information can be returned to a user.
The basic idea underlying our work is to start with a given
query and data instance and to pose questions like “Could
this non-answer become an answer, and if so, how? That is,
what modifications to the existing database (for example,
tuple insertions or updates) would be required for the non-
answer to change to an answer?” In this paper, we propose a
mechanism for answering questions like this systematically.

One key idea in our approach is to allow proxy tuples
of variables to “stand in” for the potentially infinite set of
tuples that could be inserted in the database (this is remi-
niscent of the use of variables in a C-table [25]). With the
addition of these proxy tuples, and the consideration of mod-
ifications to existing tuples, it is possible to “derive” non-

answers, in that one can show that with certain modifica-
tions to the database a non-answer would become an answer.
Then, informally, we define the provenance of a non-answer
to be the set of tuples (including proxy tuples) from which
it could be potentially derived, possibly supplemented with
information about their contributing data sources. We can
compute this provenance by augmenting the database with
these proxy tuples and executing a “provenance query.”

The notion of proxy tuples and potential updates allows
us to consider large or infinite sets of non-answer tuples.
The next critical issue is how to prevent users from be-
ing swamped with too much information, as the provenance
of all non-answers that can be generated through arbitrary
updates is typically too large to be manageable. Our ap-
proach to mitigate this information overload is to provide
a focussing capability that limits the class of modifications
to the database that are considered when computing the
provenance of non-answers.

One class of restrictions on the set of updates considered
is integrity constraints. We do not have to consider po-
tential derivations that require updates that would violate
integrity constraints. While this is useful, another, perhaps
more useful class of restrictions deals with “trust.” That
is, often a user “trusts” some tables far more than others.
For example, it may be that some table has been loaded
from a trusted data source, while another is extracted by
a new, unproven extractor. In this case it may be helpful
to the user to see whether a non-answer might become an
answer if the trusted table remained as is and only the ta-
ble loaded by the unproven extractor were modified. The
same is true on an attribute basis — some attributes may
be trusted more than others. Also, even if no table and/or
attribute is trusted more than any other, the user or devel-
oper may be able to gain an insight by asking hypotheticals
such as “if I take this table to be correct, can you tell me if
a non-answer could become an answer by modifications to
this other table?” By varying which tables and attributes
are “trusted” the user can explore the space of provenance
for non-answers in a systematic way.

Our main contributions in this paper are the following: (1)
we propose a conceptual framework for provenance of non-
answers with the capability of exploiting both constraints
and user trust; (2) we provide an algorithm for computing
the provenance of a potential answer or of all potential an-
swers for a query in SQL; (3) we evaluate our techniques
with debugging scenarios in an information extraction pro-
totype.

In the rest of the paper, we start with a survey of re-
lated work in Section 2. We then cover our assumptions
and terminology in Section 3. In Section 4 we present our
framework and algorithm for computing the provenance of
non-answers. We evaluate our techniques in Section 5. In
Section 6 we wrap up the paper.

2. RELATED WORK

Information extraction from text has received much at-
tention in the database, AI, Web, and KDD communities
(for recent tutorials, see [15, 20, 28]). Research in this area
has addressed a wide range of topics, including improv-
ing extraction accuracy (e.g., with novel techniques such
as HMM and CRF [15]), minimizing extraction time [11,
26], extraction at the Web scale [10, 23], extraction over
template-based data (i.e., wrapper construction) [16], devel-

oping extraction architecture [14, 29], managing extraction
uncertainty [21], and developing declarative extraction lan-
guage [30]. Despite this broad range of topics, surprisingly
very little has been done on the problem of computing prove-
nance in the context of information extraction. As far as we
know, ours is the first work that examines the problem of
generating provenance-style explanations for non-answers in
information extraction.

There is a large and growing body of research dealing with
data provenance ([32] presents a recent survey.) Basic ideas
studied in practice include lazy evaluation of an “inverted”
query over what is in the database (e.g., [9, 17, 35]) and eager
propagation of provenance information (alternatively known
as annotations) during the evaluation of a query (e.g., [6,
12]). A general theory on provenance can be found in a
recent work on provenance semirings [22].

The semantics of a potential answer in our work is depen-
dent on future updates to a database and therefore is differ-
ent from the semantics of a possible answer in a ULDB [5],
where a possible answer is produced from a possible instance
that is stored in the database. Nor should a potential answer
be confused with a probabilistic answer in a probabilistic
database (e.g., [8]), where an answer is produced from prob-
abilistic data stored in the database.

The problem addressed here is also related to problems of
view updates [18], database repairs [13] and reverse query
processing [7]. Traditionally, the view update problem deals
with finding updates that are side-effect free and unambigu-
ous. The provenance of non-answers problem does not re-
quire such restrictions. Thus, we can report the provenance
of non-answers to queries that, when considered as views, are
not updateable. The database repair problem deals with a
problem orthogonal to ours in that it considers how to an-
swer queries over an inconsistent database, while our prob-
lem attempts to find updates to a consistent database (with
respect to integrity constraints) that changes a non-answer
to a query into an answer to the query. Reverse query pro-
cessing is related to our work in that both try to deduce
potential or possible database instances that could produce
a result tuple to a query, and both have considered integrity
constraints. The key difference between the two approaches
is that our work considers the current database instance
when computing hypothetical updates that could generate
answers, while reverse query processing generates a database
instance solely based on an intended result and a query.

3. PRELIMINARIES

In this work, we assume that we have an IE system that
stores extracted data in a collection of data tables in a re-
lational database. A table is called a trusted table if it is
assumed to be correct and complete, so we do not have
to consider updates or insertions to it when computing the
provenance of non-answers. An attribute is called a trusted
attribute if its values in existing tuples are correct and there-
fore updates to them can be ignored. (Note, however, that
new values can appear in trusted attributes when new tuples
are inserted.) A user can choose to trust tables or individual
attributes that appear in a database.

Since the tuples in the tables are generated by running
extractors over documents, it is useful to record, for each
tuple, the extractor and document that generated that tu-
ple. One way to do so would be to store this information in
the tuple itself. It is even more helpful if, in the context of

explaining the absence of information, we can decide, for a
hypothetical tuple, which data source and extractor would
generate that tuple if it did indeed exist. For some tasks
this is indeed possible (for example, if we know that official
information about a CS department must come from that
department’s web pages.)

In such cases, a system implementer may choose to main-
tain another internal table S;, which we call a data source
table, for each data table R; in order to keep track of data
source information including document locations (URLs)
and extractors. We emphasize that such data source tables
are optional in our work. Without them, our techniques can
still report what tuples must be added to or modified in the
database for a given non-answer to become an answer; we
just lose the ability to tie these data to specific data sources.
If a data source table exists for a data table, we assume that
the data source for each tuple in a data table is determined
through a foreign key (fk;) and primary key (pk;) relation-
ship between the data table (R;) and the data source table
(S;). In this case we call the foreign key or the primary
key the “data source key.” In this paper, we assume that
attributes in a data source key are always trusted.

Given our assumptions on trusted attributes and trusted
tables, our definitions will use an allowable update/insertion
to refer to an update/insertion that is applied to untrusted
tables and attributes, and that satisfies any given integrity
constraints.

In this paper a query is confined to an SPJ expression
with conjunctive predicates. Although our techniques can
be applied to more sophisticated SQL queries by looking
at their underlying SPJ expressions, in general more future
work is required to handle queries involving aggregates or
subqueries. Finally, for simplicity, we do not deal with gen-
eral satisfiability here and assume that a query is satisfiable
(that is, it does not contain unsatisfiable predicates like R.a
=2 AND R.a = 3).

Running Example

We now introduce a running example. Suppose an IE appli-
cation extracts ranking information for some CS PhD pro-
grams from the CRA ranking source, and job openings from
the department information sources of some schools. Fur-
thermore, suppose that openings is a table storing a school
name, the school state, and a field indicating whether or not
the school has a job opening. In this example we assume
that among these attributes, only the job-opening indicator
is extracted from data sources. The school name and state
are filled in from trusted sources. Also, ranking is another
table storing the rank for each school, and we assume that
both attributes of the ranking table are extracted. Table 1
and Table 2 are sample instances of openings and ranking.

Now suppose a student has a question about which schools
in the state of California are within the top 4 and have job
openings. The student can answer this question by issuing
the following query:

SELECT o.SCHOOL, r.RANK FROM openings o, ranking r
WHERE o.SCHOOL = r.SCHOOL AND o.STATE = ‘ca’ AND
0.0PENING = ‘yes’ AND r.RANK <= 4;

Given our example data, the query returns Stanford and
its rank in the result. Executing this query is much more
convenient than answering it by hand through consulting
the many relevant data sources. However, this convenience

SCHOOL STATE | OPENING SCHOOL RANK
stanford 1
stanford ca yes -
mit ma no mit 2
psen . - berkeley 3
P Y cmu 4

Table 1: openings Table 2: ranking

comes at the price of uncertainty in the query result. Look-
ing at the result, a user might start wondering: Why is
Berkeley not in the result? Is it because it is not one of the
top 47 Or is it because it does not have any job openings?
Or is Berkeley not in the state of California? With our ap-
proach to the provenance of non-answers, we can provide
the user with automated facilities to help answer this kind
of question.

For example, if a user wants to know why Berkeley is a
non-answer to the query, we will be able to report prove-
nance information that immediately clarifies the following:
(1) Berkeley is a potential answer; (2) Berkeley is ranked
No. 3; (3) if a potential tuple (berkeley, ca, yes) is inserted
into the openings table, Berkeley will become an answer
(4) the CS department homepage about jobs at Berkeley
and the job extractor pair can be looked into to see why
this potential tuple was not generated.

4. FROM ANSWERS TO NON-ANSWERS

In this section we present definitions for the provenance of
answers and non-answers. Non-answers are split into poten-
tial answers (those non-answers that could become answers
through some allowable modification of the database) and
never-answers (those non-answers that can never become
answers with allowed updates.) As we mentioned before, a
crucial usability problem is that we should provide a user
with focused provenance. We will show how to use con-
straints and user trust to achieve this purpose.

4.1 Defining Provenance

Given a database D and a relation R, in our definitions
we use R(D) to denote the current relation instance for R
in D.

4.1.1 Answers

For completeness, we begin by defining the provenance
of an answer — the provenance of an answer tuple is the
(multi-)set of tuples it is derived from, supplemented with
information about the data source for each tuple. In the fol-
lowing, by “derivation” of a tuple, we mean a set of database
tuples and how they are used in the evaluation of a query
to produce an answer.

DEFINITION 1. Let Q be a query that mentions R, ...,
R, and D be the current database. If ¢ is an answer to @,
then there exists at least one derivation of ¢ in the database
D. Let t; € Ri(D) (1 <4 < n) stand for a set of base tuples
that yield a derivation of t. The provenance of t consists
of t; (and s; if R;’s data source table S; exists, where s; €
Si and si.pki = t;.fk;) for all ¢ over 1 < ¢ < n, for any
derivation of t. OJ

4.1.2 Potential Answers

‘We now look at non-answers that could become answers.
We will define such non-answers as potential answers. Our

definition will consider two types of updates: (1) insertion
of a new tuple into a base relation, (2) modification of an at-
tribute value in a tuple of a base relation. Deletions are not
considered because they would not help produce a potential
answer for SPJ queries. Our intuition is that a potential an-
swer should be able to become an answer with a sequence of
type-1 and type-2 updates. If there are no allowable type-1
and type-2 updates that could turn a non-answer into an an-
swer, then the non-answer is a never-answer. The following
is our definition for a potential answer and the provenance
of a potential answer. In the definition, a potential database
D’ means a database that can be resulted from a sequence
of type-1 and type-2 updates to the current database D, and

null; stands for the null proxy tuple for R; where every at-
tribute has a null value that can be thought of as a variable
that appears only once in the DB.

DEFINITION 2. Let Q be a query that mentions R, ...,
R, and D be the current database that satisfies the con-
straints. Let ¢t be a non-answer to Q over D. t is a potential
answer if there exists a sequence of allowable type-1 and
type-2 updates to D that yields a potential database D’
that satisfies the constraints, over which ¢ is an answer to
Q.
If ¢ is a potential answer, there exists at least one deriva-
tion for ¢ in a potential database D’. Let t; € R;(D’)
(1 <14 < n) be a set of base tuples that yield a deriva-
tion of ¢ and let ¢; € Ri(D) (1 < ¢ < m) be the original
tuples in D that have been updated to t; (1 < i < n)._>1n

particular, if ¢; is an inserted tuple, then we set t; = null;.
The provenance of t consists of t; and ¢} (and s; if R;’s data
source table S; exists, where s; € S; and s;.pk; = tg.fki)7
for all ¢ over 1 < i < n, for any potential derivation of ¢. O

The following is an example of a potential answer and the
provenance of the potential answer.

EXAMPLE 1. (berkeley, 3) is a non-answer to the query
in our running example, but there exists an insertion of
openings’ (berkeley, ca, yes) which, together with the exist-
ing tuple ranking(berkeley, 3), yields a derivation of (berke-
ley, 3). Therefore (berkeley, 3) is potential answer; its prove-
nance includes openings(null, null, null), openings’ (berkeley,
ca, yes), ranking(berkeley, 3).

If there are no data source tables, then a user gets prove-
nance in the form of t; and ¢} tuples, which tell the user that
for their non-answer to be an answer, t; would have to be
modified to be t; (if ¢; is an all-null proxy tuple, this means
a new tuple ¢; would have to be inserted.) This may already
be useful to a user. If a data source table is available, we
can give even more information, and can tie things back to
the extraction itself. In such a case the user can determine
that for their non-answer to be an answer, ¢; would have to
be modified to be t;, and (s;.url, s;.extractor) would have
had to create this new t;.

As we mentioned earlier, given a potential answer, if we
do not consider trust in or other constraints on allowable
updates, then we have the problem that any combination of
base tuples from the relations referenced by the query can
be modified and yield a potential derivation for the potential
answer. Let us look at an example.

EXAMPLE 2. The previous example shows that (berke-
ley, 3) is a potential answer to the example query. Without

Satisfy constraints || No updates

Untrusted Trusted
e— T a7 query No z
valid upd{tes same
| query
‘l 52 1) z

x" and y yield a potential derivation for z,
z is a potential answer,
(x,y) and (x’, y) are part of the provenance of z.

Figure 1: How trust and constraints restrict a po-
tential derivation for a non-answer.

trust in or constraints on the data, we claim that any com-
bination of tuples from the openings and ranking tables
can be updated and yield a potential derivation for (berke-
ley, 3). Take openings(mit, ma, no) and ranking(mit, 2)
as an example. A type-2 update can change openings(mit,
ma, no) into openings’(berkeley, ca, yes) and another type-2
update can change ranking(mit, 2) into ranking’(berkeley,
3). The updated tuples yield a derivation for (berkeley, 3).
Obviously this applies to other combinations of tuples as
well.

Another issue is that without considering trust in or con-
straints on data, many potential answers exist that will make
little sense.

EXAMPLE 8. (cmu, 4) is a non-answer to the query in
our running example. But there exists an update from
openings(cmu, pa, yes) to openings’(cmu, ca, yes) which,
together with the tuple ranking(cmu, 4), yields a derivation
for (cmu, 4). Therefore (cmu, 4) is potential answer, which
will surprise those who know that CMU is not in California.

Such a problem can be avoided by using trust and con-
straints (Figure 1). Regarding trust, if a table is trusted
to be complete, then no type-1 updates to the table are al-
lowed. (Otherwise we say that a table is appendable.) If a
table is trusted to be correct, no type-2 updates to the table
are allowed. Similarly, if an attribute of a table is trusted to
be correct, no type-2 updates to the attribute are allowed.
With trust, a non-answer is a potential answer if there exist
type-1 and type-2 updates to untrusted data that yield a
potential derivation of the non-answer.

The following is an example of avoiding the problems ear-
lier by using trust in data.

EXAMPLE . If the school attribute and the state at-
tribute of the openings table are trusted, then openings(mit,
ma, no) and ranking(mit, 2) cannot be updated to yield a
potential derivation for (berkeley, 3). If we also trust the
completeness of the openings table, then (cmu, 4) is not
a potential answer because the state for “cmu” cannot be
changed to “ca”.

4.1.3 Never-Answers

A never-answer to a query is a non-answer that can never
become an answer in any potential database given the con-
straints on and trust in the data.

EXAMPLE 5. If we trust the ranking table, (edgewood,
1) is a never-answer. This is because no updates to the
openings table can yield a potential derivation for (edge-
wood, 1), given that the ranking table is trusted.

4.2 Computing Provenance

The previous section has defined a semantics for the prove-
nance of non-answers. In this section we consider the prob-
lem of computing the provenance of potential answers to
a given SQL query. Our goal here is to use SQL for this
computation, so that this computation can be supported by
commercial RDBMS without modification. We begin with
computing the provenance of answers.

4.2.1 Answers

By definition, the base tuples that yield a derivation of
an answer must appear in the database. Furthermore, if
available, the data source information for each base tuple
can be added by joining to the corresponding data source
table through the data source key. We can compute the
provenance of answers to () by generating a query from Q
as in the following: (1) for 1 < i < n, if S; exists, add S; to
the list of tables in Q; (2) for 1 <14 < n, if S; exists, add a
join between R; and S; on R;.fk; = S;.pk;, (3) for each R;,
project out its attributes and for each S;, project out the
url, extractor attributes.

In this provenance query, base tuples that can yield a
derivation are reported in one horizontal “provenance tu-
ple”. If desired, this horizontal tuple could be “split out”
into its constituent base tuples by simple post-processing.

4.2.2 Potential Answers

The base tuples that can be updated to yield a poten-
tial derivation for a potential answer must either appear in
the database or be null proxy tuples. Also, the values of
trusted attributes in each base tuple must satisfy the se-
lection predicates (from the user query) on the attributes
unless the tuple is a null proxy tuple; and the values of two
trusted attributes from two base tuples must satisfy any join
predicates on the attributes unless one of them is a null from
a null proxy tuple. The predicates considered here include
those that are implicit from transitive rules.

With the above idea, we have designed Algorithm 2 (listed
in the Appendix) for computing the provenance of potential
answers. It consists of the following basic steps:

1. complete the user query with predicates implicit from
constraints and transitivity rules;

2. build the return attributes for the provenance querys;

3. build predicates for the provenance query by retaining
all predicates on trusted tables or trusted attributes;

4. if a data source table is available, generate trusted join
predicates on data source keys for determining data
sources of base tuples returned from the provenance
query;

5. augment untrusted tables with null proxy tuples and
evaluate the provenance query by applying the trusted
predicates to tables mentioned in the user query and
their corresponding data source tables.

Trust and Constraints | Join between R; and R
None R1 x (Rz U {null2})
Trust Rs.ca (Rl X RQ) U (Rl X {mg})
Trust Ra.co &
Rs.c2 unique
Trust Ro.co &
R2’s completeness

R left outer join Ra

R1 X Ry

Table 3: Trust options and constraints on an at-
tribute c2 of an untrusted table R that joins with
an attribute c; of a trusted table R; and their impact
on the join expression between R; and R: for com-
puting the provenance of potential answers. Here
R:1 X Rz means a cross product between R; and R,
R1 X Ry means a natural join between R; and Rs.

The algorithm considers domain constraints, unique con-
straints (including keys and unique indexes), and foreign key
constraints that reference data source tables.

We now elaborate on how we build the return attributes
for a provenance query. In addition to projecting out at-
tributes of R;’s and S;’s, we project out attributes that rep-
resent a potential tuple for a given untrusted table R;. If
an untrusted attribute of a potential tuple for R; is equiva-
lent to a constant or a trusted attribute based on predicates
in a user query, we project out the equivalent constant or
the trusted attribute in the place of the untrusted attribute;
Otherwise we project out a variable symbol with the mean-
ing that the attribute cannot be uniquely determined for
each return tuple of the provenance query. An attribute of
a potential tuple is placed to the right side of the corre-
sponding attribute of a base tuple separated by an arrow
(e.g., v — v’ — this arrow is a syntactic sugar to indicate
that v must be changed to v’ for a potential derivation).

A variable for an untrusted attribute in our report means
that its value can be anything that satisfies query or con-
straint predicates (e.g., a range predicate), but cannot be
uniquely determined for each return tuple. For simplicity,
we do not report such predicates along with a variable for
our discussions in this paper, although it is fairly straight-
forward to have them reported if so desired.

‘We now elaborate on how trust and constraints impact the
type of join between two tables for computing the prove-
nance of potential answers. As we will show in our ex-
perimental evaluation, the type of a join used in a prove-
nance query between two tables will affect the number of
provenance tuples returned in a significant way. The trust
and constraints we consider here include trusted attributes,
trusted completeness of a table, and unique constraints (in-
cluding keys and unique indexes).

Let us assume that we have an equi-join predicate between
an attribute c; of a trusted table R; and an attribute ¢ of
an untrusted table Rs. There are four possible types of
joins between R; and Rz for computing the provenance of
potential answers depending on what trust and constraints
we have on cz of Rs:

e If there is no trust in R2.c2, then a value of Rz.ce in
any existing tuple of Ry can be potentially updated to
join with any tuple of R;. Furthermore, a new tuple
can also be inserted into Rz to join with any tuple of
R;i. This effectively means a cross product between R

o.SCHOOL 0.STATE | o.0OPENING os.URL

os.EXTRACTOR | r.SCHOOL | r.RANK rs.URL

null—berkeley | null—ca | null—yes | http://cs.berkeley...

job-extractor | berkeley 3 http://cra.org...

Table 4: Provenance of an example non-answer:

and Ry U {mz} for the provenance query. The algo-
rithm generates a cross product between two tables by
ignoring a join predicate that references at least one
untrusted attribute.

o If Ro.co is trusted, then any existing tuple of Ra ei-
ther joins with some tuple in R; or will never be able
join with anything in R; (notice that Ri.c: is trusted).
But a new tuple inserted into Rz may be able to join
with any tuple of R;. In this case, we want a natural
join between R; and R2 unioned with a cross product

—
between Ry and {null2} for the provenance query. To
achieve this, the algorithm preserves the join predicate
between R; and Rz and creates a disjunction between

the join predicate and a new predicate Ra.x = nulls
(R2.x represents all attributes of Ra).

o If Rs.co is trusted and unique, then any tuple in R:
that already joins with an existing tuple in R2 will not
be able to join with any tuple inserted in the future
to R2. However, a tuple in R; that does not join with
any existing tuple in Rz will be able to join with a
potential tuple inserted into R2. This is effectively a
left outer join between R; and Rs. For this case, the
algorithm specifies a left outer join clause between R
and Rs.

e Lastly, if R2.c2 is trusted and R2’s completeness is also
trusted, then any potential derivation of a potential
answer has to satisfy the natural join between R; and
Rs. The algorithm achieves this by preserving a join
predicate on attributes that are both trusted.

The range of trust and constraint options and their im-
pact on the join expression between R; and Ra for com-
puting potential answers is summarized in Table 3. Similar
conclusions can be reached if we remove the assumptions on
R1 because R; and R2 are symmetric.

Our algorithm can either compute the provenance of a
potential answer (if one is specified) or the provenance of all
potential answers (if one is not.) To compute the provenance
of a potential answer, we pass in an array of attribute value
pairs specifying the potential answer.

4.2.3 An Example

We illustrate the algorithm with our running example by
computing the provenance of a potential answer (berkeley,
3) to our example query. We now add two data source tables:
openings_sources (school,state,url,extractor), which
stores one source for each school in the openings table; and
ranking source (url,extractor), which stores a ranking
source for the ranking table. The openings table has a
foreign key on the school and state attributes that references
openings_sources’s primary key on the same attributes.

The school name and state attributes of the openings
table are part of the data source key, and are trusted by
assumption. But we do not trust the opening attribute. For
this example, we assume that we trust ranking and that

(berkeley, 3)

there is a unique constraint on the school name attribute of
the openings table.

To compute the provenance of (berkeley, 3), Algorithm 2
appends the predicate for specifying (berkeley, 3) to the
query and builds up a provenance query (shown below). Be-
cause there is a join predicate between the openings table
and the ranking table and a unique constraint on the school
name attribute of the openings table (the left table in the
query), Subroutine 1 specifies a right outer join between
openings and ranking in the provenance query.

SELECT o.SCHOOL || ‘->’|| ‘berkeley’,
o0.STATE ||‘->’||‘ca’, o.0PENING |[|‘->’]||‘yes’,
os.URL, os.EXTRACTOR, /*from trusted tablesx*/
r.SCHOOL, r.RANK, /* from trusted tables*/
rs.URL, rs.EXTRACTOR /*from trusted tables*/
FROM openings o RIGHT OUTER JOIN ranking r
ON o.SCHOOL = r.SCHOOL,
openings_sources os, ranking_source rs
WHERE r.RANK <= 4 AND r.RANK = 3 AND
os.SCHOOL = r.SCHOOL AND
0s.SCHOOL = ‘berkeley’ AND os.STATE = ‘ca’;

The query produces a provenance tuple similar to the one
in Table 4. The provenance explains that Berkeley is not an
answer because there is no tuple in openings in the current
database that joins with ranking(berkeley,3), but it is a po-
tential answer in that if a new tuple openings’(berkeley, ca,
yes) is inserted, then it would join with ranking(berkeley,3)
to yield a derivation for (berkeley,3). If the data source table
is available, furthermore the user can look into the associ-
ated data source and extractor to try to determine why the
tuple openings’ (berkeley, ca, yes) was not generated in the
extraction process.

4.2.4 Never-Answers

Our algorithm can detect if a non-answer is a never-answer.
If a non-answer is a potential answer, the algorithm will re-
turn a non-empty provenance report for it. Therefore if the
algorithm returns an empty provenance report for a non-
answer, it must be a never-answer. Constraints, trusted
data, and the query specification can be examined to under-
stand why a non-answer is a never-answer to a query.

EXAMPLE 6. If we use our algorithm to compute the
provenance of MIT), it will return an empty result. Therefore
MIT is a never-answer. By examining the constraints, we
find that the openings table has a foreign key on the school
and state attributes that references openings_sources’s pri-
mary key on the same attributes. This means that the school
and state attributes of the openings table are trusted by our
assumption, so we could never see a tuple with MIT in CA.

4.3 Example: Anatomy of Potential Answers

Our techniques not only help explaining a specific poten-
tial answer, but also help figuring out all potential answers.
Table 5 shows the provenance of all potential answers that
can be reported by our techniques for the example query and
data set. We begin by explaining some aspects of Table 5.

| 0.SCHOOL [STATE [OPENING [r.SCHOOL [RANK | [0.SCHOOL | STATE | OPENING [r.SCHOOL | RANK |
[stanford | ca [yes | stanford | 1 | [stanford | ca [yes [stanford | 1 |
(stanford ca yes)? stanford 1 [(berkeley | ca [yes)? [berkeley | 3 |
(berkeley ca yes)? berkeley 3 X ca yes)? X Y)?
stanford ca yes mit —s... 2—Y (berkeley ca yes)? berkeley 3—=Y
stanford ca yes ber... —s... 3—-Y
stanford ca yes cmu—s... 4—-Y Table 6: Provenance of answers and poten-
stanford ca yes (stanford Y)? tial answers when there are unique constraints
(X ca yes)? (X Y)? on both openings.SCHOOL and ranking.SCHOOL and
(X ca yes)? s..—X 1—Y ranking.SCHOOL is trusted. The groups from top to
(X ca yes)? mit— X 2.y bottom: (1) answers, (2) potential answers when a
(X ca yes)? ber...—X 3.Y user trusts ranking, (3) potential answers when a
(X ca yes)? emu — X 4-Y user trusts neither table.

Table 5: Provenance of answers and potential an-
swers. The groups from top to bottom: (1) answers,
(2) potential answers when a user trusts ranking, (3)
potential answers when a user trusts openings or nei-
ther table, (4) additional potential answers when a
user trusts neither table. Answer attributes are in
bold font.

For clarity, we use the convention that all variables start
with capital letters and all constants use either numbers or
lower-case letters. To keep the table compact, we have omit-
ted the data source information and also used “(A | B)?” in
place of “null—A, null—B” to indicate a potential tuple to
be inserted. Here A or B can be constants or variables.

Let us look at some examples. The first row in the table
(stanford, ca, yes, stanford, 1) represents the answer (stan-
ford, 1). The second row ((stanford, ca, yes)?, stanford, 1)
represents a potential answer (stanford, 1) that would be-
come an answer if a potential tuple openings’ (stanford, ca,
yes) were inserted into the database. This simply means that
if the data were modified, there would be alternate deriva-
tions of (stanford, 1) as an answer. In other words, the fact
that something is an answer does not preclude it from being
a potential answer as well. The fourth row (stanford, ca,
yes, mit — stanford, 2 — Y') represents a potential answer
(stanford, Y') that would become an answer if ranking(mit,
2) were updated to ranking’(stanford, Y) for some Y < 4.
The eighth row ((X, ca, yes)?, (X, Y)?) represents a po-
tential answer (X,Y") for some school X and rank Y, which
would become an answer if a potential tuple openings’ (X,
ca, yes) were inserted and a potential tuple ranking’ (X, Y)
were inserted for some Y < 4.

In the absence of any specified trust, more potential an-
swers appear in the third and fourth groups. The third
group shows that only Stanford is in a potential answer.
The fourth group shows five potential answers that depend
on a potential tuple being inserted into the openings ta-
ble. Given that there is a foreign key constraint on the
openings.SCHOOL and openings.STATE attributes that ref-
erences the openings_sources table, we can find out what
schools are located in CA by querying the openings_sources
table, which contains all the possible values of X in those
potential answers. By querying the openings_sources ta-
ble, we see that Berkeley is located in CA, and therefore
can appear in a potential answer. As a different example,
we can also learn that MIT is not located in CA, and there-
fore cannot be a value for X. So, MIT cannot appear in a
potential answer.

We now show how trust and constraints help reduce the
number of potential answers. If we trust ranking.SCHOOL,
and there is a unique constraint on both openings.SCHOOL
and ranking.SCHOOL, then many provenance tuples in Ta-
ble 5 will be eliminated. For example, the previous prove-
nance tuple (stanford, ca, yes, mit, 2) will not be returned
because ranking(mit, 2) is not allowed to be updated to
ranking’(stanford, Y), given that ranking.SCHOOL is trusted.
As another example, the previous provenance tuple ((stan-
ford, ca, yes)?, stanford, 1) will not be returned because
the expected new tuple openings’(stanford, ca, yes) would
violate the unique constraint on the openings.SCHOOL at-
tribute. With these trust and constraints, the provenance
of potential answers are shown in Table 6, which is much
smaller than Table 5.

5. AN EXPERIMENT

To gain an experience in the application of our techniques,
we applied them in some debugging scenarios in an infor-
mation extraction prototype. Our experiment focuses on
demonstrating the utility of the provenance of a specific
non-answer as well as the effect of trust and constraints on
the size of the reported provenance. We then scale up the
database size and evaluate the performance of provenance
queries in comparison to a user query. We also report the
number of provenance tuples in the scaled-up database to
give some idea about how manageable the provenance of
non-answers will be in a larger database.

5.1 Usage Scenarios

We started out by implementing a prototype for extract-
ing ranks of the top 100 some CS programs from a web
ranking document provided by the Computer Research As-
sociation [3] and job openings from the web documents of the
CS departments. We then used the prototype to fetch web
documents into our database repository and extract struc-
tures from those fetched documents to generate a data set.

Our database consists of four tables, which are similar
to the tables in our running example: openings, ranking,
openings_sources, ranking source. The only difference is
that we have a data set that is extracted from web docu-
ments fetched from the Web. Over this extracted data set,
we can now ask “what schools in California are within the
top 25 and have job openings” with the following query:

SELECT o.SCHOOL FROM openings o, ranking r
WHERE o.STATE = ‘ca’ AND o.0PENING = ‘yes’ AND
0.SCHOOL = r.SCHOOL AND r.RANK <= 25;

Given the extracted data set, the query returns: Stan-
ford, Berkeley, Caltech, UCLA, USC. We now demonstrate
how our provenance techniques perform in helping us ex-
plain non-answers. We use the following question scenarios.

e Why is UC San Diego (UCSD) not an answer?

e What are all potential answers?

Before we start, let us clarify some assumptions here. The
school name and state attributes of the openings table form
a foreign key that references the primary key consisting of
the same attributes in openings_sources. The school name
and state attributes are part of the data source key, and they
are trusted attributes. We do not need a similar data source
key for the ranking table since there is only one source in
ranking source. For this experiment, we assume that the
completeness of openings is trusted.

We now examine why UCSD is not an answer. Our tech-
niques generate the following provenance query for UCSD.
This provenance query has a cross product between openings
and ranking.

SELECT o.SCHOOL, o.STATE, o.0PENING ||‘->’|]|‘yes’,
os.URL, os.EXTRACTOR, r.SCHOOL ||‘->’|| o.SCHOOL,
r.RANK ||¢->’||‘X’, rs.URL, rs.EXTRACTOR

FROM openings o, openings_sources os,
(SELECT * FROM ranking UNION
SELECT NULL, NULL FROM dual) r,
ranking_source rs
WHERE o.STATE = ‘ca’ AND
0.SCHOOL = ‘Univ of California-San Diego’ AND
o.SCHOOL os.SCHOOL AND o.STATE = os.STATE;

This provenance query returns 109 result tuples. The
result tells us that UCSD is a potential answer and there
are 109 provenance tuples, each of which contains base tu-
ples that could be updated to yield potential derivations of
UCSD. If we look at one provenance tuple, we find that
UCSD is not an answer because its OPENING attribute has
a value of ‘no’ and that if the value is updated to ‘yes’,
then UCSD could become an answer. This piqued our in-
terest because we had thought that UCSD did indeed have
an opening.

To try to determine what was going on, we looked at the
associated data source information in our provenance re-
port and found that indeed UCSD did have an opening on
its web page. Upon further examination we determined that
the document fetcher in our prototype had a buffer overflow
problem when reading a long line, which caused the origi-
nal document to be truncated. After we fixed this problem
and ran the extractor again, and the OPENING attribute was
updated to ‘yes’ and UCSD became an answer to the test
query. This is an unexpected example of our provenance re-
porting techniques actually helping us debug our prototype
application.

We now evaluate how additional trust and constraints help
us reduce the number of provenance tuples. Without addi-
tional trust or constraints, our current report includes 109
provenance tuples. This makes sense because if ranking is
not trusted, then each tuple in it (108 of them) and a new
tuple (represented by a null proxy tuple) could potentially
be updated or inserted so that they would join with the
UCSD tuple in the openings table.

60

40

Number of povenance tuples

20

Options

no trust/constraints on ranking
ranking. SCHOOL trusted & unique

M trust ranking. SCHOOL

Figure 2: A comparison of the numbers of prove-
nance tuples for UCSD when different trust and con-
straints options (in addition to the ones assumed for
all cases) are used for computing the provenance of
UCSD.

If we trust the school name attribute of the ranking table,
our techniques generate the following new provenance query.
It has an extra predicate that joins openings and ranking:

SELECT o.SCHOOL, o.STATE, o.0PENING ||‘->’|]‘yes’,
os.URL, os.EXTRACTOR, r.SCHOOL ||‘->’|| o.SCHOOL,
r.RANK || “->’ || ‘X’, rs.URL, rs.EXTRACTOR

FROM openings o, openings_sources os,
(SELECT * FROM ranking UNION
SELECT NULL, NULL FROM dual) r,
ranking_source rs
WHERE o.STATE = ‘ca’ AND
0.SCHOOL = ‘Univ of California-San Diego’ AND
(0.SCHOOL = r.SCHOOL or r.SCHOOL IS NULL) AND
0.SCHOOL = os.SCHOOL AND o.STATE = os.STATE;

The new query returns 2 provenance tuples. One prove-
nance tuple contains the ranking tuple for UCSD, while the
other contains the null proxy tuple for ranking.

If, in addition to trusting ranking.SCHOOL, there is a unique
constraint on the attribute, then our techniques generate the
following query, which now uses a left outer join between
openings and ranking:

SELECT o.SCHOOL, o.STATE, o.0PENING ||‘->’|]‘yes’,
os.URL, os.EXTRACTOR, r.SCHOOL ||‘->’|| o.SCHOOL,
r.RANK || ‘->’ || ‘X’, rs.URL, rs.EXTRACTOR

FROM openings o LEFT OUTER JOIN ranking r
on o.SCHOOL = r.SCHOOL,
openings_sources os, ranking_source rs
WHERE o.STATE = ‘ca’ AND
0.SCHOOL = ‘Univ of California-San Diego’ AND
0.SCHOOL = os.SCHOOL AND o.STATE = os.STATE;

This query returns one provenance tuple, which is the
result of a join between the UCSD tuple in openings and
the UCSD tuple in ranking. We summarize the difference
in Figure 2 in terms of the numbers of provenance tuples for
UCSD, when different trusting options are used.

To answer the second question, we issue a provenance
query for all potential answers. If there is no additional

800

600

400

Number of provenance tuples

200

Options

no trust/constraints on ranking M trust ranking. SCHOOL
ranking. SCHOOL trusted & unique ™ trust ranking

404

35+

30+

25+

Rcs.p?nse tl:ne 204

0 ‘e

f
Execute + Fetch all Execute + Fetch last

M no trust/constraints on ranking
ranking. SCHOOL trusted & unique

user query
trust ranking. SCHOOL

Figure 3: A comparison of the numbers of prove-
nance tuples when different trust and constraints
options are used for computing the provenance of
all potential answers.

trust in or constraints on ranking, the provenance query
returns 1199 provenance tuples for all potential answers. If
we look at the openings.SCHOOL attribute, we find the fol-
lowing potential answers in addition to the answer schools:
UC-Irvine, UC-Santa Cruz, UC-Davis, Naval Postgraduate
School, UCSD, UC-Santa Barbara. This is an example of
how our techniques help us find all potential answers.

We now evaluate how trust or constraints help us re-
duce the number of provenance tuples and potential answers.
If we trust the ranking.SCHOOL attribute, the provenance
query returns 22 provenance tuples. The provenance tuples
still show that all the 6 schools above are potential answers.
This is an example of how trust in data helps reduce the
number of provenance tuples, but not necessarily the num-
ber of distinct potential answers.

If, in addition to trusting the ranking.SCHOOL attribute,
there is a unique constraint on ranking.SCHOOL, then the
provenance query returns 11 provenance tuples. Here again,
the above 6 schools are also potential answers.

If we trust the ranking table, the provenance query re-
turns 6 provenance tuples, which show that only UCSD is a
potential answer in addition to the answers schools. This is
an example of how trust in data helps reduce the number of
distinct potential answers.

In Figure 3, we summarize the impact of trust and con-
straints on the number of provenance tuples for potential
answers.

5.2 Performance and Scalability

The extraction prototype we experimented contains around
100 schools. In order to evaluate the performance of prove-
nance queries as well as the size of provenance in a larger
database, we scaled up the prototype database by a fac-
tor of 100. Specifically, we took each school tuple in both
openings and ranking, and replicated it 100 times, but gave
each replicated tuple a new fictional school name while keep-
ing all other attributes the same. In addition, we replaced
the rank for each replicated tuple in ranking with a distinct
rank. We left everything else in the prototype database as
it is (i.e., no additional secondary structures such as indexes
were created).

Figure 4: A comparison of the response times for
the user query and the provenance queries (corre-
sponding to different trust options) for computing
the provenance of UCSD. The numbers labeled “ex-
ecute + fetch all” include the time for executing a
query and fetch all result tuples. The numbers la-
beled “execute + fetch last” include the time for
executing a query and fetch the last result tuple.

5.2.1 Performance

We evaluated the performance of the user query as well
as the provenance queries. We ran our experiments on a
computer with two Intel 1686 2GHz CPUs and 2GB of mem-
ory. The operating system was Centos Linux (version 2.6.9-
55.0.12.ELsmp). We used the Oracle 10g Express server as
our database system and its out-of-the-box settings. We ran
each query 11 times and measured its response time aver-
aged over the last 10 warm runs. The measurement script
was implemented in PL/SQL. The response times of the
user query and the queries for computing the provenance of
UCSD are shown in Figure 4, and the response times of the
user query and the queries for computing the provenance of
all potential answers are shown in Figure 5. The response
time for the user query is included in both figures for com-
parison.

Figure 4 contains two sets of response times. The “exe-
cute + fetch all” numbers include the time for executing a
query and fetching all result tuples, while the “execute +
fetch last” numbers include the time for executing a query
and fetching only the last result tuple. For evaluating the
“execute + fetch last” numbers, a query is fully evaluated
and all result tuples are produced internally. The purpose
of reporting both response times is to differentiate between
the time to compute the result of a query and the time to
iterate through the result of the query.

As shown in Figure 4, when there is no trust in or con-
straints on the ranking table, the query for computing prove-
nance of UCSD is an order of magnitude slower than the user
query. It turns out that the slowdown is partly caused by
the cost of fetching all result rows (10801 of them), which
are much more than the result rows (5 of them) of the user
query. This can be seen from the figure because the response
time measured for executing the same query and fetching
only the last tuple is much smaller.

When the ranking.SCHOOL attribute is trusted, the query

5
4.5

4

3.54

Logarithm of 31

response times in 2.5
milliseconds

24

T
1.54
11
0.5
0 T
Queries

user query
trust ranking. SCHOOL
M trust ranking

M no trust/constraints on ranking
ranking. SCHOOL trusted & unique

Logarithm of
number of 2+
provenance tuples

0.5+
I cww .

0 T T f
no trust/constraints on trust ranking. SCHOOL ~ ranking.SCHOOL trusted
ranking & unique

base database M scaled-up database (X 100)

Figure 5: A comparison of the response times for
the user query and the queries (corresponding to
different trust and constraints) for computing the
provenance of all potential answers. The numbers
include the time for executing a query and fetch all
result tuples.

for computing the provenance of UCSD takes approximately
the same amount of time as the user query. This encouraging
result shows that the performance of provenance queries can
be as good as that of a user query if the join attributes are
trusted.

Figure 5 shows that the costs of computing the prove-
nance of all potential answers are expensive compared to
the user query. When there is no trust in or constraints
on the ranking table, the cost of computing the provenance
of all potential answers is four orders of magnitude higher.
When ranking.SCHOOL is trusted, the cost of computing the
provenance of all potential answers is about one order of
magnitude higher. When the ranking is trusted, the cost
of computing the provenance of all potential answers is very
close to that of the user query.

5.2.2 Number of Provenance Tuples

We now report the number of provenance tuples in the
scaled-up database. Figure 6 shows that the number of
provenance tuples for UCSD also increases by a factor of 100
if there is no trust in or constraint on the ranking table, but
that there is no increase in the numbers if ranking.SCHOOL
is trusted.

Figure 7 shows that the number of provenance tuples for
all potential answers increases by four orders of magnitude if
there is no trust in or constraint on the ranking table. This
is because both the openings table and the ranking table
have increased by a factor of 100 in the scaled-up database
and the provenance query (when there is no trust in or con-
straint on ranking) contains a cross product between the
two tables. If the ranking.SCHOOL attribute is trusted, the
number of provenance tuples for all potential answers in-
creases by two orders of magnitude, which is the same as
the scale-up factor of the database. If the ranking table
is trusted, the number of provenance tuples for all potential
answers does not increase. This is because when we scale up
the ranking table, all schools synthetically generated have
distinct ranks that are higher than 108, therefore they do
not contribute to the provenance of potential answers when

Figure 6: A comparison of the numbers of prove-
nance tuples for UCSD in the base database and in
the scaled-up database.

Logarithm of
number of
provenance tuples 3 _|

[base database M scaled-up database (X 100)

Figure 7: A comparison of the numbers of prove-
nance tuples for all potential answers in the base
database and in the scaled-up database when (1) no
trust/constraints are on ranking, (2) ranking.SCHOOL
is trusted, (3) ranking.SCHOOL is trusted and unique,
(4) ranking is trusted.

we trust the ranking table.

A qualitative analysis of the number of provenance tu-
ples can show some insight on how well it scales in general.
Consider a basic query which joins two tables R1 and Rz
on Ri.c1 = Ra.c2, and project out Ri.ci as the query’s re-
turn attribute. The query may or may not have selection
predicates on other attributes of R; and Rz. Assume R;
is trusted and n is the number of tuples in R2. Given the
question “why is z not an answer?” for a potential answer
z, we ask how many provenance tuples our techniques will
report. Let m, and n, be the average number of tuples in
Ry and Rs that have x as a value for the attributes Ri.c1
and Rs.ca.

If there are no trust in or constraints on Rz.ce, any ex-
isting values of R2.c2 can be updated to the value x. Fur-
thermore, new tuples with the value x can be appended Ra.
Therefore our techniques will produce mg * (n + 1) prove-
nance tuples.

trust or constraints # provenance tuples
no trust in or constraint on Rs mg x (n+ 1)
Rs.co trusted Mg * (ng + 1)
Ra2.c2 trusted and unique M

Table 7: Trust and constraints on R2, and their im-
pact on the number of provenance tuples for z, with
the assumption that R; is trusted. Here n is the
number of tuples in Rz, m, and n, are the average
numbers of tuples in R; and R: that have x as a value
for the attributes Ri.ci and Rs.co.

If R2.co is trusted, existing values of R2.c2 cannot be up-
dated. Therefore only existing tuples of Ry that already
have the value x for c2 or a new tuple can potentially join
with tuples in R; that have x as the value of Rj.ci. In this
case our techniques will produce m, * (ne + 1) provenance
tuples.

If Ra.ca is trusted and unique, then there can be only one
tuple from Rz that can have the value x for ce. Therefore
our techniques will produce m, provenance tuples.

These results, summarized in Table 7, align with the ex-
perimental results for the number of provenance tuples of a
specific potential answer. The analysis can be extended to
cases when R; is not trusted and for the number of prove-
nance tuples of all potential answers.

To summarize, our evaluation has shown that (1) the
provenance of a target non-answer can help a user under-
stand whether it is a potential answer or a never-answer, and
why; (2) our techniques can also find all potential answers
for a query given what is trusted or enforced; (3) adding con-
straints or trusting part of a database is critical for reduc-
ing the number of provenance tuples for potential answers;
(4) the performance and scalability study shows that with
certain trust and constraints, our techniques are still able
to produce a focused provenance report with a reasonable
performance when a database is scaled up to contain more
data.

6. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a conceptual framework
for reporting the provenance of potential answers. In this
framework, trust and constraints are important for provid-
ing focused provenance of potential answers. We have de-
signed an algorithm that exploits trust, domain constraints
and unique constraints to systematically compute the prove-
nance of potential answers for SPJ queries. An experimental
evaluation using a simple but real IE prototype has shown
that our techniques are useful for quickly understanding
non-answers and sometimes even for correcting a false non-
answer (one that should have been an answer).

There is a great deal of room for future work. It is our
hope that our work will encourage other researchers to study
issues related to the provenance of non-answers to queries.
Possible areas for future study include alternative defini-
tions of the provenance of non-answers, other algorithms for
computing this and alternative definitions for provenance of
non-answers, and the utility of this kind of provenance for
users and developers through studies with deployed infor-
mation extraction applications.

7. REFERENCES

J. Widom. ULDBs: Databases with uncertainty and
lineage. In VLDB, 2006.

[6] D. Bhagwat, L. Chiticariu, W. C. Tan, and
G. Vijayvargiya. An annotation management system
for relational databases. In VLDB, 2004.

[7] C. Binnig, D. Kossmann, E. Lo. Reverse Query
Processing. In ICDE, 2007.

[8] J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re,
and D. Suciu. Mystiq: a system for finding more
answers by using probabilities. In SIGMOD, 2005.

[9] P. Buneman, S. Khanna, and W. C. Tan. Why and
where: A characterization of data provenance. In
ICDT, 2001.

[10] M. J. Cafarella, C. Re, D. Suciu, and O. Etzioni.
Structured querying of web text data: A technical
challenge. In CIDR, 2007.

[11] A. Chandel, P. C. Nagesh, and S. Sarawagi. Efficient
batch top-k search for dictionary-based entity
recognition. In ICDE, 2006.

[12] L. Chiticariu, W. C. Tan, and G. Vijayvargiya.
DBNotes: a post-it system for relational databases
based on provenance. In SIGMOD, 2005.

[13] J. Chomicki. Consistent Query Answering: Five Easy
Pieces. In ICDT, 2007.

[14] E. Chu, A. Baid, T. Chen, A. Doan, and J. F.
Naughton. A relational approach to incrementally
extracting and querying structure in unstructured
data. In VLDB, 2007.

[15] W. Cohen and A. McCallum. Information extraction
from the web. In KDD, 2003.

[16] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner:
Towards automatic data extraction from large web
sites. In VLDB, 2001.

[17] Y. Cui and J. Widom. Lineage tracing for general
data warehouse transformations. In VLDB, 2001.

[18] U. Dayal and P. A. Bernstein. On the Updatability of
Relational Views. In VLDB, 1978.

[19] P. DeRose, W. Shen, F. Chen, A. Doan,

R. Ramakrishnan Building Structured Web
Community Portals: A Top-Down, Compositional,
and Incremental Approach In VLDB, 2007.

[20] A. Doan, R. Ramakrishnan, and S. Vaithyanathan.
Managing information extraction: state of the art and
research directions. In SIGMOD, 2006.

[21] M. Garofalakis and D. Suciu. Special issue on
probabilistic data management. In IEEE Data
Engineering Bulletin, 2006.

[22] T. J. Green, G. Karvounarakis, and V. Tannen.
Provenance semirings. In PODS, 2007.

[23] M. Gubanov and P. A. Bernstein. Structural text
search and comparison using automatically extracted
schema. In WebDB, 2006.

[24] A. Jain, A. Doan, L. Gravano Optimizing SQL
Queries over Text Databases In ICDE, 2008.

[25] T. Imielinski and W. Lipski. Incomplete information

in relational databases. J. ACM, 31(4), 1984.

[26] P. G. Ipeirotis, E. Agichtein, P. Jain, and L. Gravano.
To search or to crawl?: towards a query optimizer for
text-centric tasks. In SIGMOD, 2006.

[27] T. S. Jayram, R. Krishnamurthy, S. Raghavan,

S. Vaithyanathan, and H. Zhu. Avatar information
extraction system. IEEE Data Eng. Bull., 29(1), 2006.

[28] S. Sarawagi. Automation in information extraction
and data integration. In VLDB, 2002.

[29] W. Shen, P. DeRose, R. McCann, A. Doan,

R. Ramakrishnan Toward Best-effort Information
Extraction In SIGMOD, 2008.

[30] W. Shen, A. Doan, J. Naughton, R. Ramakrishnan
Declarative Information Extraction Using Datalog
with Embedded Extraction Predicates In VLDB, 2007.

[31] D. Suciu. Managing imprecisions with probabilistic
databases. In Twente Data Management, 2006.

[32] W. C. Tan. Research problems in data provenance.
IEEE Data Eng. Bull., 27(4), 2004.

[33] D. Weld, F. Wu, E. Adar, S. Amershi, J. Fogarty,

R. Hoffmann, K. Patel, M. Skinner Intelligence in
Wikipedia In AAAI 2008.

[34] J. Widom. Trio: A system for integrated management
of data, accuracy, and lineage. In CIDR, 2005.

[35] A. Woodruff and M. Stonebraker. Supporting
fine-grained data lineage in a database visualization
environment. In ICDFE, 1997.

8. APPENDIX

The presentation of the algorithm makes the following as-
sumptions: (1) when appending a predicate to another pred-
icate, the AND operator is used; (2) the steps for building
predicates on S;.pk; apply individually to all attributes in a
key; (3) [] is used as a shorthand for joining a list of tables.
For clarity, some steps are grouped in Subroutine 1 and Sub-
routine 3. We assume that the subroutines have access to
the variables in Algorithm 2.

Subroutine 1 Check constraints to see if outer joins should
be used (Details discussed in Section 4.2.2 and Table 3).

1: for each join predicate in _pred do
2: if both join attributes are unique and both tables are
appendable then
3: Add a full outer join clause between the two tables
in _query;
4: else if left attribute is unique and left table is ap-
pendable then
5: Add a right outer join between the two tables in
_query;
6: else if right attribute is unique and right table is ap-
pendable then

T Add a left outer join clause between the two tables
in _query;

8: end if

9: end for

Algorithm 2 Given a query, trusted tables, trusted at-
tributes, and a non-answer, return provenance of the non-
answer if it is a potential answer or of all potential answers
if a non-answer is not specified.

Require: Q; trusted tables (optional);
trusted attributes (optional);
a non-answer (optional).

Ensure: Provenance of potential answers reported.

1: _rv = 0; // return vector for provenance query

2: _pred ="; // predicates for provenance query

3: _join = ; // join tables for provenance query

4: _query = *; // provenance query

5: Append domain constraints and predicates for specify-

ing the non-answer to Q;

Replace @’s predicates with the transitive closure;

Build _rv; // Details discussed in Section 4.2.2

8: Build _pred; // Details in Subroutine 3

// Build the list of join tables.
9: for each table R; mentioned in) do
10: if R; is not trusted and appendable then

—_—

11: Add R; U {null;} and S; to _join;
12: else

13: Add R; and S; to _join;

14: end if

15: end for

16: query = (7_rv0 pred([1 re_join

17: Check constraints to see 1f70uter joins should be used in
—query; // Details in Subroutine 1

18: Reduce _query; // optional step for query display: re-
move redundant clauses

19: Evaluate _query;

20: Return tuples that do not include conflicting updates;

Subroutine 3 Build predicates for the provenance query.

1: Copy out predicates on trusted tables in @ to _pred;

2: for each untrusted table R; do

3: Copy out predicates on R;’s trusted attributes that do
not reference other untrusted attributes and append
them to _pred;

4: end for

// Add predicates for data source tables.

5: for each table R; mentioned in @ do

6: Append R;.fk; = S;.pk; to _pred;
// Apply transitive rule for predicates on data source

keys
7. if R; is not trusted then
8: Copy out @’s predicates on R;.fk; that do not ref-
erence other untrusted attributes to _temp;
9: Replace R;.fk; with S;.pk; in _temp;
10: Append _temp to _pred,
11: end if
12: end for

// Filter in null proxy tuples for untrusted tables
13: for each predicate _temp in _pred do
14: for each appendable table R; mentioned in _temp do

15: Replace _temp with (temp OR R;.x = mm //
R;.x stands for all attributes of R;
16: end for

17: end for

