
2 1094-7167/03/$17.00 © 2003 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

I n f o r m a t i o n I n t e g r a t i o n o n t h e W e b

Profile-Based Object
Matching for
Information Integration
AnHai Doan, Ying Lu, Yoonkyong Lee, and Jiawei Han, University of Illinois, Urbana-
Champaign

Object-matching systems attempt to determine whether two objects (such as two

relational tuples) refer to the same real-world entity. When an organization merges

information sources, for example, it might use an object-matching application to help con-

solidate information about entities and remove duplicates. Object matching thus plays

an important role in many information management
contexts, including information integration, data
warehousing, information extraction, and text joins
in databases.

As the “Related Work” sidebar describes,
researchers have proposed numerous object-match-
ing solutions in both the AI and database communi-
ties. Virtually all these solutions assume that the tar-
get objects, or tuples, share the same set of attributes,
and they match tuples by comparing attribute simi-
larity. However, tuples often have nonoverlapping,
or disjoint, attributes. This is frequently true in infor-
mation integration, especially when merging tuples
from different data sources. Because these data
sources are typically developed independently, they
often have overlapping, but different schemas.

As an example, suppose a government agency is
trying to merge two branch offices and their data-
bases (S1 and S2), which both list information about
people living in Champaign, Illinois. As Figure 1
shows, each tuple contains information about a sin-
gle person. Because the databases cover the same
geographical area, they contain many duplicate
tuples. For example, S1’s tuple S. Riley, 105 Spring St,
61801, $95,000 refers to the same person as S2’s Sarah
Riley, E. Spring St, 61801, 38; the shared attributes are
name, street, and zip, while the disjoint attributes are
income (S1) and age (S2).

Existing systems can effectively match attributes,
despite variations and errors: the name “Sarah Riley,”
for example, might be abbreviated as “S. Riley” or
even mistyped as “Sarah Rilye.” However, these
methods don’t exploit disjoint attributes in the match-

ing process. Our Profile-Based Object Matching
solution—as embodied in the PROM system we’re
developing—exploits disjoint attributes to maximize
matching accuracy. The key to PROM is that disjoint
attributes are often correlated, and we can leverage
this correlation to perform a “sanity check” on object
matching. So if we had the S1 tuple Mike Smith, E. White
Street, 61820, $100,000 and the S2 tuple Mike Smith, E. White
Street, 61820, 6, prior solutions would declare a match
because the shared attributes match perfectly. How-
ever, the disjoint attributes (income in S1 and age in
S2) indicate that, combined, the two tuples give us
“Mike Smith,” a six-year-old with a $100,000 yearly
income. This is possible but very unlikely. Thus,
PROM would reject the match.

PROM overview
To illustrate the PROM approach, we’ll use two

relational tables: one contains information about
movies, the other about movie reviews (see Figure
2). The meaning of most schema attributes are clear
from their names; exceptions are pyear and ryear,
which indicate the year the movie was produced and
reviewed, respectively; and rrating, which specifies
the reviewer’s film rating.

Given two tuples from the tables, PROM begins
by matching the shared attribute movie (that is, the
movie’s name) using existing object-matching tech-
niques. If the name similarity is low, PROM discards
the pair as not matching. Otherwise, PROM performs
a sanity check using modules that apply different
profilers to the tuple pair. A profiler contains knowl-
edge about a specific concept, such as movie, actor,

Traditional object-

matching methods rely

on similarities among

shared attributes.

Profile-Based Object

Matching builds on

this approach but also

correlates disjoint

attributes to improve

matching accuracy.

or review. Given a tuple pair that contains
concept information, the profiler can exam-
ine the pair to decide if it violates any con-
cept constraints.

Because our movie tuple pair has infor-
mation about several concepts in the movie
domain, PROM examines it using several dif-
ferent profilers. A review profiler, for exam-
ple, might know that the year the review was
published must not precede the year that the
movie was produced. The profiler thus checks
to see if the disjoint attribute values ryear and
pyear satisfy that constraint. The review pro-
filer might also know that certain reviewers,
such as Roger Ebert, have never reviewed a
movie with an average rating below 4 (out of
10) and might correlate the reviewer and rat-
ing accordingly. PROM then applies other
profilers, such as the actor or movie profiler,
to check for other correlations. It then com-
bines the profilers’ output to arrive at a final
matching decision for the tuple pair.

A compelling property of profilers is that
they contain knowledge about domain con-
cepts (such as movies, reviews, and people).
Profilers can thus be built once, then applied
to many object matching tasks as long as the
tasks involve the concepts. The profilers can
be built by domain experts and users, as well
as be trained on domain data (such as all
movie tuples in the Internet Movie Database
at www.imdb.com). Alternatively, users can
build profilers in the context of a specific
matching task, using that task’s training data.
Thereafter, the profilers can be transferred to
other related matching tasks in the domain.

The PROM approach to object matching
therefore

• lets users construct and transfer matching
knowledge (in the form of profilers)
across matching tasks

• provides an extensible framework into
which users can plug newly developed pro-
filers, further improving matching accuracy

Although researchers have used similar
frameworks for solving other problems, such
as schema matching1–3 and information extrac-
tion,4,5 they have not to our knowledge con-
sidered such a framework for object matching.

PROM components
To discuss specific PROM components in

detail, we’ll use the relational tables T1 and
T2 (see Figure 3). We say that two tuples
from the tables match if they refer to the same
real-world entity. An attribute appearing in

both tables is a shared attribute if any two
tuples that match must agree on that
attribute’s value. In Figure 2, for example,
the two tables share the movie attribute, so a
matching pair of tuples from those tables
must share the same movie name. In contrast,
the rating and rrating attributes are disjoint
because a single movie can have different rat-
ings. Here, we assume that tables T1 and T2
have a nonempty set of shared attributes.

Our matching problem for T1 and T2 is to
find all matching tuples between them. This
general problem setting arises in many con-

texts, including data integration and ware-
housing. Researchers have typically evalu-
ated a matching algorithm’s performance by
measuring accuracy and runtime effi-
ciency.6,7 We focus here on improving accu-
racy; we’ll focus on improving runtime effi-
ciency in future research.

Similarity estimator
Figure 3 shows two tuples—t1 and t2.

PROM’s similarity estimator computes a sim-
ilarity value for the input tuples and decides
if they’re a potential match. It computes this

SEPTEMBER/OCTOBER 2003 computer.org/intelligent 3

Name

John Connors

Sarah Riley

Mike Smith

…

Street

W. Spring Street

E. Spring St

E. White Street

…

Age

10

38

6

…

Zip

61801

61801

61820

…

Name

S. Riley

Mike Smith

Mike Smith

…

Street

105 Spring St

E. White Street

E. Whight Street

…

Income

$95,000

$100,000

N.A.

…

Zip

61801

61820

61820

…

?

S1 S2

Figure 1. Integrating the S1 and S2 databases. Many tuples refer to the same person.
Object-matching systems must detect and merge such tuples to ensure data-process-
ing accuracy.

(movie, pyear, actor, rating)

(movie, genre, review, ryear, rrating, reviewer)

Figure 2. Two table schemas in the movie domain. PROM exploits several attribute cor-
relations (signified by the arrows) for object matching. For each movie, pyear is the pro-
duction year, ryear is the review year, and rrating is the reviewer’s rating.

Similarity
estimator

Match
filter

Matching
pairs Tj

T2

t1

t2

T1

User- specified
constraints

Training
data

Expert
knowledge

Domain
data

Previous
matching tasks

Combiner

Hard profilers 1 ... n Soft profilers 1 ... n

Figure 3. The PROM system. If the similarity estimator computes a low value for the
tuple pair, it discards them. Otherwise, it passes them on, and profilers in the match fil-
ter and combiner further evaluate the pair.

value solely on the basis of shared attributes.
The similarity estimator can employ any
existing object-matching technique (see the
sidebar for a discussion of these techniques).
If the estimator decides that the similarity
value is low, it discards the tuple pair; other-
wise it passes them to the match filter.

Applying hard profilers
in the match filer

To determine whether the tuple pair match,
the match filter uses a set of hard profilers,
which specify a concept’s hard constraints. For
example, a hard constraint on a movie review
is that a review year must not precede the year
that the movie was produced. As another
example, a hard constraint on actors might
specify that a specific actor has never played in
a movie with an average rating of less than 4.

Several ways to build hard profilers exist.
We can construct them manually, or build
them automatically by examining domain
data, assuming the data is complete. We can
automatically generate hard constraints about
an actress and her movie rating, for example,
by examining all the movies she’s appeared
in. When users specify hard constraints,

PROM treats them as a temporary hard pro-
filer (see Figure 3). While other hard profil-
ers cover general concepts and can be trans-
ferred across matching tasks, user-supplied
hard constraints are typically task-specific
and thus not transferable.

If any hard profiler says no, the match fil-
ter discards the tuple pair from further con-
sideration. Otherwise, it passes them to the
combiner for further evaluation.

Applying soft profilers
in the combiner

The combiner uses a set of soft profilers,
each of which issues a confidence score indi-
cating how well the tuple pair fits its profile
(and thus how well the two tuples’data might
fit together). Like hard profilers, soft profil-
ers cover a particular concept, but they spec-
ify soft constraints that concept instances will
likely satisfy. A movie soft profiler, for exam-
ple, might specify that the movie’s IMDb
(Internet Movie Database) rating and Ebert
rating are strongly correlated when they dif-
fer by less than 3. Most movies would sat-
isfy this constraint.

Soft profilers can be constructed in several

ways. We can elicit them manually from
domain experts and other users (then evaluate
them on training data to obtain confidence
scores). Or, we can build them on the basis of
domain data, training a Bayesian network on
IMDb’s movie instances, for example. We can
also build a soft profiler directly from a par-
ticular matching task’s training data. Soft pro-
filers are essentially classifiers; given a set of
matching and nonmatching pairs, we can build
one use virtually any learning technique.

Once the profilers issue their confidence
scores, the combiner merges the scores to
obtain a single overall score. On the basis of
this score, it decides whether the tuple pair
will likely match. If the decision is yes, it
stores the pair in the result table Tj; other-
wise it discards them.

Combining profilers
Because hard profilers issue yes-or-no pre-

dictions and soft profilers issue confidence
scores, we separate the combination of the
two profiler types. The match filter combines
hard profilers, and the combiner handles soft
profilers. We believe that separating the pro-
filers improves matching accuracy over

4 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n f o r m a t i o n I n t e g r a t i o n o n t h e W e b

Our work builds upon numerous matching solutions devel-
oped by researchers in the AI, database, and data mining com-
munities.1–12 Early solutions use manually specified rules to
match objects,6 while many subsequent solutions learn match-
ing rules from training data created from the input
tables.2,10,11 Several solutions focus on efficient techniques to
match strings;5,13 others address techniques to scale up to
numerous objects.8,14 All the solutions match objects by com-
paring their shared attributes.

Our solution extends existing solutions by adding a layer
that correlates disjoint attributes to maximize matching accu-
racy. This use of attribute correlation bears some resemblance
to work in which researchers exploit statistical correlation
among schema attributes to find semantic mappings between
two relational tables’ attributes.15

The AI research community has actively studied knowledge
reuse and prior-knowledge incorporation. And, in work that
relates more closely to ours, several AI researchers have consid-
ered reusing classifiers that are trained in other domains.16 Our
work differs from this AI work in two primary ways. First, we
reuse knowledge types other than classifiers (such as manual
profilers). Second, when we reuse classifiers, we don’t try to
reuse arbitrary classifiers from other domains. Instead, we
advocate building task-independent classifiers and reusing
only those. We can do this in our context because common
concepts frequently recur in a domain’s matching tasks. Any
matching task in the movie domain, for example, will likely
involve the concepts of movie, review, actor, and so on.

Recently, database researchers have paid increasing

attention to knowledge reuse, and several have investigated
schema matching17–20 and data integration.21 Our work is a
step in this direction; to our knowledge, it’s the first work that
attempts to reuse knowledge in the object-matching context.

References

1. R. Ananthakrishna, S. Chaudhuri, and V. Ganti, “Eliminating Fuzzy
Duplicates in Data Warehouses,” Proc. 28th Int’l Conf. Very Large
Databases (VLDB 2002). Morgan Kaufmann, 2002, pp. 586–597.

2. M. Bilenko and R. Mooney, Learning to Combine Trained Distance
Metrics for Duplicate Detection in Databases, tech. report AI 02-
296, Artificial Intelligence Laboratory, Univ. Texas at Austin, 2002.

3. W. Cohen, “Integration of Heterogeneous Databases without Com-
mon Domains Using Queries Based on Textual Similarity,” Proc.
ACM SIGMOD Int’l Conf. Management of Data (SIGMOD 98),
ACM Press, 1998, pp. 201–212.

4. H. Galhardas et al., “An Extensible Framework for Data Clean-
ing,” Proc. 16th Int’l Conf. Data Eng. (ICDE 00), IEEE CS Press,
2000, p. 312.

5. L. Gravano et al., “Text Joins for Data Cleansing and Integration in
an RDBMS,” Proc. 19th Int’l Conf. Data Eng. (ICDE 03), IEEE CS
Press, 2003.

6 M. Hernández and S. Stolfo, “The Merge/Purge Problem for Large
Databases,” Proc. 1995 ACM SIGMOD Int’l Conf. Management of
Data (SIGMOD 95), ACM Press, 1995, pp. 127–138.

Related Work

methods that combine all profilers in a single
stage; we are currently verifying this.

The match filter uses an AND combination to
merge hard profiler predictions. That is, if any
hard profiler says no, the overall prediction is
no and PROM discards the tuple pair. The
combiner merges soft profilers’ predictions
by computing the weighted sum of the confi-
dence scores. Currently, we set the weights
manually, on the basis of our experiments on
holdout data. In the future, we’ll explore
methods to set weights automatically.2

Empirical evaluation
We evaluated PROM on two data sets,

Citeseer and Movies. Because the two eval-
uations had similar results, we present only
the Citeseer results here. We obtained the
Citeseer data set from a Web page that lists
highly cited authors and their homepages
(http://citeseer.nj.nec.com/mostcited.html).
For example, the page says, “J. Gray [1] [2]
[3] [4] [5]” offering five homepage URLs
suggested by a search engine. The home-
pages belong to various J. Grays: James Gray
at Walker Informatics, Jeffrey Gray at Uni-
versity of Alabama, and so on. Only one

homepage actually belongs to the correct Jim
Gray (at Microsoft Research). So, the object-
matching problem here is to match author
names with their correct homepage URLs.

We downloaded the top 200 authors and
their suggested homepages. Because we con-
sider only matching relational tuples at this
stage, we manually converted each home-
page into a tuple by extracting homepage
information such as name, name and rank of
current university, position, and year that the
person obtained his or her PhD. We also
removed authors without homepages and
performed some simple text processing. Our
final data set consisted of 150 author names
and 254 homepage tuples, for an average of
1.7 homepage tuples per author.

Algorithms and methodologies
We applied several algorithms to the Cite-

seer data set. First, we applied Baseline, an
algorithm that matches tuples only on the
basis of shared attributes—in this case, it
matched the author names with homepage
owner names. Baseline converts the values
of the shared attributes into a set of tokens,
then compares the token sets.

Next, we applied three algorithms that
extend existing object-matching techniques
to also exploit disjoint attributes.

• Extended Manual manually specifies the
matching rules, such as if similarity(name1,
name2) >= 0.8 but position=student, then the two
tuples do not match. So, in a sense, this method
extends the manual method that Mauricio
Hernandez and Salvatore Stolfo described,
which exploits only shared attributes such
as name1 and name2.7

• Extended Association Rule (Extended AR)
is similar to Extended Manual but uses
CMAR (Classification Based on Multiple
Association Rules)8 to generate a set of
rules. We then manually examine these
rules to select a small set of rules.

• Unlike the two previous methods,
Extended Decision Tree (Extended DT) is
completely automatic. It extends the deci-
sion tree method of Sheila Tejada, Craig
Knoblock, and Steven Minton9 by adding
to the training data all disjoint attributes
and a new attribute that specifies a simi-
larity value for each tuple pair (based on
their shared attributes).

SEPTEMBER/OCTOBER 2003 computer.org/intelligent 5

7. S. Lawrence, K. Bollacker, and C.L. Giles, “Autonomous Citation
Matching,” Proc. 3rd Int’l Conf. Autonomous Agents (Agents 99),
ACM Press, 1999, pp. 392–393.

8. A. McCallum, K. Nigam, and L. Ungar, “Efficient Clustering of
High-Dimensional Data Sets with Application to Reference Match-
ing,” Proc. 6th ACM SIGKDD Int’l Conf. Knowledge Discovery and
Data Mining (KDD 2000), 2000, ACM Press, pp. 169–178.

9. V. Raman and J. Hellerstein, “Potter’s Wheel: An Interactive Data
Cleaning System,” Proc. 27th Conf. Very Large Data Bases (VLDB
2001), Morgan Kaufmann, pp. 381–390.

10. S. Sarawagi and A. Bhamidipaty, “Interactive Deduplication Using
Active Learning,” Proc. 8th ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining (SIGKDD 02), ACM Press, 2002, pp.
269–278.

11. S. Tejada, C. Knoblock, and S. Minton, “Learning Domain-Inde-
pendent String Transformation Weights for High Accuracy Object
Identification,” Proc. 8th ACM SIGKDD Int’l Conf. Knowledge Dis-
covery and Data Mining (SIGKDD 02), ACM Press, 2002, pp.
350–359.

12. W. Yih and D. Roth, “Probabilistic Reasoning for Entity and Rela-
tion Recognition,” Proc. 19th Int’l Conf. Computational Linguistics
(COLING 02), Morgan Kaufmann, 2002.

13. A. Monge and C. Elkan, “The Field Matching Problem: Algorithms
and Applications,” Proc. 2nd ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining, AAAI Press, 1996, pp. 267–270.

14. W. Cohen and J. Richman, “Learning to Match and Cluster Large
High-Dimensional Data Sets for Data Integration,” Proc. 8th ACM

SIGKDD Int’l Conf. Knowledge Discovery and Data Mining (KDD
02), ACM Press, 2002, pp. 475–480.

15. J. Kang and J. Naughton, “On Schema Matching with Opaque Col-
umn Names and Data Values,” Proc. 2003 ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD 03),ACM Press, 2003, pp. 205–216.

16. W. Cohen and D. Kudenko, “Transferring and Retraining Learned
Information Filters,” Proc. 14th Nat’l Conf. Artificial Intelligence
(AAAI 97), AAAI Press, 1997, pp. 583–590.

17. J. Berlin and A. Motro, “Database Schema Matching Using Machine
Learning with Feature Selection,” Proc. 14th Int’l Conf. Advanced
Information Systems Engineering (CAiSE 02), LNCS 2348,
Springer-Verlag, 2002, pp. 452–466.

18. H. Do and E. Rahm, “Coma: A System for Flexible Combination of
Schema Matching Approaches,” Proc. 28th Conf. Very Large Data-
bases (VLDB 2002), Morgan Kaufmann, 2002, pp. 610–621.

19. A. Doan, P. Domingos, and A. Halevy, “Reconciling Schemas of Dis-
parate Data Sources: A Machine Learning Approach,” Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD 01), ACM
Press, 2001, pp. 509–520.

20. J. Madhavan et al., “Matching Schemas by Learning from a Schema
Corpus,” Proc. IJCAI-03 Workshop Information Integration on the
Web, AAAI Press, 2003, pp. 59–65.

21. A. Rosenthal et al., “Data Integration Needs an Industrial Revolu-
tion,” Proc. Workshop Foundations of Models for Data Integration
(FMII 2001), 2001; www.fmldo.org/FMII-2001/proceedings.html.

Next, we applied PROM, using the Baseline
algorithm described above for the similarity
estimator. We used no hard profilers. We used
three soft profilers: one based on soft, man-
ually specified rules; another on decision tree
techniques; and the third on association rule
techniques. We then evaluated matching
accuracy using three common object-match-
ing measures:

• Recall: The number of correct matching
pairs in the join table divided by the total
number of correct matching pairs

• Precision: The number of correct match-
ing pairs in the join table divided by the
total number of pairs in the join table

• F-value: 2 ∗ recall ∗ precision/(recall +
precision)

Together these measures suit our goal of
developing matching methods that maximize
precision and recall.

Results
We performed fourfold cross validation on

the Citeseer data set and recorded the average
recall, precision, and F-value. We took care
to create folds that represent the overall data
set (Mikhail Bilenko and Raymond Mooney
describe similar fold creation10). Table 1
shows the results.

As the first column shows, Baseline
achieves high recall (99 percent) but low pre-
cision (67 percent), demonstrating the inac-
curacy of matching based on shared attrib-
utes only (in this case, names). Extended
Manual’s results (column two) show a slight
recall decrease (2 percent) but a substantial
precision increase (16 percent), demonstrat-
ing that exploiting disjoint attributes (in this
case, any attribute other than names) can sig-
nificantly boost matching accuracy.
Extended AR produced similar (although
slightly worse) results.

Extended DT produced surprising results
(column four): its precision is substantially
lower than that of Baseline (58 percent com-
pared with 67 percent). This is unusual;
because Extended DT exploits disjoint attrib-
utes, we might expect it to improve match-
ing precision. However, many rules that

Extended DT constructed didn’t refer to the
input tuples’ similarity values at all. In other
words, the rules matched tuples solely on the
basis of the correlation among disjoint attrib-
utes, ignoring the shared attributes. Such
rules would clearly not be very accurate on
the testing data. So, extending prior matching
techniques in a straightforward manner to
handle disjoint attributes might actually
decrease rather than increase matching accu-
racy.

With PROM, we wanted to examine both
its performance with respect to Baseline and
the extended algorithms and to discern
whether adding more profilers would
improve accuracy. So, we ran four variations
of PROM (columns five through eight):

• DT used only one soft profiler (the deci-
sion tree method).

• Man+DT used the soft manual profiler and
the soft decision tree profiler.

• Man+AR is similar to Man+DT but
replaced the decision tree with the associ-
ation rule classifier.

• Man+DT+AR is the complete PROM
algorithm.

PROM’s results show that the DT variation
beats Extended DT’s results, which suggests
that extending prior matching techniques to
exploit disjoint attributes using PROM is
promising and potentially better than a
straightforward extension of traditional tech-
niques. The results also show that the com-
plete PROM system (column eight) achieves
the highest F-value (0.91) of any method,
owing to high precision and recall. (In partic-
ular, this algorithm found the correct Jim Gray
homepage, which Baseline could not.) Our
results suggest both that PROM performs best
and that adding more profilers might improve
matching accuracy, because it would give
PROM access to more matching knowledge.

We’re experimenting with several
new profiler training methods—

including naive Bayes—and methods that
require no training data. We also plan to use

some of the profilers we’ve constructed for
these matching tasks (such as the decision
tree soft profiler) in related matching tasks
to examine the effect of transferring such
knowledge. We’re particularly interested in
training profilers on domain data, indepen-
dently of matching tasks, then applying these
profilers to matching tasks in the domain.

The PROM approach also suggests a
broader knowledge-reuse methodology: within
any particular task, we can isolate task-depen-
dent knowledge (such as similarity knowledge)
from task-independent knowledge (such as
profile knowledge). Once PROM learns the
latter, it can reuse it across tasks. Clearly, this
reuse methodology is not always applicable,
but it can be effective in appropriate settings,
as we’ve demonstrated here. We aim to further
explore its application.

References

1. H. Do and E. Rahm, “Coma: A System for
Flexible Combination of Schema Matching
Approaches,” Proc. 28th Conf. Very Large
Databases (VLDB 2002), Morgan Kauf-
mann, 2002, pp. 610–621.

2. A. Doan, P. Domingos, and A. Halevy, “Rec-
onciling Schemas of Disparate Data
Sources: A Machine Learning Approach,”
Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data (SIGMOD 01), ACM Press,
2001, pp. 509–520.

3. J. Madhavan et al., “Matching Schemas by
Learning from a Schema Corpus,” Proc.
IJCAI-03 Workshop Information Integration
on the Web, AAAI Press, 2003, pp. 59–65.

4. M. Craven et al., “Learning to Construct
Knowledge Bases from the World Wide
Web,” Artificial Intelligence, vol. 118, nos. 1-
2, 2000, pp. 69–113.

5. D. Freitag, “Multistrategy Learning for Infor-
mation Extraction,” Proc. 15th Int’l Conf.
Machine Learning (ICML 98), Morgan Kauf-
mann, 1998, pp. 161–169.

6. R. Ananthakrishna, S. Chaudhuri, and V.
Ganti, “Eliminating Fuzzy Duplicates in Data
Warehouses,” Proc. 28th Int’l Conf. Very
Large Databases (VLDB 2002). Morgan
Kaufmann, 2002, pp. 586–597.

7. M. Hernández and S. Stolfo, “The
Merge/Purge Problem for Large Databases,”

6 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n f o r m a t i o n I n t e g r a t i o n

Table 1. Experimental results on the Citeseer data set.

Extended algorithms PROM

Baseline Manual AR DT DT Man+DT Man+AR Man+DT+AR

Recall 0.99 0.97 0.96 0.91 0.95 0.67 0.96 0.97
Precision 0.67 0.83 0.71 0.58 0.78 0.87 0.82 0.86
F-value 0.80 0.89 0.81 0.71 0.85 0.76 0.88 0.91

Proc. 1995 ACM SIGMOD Int’l Conf. Man-
agement of Data (SIGMOD 95), ACM Press,
1995, pp. 127–138.

8. W. Li, J. Han, and J. Pei, “CMAR: Accurate
and Efficient Classification Based on Multi-
ple Class-Association Rules,” Proc. Int’l
Conf. Data Mining (ICDM 01), IEEE CS
Press, 2001, pp. 369–376.

9. S. Tejada, C. Knoblock, and S. Minton,
“Learning Domain-Independent String Trans-
formation Weights for High Accuracy Object
Identification,” Proc. 8th ACM SIGKDD Int’l
Conf. Knowledge Discovery and Data Min-
ing (SIGKDD 02), ACM Press, 2002, pp.
350–359.

10. M. Bilenko and R. Mooney, Learning to
Combine Trained Distance Metrics for Dupli-
cate Detection in Databases, tech. report AI
02-296, Artificial Intelligence Laboratory,
Univ. Texas at Austin, 2002.

SEPTEMBER/OCTOBER 2003 computer.org/intelligent 7

T h e A u t h o r s
AnHai Doan is an assistant professor of computer science at the University of Illinois at Urbana-
Champaign. His research interests are in databases and artificial intelligence, including data integra-
tion and sharing, schema matching, data mining, information discovery on the Web, metadata man-
agement, the Semantic Web, and machine learning. He received his PhD in computer science from the
University of Washington. Contact him at the Dept. of Computer Science, Univ. of Illinois, Urbana,
IL 61801; anhai@cs.uiuc.edu.

Ying Lu is a PhD student in computer science at the University of Illinois at Urbana-Champaign. Her
research interests include data mining, data integration, and bioinformatics. She received her MS in
computer science from the University of Wisconsin-Madison. Contact her at the Dept. of Computer
Science, Univ. of Illinois, Urbana, IL 61801; yinglu@cs.uiuc.edu.

Yoonkyong Lee is a PhD student in computer science at the University of Illinois at Urbana-Cham-
paign. Her research interest is in data integration. She holds a BS in computer science from Korea
Advanced Institute of Science and Technology. Contact her at the Dept. of Computer Science, Univ.
of Illinois, Urbana, IL 61801; ylee11@cs.uiuc.edu.

Jiawei Han is a professor in the Department of Computer Science at the University of Illinois at Urbana-
Champaign. His research interests are in data mining, data warehousing, spatial and multimedia data-
bases, deductive and object-oriented databases, and biomedical databases. He is the lead author of Data
Mining: Concepts and Techniques (Morgan Kaufmann, 2001). He serves or has served on the editor-
ial boards of Data Mining and Knowledge Discovery: An International Journal, IEEE Transactions on
Knowledge and Data Engineering, and the Journal of Intelligent Information Systems. He has received
the IBM Faculty Award and the ACM Service Award. Contact him at the Dept. of Computer Science,
Univ. of Illinois, Urbana-Champaign, IL 61801; hanj@cs.uiuc.edu.

