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ABSTRACT
A knowledge base (KB) contains a set of concepts, instances,
and relationships. Over the past decade, numerous KBs
have been built, and used to power a growing array of ap-
plications. Despite this flurry of activities, however, surpris-
ingly little has been published about the end-to-end process
of building, maintaining, and using such KBs in industry.
In this paper we describe such a process. In particular, we
describe how we build, update, and curate a large KB at
Kosmix, a Bay Area startup, and later at WalmartLabs, a
development and research lab of Walmart. We discuss how
we use this KB to power a range of applications, including
query understanding, Deep Web search, in-context advertis-
ing, event monitoring in social media, product search, social
gifting, and social mining. Finally, we discuss how the KB
team is organized, and the lessons learned. Our goal with
this paper is to provide a real-world case study, and to con-
tribute to the emerging direction of building, maintaining,
and using knowledge bases for data management applica-
tions.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management -
Systems
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1. INTRODUCTION
A knowledge base (KB) typically contains a set of con-

cepts, instances, and relations. Well-known examples of KBs
include DBLP, Google Scholar, Internet Movie Database,
YAGO, DBpedia, Wolfram Alpha, and Freebase. In recent
years, numerous KBs have been built, and the topic has re-
ceived significant and growing attention, in both industry
and academia (see the related work). This attention comes
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from the fact that KBs are increasingly found to be critical
to a wide variety of applications.

For example, search engines such as Google and Bing
use global KBs to understand and answer user queries (the
Google knowledge graph [20] is in fact such a KB). So do e-
commerce Web sites, such as amazon.com and walmart.com,
using product KBs. As another example, the iPhone voice
assistant Siri uses KBs to parse and answer user queries. As
yet another example, echonest.com builds a large KB about
music, then uses it to power a range of applications, such
as recommendation, playlisting, fingerprinting, and audio
analysis. Other examples include using KBs to find domain
experts in biomedicine, to analyze social media, to search
the Deep Web, and to mine social data.

Despite this flurry of activities, however, surprisingly very
little has been published about how KBs are built, main-
tained, and used in industry. Current publications have
mostly addressed isolated aspects of KBs, such as the initial
construction, and data representation and storage format
(see the related work section). Interesting questions remain
unanswered, such as “how do we maintain a KB over time?”,
“how do we handle human feedback?”, “how are schema and
data matching done and used?”, “the KB will not be per-
fectly accurate, what kinds of application is it good for?”,
and “how big of a team do we need to build such a KB,
and what the team should do?”. As far as we can tell, no
publication has addressed such questions and described the
end-to-end process of building, maintaining, and using a KB
in industry.

In this paper we describe such an end-to-end process. In
particular, we describe how we build, maintain, curate, and
use a global KB at Kosmix and later at WalmartLabs. Kos-
mix was a startup in the Bay Area from 2005 to 2011. It
started with Deep Web search, then moved on to in-context
advertising and semantic analysis of social media. It was
acquired by Walmart in 2011 and converted into Walmart-
Labs, which is working on product search, customer tar-
geting, social mining, and social commerce, among others.
Throughout, our global KB lies at the heart of, and powers
the above applications.

We begin with some preliminaries, in which we define
the notion of KBs, then distinguish two common types of
KBs: global and domain-specific. We also distinguish be-
tween ontology-like KBs, which attempt to capture all rel-
evant concepts, instances, and relationships in a domain,
and source-specific KBs, which integrate a set of given data
sources. We discuss the implications of each of these types.
Our KB is a large global, ontology-like KB, which attempts



to capture all important and popular concepts, instances,
and relationships in the world. It is similar to Freebase and
Google’s knowledge graph in this aspect.

Building the KB: We then discuss building the KB.
Briefly, we convert Wikipedia into a KB, then integrate it
with additional data sources, such as Chrome (an automo-
bile source), Adam (health), MusicBrainz, City DB, and
Yahoo Stocks. Here we highlight several interesting aspects
that have not commonly been discussed in the KB construc-
tion literature. First, we show that converting Wikipedia
into a taxonomy is highly non-trivial, because each node in
the Wikipedia graph can have multiple paths (i.e., lineages)
to the root. We describe an efficient solution to this prob-
lem. Interestingly, it turned out that different applications
may benefit from different lineages of the same node. So
we convert Wikipedia into a taxonomy but do preserve all
lineages of all Wikipedia nodes.

Second, extracting precise relationships from Wikipedia
(and indeed from any non-trivial text) is notoriously diffi-
cult. We show how we sidestep this problem and extract
“fuzzy relationships” instead, in the form of a relationship
graph, then use this fuzzy relationship graph in a variety of
real-world applications.

Third, we discuss extracting meta information for the
nodes in the KB, focusing in particular on social informa-
tion such as Wikipedia traffic statistics and social contexts.
For example, given the instance “Mel Gibson”, we store the
number of times people click on the Wikipedia page associ-
ated with it, the most important keywords associated with
it in social media in the past 1 hour (e.g., “mel”, “crash”,
“maserati”), and so on. Such meta information turns out to
be critical for many of our applications.

Finally, we discuss adding new data sources to the KB
constructed out of Wikipedia. We focus in particular on
matching external instances into those in the KB, and briefly
discuss how taxonomy matching and entity instance match-
ing are interwoven in our algorithm.

Maintaining and Curating the KB: Building the initial
KB is difficult, but is just the very first step. In the long run,
maintaining and curating the KB pose the most challenges
and incur most of the workload. We discuss how to refresh
the KB every day by rerunning most of it from the scratch
(and the reason for doing so). We then discuss a major
technical challenge: how to curate the KB and preserve the
curation after refreshing the KB. Our solution is to capture
most of the human curation in terms of commands, and then
apply these commands again when we refresh the KB.

Using the KB: In the last major part of the paper, we
discuss how we have used the above KB for a variety of ap-
plications, including parsing and understanding user queries,
Deep Web search, in-context advertising, semantic analysis
of social media, social gifting, and social mining. We dis-
cuss the insights gleaned from using an imperfect KB in
real-world applications.

Finally, we describe the organization of the team that
works on the KB, statistics regarding the KB, lessons learned,
future work, and comparison to related work. A technical
report version of this paper, with more details, can be found
at pages.cs.wisc.edu/~anhai/papers/kcs-tr.pdf.

2. PRELIMINARIES
Knowledge Bases: A knowledge base typically consists

Figure 1: A tiny example of a KB

of a set of concepts C1, . . . , Cn, a set of instances Ii for each
concept Ci, and a set of relationships R1, . . . , Rm among the
concepts.

We distinguish a special relationship called “is-a”, which
specifies that a concept A is a kind of a concept B (e.g.,
Professors is a kind of People). The “is-a” relationships im-
pose a taxonomy over the concepts Ci. This taxonomy is a
tree, where nodes denote the concepts and edges the “is-a”
relationships, such that an edge A → B means that concept
B is a kind of concept A. Figure 1 shows a tiny KB, which
illustrates the above notions.

In many KBs, the set of instances of a parent node (in the
taxonomy) is the union of the instances of the child nodes.
In our context, we do not impose this restriction. So a node
A may have instances that do not belong to any of A’s chil-
dren. Furthermore, KBs typically also contain many domain
integrity constraints. In our context, these constraints will
appear later, being specified by our developers as a part of
the human curation process (see Section 4.2).

Domain-Specific KBs vs. Global KBs: We distin-
guish two types of KBs. A domain-specific KB captures con-
cepts, instances, and relationships of a relatively well-defined
domain of interest. Examples of such KBs include DBLP,
Google Scholar, DBLife, echonest, and product KBs being
built by e-commerce companies. A global KB attempts to
cover the entire world. Examples of such KBs include Free-
base, Google’s knowledge graph, YAGO, DBpedia, and the
collection of Wikipedia infoboxes.

This distinction is important because depending on the
target applications, we may end up building one type or the
other. Furthermore, it is interesting to consider whether we
need domain-specific KBs at all. To power most of real-
world applications, is it sufficient to build just a few large
global KBs? If so, then perhaps they can be built with brute
force, by big Internet players with deep pocket. In this case,
developing efficient methodologies to build KBs presumably
become far less important.

We believe, however, that while global KBs are very im-
portant (as ours attests), there is also an increasing need to
build domain-specific KBs, and in fact, we have seen this
need in many domains. Consequently, it is important to de-
velop efficient methodologies to help domain experts build
such KBs as fast, accurately, and inexpensively as possible.

Ontology-like KBs vs. Source-Specific KBs: We also
distinguish between ontology-like and source-specific KBs.
An ontology-like KB attempts to capture all important con-
cepts, instances, and relationships in the target domain. It
functions more like a domain ontology, and is comprehen-
sive in certain aspects. For example, DBLP is an ontology-
like KB. It does not capture all possible relationships in



Figure 2: Two main kinds of Wikipedia pages - article page (left) and category page (right)

the CS publication domains, but is comprehensive in that it
contains all publications of the most important publication
venues. An ontology-like KB can also be viewed as a kind
of “dictionary” for the target domain.

Source-specific KBs, in contrast, are built from a given set
of data sources (e.g., RDBMSs, semi-structured Web pages,
text), and cover these sources only. For example, an intelli-
gence analyst may want to build a KB that covers all articles
in the past 30 days from all major Middle-East newspapers,
for querying, mining, and monitoring purposes.

The above distinction is important for two reasons. First,
building each type of KB requires a slightly different set of
methods. Building a source-specific KB is in essence a data
integration problem, where we must integrate data from a
given set of data sources. The KB will cover the concepts,
instances, and relations found in these sources and these
only. In contrast, building an ontology-like KB requires a
slightly different mindset. Here we need to think “I want to
obtain all information about this concept and its instances,
where in the world can I obtain this information, in the most
clean way, even if I have to buy it?”. So here the step of data
source acquisition becomes quite prominent, and obtaining
the right data source often makes the integration problem
much easier.

Second, if we already have an ontology-like KB, building
source-specific KBs in the same domain becomes much eas-
ier, because we can use the ontology-like KB as a domain
dictionary to help locate and extract important information
from the given data sources (see Section 6). This under-
scores the importance of building ontology-like KBs, and
efficient methodologies to do so.

Given that our applications are global in scope, our goal is
to build a global KB. We also want this KB to be ontology-
like, in order to use it to build many source-specific KBs.
We now describe how we build, maintain, curate, and use
this global, ontology-like KB.

3. BUILDING THE KNOWLEDGE BASE
As we hinted earlier, Wikipedia is not a KB in the tradi-

tional sense, and converting Wikipedia into a KB is a non-
trivial process. The key steps of this process are: (1) con-
structing the taxonomy tree from Wikipedia, (2) construct-
ing a DAG on top of the taxonomy, (3) extracting relation-
ships from Wikipedia, (4) adding metadata, and (5) adding
other data sources. We now elaborate on these steps.

Figure 3: Cyclic references in a Wikipedia category
page

3.1 Constructing the Taxonomy Tree
1. Crawling Wikipedia: We maintain an in-house mir-
ror of Wikipedia and keep it continuously updated, by mon-
itoring the Wikipedia change log and pulling in changes as
they happen. Note that an XML dump of Wikipedia pages
is also available at download.wikimedia.org/enwiki. How-
ever, we maintain the Wikipedia mirror because we want to
update our KB daily, whereas the XML dump usually gets
updated only every fortnight.

2. Constructing the Wikipedia Graph: There are two
main kinds of pages in Wikipedia: article pages and category
pages (see Figure 2). An article page describes an instance.
A category page describes a concept. In particular the page
lists the sub-categories, parent categories, and article chil-
dren. Other Wikipedia page types include Users, Templates,
Helps, Talks, etc., but we do not parse them. Instead, we
parse the XML dump to construct a graph where each node
refers to an article or a category, and each edge refers to a
Wikipedia link from a category X to a subcategory of X or
from a category X to an article of X.

Ideally, the articles (i.e., instances) and categories (i.e.,



Figure 4: Constructing the top levels of our taxon-
omy and the list of verticals

concepts) should form a taxonomy, but this is not the case.
The graph produced is cyclic. For example, Figure 3 shows
the category page “Category:Obama family”. This category
page lists the page “Category:Barack Obama” as a subcat-
egory. But it also lists (at the bottom of the page) the
same page as a parent category. So this page and the page
“Category:Barack Obama” form a cycle. As a result, the
Wikipedia graph is a directed cyclic graph.

Another problem with this graph is that its top categories,
shown in Figure 4 as “Contents”, “Wikipedia administra-
tion”, “Wikipedia categories”, etc. are not very desirable
from an application point of view. The desirable categories,
such as“Philosophy”and“Diseases and Disorders”are buried
several levels down in the graph. To address this problem,
we manually create a set of very high-level concepts, such
as “KosmixHealth”, “KosmixSocialSciences”, and “Kosmix-
History”, then place them as the children of a root node.
We call these nodes verticals. Next, we place the desirable
Wikipedia categories in the first few levels of the graph as
the children of the appropriate verticals, see Figure 4. This
figure also lists all the verticals in our KB.

3. Constructing the Taxonomy Tree: We now de-
scribe how to construct a taxonomic tree out of the directed
cyclic Wikipedia graph. Several algorithms exist for convert-
ing such a graph to a spanning tree. Edmonds’ algorithm
(a.k.a. Chu-Liu/Edmonds’) [12, 9] is a popular algorithm
for finding the maximum or minimum number of optimum
branchings in a directed graph. We use Tarjan [23], an effi-
cient implementation of this algorithm.

Tarjan prunes edges based on associated weights. So we
assign to each edge in our graph a weight vector as follows.
First, we tag all graph edges: category-article edges with
warticle and category-subcategory edges with wsubcat. If
an article and its parent category happen to have the same
name (e.g., “Article:Socrates” and “Category:Socrates”), the
edge between them is tagged with artcat. We then assign
default weights to the tags, with artcat, wsubcat, and warticle
receiving weights in decreasing order.

Next, we compute a host of signals on the edges. Examples
include:

• Co-occurrence count of the two concepts forming the
edge on the Web: Given two concepts A and B, we

compute a (normalized) count of how frequently they
occur together in Web pages, using a large in-house
Web corpus. Intuitively, the higher this count, the
stronger the relationship between the two concepts,
and thus the edge between them.

• Co-occurrence count of the two concepts forming the
edge in lists: This is similar to the above signal, ex-
cept that we look for co-occurrences in the same list
in Wikipedia.

• Similarity between the concept names: We compute the
similarity between the concept names, using a set of
rules that take into account how Wikipedia categories
are named. For example, if we see two concepts with
names such as “Actors” and “Actors by Nationality”
(such examples are very common in Wikipedia), we
know that they form a clean parent-child relationship,
so we assign a high signal value to the edge between
them.

Next, an analyst may (optionally) assign two types of weight
to the edges: recommendation weights and subtree prefer-
ence weights. The analyst can recommend an ancestor A

to a node B by assigning a recommendation weight to the
edges in the path from A to B. He or she can also suggest
that a particular subtree in the graph is highly relevant and
should be preserved as far as possible during pruning. To
do so, the analyst assigns a high subtree preference weights
to all the edges in that subtree, using an efficient command
language. For more details see Section 4.2, where we explain
the role of an analyst in maintaining and curating the KB.

Now we can assign to each edge in the graph a weight
vector, where the weights are listed in decreasing order of
importance: <recommendation weight, subtree preference
weight, tag weight, signal 1, signal 2, ...>. Comparing
two edges means comparing the recommendation weights,
then breaking tie by comparing the next weights, and so on.
The standard Edmonds’ algorithm works with just a single
weight per edge. So we modified it slightly to work with the
weight vectors.

3.2 Constructing the DAG
To motivate DAG construction, suppose that the article

page “Socrates” is an instance of category “Forced Suicide”,
which in turn is a child of two parent categories: “Ancient
Greek Philosophers” and “5th Century BC Philosophers”.
These two categories in turn are children of “Philosophers”,
which is a child of “ROOT”.

Then “Forced Suicide” has two lineages to the root: L1 =
Force Suicide - Ancient Greek Philosophers - Philosophers -
ROOT, and L2 = Force Suicide - 5th Century BC Philoso-
phers - Philosophers - ROOT. When constructing the taxo-
nomic tree, we can select only one lineage (since each node
can have only one path to the root). So we may select lineage
L1 and delete lineage L2. But if we do so, we lose informa-
tion. It turns out that keeping other lineages such as L2

around can be quite beneficial for a range of applications.
For example, if a user query refers to “5th century BC”,
then keeping L2 will boost the relevance of “Socrates” (since
the above phrase is mentioned on a path from “Socrates” to
the root). As yet another example, Ronald Reagan has two
paths to the root, via“Actors”and“US Presidents”, and it is
desirable to keep both, since an application may make use of



Figure 5: Extraction of relationships from a Wikipedia page

either. We would want to designate a lineage as the primary
one (e.g., “US Presidents” in the case of Ronald Reagan since
he is more well known for that), by making that lineage as a
part of the taxonomy, while keeping the remaining lineages
(e.g., “Actors”).

Consequently, we want to construct a primary taxonomic
tree from the Wikipedia graph, but we also want to keep all
other lineage information, in the form of a DAG that sub-
sumes the taxonomic tree. Recall that the Wikipedia graph
has cycles. We however do not want such cycles because it
does not make sense to have “category - sub category” edges
go in cycle. Because of these, we construct the desired DAG
as follows. After obtaining the taxonomic tree T , we go back
to the original Wikipedia graph G and assign high weights
to the edges of T . Next, we remove cycles in G by run-
ning multiple iterations of DFS. In each DFS iteration, if
we detect a back edge then there is a cycle. We break it
by deleting the edge with the lowest weight, as given by the
weight vector. We stop when DFS does not detect any more
cycle.

3.3 Extracting Relationships from Wikipedia
Recall from Section 2 that a KB has a finite set of pre-

defined relationships, such as lives-in(people, location) and
write(author, book). An instance of such a relationship in-
volves concept instances. For example, lives-in(Socrates,

Athens) is an instance of relationship lives-in(people, loca-
tion).

In principle, we can try to define a set of such relation-
ships and then extract their instances. But this raises two
problems. First, Wikipedia contains hundreds of thousands,
if not millions, of potentially interesting relationships, and
this set changes daily. So defining more than just a handful
of relationships quickly becomes impractical. Second, and
more seriously, accurately extracting relationship instances
from any non-trivial text is well known to be difficult, and
computationally expensive.

For these reasons, we take a pragmatic approach in which
we do not pre-define relationships nor attempt to extract
their instances. Instead, we extract free-form relationship
instances between concept instances. For example, suppose
the article page “Barack Obama” has a section titled “Fam-
ily”, which mentions the article page “Bo (Dog)”. Then we
create a relationship instance <Barack Obama, Bo (Dog),
Family>, indicating that “Barack Obama” and “Bo (Dog)”
have a relationship “Family” between them.

In general, extracted relationship instances have the form
<name of concept instance 1, name of concept instance 2,
some text indicating a relationship between them>. We
extract these relationship instances as follows:

• Extraction from infoboxes: An infobox at the top right-
hand corner of an article page summarizes the page



and provides important statistics. We write a set of
rules to extract relationship instances from such in-
foboxes. For example, from the page in Figure 5, we
can extract <Socrates, Greek, Nationality>.

• Extraction from templates: Templates describe mate-
rials that may need to be displayed on multiple pages.
We extract relationship instances from two common
templates: hat notes (i.e., short notes at the top of
an article or section body, usually referring to related
articles) and side bars. Figure 5 shows a sample side
bar. From it we can extract for example <Socrates,
Plato, Disciples>.

• Extraction from article text: We use a set of rules to
extract potentially interesting relationship instances
from the text of articles. For example, the page“Socrates”
in Figure 5 has a section titled“The Socratic Problem”,
which mentions “Thucydides”. From this we can ex-
tract <Socrates, Thucydides, Socratic Problem> as a
relation instance. Other rules concern extracting from
lists, tables, and so on.

Thus, using a relatively small set of rules, we can ex-
tract tens of millions of free-form relationship instances from
Wikipedia. We encode these relationships in a relationship
graph, where the nodes denote the concept instances, and
the edges denote the relation instances among them.

When using the relationship graph, we found that some
applications prefer to work with a smaller graph. So on
occasions we may need to prune certain relation instances
from the relationship graph. To do this, we assign priorities
to relation instances, using a set of rules, then prune low-
priority relationships if necessary. In decreasing order of
priority, the rules rank the relation instances extracted from
infoboxes first, followed by those from templates, then those
from “See Also” sections (in article text), then reciprocated
relation instances, then unreciprocated ones.

A reciprocated relation instance is one where there is also
a reverse relationship from the target instance to the source
instance. Intuitively, such relationships are stronger than
unreciprocated ones. For example, Michelle Obama and
Barack Obama have a reciprocated relationship because they
mention each other in their pages. On the other hand, the
Barack Obama page mentions Jakarta, but the reverse is
not true. So the relationship between these two is unrecip-
rocated and is not as strong.

3.4 Adding Metadata
At this point we have created a taxonomy of concepts,

a DAG over the concepts, and a relationship graph over
the instances. In the next step we enrich these artifacts
with metadata. This step has rarely been discussed in the
literature. We found that it is critical in allowing us to use
our KB effectively for a variety of applications.

Adding Synonyms and Homonyms: Wikipedia con-
tain many synonyms and homonyms for its pages. Syn-
onyms are captured in Redirect pages. For example, the
page for Sokrat redirects to the page for Socrates, indicat-
ing that Sokrat is a synonym for Socrates. Homonyms are
captured in Disambiguation pages. For example, there is a
Disambiguation page for Socrates, pointing to Socrates the
philosopher, Socrates a Brazilian football player, Socrates a
play, Socrates a movie, etc.

Table 1: Examples of non-Wikipedia sources that
we have added

Name Domain No. of instances
Chrome Automobile 100K
Adam Health 100K

Music-Brainz Music 17M
City DB Cities 500K

Yahoo! Stocks Stocks and companies 50K
Yahoo! Travel Travel destinations 50K

We added all such synonyms and homonyms to our KB
in a uniform way: for each synonym (e.g., Sokrat), we cre-
ate a node in our graph then link it to the main node (e.g.,
Socrates) via an edge labeled “alias”. For each disambigua-
tion page (e.g., the one for Socrates), we create a node in
the graph then link it to all possible interpretation nodes
via edges labeled “homonym”. Wikipedia typically desig-
nates one homonym interpretation as the default one. For
example, the default meaning of Socrates is Socrates the
philosopher. We capture this as well in one of the edges, as
we found this very useful for our applications.

Adding Metadata per Node: For each node in our KB
we assign an ID and a name, which is the title of the cor-
responding Wikipedia page (after some simple processing).
Then we add multiple types of metadata to the node. These
include

• Web URLs: A set of home pages obtained from Wikipedia
and web search results. For a celebrity, for example,
the corresponding Wikipedia page may list his or her
homepages. We also perform a simple Web search to
find additional homepages, if any.

• Twitter ID: For people, we obtain their Twitter ID
from the corresponding Wikipedia page, from their
home pages, or from a list of verified accounts (main-
tained by Twitter for a variety of people).

• Co-occurring concepts and instances: This is a set of
other concepts and instances that frequently co-occur.
This set is obtained by searching the large in-house
Web corpus that we are maintaining.

• Web signatures: From the corresponding Wikipedia
page and other related Web pages (e.g., those referred
to by the Wikipedia page), we extract a vector of terms
that are indicative of the current node. For instance,
for Mel Gibson, we may extract terms such as “actor”,
“Oscar”, and “Hollywood”.

• Social signatures: This is a vector of terms that are
mentioned in the Twittersphere in the past one hour
and are indicative of the current node. For instance,
for Mel Gibson, these terms may be “car”, “crash”, and
“Maserati” (within a few hours after he crashed his
car).

• Wikipedia page traffic: This tells us how many times
the Wikipedia page for this node was visited in the last
day, last week, last month, and so on.

• Web DF: This is a DF score (between 0 and 1) that
indicates the frequency of the concept represented by
this node being mentioned in Web pages.



• Social media DF: This score is similar to the Web DF,
except it counts the frequency of being mentioned in
social media in the near past.

3.5 Adding Other Data Sources
In the next step we add a set of other data sources to

our KB, effectively integrating them with the data extracted
from Wikipedia. Table 1 lists examples of data sources that
we have added (by mid-2011). To add a source S, we proceed
as follows.

First, we extract data from S, by extracting the data in-
stances and the taxonomy (if any) over the instances. For
example, from the“Chrome”data source we extract each car
description to be an instance, and then extract the taxonomy
T over these instances if such a taxonomy exists. For each
instance, we extract a variety of attributes, including name,
category (e.g., travel book, movie, etc.), URLs, keywords
(i.e., a set of keywords that co-occur with this instance in
S), relationships (i.e., set of relationships that this instance
is involved in with other instances in S), and synonyms.

If the taxonomy T exists, then we match its categories
(i.e., concepts) to those in our KB, using a state-of-the-art
matcher, then clean and add such matches (e.g., Car = Au-
tomobile) to a concordance table. This table will be used
later in our algorithm.

We now try to match and move the instances of S over to
our KB. We handle the simplest cases first, then move on to
more difficult ones. Specifically, for each instance (x, c) of
S, where x refers to the instance itself, and c refers to the
category of the instance:

• If there exists an instance (x′, c′) in our KB such that
x.name = x′.name and c.name = c′.name (e.g., given
a node (salt, movie) in S there may already exist a
node (salt, movie) with identical instance name and
category name in our KB), we say that (x, c) matches
(x′, c′). We simply add the metadata of (x, c) to that
of (x′, c′), then return.

• Otherwise, we find all instances (x′, c′) in our KB such
that x.name = x′.name, but c.name 6= c′.name (e.g.,
(salt, movie) vs. (salt, cinema) or (salt, movie) vs.
(salt, condiment)). For each found (x′, c′), we match
it with the instance (x, c) from S, using all available
attributes and meta data. If we find a positive match,
then we have a situation such as (salt, movie) vs. (salt,
cinema). In this case we simply add the metadata of
(x, c) to that of (x′, c′), then return.

• Otherwise, we have a difficult case. Here, we first use
the concordance table created earlier to find a match
c = c′, meaning that category c of S maps into cate-
gory c′ of our KB. If such a match exists, then we try
to match the instance x with all the instances of c′,
again utilizing all available attributes and metadata.
If x matches an instance x′ of c′, then we add the
metadata of x to that of x′, then return; otherwise, we
create a new instance x′ of c′, and copy over into x′

the metadata of x. If we cannot find a mapping for
category c, then we alert the analyst. He or she will
create a category for c in our KB, add x, and then
update the concordance table accordingly.

4. MAINTAINING THE KNOWLEDGE BASE
After building the initial KB from Wikipedia and other

data sources, we need to maintain it over time. Maintain-
ing the KB means (1) updating it on a regular basis, as
Wikipedia and data sources change, and (2) manually cu-
rating its content, to improve the accuracy and add even
more content. We now elaborate on these two aspects.

4.1 Updating the Knowledge Base
There are two main ways to update a KB: (1) rerunning

the KB construction pipeline from the scratch, or (2) per-
forming incremental updates. Option 1 is conceptually sim-
pler, but takes time, and raises the difficult problem of re-
cycling human curations, as we discuss below.

Option 2, performing incremental updates, typically takes
far less time (and thus can allow us to keep the KB more
up to date). It is also easier to preserve human curations.
For example, if an analyst has deleted an edge in the graph,
then when performing incremental updates, we may simply
decide not to override this analyst action.

But to execute Option 2, we may need to write many
rules that specify how to change the KB given an update
at a source. For example, if a new page or a new subtree is
added to Wikipedia, or a new instance is deleted from a data
source, what changes should we make to the KB? Writing
such rules has proven to be difficult in our setting, for two
reasons.

First, during the construction pipeline we execute sev-
eral algorithms that examine the entire Wikipedia graph to
make decisions. In particular, an algorithm examines the
Wikipedia graph to create a taxonomic tree, and another
algorithm examines the graph, together with the tree pro-
duced by the previous algorithm, to detect and break cycles,
to create a DAG. It is unclear how to modify these “global”
algorithms into making incremental updates, given a change
in their input graph.

Second, we allow our analysts to write “integrity con-
straints” over the taxonomic tree and the DAG (see the next
subsection). In general, when a construction pipeline utilizes
a set of integrity constraints, it becomes much more difficult
to figure out how to modify the pipeline into making incre-
mental updates, given a change in the input.

For the above reasons, currently we use Option 1, rerun-
ning the construction pipeline from the scratch, to update
our KB. However, we do propagate certain simple updates in
real time, those for which we are confident we can write rea-
sonable update rules. Examples of these updates are adding
a new instance having just one parent and adding a new syn-
onym instance. Examining how to propagate more complex
updates is an ongoing work.

As mentioned earlier, Option 1 raises two main challenges.
First, we need to minimize the time it takes to execute the
entire pipeline. We use parallel processing for this purpose.
For example, to parse Wikipedia, we split it into NUM-
SPLITS equal-sized chunks and launch RUNSPLITS parallel
threads, each thread working on NUMSPLITS/RUNSPLITS
chunks on an average (we set RUNSPLITS=# of CPUs and
NUMSPLITS=2*RUNSPLITS). Similarly, to create the re-
lationship graph, we partition the relationship edges (where
each edge is of the form <Source, Target, Relationship>)
on the source nodes then process them in parallel threads.
Using a single machine with 256G RAM, 0.8GHz processor,
and 32 processors, it takes roughly 12.5 hours to complete
the construction pipeline (see Section 6 for more statistics).
So far this time has been acceptable for us. Should we need



to process the entire pipeline faster, we will consider using
a MapReduce infrastructure.

The second challenge of Option 1, rerunning from the
scratch, is to preserve human curations of the previous iter-
ations. We discuss this challenge in the next subsection.

4.2 Curating the Knowledge Base
Curating the KB is a critical part of our ongoing mainte-

nance. For this purpose we employ a data analyst. The job
of the analyst is to evaluate the quality of the KB and then
curate it as much as possible.

Evaluating the Quality: Every week the analyst per-
forms one or multiple manual evaluations. In each evalua-
tion, the analyst performs two main steps. First, he or she
takes a sample of the taxonomy, by randomly sampling a set
of paths, each path goes all the way from the root to a leaf.
The analyst then manually examines the path, to see if the
nodes and edges on the path are correct. For example, if a
path says that Socrates is an instance of concept “Ancient
Greek Philosopher”, which is a child of “Philosopher”, which
is a child of the root, then this path is judged to be correct.
On the other hand, if the path says Socrates is an instance
of “Ancient Greek Philosopher”, which is a child of “Famous
Suicide”, which is a child of the root, then this path is judged
not correct.

In the second step of the evaluation, the analyst also
checks all nodes that have at least 200 children. For each
such node, he or she checks to see if the node is assigned
to the correct parent. Finally, if developers working on ap-
plications that use the KB find any quality problems, they
alert the analyst to those as well.

Curating by Writing Commands: Based on the quality
evaluation, the analyst can perform the following curating
actions:

• Adding/deleting nodes and edges: We have seen that
the root node and the verticals were added editorially.
The analyst can add and delete other nodes and edges
too by writing a set of commands and storing these
commands in files. During the construction process,
the files will be parsed and the add/delete actions will
be executed on the Wikipedia graph (before the algo-
rithm to create the taxonomic tree is run).

• Changing edge weights: The analyst can change any
component in the weight vector associated with an
edge if he or she deems that necessary. This will have
a direct impact on the construction of taxonomy tree
and DAG.

• Changing the assignment of an instance-of or an is-a
relationship: Recall that we run an algorithm to create
a taxonomic tree. Ideally, all edges of this tree should
be describing is-a relationships, that is, true concept
- subconcept relationships. But since the algorithm is
automatic, it can make mistakes. For example, it may
say that concept X is a kind of concept Y , whereas in
practice, X is actually a kind of Z. In such cases, the
analyst may write a command that specifies that X is
actually a kind of Z. When the tree creation algorithm
is run again (in the next update cycle), it will take this
command into account.

Similarly, we may have incorrect instance-of relation-
ships in the graph, such as saying that a is an instance

of X, whereas it is actually an instance of Y . In such
cases, the analyst can write similar commands to cor-
rect the mistakes.

• Recommending an ancestor to a node: For example,
generally all politicians go under the concept“Politics”,
but an analyst may write a command to recommend
that the dead politicians should go under the concept
“History”.

In general, a command that recommends that X should
be an ancestor of Y will be processed as follows. If the
recommended X is an immediate parent of Y , then we
just assign a high recommendation weight to the edge
X → Y . Otherwise, we perform a path selection pro-
cess to determine which path should be chosen from
Y to X. We assign a high recommendation weight to
all the edges in the chosen path. If there is no path
from Y to X, then we find their least common ancestor
(LCA). This LCA now becomes the recommended an-
cestor and a high recommendation weight is assigned
to all the paths from Y to the LCA node.

• Assigning preference to a subtree in the graph: Sup-
pose there is a node X with two paths leading to the
root. Clearly, in the taxonomy we can select only one
path. Suppose the analyst prefers one path to the
other, because that path belongs to a subtree judged
to be more appropriate, then the analyst may want to
assign a higher preference to that subtree. For exam-
ple, the analyst might want to give a higher preference
to the subtree rooted at “Music by Artist” and lower
preference to the subtree rooted at “Music by Genre”.
He or she does this by writing a command that adjusts
the subtreepref weight in the weight vectors associated
with the edges of the subtrees.

Managing Commands: As described, the analyst can
perform a variety of curating actions. He or she encodes
these actions as commands, using a special command lan-
guage that we have developed. Whenever the KB construc-
tion pipeline is run (or rerun), it processes and takes into
account these commands at various points during the con-
struction process.

As described, the use of commands brings two benefits.
First, using the command language, the analyst can write a
simple command that affects hundreds or thousands of nodes
in one shot. This is much better than if he or she modifies
these nodes one by one. Second, using the commands allows
us to recycle the human curation performed by the analyst
across reruns.

At the moment our KB contains several thousands such
human-curation commands, written by our analysts over 3-
4 years. Thus, the analyst in charge is also responsible for
maintaining these commands. Every single day, the com-
mands will be evaluated and if any one of them is violated,
the analyst will receive an alert, and can then decide how
best to handle the violation. (For more details, please see the
technical report at pages.cs.wisc.edu/~anhai/papers/kcs-
tr.pdf.)

5. USING THE KNOWLEDGE BASE
We now briefly describe how we have used the KB for

a variety of real-world applications at Kosmix and later at



Figure 6: A result page for querying Deep Web using
the keyword “Renewable Energy”

WalmartLabs. These are query understanding, Deep Web
search, in-context advertising, event monitoring in social
media, product search, social gifting, and social mining. In
Section 6 we discuss lessons learned from using the KB for
these applications.

Understanding User Queries: Kosmix started out as
a Deep Web search engine. A user poses a search query
such as “Las Vegas vacation” on kosmix.com, we try to un-
derstand the query, go to an appropriate set of Deep Web
data sources (i.e., those behind form interfaces), query the
sources, combine then return the answers to the user.

Clearly, understanding the user query is a critical com-
ponent in the above process. To understand a query, we
attempt to detect if it mentions any concept or instances in
the KB. For example, the query “Las Vegas vacation” men-
tions the instance “Las Vegas” and concept “vacation”. We
do this by performing information extraction from the user
query. Specifically, we use the KB (as a dictionary) to iden-
tify strings such as “Las Vegas” and “vacation” as candidate
concepts/instances . Next, we ascertain that these indeed
refer to the concepts/instances in our KB (i.e., to resolve
any potential homonym problems). Finally, we return the
set of concepts/instances mentioned in the query as the un-
derstanding of that query.

Deep Web Search: As discussed above, Deep Web search
means querying a set of appropriate Deep Web data sources.
To do this, we first assemble a set of a few thousand Deep
Web data sources, covering a broad range of topics. Next,
we assign these sources to the appropriate nodes in our tax-
onomy. For example, TripAdvisor, a source that reviews
vacation destinations, is assigned to the node “vacation”.

Now given a user query Q, suppose in the query under-
standing step we have found that Q mentions concept nodes
X and Y in our taxonomy. Then we query the Deep Web
data sources at these nodes, combine the answers, then re-

Figure 7: Event monitoring in social media using
Tweetbeat

turn those to the user. Figure 6 shows a sample answer page,
in response to the query “renewable energy”. Note that the
answers to this query come from a variety of sources, in-
cluding Wikipedia, meehive, etc. Note also that we show a
set of related concepts on the upper righthand corner of the
answer page. These concepts come from the neighborhood
of concept “renewable energy” in our taxonomy. In practice
the Deep Web search process is far more complex. But the
above description should give an idea on how our KB is used
in that process.

In-context Advertising: The basic idea here is that
when a user is reading a Web page (e.g., a newsarticle or
a discussion forum page), we parse the page, identify the
most important concepts/instances on the page, and then
highlight those concepts/instances. When the user hovers
over a highlight, he or she will see a pop-up ad that is rel-
evant to the highlighted concepts/instances. This is known
as in-context advertising. We address this problem in a way
similar to the way we try to understand a user query. That
is, given a Web page, we perform information extraction
and then entity disambiguation to determine if the page
mentions any concepts and instances in our KB, and how
relevant those concepts/instances are for the page.

Event Monitoring in Social Media: In late 2010 Kos-
mix turned its focus to social media. It built a flagship
application that monitors the Twittersphere to detect inter-
esting emerging events (e.g., Egyptian uprising, stock crash,
Japanese earthquake), then displays all tweets of these events
in real time. Figure 7 shows an example. This was a little
widget embedded on the ABC news homepage, and powered
by Kosmix. For the event “Egyptian uprising” (which was
probably the hottest political event at that time), the wid-
get shows interesting tweets related to that event, scrolling
in real time.

To do this, for each incoming tweet we must decide whether



it belongs to an event E. Again, we use our KB to perform
information extraction and entity disambiguation, to detect
all concepts/instances mentioned in the tweet. We then use
this information to decide if the tweet belongs to the event.

Product Search: In mid 2011 Kosmix was acquired by
Walmart and since then we have used our KB to assist a
range of e-commerce applications. For example, when a
user queries “Sony TV” on walmart.com, we may want to
know all categories that are related to this query, such as
“DVD”, “Bluray players”, etc. We use the KB to find such
related categories. We also use a version of the KB that is
greatly expanded with product data sources to interpret and
understand user queries.

Social Gifting: In Spring 2012 we introduced a Face-
book application called ShopyCat [18]. After a Facebook
user installs ShopyCat and gives it access to his/her Face-
book account, ShopyCat will crawl his posts as well as those
of his friends, then infer the interests of each person. Next,
ShopyCat uses these interests to recommend gifts that the
user can buy for his or her friends. For example, ShopyCat
may infer that a particular friend is very interested in foot-
ball and Superbowl, and hence may recommend a Superbowl
monopoly game from deluxegame.com as a gift.

ShopyCat infers the interests of a person by processing his
or her posts in social media, to see what concepts/instances
in our KB are frequently mentioned in these posts. For
example, if a person often mentions coffee related products
in his or her posts, then ShopyCat infers that the person is
likely to be interested in coffee. Thus, our KB can be used
to process a person’s social-media activities to infer his or
her interests (see [18] for more details).

Social Mining: In one of the latest applications, we use
our KB to process all tweets that come from a specific loca-
tion, to infer the overall interests of people in that location,
then use this information to decide how to stock the local
Walmart store. For example, from mining all tweets com-
ing from Mountain View, California, we may infer that many
people in Mountain View are interested in outdoor activities,
and so the outdoor section at the local Walmart is expanded
accordingly. Such social mining appears to be quite useful
on a seasonal basis.

Fast and Scalable Access: To serve a broad range of
applications, we have to store and serve our KB in a way
that ensures fast and scalable access. We now briefly discuss
these issues.

We store the taxonomy tree, the DAG, and the relation-
ship graph on disk as several files of vertices and edges in a
proprietary data format. We keep the metadata in separate
files. The whole KB occupies around 30G. We load the tree
and the DAG in memory as a Boost(C++) adjacency list.
The metadata is also loaded in-memory in data structures
that are essentially maps and hash tables. The in-memory
data structures are around 25G in size.

Our KB APIs support only a fixed number of pre-defined
functions. These are basically graph traversal functions such
as getLineage, getParents, getChildren, getNumChildren,
etc. We pre-compute JSON outputs of these functions for
all the nodes and store these outputs in Cassandra, a dis-
tributed key-value store, configured over a cluster of ma-
chines. This helps us scale better against multiple concur-
rent clients as opposed to having one central taxonomy serve
all requests. However, not all application queries can be an-

swered from the pre-computed outputs stored in Cassandra,
in which case the functions are evaluated on the fly.

6. TEAM ORGANIZATION, STATISTICS,
AND LESSONS LEARNED

Team Organization: During the period 2010-2011 Kos-
mix had about 25-30 developers. Out of these a core team of
4 persons was in charge of the KB. A data analyst performed
quality evaluation and curated the KB, as discussed earlier.
A developer wrote code, developed new features, added new
signals on the edges, and so on. A system person worked
50% of the time on crawling the data sources, and main-
taining the in-house Wikipedia mirror and the Web corpus.
An UI specialist worked 50% of the time on the look and
feel of the various tools. Finally, a team lead designed, su-
pervised, and coordinated the work. Occasionally we hired
interns to help with quality evaluation of the KB.

Clearly, developing a different KB may require a different
team size and composition. But the above team demon-
strated that even a relatively small team can already build
and maintain large KBs that are useful for a broad range of
real-world applications.

At WalmartLabs we have significantly expanded the KB
in several directions, and are building a variety of other KBs
(e.g., a large product KB). So at the moment there are mul-
tiple teams working on a variety of KB projects, but most
teams have no more than 4 person whose long-term job is
to be in charge of the KB.

Statistics: Figure 8 shows several statistics about the KB.
Overall, the KB has 13.2M concepts and instances, with a
relationship graph of 165M edges. It is interesting, but not
surprising, that mining the article texts produce 100M, the
most of such relationships.

The size of the entire KB on disk and in memory is rela-
tively small. This is important because we have found that
our applications often want to replicate the KB and have
their own KB copy, so that they can minimize access time
and modify the KB to suit their own need. Having a rel-
atively small footprint serves this purpose well. The con-
struction time is still relatively high (12.5 hours), but that
is partly because we have not fully optimized this time. Fi-
nally, the pipeline was run on just a single (albeit powerful)
machine. All of these demonstrate the feasibility of building
and using relatively large KBs with a relatively modest hard-
ware and team requirements. This is important for anyone
considering building such KBs for a particular domain.

Lessons Learned: We now discuss several lessons learned
from our experience.

• It is possible to build relatively large KBs with modest
hardware and team requirement: We have discussed
this point above.

• Human curation is important: Using automatic algo-
rithms, our taxonomy was only 70% accurate. Human
curation in the form of the commands increased this
rate to well above 90%. More importantly, our expe-
rience demonstrates that human curation that makes
a difference is indeed possible even with a relatively
small team size.

• An imperfect KB is still useful for a variety of real-
world applications: If an application must show the



Figure 8: Statistics on the construction and compo-
sition of our KB

data from the KB to the end user, then it is important
that the data should be near perfect, or the user should
be aware of and does not mind the fact that the data
may not be perfect. For example, if the user is an
intelligence analyst, then he or she may be okay with
imperfect data as long as he or she can still mine useful
intelligence out of it. However, if the user is a Web
search user, posing a query such as “France vacation”,
then he or she is less likely to be happy with imperfect
structured data being returned about France.

In our case, most of our applications do not have to
show the KB data to the end user. Rather, they use
the KB to guide the process of finding such data (e.g.,
using the KB to find out which Deep Web data sources
they should query). As such, even somewhat imperfect
KBs can already serve quite useful guiding heuristics.

• An imperfect graph of relationships is still useful for
a variety of real-world applications: This is a related
point to the point above. While imperfect, the re-
lationship graph still provides more contexts for the
concepts/instances and show how they are related to
one other. Our applications can exploit such informa-
tion to help entity disambiguation and to find related
items (e.g., in product search).

• It is important to build ontology-like KBs: We recog-
nized the importance of this when we tried to under-
stand a body of tweets, effectively wanting to build

a source-specific KB from this body of tweets. Hav-
ing an ontology-like KB proved immensely useful for
two reasons. First, it allowed us to ground the no-
tion of understanding. We can say that understanding
the body of tweets means being able to interpret it
with respect to the concepts, instances, and relation-
ships we have in the KB. Second, it allowed us to use
dictionary-based approaches to information extraction
from the body of tweets. We found this approach to be
reasonably accurate and fast. In contrast, many tradi-
tional information extraction approaches that rely on
well-formed and grammatical text break down when
applied to tweets.

• Capturing contexts is critical for processing social me-
dia: Recall from Section 3.4 that for each node in our
KB we maintain as much context information as we
can. Examples include Web signatures, social signa-
tures, and Wikipedia traffic (see Section 3.4). It turned
out that such context information is critical for pro-
cessing social media. For example, given a tweet, “mel
crashed his car”, without knowing that in the past two
hours, when people tweet about Mel Gibson, the most
common words being mentioned are “crash” and “car”,
there is virtually no way for us to identify that “mel”
in this tweet refers to Mel Gibson. As another exam-
ple, given “go Giant!”, without context we cannot tell
if this is the New York Giant sport team or the San
Francisco Giant team. Capturing such time-sensitive
contexts however is a major challenge in terms of scal-
ing and accuracy.

• It is important to have clear and proven methodologies
for building and maintaining KBs: This point is fur-
ther underscored now that at WalmartLabs we have
multiple teams building multiple KBs. Turnover at
the teams also means that it is important to have a
methodology in place to help guide new members.

7. RELATED WORK
Cyc [14] and WordNet [16] are well-known early works

on building global ontology-like KBs. As we mentioned in
Section 3, Wikipedia is not a KB in the traditional sense,
because its graph structure does not correspond to a taxon-
omy and its pages do not correspond neatly to concepts and
instances.

Many recent works however have utilized Wikipedia (and
other data sources) to semi-automatically build global ontology-
like KBs. Well-known examples include Freebase [5, 6], DB-
pedia [1, 4] and YAGO [21, 22], and WolframAlpha. As far
as we can tell, however, the end-to-end process of building
these KBs has not been described in detail in the literature.
In particular, the problem of converting the Wikipedia graph
to a taxonomy has not been discussed, as we do in this pa-
per. Further, little or no work has discussed maintaining,
updating, and using KBs, even though these topics are be-
coming increasingly important (and often incur the largest
costs of ownership in practice).

While relatively few global ontology-like KBs have been
built (as discussed above), many domain-specific KBs have
been developed and described, often together with applica-
tions that use the KBs. For example, IBM’s Watson [13]
uses a KB to answer questions. Other examples include Mi-
crosoft’s EntityCube [25], which powers an academic search



engine, Google Scholar [7], Rexa (rexa.info), DeepDive [17],
and DBLife [11]. Again, here relatively little has been re-
ported on the end-to-end process of building these KBs, and
even less has been reported on maintaining and updating
them over time. Further, even though it is important to
have clear and proven methodologies for building and main-
taining KBs, so far we have seen very little work in this
direction (with [11] being an early attempt).

On other related topics, several works have described how
to leverage user feedback in building KBs [5, 8, 10]. In par-
ticular, the work [10] describes how to enlist both automatic
methods and a community of users to build KBs. Finally,
any discussion of works on KBs would be incomplete with-
out mentioning the Semantic Web [2]. The Semantic Web
community has helped in coming up with W3C standards
in formats (URIs [19], RDF [15], etc.) and protocols that
need to be adhered to if one wants his or her data (such as
the recently released Facebook graph data [24]) to link to a
global KB called the linked data [3].

8. CONCLUSIONS
Over the past decades numerous KBs have been built and

the KB topic has also received significant and growing atten-
tion. Despite this, however, relatively little has been pub-
lished about how KBs are built, maintained, and used in the
industry. Our paper hopes to contribute to filling this gap.
In the paper we have described how we build, update, curate,
and use a relatively large KB (combined from Wikipedia
and other data sources) for a variety of real-world applica-
tions at Kosmix and WalmartLabs. We have also touched
on topics that have received relatively little attention, such
as team composition. Finally, we have discussed a set of
lessons learned from our experience.

In the near future we plan to significantly expand our
KB activities in many directions. We hope to expand our
current KB with more traditional data sources. We have
been building and will be expanding a large KB called Social
Genome that cover interesting entities, relationships, and
instances in social media. We have also been building a
large KB of products and associated information. Finally,
we are examining how to employ crowdsourcing techniques
in our KB construction and maintenance process.
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