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Abstract— The rapid growth of Web communities has moti-
vated many solutions for building community data portals. These
solutions follow roughly two approaches. The first approach
(e.g., Libra, Citeseer, Cimple) employs semi-automatic methods to
extract and integrate data from a multitude of data sources. The
second approach (e.g., Wikipedia, Intellipedia) deploys an initial
portal in wiki format, then invites community members to revise
and add material. In this paper we consider combining the above
two approaches to building community portals. The new hybrid
machine-human approach brings significant benefits. It can
achieve broader and deeper coverage, provide more incentives
for users to contribute, and keep the portal more up-to-date
with less user effort. In a sense, it enables building “community
wikipedias”, backed by an underlying structured database that
is continuously updated using automatic techniques. We outline
our ideas for the new approach, describe its challenges and
opportunities, and provide initial solutions. Finally, we describe
a real-world implementation and preliminary experiments that
demonstrate the utility of the new approach.

I. INTRODUCTION

The growing presence of Web communities has motivated
many solutions to build community data portals. These so-
lutions follow roughly two approaches. The first, machine-
based, approach employs semi-automatic methods to extract
and integrate data from a multitude of data sources, to create
structured data portals. Examples include Cimple, Libra, Rexa,
BlogScope, and Blogosphere [1], [2], [3], [4], [5], [6].

The above approach incurs relatively little human effort,
often generates a reasonable initial portal, keeps portals
fresh with automatic updates, and enables structured services
(querying, browsing, etc.) over portals. However, it usually
suffers from inaccuracies, caused by imperfect extraction and
integration methods, and limited coverage, because it can only
infer whichever information is available in the data sources.

The second, human-based, approach manually deploys an
initial portal in wiki format, then invites community users
to revise and add materials. Examples include Wikipedia,
Intellipedia, umasswiki.com, ecolicommunity.org, and many
wiki-based intranets. This approach avoids many problems
of the machine-based approach, but suffers from its own
limitations. In particular, it may be difficult to solicit sufficient
user participation, can incur significant user effort to keep por-
tals up to date, and cannot accommodate structured services,
because users contribute mostly text and images.

In this paper we consider combining the above two comple-
mentary approaches to build community portals. Specifically,
we use “machines” to deploy an initial portal in wiki format,

then allow both machines and human users to revise and
add materials. Machines can add structured information to
certain parts of wiki pages, while users can add both text
and structured information. Machines and human can also
correct and augment each other’s contributions, in a synergistic
fashion. We refer to this approach as Madwiki (shorthand for
Machine assisted development of wikipedias). The following
example illustrates the approach.

Example 1.1: Suppose we apply Madwiki to build a portal for
the database community. We can start by applying a semi-automatic
approach (i.e., “machines”) to extract structured data from the Web,
then use the data to create and deploy wiki pages, such as page W
in Figure 1.a. Page W contains “structured data pieces” mixed with
ordinary wiki text, and will display as the HTML page in Figure 1.b.
In effect, W describes a person entity who has three attributes: id =
1, name = “David J. DeWitt”, and title = “Professor”. This person
also participates in a relationship called “interests” with an entity
of type “topic”, whose name is “Parallel Database”.

Once W has been deployed, a user U may come in and edit
page W , e.g., by correcting the value of attribute title from “Pro-
fessor”, which was generated by machines, to “John P. Morgridge
Professor”. U may also contribute a structured data piece “< #
person(id=1){organization}= UW #>”, to state that this person is
working for an organization called “UW”. Finally, U adds free text
“since 1976” after this data piece. The edited page W ′ is shown in
Figure 1.c.

Later a machine M may discover from data sources that the
above person also participates in “interests” relationship with topic
“Privacy”. M can then add this piece of information to the page,
as “<# person(id=1).interests (id=5).topic(id=6){name}=Privacy
#>”. With high confidence, M may also correct the value of attribute
organization from “UW”, which was contributed by U , to “UW-
Madison”. The resulting wiki page W ′′ is in Figure 1.d, and it will
display as the HTML page in Figure 1.e. Thus, page W has evolved
over time, with both machines and users contributing and correcting
each other’s contributions. �

As described, this new hybrid machine-human approach
enables building “community wikipedias” that are backed by
an underlying structured database that is continuously updated
using automatic techniques. The approach can bring significant
benefits. First, it can achieve broader and deeper coverage,
because it exploits both machines and human users. Second,
it can provide more incentives for users to contribute, because
the initial portal built by machines can already be reasonably
useful and comprehensive, thus motivating users to further
improve it. Third, it can keep the portal more up-to-date, with
less user effort, because machines can continuously monitor
data sources and update certain parts of the portal. Finally, the
structured data in the wiki pages of the portal is also stored
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Fig. 1. An example to illustrate the machine-human approach.

in an underlying structured database, thus enabling a variety
of structured services over the portal.

In the rest of the paper we elaborate on the above approach.
First, we consider how to build an initial wiki-based portal,
using machines. We cast this as a view creation problem:
store the data generated by machines in a structured database
G, create structured views over G, then export the views in
wiki pages. The key questions are then: How to model and
implement the structured database G? What should be the
view language? And how to export the structured data of the
views into wiki pages? As parts of our solution, we represent
the machine-generated data using an entity-relationship (ER)
model, define a path-based view language over this model,
extend the standard wiki language [7] with s-slots – constructs
to embed structured data into the natural text of wiki pages,
then show how to export the views in wiki pages, using s-slots
(Section IV-C).

Next, we consider how to manage user contributions to the
portal. If a user U has edited a wiki page W , then we want to
extract the “structured” part of U ’s edits, and “push” it all the
way into the underlying database G. The key questions here
are: What is it that U is conceptually allowed to edit? And how
to efficiently infer such edits based on what U has done to a
wiki page W ? To answer these questions, we cast the problem
of processing user contributions as a problem of mapping U ’s
edits over the wiki page into edits over the corresponding view,
then from this view into edits over G. This is a view update
problem. But it is complicated (compared to RDBMS view
update) by the facts that here (a) U can also edit the schema,
not just the data, of the view, and (b) U ’s edits, being limited to
the wiki interface, are often ambiguous. Furthermore, after we
have updated database G with edits from W , we must decide
how to propagate this update to other views and corresponding
wiki pages. In Section V we elaborate on these issues, then
provide a solution.

Finally, for the sake of completeness (but not as a part
of the contribution of this paper), in Section VI we briefly
touch upon the problem of managing multiple users, where
we extend current solutions employed in Wikipedia (namely,
optimistic concurrency control and access rights based on a
user hierarchy) to handle concurrent editing and malicious
users. We also consider how to let machines join users in
updating the portal. The key challenge is the following: once a
user has entered an edit, can machines be allowed to overwrite
the edit, and when?

We have been applying the above solution to build a
community wikipedia for the database community (see the live

system at [8]). In Section VII we report on our experience and
preliminary experiments that demonstrate the potentials of this
approach, and suggest opportunities for future research.

To summarize, we make the following contributions:

• Introduce a new hybrid approach that employs both
machines and human users to build community portals,
backed by an underlying structured database. As far as
we know, ours is the first work that studies this direction
in depth.

• Provide solutions to modeling the underlying structured
database, representing views over this database with a
path-based language, and exporting these views in wiki
pages.

• Provide an efficient solution to process user edits in
wiki pages and “push” these edits into the underlying
database. The solution recasts this problem as translating
edits across different user interfaces.

• Empirical results over a real-world implementation that
demonstrates the promise of the approach and suggests
opportunities for future research.

II. RELATED WORK

We are not aware of any published work that has studied
combining machine-based approaches and human-based ap-
proaches to building community portals. Many portals (e.g.,
Wikipedia) do employ automatic programs (called “bots”)
to generate new pages according to some template, and to
detect problems (e.g., vandalism) with current pages. But these
programs do not contribute structured data nor do they update
existing data, as we do here.

Perhaps the work closest to ours is Semantic Wikipedia [9].
This work develops new wiki language constructs that allow
users to add structured data to wiki pages. We also develop
similar wiki language constructs (see Section IV-C). But our
constructs are far more powerful: we can embed arbitrary ER
data graphs in a wiki page, whereas the constructs in [9] in a
sense only allow embedding node and relation attributes. More
importantly, Semantic Wikipedia and several similar efforts,
including semantic wikis [10], WikiLens [11], and Metaweb
[12], have focused largely on extending wiki languages so that
users can contribute structured data. They have not focused
on allowing machines to contribute, nor do they study how to
“push” structured contributions from users into an underlying
database. Our work here is therefore complementary to these
efforts.

Many semi-automatic approaches have been developed to
build structured portals (see [13] for a discussion). Any of



these can be employed as “machines” in our current work.
Madwiki’s s-slots dynamically query the underlying

database to insert data into wiki pages. Similar constructs have
also been heavily used to query databases to insert data into
HTML pages (e.g., PhP, ColdFusion, MS SharePoint). S-slots
however differ in that they are used to both query and update
the underlying database. Specifically, users can modify values
in the database simply by editing the appropriate s-slots.

Processing user edits in our context is a variation on the
classical view update problem [14], [15]. Unlike relational
view update, however, in our context users can also edit the
schemas of views as well as of the underlying database. Since
users employ the wiki interface, which is rather limited for
expressing structured edits, this poses problems in interpreting
user intentions that do not arise in relational view updates.

We recast processing structured user edits in our con-
text as a problem of translating these edits across different
user interfaces (wiki, ER, and relational, see Section V-B).
Such UI translations have been studied, e.g., in translating a
natural-language user query into a structured one [16], [17].
Translating free natural-language queries is well known to be
difficult [16], [17]. Our problem here is still difficult, but more
manageable, as we only translate structured edits.

Finally, our work can be viewed as a mass collaboration,
Web 2.0 effort to build, maintain, and expand a hybrid
structured data-text community database. Mass collaboration
approaches to data management have recently received in-
creasing attention in the database community (e.g., mass
collaboration panel at VLDB-07, Web 2.0 track at ICDE-
08, see also [18], [19], [20], [21], [22], [23]. Our work here
contributes to this emerging direction.

III. THE Madwiki APPROACH

In the rest of the paper we describe the Madwiki approach.
Figure 2 illustrates how Madwiki works. It starts by applying
M , a machine-based solution, to extract and integrate data
from a set of data sources, then loads this data into a structured
database G. Next, it initializes an empty text database T , which
will be used in the future to store text generated by users. Then
Madwiki generates structured views over G (e.g., V1 − V3 in
Figure 2), and exports them in wiki pages (e.g., W1 − W3).
The initial portal W then consists of all such wiki pages.

Community users and machine M then revise and add
materials to W . Suppose a user u1 has revised wiki page
W3 into page W ′

3 (Figure 2). Then Madwiki extracts the
structured data portion V ′

3 from W ′
3 and uses it to update

the structured database G. Next, Madwiki extracts the text
portion T ′

3 from W ′
3 and stores it in the text database T .

Madwiki also reruns machine M at regular intervals (to obtain
the latest information from the data sources), updates G based
on the output of M , then updates the views and wiki pages
accordingly. Updating a wiki page Wi, for example, means
creating a new version of Wi that combines the latest versions
of its structured data portion from G and text portion from
T . In addition to revising existing wiki pages, as described

Data
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T

V1

V2

V3

W1

W2

W3

u1
V3’ W3’

T3’

M

Fig. 2. The Madwiki architecture

above, both users and machine M can add new pages or delete
existing ones.

The next two sections describe the key contributions of
this paper: how to build the initial portal and manage user
contributions. Section VI briefly touches upon the issue of
managing multiple users and machines. For space reasons, we
can only motivate and describe the basic ideas behind our
proposed solutions. We refer the reader to the full paper [24],
which is available online, for a detailed description of these
solutions.

IV. CREATING THE INITIAL COMMUNITY PORTAL

To create the initial portal, we proceed in three steps:
employ a machine M to create a structured database G, create
structured views Vi over G, then convert each view Vi into a
wiki page Wi.

A. Creating a Structured Database G

Modeling Database G: To model G, we can choose from
a wide variety of data languages. Since the data from G will
eventually appear in wiki pages as structured constructs (see
Section IV-C for a motivation for this), we had to select a data
language that ordinary, database-illiterate users are familiar
with, and can quickly understand and edit. Since most users are
already familiar with the concepts of entity and relationship, as
commonly employed by current community portals, we choose
an ER language to represent the data in G.

Specifically, we define the schema Gs of G to consist of
a set of entity types E1, . . . , En and a set of relation types
R1, . . . , Rm. Each entity/relation type is specified using a
set of attributes. Attributes are either atomic, taking string or
numeric values, or set-valued.

Next, we define the data Gd of G to be a temporal ER
data graph. This graph contains (a) a set of nodes that
specify entity instances (or entities for short when there is no
ambiguity), (b) a set of edges that specify relation instances (or
relations for short when there is no ambiguity), (c) temporal
information regarding attributes, entities, and relations, e.g.,
when an attribute/entity/relation was created, by which user,
when it was deleted, by whom, when it was reinstated, etc.
This information will be used in managing users (Section VI).
We view machine M as a special user M .

We require G to be a temporal database that captures all
changes so far, so that later we can develop undo facilities
(not yet considered in this paper). Note also that even if
Gs specifies that a person entity has an attribute email, this
attribute can be missing from a particular person instance.

Figure 3.a shows for example the snapshot of a tiny Gd at
time 1. On this snapshot the nodes are entities and the edges
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Fig. 3. (a) A snapshot of the ER graph G, (b) a sample view schema, (c) a sample data of the above view, and (d) how the above sample
data is exported into a wiki page in the s-slot wiki language.

are relations (labeled with relation names). The attributes are
described next to the nodes and edges.

Storing G using RDBMS: We want to query G efficiently
and may want to implement a variety of concurrency control
schemes later (to manage concurrent user edits), including
lock-based schemes. Consequently, we decided to store Gs

and Gd using an RDBMS. In particular, we extended the work
[25] on building temporal RDBMSs, to support temporal data
in a conventional RDBMS as follows.

First, we create several tables to store definitions of entity
types, relationship types and their attributes. For instance,
these tables specify that entity type person has attributes
name, title, and organization, and that relationship type
services relates person and conference, and so on.

After creating the above tables, we create a table En-
tity ID(id, etype) to store all entity instances of all types: for
each instance, we store only its ID and type. Similarly, we
create a table Relationship ID(id, rtype, eid1, eid2) to store
all relation instances of all types: for each instance, we store its
ID, its type, and the two entities with IDs eid1 and eid2 that
it relates. Figure 4.a shows two such tables, which store the
entity and relation instances of the ER graph G in Figure 3.a.

Next, for each attribute A of an entity or relationship type,
we create two tables A m and A u to keep track of all values
that have been entered for A by machine and human users,
respectively.

Example 4.1: Figure 4.b-c shows two such tables for attribute
organization. The first tuple of table Organization m for example
specifies that attribute organization of entity (or relation) instance
with ID 1 is assigned value “UW”. This value is valid from time
“2007-04-01 ...” to “9999-12-31 ...”. Finally, the value was entered by
machine with ID M . The first tuple of table Organization u specifies
that attribute organization of entity (or relation) instance with ID
2 is assigned value “Purdue”. This value is valid from time “2007-
05-02 ...” to time “9999-12-31 ...”, and the value was entered by a
human user U1. �

Thus, for these tables, field xid stores the ID of an entity
or relation instance, value stores a value v entered for the
attribute of this instance. Fields start and stop store two
timestamps to indicate when v was first inserted, and when
v was modified or deleted, respectively. When v is inserted,
we set stop to ’9999-12-31 23:59:59’, the largest timestamp,
to indicate that v is valid indefinitely. Then when v is modified
or deleted at a later time t, we set stop to t, indicating that
v is no longer valid (after that time). Finally, field who stores

the ID of the user or machine who entered the value v.
Using the two tables Am and Au, we know all values

entered for attribute A, by machine and human users, at all
times. But at any particular time t, what should be the value
of A? Intuitively, this value should be determined based on a
combination of the values entered by machines and users up
to time t.

Many possible combination policies can be specified. A
simple one – which we call “human-first” – states that the
value of A at any time t is the last value entered by a human
user, up to time t, or the last value entered by machine, up to
time t, provided that no human-entered value had existed so
far. Section VI briefly describes the combination policy used
in our current Madwiki implementation.

To obtain the combined values of an attribute A, we then
create a table A p, which is a view defined over tables A m
and A u. The view definition encodes the combination policy
in effect. The following example illustrates table A p and the
use of combination policies.

Example 4.2: Table Organization p in Figure 4.d shows the
combined values for attribute organization, using the “human-first”
combination policy described earlier, over tables Organization m
and Organization u (Figure 4.b-c).

Consider entity with ID 1, Table Organization p states that the
organization of this entity is “UW” between 2007-04-01 and 2007-
05-27, and is “UW-Madison” afterwards. Note that between 2007-04-
01 and 2007-05-27, only machine M entered value “UW”, so that
value became the combined value. Then on 2007-05-27, a human
user U2 entered value “UW-Madison”, and that value became the
combined value, according to the “human-first” policy.

Consider entity with ID 2. Note that a human user U1 entered
value “Purdue” for its organization on 2007-05-02, thus causing
the combined value to be “Purdue”. Afterward the machine entered
value “MITRE” on 2007-05-20. However, this value is ignored,
according to the “human-first” policy. Thus, the combined value
remains “Purdue”, as shown in Table Organization p. �

Initializing G: To initialize G, we employ a machine-based
solution M . Many such solutions exist [13]. Currently we
use the Cimple solution which is described in detail in [13].
DBLife is an example portal built using the semi-automatic
Cimple solution.

B. Creating Views over Database G

View Language Requirements: To create views over
G, we must define a view language L. We now discuss
the requirements for L. First, we note that a primary goal
of community portals is to describe interesting entities and



(b)
9999-12-31

9999-12-31
stop

M

M
who

2007-05-20 

2007-04-01
start

MITRE

UW
value

1

2

xid

9999-12-31

9999-12-31
stop

M

M
who

2007-05-20 

2007-04-01
start

MITRE

UW
value

1

2

xid

(c)

U19999-12-312007-05-02Purdue2

U29999-12-312007-05-27UW-Madison1

stop whostartvaluexid
U19999-12-312007-05-02Purdue2

U29999-12-312007-05-27UW-Madison1

stop whostartvaluexid

Organization_m

Organization_u

(d)

U19999-12-312007-05-02Purdue2

9999-12-31

2007-05-27
stop

U2

M
who

2007-05-27

2007-04-01
start

UW-Madison

UW
value

1

1

xid

U19999-12-312007-05-02Purdue2

9999-12-31

2007-05-27
stop

U2

M
who

2007-05-27

2007-04-01
start

UW-Madison

UW
value

1

1

xid

Organization_p…
…

…
…

…
…

…
…

…
…

…
…

… …

conf12
topic4

person1
etypeid

conf12
topic4

person1
etypeid

121 services11
4

eid2
1

eid1
interests
rtype

3
id

121 services11
4

eid2
1

eid1
interests
rtype

3
id

… …

… … … …

Entity_ID

Relationship_ID

(a)
Fig. 4. Example relational tables to store a Madwiki ER graph.

relations in the community. Toward this goal, we use each wiki
page W to describe an entity e or a relation r. A popular way
to describe an entity e, say, is to describe a “neighborhood”
of e on the ER data graph G, e.g., all or most nodes within
two hops from e. Consequently, language L must be such
that we can easily write and modify views that describe such
“neighborhoods”.

Second, when a user requests a wiki page W , we materialize
it on the fly, to ensure the page contain the latest updates. This
in turn requires materializing the view V underlying W (see
Section V-C). Consequently, L must be such that its views can
be materialized quickly, to ensure real-time user interaction.

Finally, when a user U edits a wiki page W , we assume
that U may also edit the schema of view V underlying W ,
e.g., by removing all papers from W , U may be modifying
V ’s schema to exclude all papers (Section V-A discusses this
assumption in depth). Hence, language L must be such that
we can modify a view schema quickly, based on user edits, to
ensure real-time user editing.

A Path-based View Language: The above requirements led
us to design a path-based view language Lp. To define Lp,
first we define data and schema paths. Intuitively, a data path
is a path on the ER graph G that (a) starts with an entity node
e1 and ends at an entity node en, and (b) retains only certain
attributes for each node/edge along the path.

A schema path p = ep1.rp2.ep3. . . . .rpn−1.epn then speci-
fies a set of data paths, which start with node ep1, follow edge
rp2, etc., then end with node epn. To further constrain these
data paths, we express each epi as Ti(Ci){Ai}, meaning that
(a) epi must have type Ti and satisfy condition Ci (which is
a conjunction of conditions over the attributes), and (b) we
keep only those attributes of epi that appear in Ai (which is a
set of attribute names). Ti is required, but (Ci) and {Ai} are
optional. A missing {Ai} means that we retain all attributes.
We express each rpi in an analogous fashion.

Example 4.3: The schema path person(id = 1){name, title}
specifies a single data path that corresponds to person entity with
id=1 and that contains only attributes name and title of this entity.
The schema path, person(id=1).give-tutorial.conf{name}, specifies a
set of data paths, each of which starts with a person node whose id
is 1, follows an edge give-tutorial, then ends with a conf node. For
each path, we retain all attributes of person node and give-tutorial
edge, but retain only the name attribute of conf node. �

We can now define ER views considered in this paper as
follows:

Definition 1 (Path-based ER views): A path-based ER view (or
view for short when there is no ambiguity) V has a schema Vs =
(In, Ex), where In and Ex are disjoint sets of schema paths over
G. Evaluating Vs over G yields the view data Vd. Vd is a subgraph
of G that contains only data paths that are (a) specified by any path
schema in In and (b) not specified by some path schema in Ex. We
refer to schema paths in In and Ex as inclusive and exclusive paths,
respectively.

Example 4.4: Figure 3.b shows a sample Vs that has two inclusive
paths and one exclusive path. This view schema selects a person e
with id = 1, retains name and title of e, then selects all interests
of e except those named “Statistics”. Evaluating this view schema
over the ER graph G of Figure 3.a produces the view data Vd in
Figure 3.c. �

We now discuss how language Lp satisfies the requirements
outlined earlier. First, most “neighborhoods” of an entity e
(e.g., all nodes within two hops of e on ER graph G) can be
expressed with a set of inclusive and exclusive data paths.
Hence, Lp allows us to quickly write views that capture
such neighborhoods, in an intuitive manner. Second, evaluating
schema paths amounts to performing selection operations over
the ER graph G. Hence, views in Lp can be materialized
quickly. Finally, if a user edits a view schema (using a wiki
page), then such edits can be quickly mapped into a set of
inclusive and exclusive schema paths, allowing us to modify
the view schema quickly and easily (see [24] for an in-depth
discussion).

Creating Views over ER Graph G: Now that we have
defined the view language Lp, we can discuss how Madwiki
uses Lp to create views over G. First, Madwiki decides on
the set of entities and relations to be “wikified”. Currently,
for simplicity, we “wikify” all entities, but no relations.
Next, for each entity type E to be “wikified” (e.g., person),
Madwiki specifies a default view schema VE that specifies a
“neighborhood” of instances of E. These view schemas are
application specific. Finally, for each instance e of type E,
Madwiki creates a view schema Vs by initializing it with VE .
Thus, each entity instance has its own view schema. The data
of the views is not stored, but will be materialized on the fly
when creating and refreshing wiki pages, which we discuss
next.

C. Converting Views to Wiki Pages

For each entity instance e, let V be its view – defined by a
schema Vs – over the structured database G, as defined earlier.
Let Vd be the data of view V , obtained by materializing Vs



over G. Data Vd is an ER graph (which is a subgraph of the
larger ER graph G). We now discuss how to convert Vd into
a wiki page W .

Since most current wiki data (e.g., Wikipedia) is natural
text, the straightforward solution is to convert Vd into a set of
natural-language sentences. For example, suppose Vd specifies
that person X works for organization Y . Then we can convert
this into sentence “X works for Y ” in wiki page W . Knowing
this template, if a user later modifies the sentence to be “X
works for Y ′”, we can still parse it back, realize that Y has
been modified to be Y ′, then update the underlying database
G accordingly.

This was indeed the first solution we tried. It is very easy
for users to edit natural-language wiki pages generated by
this solution. But after extensive experiments, we found that
it is difficult to extract and update structured data. The set
of templates that we can use in natural language settings are
somewhat limited; hence, they get reused in multiple contexts,
causing many ambiguities for the extractor. Furthermore, sup-
pose G has been updated (e.g., by machine) so that X is now
working for Z. To update page W with this information, we
must be able to pinpoint the location of Y . This is equivalent
to being able to extract Y , a difficult task, as discussed earlier.

For these reasons, we wanted a solution where it is trivial to
pinpoint pieces of structured data contributed by Vd. A wiki
page then contains multiple “islands” of structured data from
Vd, in a “sea” of natural text contributed by users. We refer to
these “islands” as s-slots (shorthand for structured slot). Below
we describe this s-slot solution. In Section VII we discuss how
the natural-language and s-slot solutions lie at two ends of a
spectrum of solutions that trade off (a) ease of user edit, (b)
ease of extracting and updating structured data, and (c) ease
of moving data around on wiki pages.

The S-Slot Solution: We first define the notion of at-
tribute path. Recall that a schema path p has the form
T1(C1){A1}. . . . .Tn(Cn){An}. We say that p is an attribute
path iff (1) A1-An−1 are empty sets and An identifies a single
attribute a, and (2) p evaluates to a single path instance. Thus,
p uniquely identifies attribute a. Examples of attribute paths
are person(id = 1){title} and

person(id = 1).write-pub(id = 5).pub(id = 14){name}.
An s-slot s then has the form <# p = v #>, which specifies
that the attribute a uniquely identified by the attribute path p
takes value v. An example of wiki text including an s-slot is
<# person(id=1){name}=David DeWitt #> works for
<# person(id=1).work-org.org(id=13){name}=UW #>
since 1976.

The HTML presentation of this wiki text will display “David
DeWitt works for UW since 1976”.

Now let V be a view with schema Vs that Madwiki has
defined over database G (see Section IV-B). Then Madwiki
generates the default wiki page W for V in two steps: (a)
evaluating Vs over G to obtain the view data Vd, which is a
subgraph of the ER graph G, and (b) converting Vd into a wiki
page W using s-slots interleaved with English text.

Step (a) is relatively straightforward. Step (b) can be exe-
cuted in many different ways. We currently adopt a default
solution. Suppose we know that view V (and thus wiki
page W ) describes entity e, e.g., David DeWitt. Then our
default solution first generates the line < #person(id =
1){name} = David DeWitt #> as the title of the wiki page.
Next, it displays the attributes of e, then the relationships.
Figure 3.d shows how the data graph Vd in Figure 3.c may
have been displayed in a wiki page (see [24] for the algorithm
description).

The set of all wiki pages generated as above constitutes the
initial community portal W . The next section discusses how
users can contribute to this portal.

V. MANAGING USER CONTRIBUTIONS

In this section we discuss what users can edit and how to
process those edits.

A. What Can Users Edit?
Consider a user U editing a wiki page W . We allow U

to edit both text and structured data of W . Editing text is
trivial. Editing structured data of W means U can modify or
delete s-slots, or insert new ones. Currently, U modifies s-slots
manually, though Madwiki will eventually provide helpful
tools such as form-based GUI interfaces for editing.

In modifying an s-slot s =<#p = v#>, U can modify
the attribute path p as well as value v, but is not allowed to
modify the formatting characters (e.g., <#, =, and #>). If
U were to do so, then the parser would fail to recognize the
s-slot, and hence would interpret the modified s-slot as text,
not structured data.

Let V be the underlying view of W . Conceptually, editing
structured data of W means editing one or a combination of
the following components: the data of V , the schema of V ,
the data of G, and the schema of G (denoted Vd, Vs, Gd, Gs,
respectively).

In traditional settings such as RDBMS, ordinary users can
only edit view data and thus also the underlying relational
database data. This maps to editing Vd and Gd in our case.
Should we also allow users to edit Vs and Gs? We decided to
allow these actions, because there is often a natural need to
do so. For example, a user U may naturally want to modify
W so that it no longer displays emails. To do this, U must
modify Vs. U cannot modify Vd because this would mean
removing certain emails from G, not the desired effect. As
another example, user U may naturally want to add to an entity
e (described in W ) a new attribute a that has not existed so
far in the portal. To do this, U must modify both Gs and Vs.

The next question then is: what is the best way to allow
users to modify Vs and Gs? A possible option is to expose
these schemas in wiki pages, for users to edit. For example,
we can expose Vs in a wiki page Ws. Then when U edits W ,
we interpret such edits as editing Vd, and when U edits Ws,
we interpret such edits as editing Vs.

The above option would greatly reduce the ambiguity in
interpreting user edits. However, we decided against it, because
we found from experimentation that it is difficult for ordinary,



Basic ER Actions Vd Vs Gd Gs

a1: Modify attribute value � �
a2: Insert an existing attribute � � opt.
a3: Insert a new attribute � � � �
a4: Insert an existing entity � � opt.
a5: Insert a new entity � � � �
a6: Insert an existing relationship � � opt.
a7: Insert a new relationship � � � �
a8: Delete an attribute � � opt. opt.
a9: Delete an entity � � opt. opt.
a10: Delete a relationship � � opt. opt.

Fig. 5. Basic ER actions that we have defined.

database-illiterate users to remember this option. In fact, users
often are not even aware of the distinction between data and
schema edits. Instead, they appear to prefer to edit only the
wiki page W , then rely on Madwiki to assist them in executing
the right kind of edit actions.

For these reasons, we allow U to edit only wiki page W ,
then ask U (in English) to clarify if he or she intends to edit
the data or the schema. In what follows we discuss this process
in detail.

B. Infer & Execute Structured Edits

Suppose user U has edited wiki page W into W ′. Then we
can parse W ′ to extract a text portion T ′ and a structured data
portion D′. The text portion can immediately be stored in a
text database T (see Figure 2). The structured data portion D′

consists of all s-slots in W .
Next, we can merge all s-slots in D′ together to obtain

an ER graph that we will refer to as V ′
d . Given that each s-

slot maps uniquely into an attribute in the ER graph G, the
merging process is relatively straightforward, and hence will
not be discussed further, for lack of space. Our problem now
is: given V ′

d , infer what actions user U intends to execute on
Vd, Vs, Gd, Gs, then execute those actions.

Basic Relational and ER Actions: To solve the above
problem, we first define a set of basic actions that U can
execute over Vd, Vs, Gd, Gs. For example, basic actions on Vd

include modifying the value of an entity or relation attribute,
and deleting an entity. Basic actions on Vs include inserting a
new entity and deleting an attribute of a relationship. We have
implemented each basic action as a program over the temporal
relational database that stores G. The full paper [24] describes
the complete sets of basic actions (there are 10, 8, 10, and 8
such actions for Vd, Vs, Gd, and Gs, respectively) as well as
their implementations. Abusing notation, we will refer to these
basic actions as basic relational actions, to distinguish them
from the basic ER actions that we will introduce soon below.

Now given V ′
d , we must infer the sequence of basic rela-

tional actions that we believe user U intends to execute. To
do this in a manageable fashion, we introduce an intermediate
user interface: the ER interface. This interface would display
an ER data graph (e.g., Vd) in a graphical fashion, and allow
users to execute a number of basic ER actions, such as
modifying a node or an edge, deleting a node, etc.

The first column of Figure 5 lists the ten basic ER actions
we have defined. We have implemented each ER action as a

Input: Data graphs Vd and V ′
d . Vd=(E, R, A), V ′

d=(E′, R′, A′),
where E, E′ are sets of entity instances, R, R′ are sets of
relationship instances, and A, A′ are sets of attributes.

Output: Sequence of GUI actions SER.
1. FOR each entity instance e ∈ E′ − E DO
2. IF entity type exists THEN append a4 to SER;
3. ELSE append a5 to SER;
4. FOR each relationship instance r ∈ R′ − R DO
5. IF relationship type exists THEN append a6 to SER;
6. ELSE append a7 to SER;
7. FOR each attribute a ∈ A′ − A DO
8. IF attribute type exists THEN append a2 to SER;
9. ELSE append a3 to SER;

10. FOR each attribute a ∈ A − A′ DO
11. append a8 to SER;
12. FOR each relationship instance r ∈ R − R′ DO
13. append a10 to SER;
14. FOR each entity instance e ∈ E − E′ DO
15. append a9 to SER;
16. FOR each attribute a ∈ A ∩ A′ DO
17. IF it has the same value in Vd and V ′

d THEN append a1 to SER;
18. Return SER;

Fig. 6. Generating SER from Vd and V ′
d .

sequence of relational actions. For example, action a1 (see the
table) translates into the sole relational action that modifies the
value of an entity attribute (in both Vd and Gd).

However, it turns out that an ER action can be ambiguous,
in that it can map into different sequences of relational actions,
depending on the user intention, as the following example
illustrates:

Example 5.1: Suppose a user U applies action a8 (see Figure 5)
to delete an attribute x of, say, a person entity e in an ER graph, e.g.,
Vd. Then U may mean to delete x from (a) Vs, i.e., do not display
x in view V , or (b) Gd, thus declaring that entity e does not have
attribute x, or (c) Gs, thus declaring that attribute x does not exist
for person (the entity type of e). �

Since we do not know U ’s intention, if U executes action
a8, then we first ask U (in an English phrase) to choose among
options (a)-(c) in the above example. Next, we translate a8 into
the appropriate sequence of relational actions, depending on
U ’s answer. For example, if U chooses option (c), then the
sequence of relational actions is: delete x from Vs, delete x
from Gd, delete x from Gs.

For each ER action, Columns 2-5 of Figure 5 shows which
components (Vd, Vs, etc.) that the action may modify (“opt.”
means “optional”, depending on external conditions such as
user intentions).

Mapping User Edits into Sequence of Basic Actions: With
the introduction of the ER interface, our problem can be recast
as follows. When user U edits the structured data portion of
wiki page W , we view it to be equivalent to U editing the ER
graph Vd in the ER interface, using basic ER actions. We do
not know what basic ER actions U executes. But we do know
the end result, which is the ER graph V ′

d , as described earlier.
Thus, in this perspective, U has executed a sequence SER of

basic ER actions on the original ER graph Vd, transforming it
into a new ER graph V ′

d . Our task then is to “reverse engineer”
SER, by comparing Vd with V ′

d , then execute the resulting
SER. Figure 6 shows the pseudo code of our current algorithm
to reverse engineer SER.

To “push” the structured edits of U into the database G,



we then execute the actions of SER sequentially. Recall that
each such action is a basic ER action (see Figure 5), which
can be ambiguous. If this happens, recall also that we resolve
the problem by asking user U a disambiguating question. We
then execute each basic ER action by executing the sequence
of relational actions that it maps to, as described earlier.

A minor problem is that SER is not unique. Given any two
Vd and V ′

d , multiple sequences of actions SER may exist that
all transform Vd into V ′

d . Fortunately they all have the same
effect, as this theorem shows:

Theorem 1: Let S1, . . . ,Sk be all sequences of basic ER actions
that transform a Vd into a V ′

d . Then when executing any Si, the set of
questions we pose to user U will be the same for all i. If U gives the
same answers to these questions, then executing any Si, i ∈ [1, k],
results in the same Vd, Vs, Gd and Gs.

Intuitively, each Si is a sequence of insert, delete and
update actions that transform ER graph Vd into V ′

d . Among
these actions, only deletions are ambiguous since they can be
interpreted in multiple ways (see Example 5.1). Thus as long
as user U disambiguates these deletions in the same way, any
two sequences Si and Sj will result in the same Vd, Vs, Gd

and Gs.

C. Propagate Structured Edits

Let W1 and W2 be two wiki pages that describe two
researchers A and B, respectively. Suppose A and B share one
publication p. So p appears in both W1 and W2. Now suppose
that a user U has edited p in W1. When should we update p
in W2? In general, once a user has edited the structured data
portion of a wiki page W , how should we propagate this edit
to other pages?

A solution is to immediately refresh other pages, e.g., page
W2 in the above example. We call this eager propagation.
This solution ensures timely updates of pages, but can raise
tricky concurrency control issues. Hence, we currently adopt a
lazy propagation approach, where we refresh a page, say W2,
only when a user requests the page again. At that moment,
we rematerialize the page from the structured database G and
the text database T . Section VII empirically shows that we
can refresh pages on the fly quickly, in a few seconds, thus
making this lazy approach a practical solution.

VI. MANAGING MULTIPLE USERS AND MACHINE

While not a contribution of this paper, for completeness we
will briefly touch on the key problems of managing multiple
users and machines as they contribute to the portal. The
full paper [24] discusses these problems and our proposed
solutions in detail.

First, we must manage concurrent editing of a wiki page by
multiple users, or concurrent editing of some structured data
pieces (e.g., a paper) that appear in multiple wiki pages. Cur-
rently we employ the optimistic concurrency control scheme
of Wikipedia for this purpose.

Next, we must detect and remove malicious users. To do
this, we currently employ a hierarchy of users, reminiscent to
the Wikipedia solution for the same problem. Specifically, we

require that users log in to edit, and employ a set of editors
whose job is to monitor most active wiki pages.

Finally, if a user U has modified a data item X , can
machine M overwrite U ’s modification, and if so, then when?
Our current solution allows M to overwrite U ’s data only
for certain pre-specified data types (e.g., certain attributes of
person), if M is sufficiently confident in its data. For all other
data types, we do not allow M to overwrite U ’s modification,
but allow it to add a suggestion next to U ’s modifications, in
parentheses, e.g., “age is 45 (according to M , age is 47)”.

VII. EMPIRICAL EVALUATION

To evaluate Madwiki, we have been applying it to build
a community wikipedia for the database community (see [8]
for the current portal, still under continuous development). We
now report on preliminary experiments with this portal, which
demonstrate the potentials of Madwiki and suggest research
opportunities.

Building an Initial Community Portal: We began by
employing DBLife as machine M (see Section IV). It took a
two-person team four weeks to develop DBLife from scratch.
DBLife was first deployed on May of 2005, and has been
on “auto pilot” since, requiring only about one hour of
maintenance per month (for more details, see [13]). Each day
DBLife crawls 10,000+ database research related data sources,
extracts and integrates the data, to generate a daily ER data
graph.

We used one such daily ER data graph A (98M of XML
data) to initialize the structured database G. G’s schema has
five entity types and nine relation types, and G’s data contains
164,043 entity instances and 558,260 relation instances, for a
total size of 413M. This size is greater than the ER data graph
size of 98M due to the extra space needed to store temporal
information. It took 216 seconds to load A into G, and 183
minutes to generate and store all wiki pages (164,043 pages for
entities). These results suggest that we can create moderate-
size initial portals (a one-time task) with relatively little effort.

Next, we wanted to know if the initial portal can be
maintained efficiently, assuming no user contributions yet.
We found that over 10 days, as DBLife contributed data to
the structured database G, G’s size increased from 413M to
600M. This was somewhat surprising, because DBLife data
should not have changed so much over 10 days. Upon a
closer inspection, we found that the confidence scores of most
relation instances in G (e.g., person X is related to person
Y with score .8) were changed by DBLife everyday, due
to the changing raw data (retrieved by DBLife). Hence, the
confidence scores of most relation instances in G were updated
everyday, leading to a rapid growth in G’s size (recall that G
is a temporal database that does not allow update in place,
hence changes are added to G). Once we disallowed updating
confidence scores, then G grew very slowly (by less than 5M).
Thus, this experiment suggests that the current design of G
is efficient for maintaining all aspects of the initial portal
over time, except for confidence/uncertainty scores. We are
currently examining how to modify the temporal design of
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Fig. 7. Time to request a wiki page and distribution of page size.

Type of edits 5 edits 10 edits 15 edits 20 edits 25 edits

modification 0.258 0.266 0.275 0.283 0.291

insertion 1.041 1.314 1.583 1.826 2.115

deletion 1.012 1.122 1.253 1.363 1.483

Type of edits 5 edits 10 edits 15 edits 20 edits 25 edits

modification 1.183 1.209 1.231 1.247 1.266

insertion 1.971 2.214 2.436 2.662 2.855

deletion 1.615 1.633 1.649 1.665 1.681

# of s-slots = 52     time in sec

# of s-slots = 196    time in sec

Fig. 8. Time to process user edits on a wiki page.

G to efficiently accommodate frequent changes in uncertainty
scores.

Expressive Power of the S-Slot Wiki Language: In the
current DBLife system (see dblife.cs.wisc.edu) each user
superhomepage is a structured view V over the underlying
structured database. We found that the s-slot wiki language
(Section IV-C) was sufficiently powerful to enable us to
express all structured data pieces in such views in wiki pages,
except two types of data pieces: top-k and aggregate. A top-k
data piece is technically a view that lists the top k items of
a ranked list, e.g., the top three authors, cited papers, etc. An
aggregate data piece is an aggregate view such as the total
number of papers per author, or the total number of citations.

We found that top-k and aggregate views also appear in
many other community portals. Thus, any future attempt to
extend wiki languages with structured constructs must address
the problem of expressing such views. The challenge then is
how to efficiently update such views.

Efficiencies of User Interaction: In the next step, we
examined how fast users can interact with the portal. Figure 7.a
shows the time it takes from when a user requests a page
W until when W is served. Note that to ensure freshness,
we materialize W on the fly, from the underlying structured
database G and text database T (Section V-C). Hence, it is
critical that such materialization can be done quickly, to ensure
real-time user interaction.

The results show that request time increases linearly w.r.t.
page size, measured in the number of s-slots in the page, and
stays small, e.g., under 2 seconds for page sizes up to 150.

Editing tasks Time (sec) Accuracy

editing a sentence of free text 13.2 (10~21) 100%

modifying a data path 16.4 (10~30) 100%

inserting a data path 52 (30~60) 100%

inserting two bonded data paths 55 (30~85) 100%

inserting a paragraph of data paths 152 (60~240) 100%

deleting data paths 36.6 (15~60) 100%

Fig. 9. User performance on several editing tasks.

Figure 7.b shows that the vast majority of current pages have
a size under 50 (the first five bars of the figure), and thus
incur under 1 second request time. This result suggests that
we can materialize wiki pages quickly, and that the lazy update
approach (Section V-C) can work well in practice.

Since processing user edits requires us to translate these
edits across different user interfaces and then to invoke the
underlying relational database, we wanted to know if it can
be done efficiently. Figure 8 shows the time it takes from
when a user submits his/her edits until when the edits have
been processed, i.e., updates on Vs, Vd, Gs, Gd, if any, have
been carried out. This time does not include the time users
spent answering disambiguating questions (Section V-B). The
top table of the figure shows edit times over a wiki page with
52 s-slots (each time is averaged over 10 runs). Here each edit
is a user action that affects a single s-slot.

The bottom table of the figure shows similar edit times, but
over a wiki page with 196 s-slots. In both cases, the results
show that the edit times remain small, under 2.2 seconds for
the small wiki page and 2.9 seconds for the large wiki page.
This suggests that Madwiki can process user edits efficiently.

Ease of User Interaction: Next, we evaluated how easy
it is for users to edit structured data in a wiki page W . We
conducted a preliminary experiment with six users (graduate
students in this case), where each user was asked to edit a
certain item on the HTML representation of W . To do so, they
had to go to W , locate and then edit the appropriate piece of
structured data. We measured how long it took to finish the
given tasks and the correctness of the results. For comparison
purposes, we also asked users to edit some free text.

Figure 9 shows that 100% correctness was achieved for all
the editing tasks. Editing time is measured from when the edit
button is clicked until when the new HTML page is rendered.
Figure 9 shows the average and range of recorded editing
time over all the users. The results show that the simplest
structured data editing task, modifying a data path (modifying
an attribute), took comparable time to editing a sentence of
free text.

Inserting a data path generally involves adding several
entities and relationships to the database. Users need to type
a complete legal path. Inserting two bonded data paths is a
bit more complex since users need to make sure that several
entities (or relationships) are assigned the same id. Inserting a
paragraph of data paths is probably the most complex task that
generally involves multiple bonded data paths. Specifically,
the users were asked to add a publication with a title, an
ordered author list, and the conference, year, page, and citation
information. The results show that the editing time is very



reasonable considering the high complexity of the task.
Deletion of data paths would generate some ambiguities

since the user may mean to delete the structured data from
the underlying database or just from the wiki page. Thus after
the user clicks the submit button, several questions may be
presented as radio buttons to clear the possible ambiguities.
Deleting a single data path or many data paths would take
similar amount of time from the editing point of view. The
only difference is the number of questions to ask.

This experiment is strictly preliminary. But it does suggest
that the current solutions may already be adequate in the sense
that users are able to correctly execute the various editing tasks
within a reasonable amount of time.

The experiment also suggests that it may be even easier
for users to edit if we introduce some macros that hide the
details of the structured data and make the structured data
looks very clean. This point was confirmed by the users’
qualitative feedback on how convenient it is to use the system.
On a scale of 1 (least convenient) to 5 (most convenient), the
current system scored an average of 2.5. A typical comment is
that while the system is easy to learn and functioning well, it
is verbose. These comments meet our expectations since our
goal for the current version focuses almost exclusively on the
adequacy instead of convenience.

In general, as commented in Section IV-C, a lesson we
learned from our current Madwiki experience is that there
is a spectrum of solutions on how structured data can be
represented in wiki pages. Our s-slot solution represents one
end of the spectrum and the natural-language solution (see
Section IV-C) the other. In between we can have solutions
that present structured data using, e.g., XML formats (in wiki
pages).

The key tradeoff factors for these solutions include (a) how
easy it is for users to edit, (b) how easy it is for machines to
re-extract structured data, and (c) how easy it is for users to
move various pieces of structured data around, i.e., rearrange
them in the wiki page.

The s-slot solution appears best for (b) and (c), and
mediocre for (a). The natural-language solution is best for (a),
mediocre for (c), and difficult for (b). An XML-like solution
appears best for (a) and (b), but mediocre for (c). Developing
more solutions, evaluating them, and selecting a good one is
an interesting future research direction.

VIII. CONCLUSIONS & FUTURE WORK

We have described Madwiki, an approach that employs both
“machines” and human users to build structured community
portals. This new hybrid machine-human approach can bring
significant benefits. It can achieve broader and deeper cov-
erage, provide more incentives for users to contribute, and
keep the portal more up-to-date with less user effort. We
have applied Madwiki to build a “wikipedia” portal for the
database community [8]. We reported on our experience with
this portal that demonstrates the potentials of Madwiki and
suggests many research opportunities.

Indeed, it is clear that our work here has only scratched the
surface of this direction (of combining “machines” and human

to build structured wikipedias). Many interesting research
problems arise from the points where we used simple initial
solutions in our prototype. Example problems include: (a) ex-
tending the s-slot wiki language to handle top-k and aggregate
views and studying updating for such views, (b) developing
“macros” that hide the low-level structured constructs to allow
users to edit certain structured data pieces more efficiently,
(c) developing efficient eager-update-propagation schemes, (d)
developing better solutions to handle machine updates to data
already modified by users, and (e) learning how to leverage
user edits to improve the extraction and integration accuracy
of machines.
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