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ABSTRACT
Data integration systems often provide a uniform query in-
terface, called a mediated schema, to a multitude of data
sources. To answer user queries, such systems employ a set
of semantic matches between the mediated schema and the
data-source schemas. Finding such matches is well known
to be difficult. Hence much work has focused on developing
semi-automatic techniques to efficiently find the matches. In
this paper we consider the complementary problem of im-
proving the mediated schema, to make finding such matches
easier. Specifically, a mediated schema S will typically be
matched with many source schemas. Thus, can the devel-
oper of S analyze and revise S in a way that preserves S’s
semantics, and yet makes it easier to match with in the fu-
ture?

In this paper we provide an affirmative answer to the
above question, and outline a promising solution direction,
called mSeer. Given a mediated schema S and a matching
tool M , mSeer first computes a matchability score that quan-
tifies how well S can be matched against using M . Next,
mSeer uses this score to generate a matchability report that
identifies the problems in matching S. Finally, mSeer ad-
dresses these problems by automatically suggesting changes
to S (e.g., renaming an attribute, reformatting data val-
ues, etc.) that it believes will preserve the semantics of S
and yet make it more amenable to matching. We present
extensive experiments over several real-world domains that
demonstrate the promise of the proposed approach.

1. INTRODUCTION
Data integration has been a long-standing challenge in

the database and AI communities. The main integration
approaches (whether they employ virtual integration, data
warehouses, or information exchange via messaging) rely on
development of a neutral schema and mappings between the
neutral schema and the schemas of local data sources. In
the remainder of this paper, we call this neutral schema a
mediated schema.
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To create the required mappings, a data integration sys-
tem uses a set of semantic matches (e.g., location = area)
between the mediated schema and the source schemas. Cre-
ating such matches is well-known to be laborious and error
prone. Consequently, many semi-automatic schema match-
ing solutions have been proposed. Much progress has been
made (see [21, 13] for recent surveys), and today schema
matching has become a vibrant research area. No satisfac-
tory solution however has yet been found, and the high cost
of finding the correct semantic matches continues to pose a
bottleneck for the widespread deployment of data integra-
tion systems.

To address this problem, in this paper we propose to open
another attack direction, by considering the complemen-
tary problem of revising the mediated schema to improve
its matchability. Specifically, when creating the mediated
schema S, can a developer P analyze and revise S in such a
way that preserves S’s semantics, and yet makes it easier to
match with in the future? The ability to do this can prove
quite helpful in many common integration scenarios, such
as those detailed below.

Example 1.1. A developer P often must add new data sources
to an existing data integration system I. To do so, P must match
the schemas of the new sources with S, the mediated schema of
I, using a matching tool M . (Typically P must also elaborate the
found matches into mappings, which are for example full-fledged
SQL expressions, using a tool such as Clio [26]; however, this
mapping-creation step is outside the scope of this paper.)

As another example, following recent trends of providing Web-
based services, many integration systems (especially those in sci-
entific domains) are being “opened up”, so that members of the
user community can easily add new data sources via a GUI (e.g.,
[20]). To add a source T , a user U must eventually invoke
a matching tool M (provided at the system site) to match T ’s
schema with the mediated schema S, then sift through the results
to fix the incorrect matches.

As yet another example, developers often “compose” integra-
tion systems, i.e., take an integration system I, treat it as a
single source, then integrate it with a set of other sources to
build a higher-level integration system. In such cases, the me-
diated schema S of I will often be matched with other mediated
schemas.

In all of the above cases, if the target mediated schema
can be designed to be more amenable to matching, then
it can be matched with new schemas more accurately and
quickly. The problem of improving the matchability of medi-
ated schemas is therefore appealing. But it is unclear exactly
how this problem should be attacked.

A key contribution of this paper is that we provide such an
attack plan. Specifically, we decomposed the above problem



into three well-defined subproblems. For each subproblem
we then identified the main challenges and provided initial
solutions. Finally, we demonstrated the promise of the ap-
proach, using extensive experiments on real-world data sets.
Our work therefore can help to motivate further research in
this novel approach to schema matching.

The setting for our current work is as follows. First, we fo-
cus on improving 1-1 matching (e.g., location = address) for
relational mediated schemas, a common scenario in practice
[21]. Besides its conceptual simplicity, 1-1 matching allows
us to focus on analyzing the fundamental reasons for match-
ing errors and thus provides a good starting point. We leave
more complex matches and data representations as future
work.

Second, we observe that in practice, when designing a
mediated schema, developers often design multiple schemas:
an internal schema Si, serving to capture all relevant as-
pects of the integration domain, and one or several external
schemas S1

e , . . . , Sn
e , serving as user query interfaces. Thus,

our goal is to improve only the matchability of Si (against
which developers match source schemas or higher-level tar-
get schemas). This way, we can improve the accuracy of the
matching process while respecting the very different design
goals for the external schemas (e.g., being easy to under-
stand and query).

Within the above setting, as the first subproblem, we con-
sider how to define the notion of matchability score, which
quantifies how well an internal mediated schema Si matches
future schemas using a given matching tool. Such a score
has not been proposed before, and estimating it is a difficult
challenge. To address this challenge, we propose to employ
a synthetic workload W that approximates the set of future
schemas and is generated automatically from Si.

Using the above notion of matchability score, we then de-
fine and address the second subproblem: analyze different
types of matching mistakes, and show how to produce a re-
port that identifies potential matching mistakes of Si. Given
this report, a developer P can already revise Si to address
the mistakes.

Manually finding good revisions, however, is difficult and
tedious. Hence, in the final subproblem, we consider how
to automatically discover a good set of revisions, which can
then be presented to P in form of a revised schema S∗

i .
Developer P is free to accept, reject, or modify further these
suggested revisions.

In summary, we make the following contributions:

• Introduce the novel problem of analyzing and revising
mediated schemas to improve their matchability.

• Describe a clear decomposition of the above problem
into three well-defined subproblems: estimating “match-
ability” of a mediated schema, producing a report that
identifies potential matching mistakes of a mediated
schema, and automatically discovering a good set of
schema revisions (to improve matchability).

• Identify the key challenges underlying these subprob-
lems, and provide initial solutions. These include a
way to approximate the set of future schemas, an anal-
ysis of reasons for incorrect matching, a method to
identify these reasons, and an algorithm to efficiently
search for the most effective schema revisions.

• Establish the promise of the approach via extensive ex-

periments over four real-world domains with several
matching systems. The results show that we can re-
veal fundamental reasons for incorrect matches and
can revise mediated schemas to substantially improve
their matchability.

2. PROBLEM DEFINITION
We now describe the problem considered in this paper.

Multiple Mediated Schemas: We begin by considering
the process of creating a mediated schema S. A developer
P often wants S to satisfy multiple design objectives [22,
25]. Since S functions as a query interface, P often wants
S to be concise (i.e., containing relatively few attributes),
so that users can quickly comprehend and pose queries over
S. At the same time, P also wants S to be comprehensive,
i.e., to meet user requirements. Other design objectives for
S include “attribute names and values should be easy for
users to understand” and “the ordering of attributes should
roughly reflect the orderings at the source schemas” (see [25]
for more details).

Clearly, it is difficult to create a single schema S that sat-
isfies all these conflicting objectives. So in practice P often
creates multiple mediated schemas: an internal schema Si

and several external ones S1

e , . . . , Sn
e [22]. P designs the in-

ternal schema Si to be comprehensive, and uses it to match
with the source schemas. P designs the external schemas
S1

e , . . . , Sn
e to be user query interfaces, and often defines

them as views over the internal schema Si.

Revising the Internal Mediated Schema: In this pa-
per we will consider the above setting of multiple mediated
schemas. In this setting, since P matches source schemas
with only the internal mediated schema Si, we will con-
sider the problem of revising Si to improve its matchability.
Specifically, let M be the tool employed by developer P to
match schemas (or by the system site to match the schemas
of the sources supplied by users; see Example 1.1). Then we
will revise Si to improve its matchability with respect to M .

It is important to note that revising the internal mediated
schema Si this way would not affect other traditional design
objectives. First, it would not affect the comprehensiveness
of Si, because we do not propose to drop or add any new
attribute when revising Si (see Section 5). And second,
such revisions may necessitate revising the view definitions
of external schemas S1

e , . . . , Sn
e (over Si). But it should not

affect these schemas themselves, as well as the important
design objectives placed on them (e.g., being concise, easy
to understand, etc.).

A Problem Decomposition: Suppose developer P has
created an initial version of the internal mediated schema
Si. Then to help P revise Si, we envision providing three
services: computing a matchability score, generating a re-
port of potential matching mistakes, and suggesting schema
revisions. For simplicity, we will call a system that provides
these services mSeer (shorthand for “match seer”).

As a start, P can simply ask mSeer to compute a score
that quantifies how well Si can be matched in the future,
using M . This requires relatively little effort from P (just
supplying Si and M), and yet can already prove quite useful.
For example, if the matchability score is low, then P may
consider replacing matching tool M , or allotting more time
for matching activities (in anticipation of having to correct
more matching mistakes than initially expected).



Next, P can ask mSeer to generate a report that describes
the potential matching mistakes and makes high-level sug-
gestions for fixing them. P can then use the report to revise
Si. At the minimum, the report can alert P of “obvious
problems” (e.g., two attributes with almost identical names
and very similar data values) that are hard to spot in a large
mediated schema, thus allowing P to quickly fix them. But
it can do much more. Section 6 shows how such reports can
also identify non-obvious, yet important potential problems
for matching.

Finally, even if P recognizes potential matching problems,
it is often still far from obvious how best to revise Si, given
the large number of potential revisions, and the complex
interaction among them. To address this problem, P can
ask mSeer to suggest a revision of Si. mSeer then searches a
space of schemas judged to be semantically equivalent to Si,
to produce a schema S∗

i that has higher matchability than
Si. P can then accept, reject, or revise S∗

i .
We now describe the three mSeer services in detail.

3. SCHEMA MATCHABILITY
In this section we introduce schema matchability and show

how to estimate it. Henceforth, for simplicity, we will use the
phrase “schema S” to refer to the internal mediated schema
Si, whenever there is no ambiguity.

3.1 Defining Schema Matchability
Recall from Section 2 that our goal is to improve the

matchability of the internal mediated schema S with respect
to a matching tool M . A reasonable way to interpret this
notion of matchability is to say it measures on average how
well S can be matched with future schemas, using M .

Specifically, let T = {T1, . . . , Tn} be the set of all the
future schemas that will be matched against S (of course, we
often do not know T ), and m(S,T , M) be the matchability
score of S w.r.t. T and M . Then we can write

m(S, T , M) =
ˆ

X

Ti∈T

accuracy(S, Ti, M)
˜

/n (1)

where accuracy(S,Ti, M) is the accuracy of matching S with
Ti using M .

While in principle any measure of matching accuracy can
be used, we will use F1, a popular measure [11, 21], to
define accuracy(S,Ti, M). Specifically, suppose that ap-
plying M to schemas S and Ti produces a set of matches
O. Then the accuracy of matching S and Ti using M is
accuracy(S, Ti, M) = 2PR/(P + R), where precision P is
the fraction of matches in O that are correct, and recall R
is the fraction of correct matches that are in O.

In addition to matchability, we also define the notion of
matching variance, denoted as v(S, T , M), to capture the
variance in the accuracy of matching S with future schemas:

v(S, T , M) =
ˆ

X

Ti∈T

(m(S,T , M) − accuracy(S,Ti, M))2
˜

/n.

Our goal will be to revise S to maximize its matchability
(breaking ties among revisions by selecting the one that
produces the lowest variance). However, computing schema
matchability and variance as defined above requires know-
ing the future schemas Ti as well as the correct matches
between these schemas and S (without which we cannot
compute precision P and recall R). This is rarely possible.
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Figure 1: An example of schema perturbation

Hence, we show how to estimate schema matchability and
variance using synthetic matching scenarios.

3.2 Estimating Schema Matchability
We estimate schema matchability by adapting a technique

proposed in the recent eTuner work [23]. eTuner attacks a
very different goal, namely how to tune a matching system
to maximize accuracy. It however also faces the problem of
finding T = {T1, . . . , Tn}, the future schemas that will be
matched with S. eTuner solves this problem by applying
a set of common transformation rules to the schema and
data of S, in essence randomly “perturbing” S to generate
a collection of synthetic schemas V = {V1, . . . , Vm}.

Example 3.1. Suppose that S consists of the sole table EM-
PLOYEES in Figure 1.a. Then eTuner can apply the rule “ab-
breviating a name to the first three letters” to change the table
name EMPLOYEES to EMP, then the rule “merging two neigh-
boring attributes that share a suffix, and renaming it with their
common suffix” to merge the first-name and last-name attributes,
and the rule “replacing ,000 with K” to the data values of column
salary of the table. The resulting table is shown in Figure 1.b.

The paper [23] describes an extensive set of such rules,
including those that perturb (a) the set of tables (e.g., join-
ing two tables, splitting a table), (b) the structure of a table
(e.g., merging two columns, removing a column, and swap-
ping two columns), (c) the names (e.g., abbreviating names,
adding prefixes), and (d) the data (e.g., changing formats,
perturbing values). We note that these rules are created
only once by eTuner, independently of any schema S.

Since eTuner generates schemas V = {V1, . . . , Vm} from
S, clearly it can trace the generation process to infer the
correct matches Ω = {Ω1, . . . , Ωm} between these schemas
and S. Hence, the set V , together with the correct matches,
form a synthetic matching workload W = {(Vi, Ωi)}1..m that
is an approximation of the true future workload T .

The synthetic workload idea can be adapted directly to
our current context. Given a schema S, we first perturb S to
generate a synthetic workload W = {(Vi, Ωi)}1..m (see [23]
for the detailed algorithm). Next, we use M to match S with
each schema Vi in W . Since we know Ωi, the correct matches
between S and Vi, we can compute accuracy(S,Vi, M). We
then return the average of accuracy(S,Vi, M) over all schemas
in W as our estimate of the true matchability score of S. We
estimate the matching variance of S in a similar fashion.

Discussion: At a first glance, the idea of deriving a set
of synthetic schemas from schema S might seem counterin-
tuitive. One may question if it can effectively approximate
the future schemas.

We believe that in the absence of any additional informa-
tion, this provides a reasonable way to do it. (It is unclear
what other alternatives we can consider.) While synthetic
workloads differ from real future workloads, they do capture
common variations in schema design. Moreover, although
matchability scores estimated with synthetic workloads vs.



real future workloads will differ, we only need the matchabil-
ity rankings to be similar (and they often do, see Section 6),
in order to revise S effectively. Of course, if developer P has
additional knowledge about the future workload, then P can
create additional transformation rules to capture those.

One may also question if the so-derived schema pairs would
be easy to match. The answer is no, as it turns out that “re-
verse engineering” the process is quite difficult, given that
the rules are randomly applied. We note that synthetic sce-
narios like these have recently also been used in competitions
on ontology matching (oaei.ontologymatching.org).

Perhaps a useful perspective we can take on the use of
synthetic schemas is that they provide a reasonable set of
“test cases” to estimate how good our solutions are. In
other words, if our solutions cannot even handle synthetic
schemas, then how much confidence we would have that they
can handle the real ones?

Finally, we note that the above matchability estimation
process requires data instances for schema S. To maximize
accuracy, schema matching systems increasingly make use of
such data instances [21]. Hence, we want to analyze both the
schema and data of S and propose changes to both. To do
so, mSeer requires developer P to supply several sample data
instances for S (as a part of the input). Section 6.6 shows
that mSeer works well with only a few (3-5) instances, thus
not imposing an excessive burden on developer P .

4. ANALYZING SCHEMA MATCHABILITY
We now describe the report generator, the second mSeer

service. Given an internal mediated schema S, the generator
produces a report that lists the matchability and variance
of S and the main reasons for matching mistakes.

Example 4.1. Figure 2 shows such a report. The report first
describes schema S and the matching system M (e.g., Product1
and iCOMA in this case, see Section 6). Next, the report shows
that S has a matchability 0.76 and variance 0.09 (over a synthetic
workload of 20 schemas).

Next, the report tries to explain why S obtains a somewhat low
matchability of 0.76. A reasonable way to explain this is to list
the attributes of S, together with their matchability scores (so
that developer P can get a sense about which attributes of S are
difficult to match).

The matchability score of an attribute can be defined in a
similar fashion to that of a schema (see Section 3.1). Then
it can be estimated as follows. Let s be an attribute of S.
Suppose that when matching S with schemas V1, . . . , Vn of a
synthetic workload W using a matching system M we obtain
a set K of matches that involve s (i.e., matches of the form
s = t, t ∈ Vi, i ∈ [1, n]). Then s’s estimated matchability
with respect to W and M is m(s,W, M) = 2PR/(P + R),
where P is the fraction of matches in K that are correct,
and R is the fraction of correct matches involving s (and
between S and the Vi’s) found in K.

The report shows the most-difficult-to-match attributes
first, to help the developer P quickly identify those. For
example, the report in Figure 2 shows that attribute discount

is the most difficult to match, with matchability 0.47.
Still, just showing that discount is difficult to match is

not very informative for P . Hence, the report goes one step
further, trying to explain the common matching mistakes in-
volving discount and make suggestions on how to fix them.
In Figure 2, the report lists two reasons R1 and R3 for dis-

count. Reason R1 for example states that iCOMA predicted

Schema: Product1, Matching System: iCOMA
Product1 has matchability 0.76 and variance 0.09 (synthetic workload: 20 schemas)

(1) Attribute “discount”, data values = 0.00, 0.15, 0.20, …
Correctly matched 11 out of 20 times, matchability 0.47

Reason R1: (3 times) “discount” has no match, but iCOMA predicts a match t
Example: t = “discontinued” of schema S2, data values = 0, 1, …
Suggestion: revise the name or the data format of “discount” to move “discount”

away from “discontinued”
Reason R3: (6 times) “discount” matches t, but iCOMA predicts a match t’
Example: t = “disc_price” of schemaS3, data values = 0.00, 15.00, 20.00, …

and t’= “discontinued” of schemaS3, data values = 0, 1, …
Suggestion: revise the name or the data format of “discount” to move 

“discount” closer to “disc_price” and away from “discontinued”
(2) Attribute “ship_via”, data values = 1, 3, 7, …

Figure 2: A sample matchability report

spurious matches for discount, such as discount = discontin-

ued. To fix this mistake, the report suggests to pick a more
distinctive name for discount. Section 6 provides examples
of mistakes identified and suggestions made by the report
on real-world schemas.

In the rest of this section we will first identify a set of com-
mon matching mistakes. Then we describe how to generate
a report such as the above one.

4.1 Common Matching Mistakes
In what follows, we use the term appearance to refer to

the name and the data format of an attribute. We divide
matching systems into local and global ones, and start our
analysis with the local ones.

4.1.1 Mistakes with Local Matching Systems
A local matching system M matches two attributes s and

t by analyzing their appearances to compute a similarity
score sim(s, t), then declaring s = t, if sim(s, t) ≥ ǫ for a
pre-specified ǫ. M is local in that it decides if s matches
t based solely on sim(s, t), not on any other matches (as
global systems that we describe later do). Examples of such
systems include many of those from the COMA++ matching
library [3], the LSD basic system (without the constraint
handler) [12], and Semint [16].

Now consider applying M to schemas S and V , where V is
a synthetic schema, and consider attribute s ∈ S. Matching
mistakes involving s fall into three cases:

Case 1. Predict a Spurious Match: s = none, i.e.,
it has no match, but M predicts s = t, where t ∈ V . This
implies that sim(s, t) ≥ ǫ. The fundamental reason is that

R1: the appearances of two non-matching at-
tributes s and t are too similar.

To solve this problem, we should change the appearance of s
to “move it away” from t. This can reduce sim(s, t), thereby
reducing the chance that M matches s with t. For example,
if s has name “elec.” (shorthand for “elective”) with values
“yes” and “no”, and t has name “electricity” also with values
“yes” and “no”, then their appearances are too similar. To
address this, we can expand s’s name to “elective” and use
values “1” and “0”. As another example, if s has name
“salary” with values “53000”, “65500”, etc., it can be easily
confused with “zip code” (with values “53211”, “60500”,
etc.), if in computing similarity scores M gives data value
similarities a large weight. To address this, we can insert



into the data values of s characters that never occur in zip
codes (e.g., change “53000” into “53,000”) to “pry” these
two attributes apart.

Case 2. Miss a Match: s = t, but M predicts s = none.
This implies sim(s, t) < ǫ. The fundamental reason is that

R2: the appearances of two matching attributes
s and t are very different.

Examples include “yes/no” vs. “1/0”, and “02.07.07” vs.
“Feb 07, 2007”. This is the reverse of Case 1. To solve
this, we can change s’s appearance to “bring it closer” to t.
In many cases, however, this will not completely solve the
problem. To see why, consider the following example.

Example 4.2. Suppose the synthetic workload W con-
tains 100 attributes that match s: 60 attributes with data
values “yes/no”, and 40 with data values “1/0”. Then no
matter how we change s’s data format, to “yes/no” or to
“1/0”, M will fail to match s in at least 40% of the cases.

Fundamentally, the problem is that in the future schemas,
the attributes that match s can appear in many different
formats. Hence if s appears in just a single format, it may
fail to match many such attributes. To address this problem,
we propose a multi-appearance representation, which we will
discuss shortly.

Case 3. Predict a Wrong Match: s = t, but M
predicts s = t′. The mistake in this case is two-fold. First,
M fails to predict the correct match s = t, which implies
sim(s, t) < ǫ. Second, M predicts instead a wrong match
s = t′, which implies sim(s, t′) ≥ ǫ. Thus the reason is that

R3: s is more similar to a non-matching attribute
t′, and less so to matching attribute t.

To avoid this, we should change the appearance of s such
that it moves “closer” to t, to increase sim(s, t), and “away”
from t′, to reduce sim(s, t′). This case thus in a sense com-
bines Case 1 and Case 2.

Changing the appearance of s is relatively easy when t and
t′ are quite different. The more similar t and t′ are, the more
difficult this task becomes. In the extreme case, when t and
t′ are “almost identical” in their appearances, such changing
may be impossible. For example, let s be “stime” (shorthand
for “start time”). Suppose t and t′ are “time1” and “time2”,
respectively, and suppose that all three attributes s, t and
t′ have very similar values (e.g., “3:05am”, “4:00pm”, etc.).
Then t and t′ are so similar that it is virtually impossible to
change s so that it would have a higher chance of matching
correctly. Fundamentally, this is because the future schema
T is ill-designed, by having two almost identical attributes.
In this case, there is not much we can do on schema S.

4.1.2 Mistakes with Global Matching Systems
A global system M matches two attributes s and t by

examining not just their appearances, but also external in-
formation, such as domain constraints [12] and special filters
[18]. M exploits such information to revise similarity scores
and match selections.

With a global system M , matching mistakes involving s
still fall into Cases 1-3 described earlier. However, the un-
derlying reason for a mistake may be quite different. Con-
sider for example Case 2: s = t, but M predicts s = none. If
M is local, then by the definition of local systems, we know

s1
s2 sn-1 sn

t1
t2 t n-1 tn

1.0 0.8 0.7

. . .  . . .

. . .  . . .

0.7 0.8 0.7

0.8

Figure 3: A matching scenario in a global system

that sim(s, t) < ǫ and that this is the fundamental reason
why M misses match s = t.

However, if M is global, the reason for missing s = t may
be rather involved. It may even be the case that sim(s, t) ≥
ǫ and yet M suppresses s = t, perhaps because t has been
matched with another attribute s′ and hence can no longer
be matched with s, due to some constraint. In general,
matches in a global system can influence one another in a
rather complex fashion, as the following example illustrates:

Example 4.3. Figure 3 shows a matching scenario with
attributes s1, . . . , sn and t1, . . . , tn of S and V , respectively.
Here an edge si − 0.7 − tj denotes that sim(si, tj) = 0.7;
there is no edge between si and tj if sim(si, tj) = 0.

Suppose that a global matching system M imposes the con-
straint that each attribute participates in at most one single
match (e.g., [18]). Suppose further that M starts by select-
ing as a match the edge with the maximum score, and hence
predicts s1 = t1. Since t1 is already involved in this match,
M has no choice for s2 but to predict s2 = t2, and so on, un-
til it predicts sn = tn. Now suppose that the correct matches
are sn = tn−1, sn−1 = tn−2, . . ., s2 = t1, and s1 = tn.
Then clearly the incorrect decision to match s1 and t1 has
caused a chain of cascading matching errors, all the way to
sn and tn.

Because of such cascading errors, pinpointing the exact rea-
sons for matching mistakes of global systems can be very
difficult. Consequently, we currently focus on identifying
some common reasons for mistakes, rather than conducting
a comprehensive mistake analysis for global systems.

Specifically, when Case 2 or Case 3 happens (i.e., s = t,
but M predicts s = none or s = t′), and sim(s, t) ≥ ǫ,
clearly Reasons R1 − R3 do not apply. In this scenario, we
have observed that a very common reason is that

R4: s is dominated by an attribute s′ ∈ S.

By “dominating”, we mean that sim(s′, t) ≥ sim(s, t) (re-
call that t is the correct matching attribute for s). In this
case, M often incorrectly matches s′ with t. Then, due to a
constraint such as “each attribute can participate in a single
match”, M can no longer match s with t. Consequently, it
either declares s = none, leading to a mistake of Case 2, or
s = t′, leading to a mistake of Case 3.

An extreme example of the domination scenario is when
s and s′ are “almost identical” (e.g., “time1” and “time2”,
with very similar data values “3:05am”, “4:00pm”, etc.). In
this case, s = t and s′ = t often have identical similarity
scores, and M ends up guessing wrong 50% of the time.

To address the domination problem, we should change the
appearances of s′ and s so that s is “moved closer” to t and
s′ is “moved away” from t.

Summary: Table 1 briefly lists the conditions, likely rea-
sons, and suggestions we have discussed so far, for both local
and global systems. The first row of this table, for exam-
ple, states that if s = none, but M predicts s = t, and
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Table 1: Conditions, reasons, and suggestions used in report generation

sim(s, t) ≥ ǫ, then R1 is a likely reason, and developer P
should consider changing the appearance of s to “move it
away” from t. The report generator uses this table to iden-
tify likely matching mistakes (see Section 4.2).

4.1.3 Multi-Appearance Representation
We have seen from the discussion in Case 2 that in the

future schemas the attributes that match s ∈ S can appear
in many different formats. Hence if s appears in just a single
format (as is the case today), it may fail to match many
such attributes. To address this problem, we experimented
with a multi-appearance representation (MAR) for such an
attribute s, by creating different relational views over s, and
enforcing the constraint that any attribute that matches one
of these views must also match s.

To illustrate, consider again Example 4.2. Suppose s is
“waterfront” with values “1/0”. Then we can create a view
v1 over s, with name waterfront1 and data values “yes/no”,
then treat v1 as another attribute of schema S. Next we
enforce the constraint that any attribute t that matches v1

must also match s, and vice versa. This ensures that no
matter whether t takes values “yes/no” or “1/0”, we can
match t with s.

Creating such views in relational schemas should incur
a moderate effort from developer P , and the views do not
have to be kept up-to-date by the minute, for matching pur-
poses. It is important to note that instead of creating views,
P can also simply record in a text document that “s can
also take “yes/no” values”. However, no matching systems
can exploit such textual information effectively today. In-
stead, virtually all of them have focused on exploiting the
schema and data of attributes. Hence, we feel that capturing
such information in views makes it more “understandable”
to matching systems.

In theory, for an attribute s, we can create as many views
as necessary, to capture all of s’s possible future appear-
ances. However, doing so can often make s “confusable”
with other attributes, and hence can quickly decrease match-
ing accuracy (e.g., by causing Case 1 or Case 3). Hence,
developer P can propose such views for s, but P should let
mSeer decide which views to keep. The experiment section
shows that the use of such views as decided by mSeer can
significantly improve matching accuracy.

4.2 Generating a Matchability Report
We are now in a position to describe the end-to-end work-

ing of report generation. Given a schema S, mSeer first
generates a synthetic workload W . Next, mSeer applies the
matching tool M to match S and schemas in W , then com-

putes S’s matchability and variance for the report.
Next, mSeer analyzes the above matching results to com-

pute matchability scores for all attributes in S, and then
displays these attributes in increasing order of their scores.
For each attribute s, mSeer then generates an analysis as
follows.

Let I be the set of all incorrect matches involving s (from
workload W ). mSeer finds the reason for each of these incor-
rect matches. Currently these reasons are R1−R4 in Table 1
(or OTHER if none applies). mSeer then groups matches
in I based on their reasons, producing at most five groups.
Next, mSeer reports each group as a triple (R,E, S): R is
the reason, E is a concrete example to illustrate the reason,
and S is a suggestion (to be described below). mSeer lists
triples (R, E, S) in decreasing order of the corresponding
group size (i.e., the number of matches in the group).

Within each group, mSeer selects as example E the incor-
rect match m that can be fixed most easily, since developer
P seems likely to attempt to fix m first. Specifically, for
group R1, mSeer picks m with the lowest similarity score.
For R2, it picks m with the highest similarity score. For
R3, where s = t, but M predicts s = t′, it picks m that
minimizes [sim(s, t′) − sim(s, t)]. For R4, where s is domi-
nated by s′, it picks m that minimizes [sim(s′, t)−sim(s, t)].
mSeer then generates suggestion S by replacing variables in
suggestion template with those in example E.

5. IMPROVING SCHEMA MATCHABILITY
Given a schema S, developer P can employ the report

generator as described earlier to identify potential match-
ing mistakes of S, then revise S to address these mistakes.
Manually finding good revisions, however, is difficult and
tedious. The revision advisor, the third mSeer service, ad-
dresses this problem. It automatically discovers a good set
of revisions, then presents them to P , in form of a revised
schema S∗. P is free to accept, reject, or modify further
these suggested revisions.

We now describe the revision advisor. Clearly, the advi-
sor can only suggest revisions that retain the semantics of
S (e.g., it cannot suggest P to drop an attribute). Hence,
we start by defining the notion of semantically equivalent
transformation rules (or SE rules for short). Later we de-
scribe how the revision advisor finds a good set of SE rules
to apply to S.

5.1 SE Transformation Rules
Let r be a transformation rule and r(S) be the schema

obtained by applying r to a schema S. Intuitively, we say
that r is a semantically equivalent (SE) rule if for any schema
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Table 2: Classification of SE transformation rules

S, S and r(S) are semantically equivalent, i.e., creator P can
use r(S) instead of S in his or her application.

SE rules fall into two categories: domain-independent and
domain-dependent. Examples of domain-independent rules
are “replacing data values “yes” with “1” and “no” with
“0””, and “abbreviating a table name to its first three let-
ters”. Other examples include rules that cover special data
types, such as “if s is a date attribute, then reformat s’s
values as “06/03/07””, and “if s is a price, then insert “$”
to front of data values”. To use such rules, we must recog-
nize the type of an attribute (e.g., date, price, etc.). To do
so, we employ a set of type recognizers, as described in [9].
Finally, an example of domain-dependent rules is “replacing
attribute name “gName” with “gene-name””.

We have created a large set E of domain-independent
rules, to be used in the current mSeer implementation and
for our experiments. These rules are created only once, when
building mSeer, not once per schema S. We omit a detailed
description of E for space reasons, but show a high-level
description in Table 2.

It is important to emphasize that this set of rules is not
meant to be comprehensive. New rules can easily be added
to the set, including domain-dependent ones supplied by P .
However, the current set of rules is adequate as a starting
point for us to examine the proposed mSeer approach, and to
demonstrate mSeer’s feasibility, a major goal of this paper.

5.2 Searching for Optimal SE Sequences
Let E = {r1, . . . , rm} be the set of SE rules fed into mSeer,

as defined above. Abusing notation slightly, we will also use
the term “rule ri” to refer to a particular application of ri

to a schema S (i.e., ri captures both the rule itself and an
instance of applying it to an attribute of S), when there is
no ambiguity.

Then given a schema S, we use seq(S) to refer to the
schema that results from sequentially applying rules seq =
(r1, . . . , rn), where ri ∈ E for i ∈ [1, n], to S. Note that
SE rules are “transitive”, in that seq(S) is also semantically
equivalent to S.

Intuitively, then, the goal of mSeer is to find a sequence
seq∗ that when applied to S yields a schema S∗ with maxi-
mum matchability. Formally, seq∗ = arg maxseq∈S m(seq(S)),
where S is the set of all sequences of SE rules in E and
m(seq(S)) is the matchability of schema seq(S). mSeer then
faces two key challenges: how to estimate m(seq(S)) and
how to find seq∗ efficiently.

To address the first challenge, mSeer employs synthetic
workloads, in the spirit of computing matchability that we

have described so far. Recall from Section 3.2 that to esti-
mate the matchability of S, mSeer employs a synthetic work-
load W = {(Vi, Ωi)}1..m, where Vi is a synthetic schema ob-
tained by perturbing S, and Ωi is the set of correct matches
between S and Vi. To estimate m(seq(S)), however, mSeer

cannot simply employ W again, since the matching scenar-
ios (S, Vi, Ωi) do not involve S′. Instead, mSeer needs a
new workload that approximates matching scenarios involv-
ing seq(S). We show how to generate such a workload in
Section 5.2.1.

To address the second challenge, mSeer employs look-
ahead heuristics to cope with the exponential search space.
The result is the algorithm RevSearcher, which approximates
seq∗, and which we describe in detail in Section 5.2.2.

5.2.1 Estimating Matchability of Revised Schemas
After applying rules seq to schema S, we obtain a dif-

ferent but semantically equivalent schema S′ = seq(S). To
determine whether applying seq is worthwhile, we need to
estimate the matchability m(S′) of S′.

As discussed above, to compute m(S′), mSeer needs a
workload W ′ that approximates matching scenarios involv-
ing S′. To achieve this, we augment mSeer as follows. When
deriving the schemas in W , mSeer logs the applied SE rules
R. These rules are then used to generate workload W ′ for
S′. Specifically, mSeer generates W ′ by applying R to S′,
in the same way it generates W . After that, mSeer employs
W ′ to compute m(S′). Applying the same rules R to gen-
erate W ′ ensures that W ′ is closest to W , compared with
the workloads generated by randomly perturbing S′. This
way, mSeer can compare the matchability scores of S′ and
S based on similar matching scenarios.

5.2.2 Algorithm RevSearcher
A simple algorithm H to approximate seq∗ is to use the

hill-climbing heuristic to find the best rule to apply at each
step. First, H generates a synthetic workload W from S,
and uses W to compute the matchability m(S) of S. Then
H generates all schemas S1, . . . , Sm that can be obtained
from S by applying a single SE rule in E.

Next, for each schema Si, H computes its matchability
m(Si) as described in Section 5.2.1. Let Sk be the schema
with the highest matchability, i.e., m(Sk) = maxm

i=1 m(Si).
If [m(Sk)−m(S)] < θ (currently set to 0.005), then H termi-
nates, returning the schema S∗ with the highest matchabil-
ity it has found so far, together with the rule sequence that
creates S∗ from S. Otherwise, H sets S to Sk, sets S∗ to Sk,
and transforms the workload W to Wk. It then repeats the



search, starting with Sk.
In each search iteration, algorithm H finds and applies a

single SE rule. Hence, it explores the search space rather
“slowly”, and at the same time is myopic. To address both
problems, we develop algorithm RevSearcher. This algo-
rithm works exactly like H, except that in each iteration
it finds and applies a set of SE rules, instead of a single
one (see the pseudocode in Figure 4). We now describe how
RevSearcher finds this set of rules.

Compatible Rules: Let U be a set of SE rules. The result
of applying U to S, denoted as U(S), is meaningful only if
the rules in U are compatible, in the sense that applying
them in any order still results in the same schema U(S).
We say that two SE rules are compatible if they either apply
to different attributes, or to different aspects of the same
attribute (e.g., one applies to its name, and the other applies
to its data values). Then we say that U is a compatible set
if any two rules in U are compatible.

Finding the Best Set of Compatible Rules: In each
search iteration, RevSearcher finds and applies a compatible
set U∗ of SE rules that maximizes matchability. Unlike H

which enumerates all rules, RevSearcher cannot enumerate
and evaluate all compatible sets, because there are often too
many of them (if there are n SE rules, there may be up to
2n such sets). Consequently, RevSearcher finds U∗ greedily
as follows.

Consider the first iteration, where RevSearcher starts with
S. First, RevSearcher applies all SE rules to S and computes
the matchability of all resulting schemas, just like H does,
adding those rules that produce schemas with higher match-
ability than S to a set U . Next, RevSearcher computes the
gain of each rule in U (defined below), adds the rule with
maximum gain to U∗ (which is initially empty), recomputes
the gain of each remaining rule, then adds the rule that has
maximum gain and that is compatible with all rules already
in U∗, and so on. The iteration stops when U is empty or
contains only rules that are either incompatible with some
rules in U∗ or of zero gain. This is the set of SE rules U∗

that RevSearcher uses for the first iteration. Finding U∗ for
subsequent iterations is carried out in a similar fashion (see
pseudocode in Figure 4).

Computing Gain of a Rule: All that remains is to de-
scribe computing the gain of a rule r, which measures the
potential increase in matchability that applying r can bring.
At first glance, it appears that this gain can be computed as
gain(r) = m(r(S)) − m(S), that is, the increase in matcha-
bility between S and the schema r(S) obtained by applying
r to S.

However, we found that applying this gain definition is
not effective. For example, one might have two compatible
rules, r1 and r2, that apply to the same attribute a of S
(e.g., one to a’s data values and one to a’s name). Suppose
they both increase the matchability of S. Then with the
above gain definition, RevSearcher will add both of them to
U∗. However, it may be the case that when applied together,
they cancel the effects of each other. Consider a matching
scenario where attribute a = none, but the matching system
predicts a = b (reason R1 in Table 1). Both r1 and r2 reduce
the errors in matching a by moving a away from b. In the
meantime, however, they undesirably move a closer to some
attribute c. Although applying either rule in isolation does
not incur the incorrect match a = c, applying them both

Input: Schema S, set of SE rules U = {r1, r2, · · · , rn}
Output: maximal set of compatible rules U∗

1. Compute the matchability m(S) of schema S;

2. For each ri in U do

2.1 Compute the matchability m(ri(S)) of schema ri(S);

2.2 If m(ri(S)) < m(S) then

Remove ri from U ;

3. Compute the matchability m(aj , S) for each attribute aj in S;

4. Let m∗(aj) = m(aj , S), for each aj in S;

5. U∗ = φ;

6. For each ri in U do

6.1 If ri is compatible with all rules in U∗ then

Compute the matchability m(aj , ri(S)) for each aj in ri(S);

gain(ri) =
P

j max{[m(aj , ri(S)) − m∗(aj)], 0};

7. k = arg maxi(gain(ri));

8. If gain(rk) > 0 then

8.1 Remove rk from U , and add rk to U∗;

8.3 m∗(aj) = max[m(aj , rk(S)), m∗(aj)], for each aj in S;

8.4 Goto Step 6;

9 Return U∗;

Figure 4: The procedure that RevSearcher uses to find
the best set of rules in each iteration)

might. This suggests that RevSearcher should select only
one rule, which gives a higher matchability.

To alleviate this problem, we explore a different gain def-
inition. Specifically, we define the gain of a rule r to be the
total increase in matchability of the attributes a1, . . . , an of
S:

gain(r) =
n

X

i=1

max {[m(ai, r(S)) − m∗(ai)], 0},

where m(ai, r(S)) is the matchability of attribute ai in schema
r(S) (if ai does not exist in r(S), then we set m(ai, r(S))
to 0, indicating that r does not contribute to any gain on
matchability of ai). Furthermore, m∗(ai) is the maximal
matchability that ai has achieved so far. m∗(ai) is initially
set to be m(ai, S), the matchability of attribute ai in S. It
is set to be m(ai, r(S)) every time RevSearcher adds a rule r
to U∗ and m(ai, r(S)) is higher than m∗(ai) at that point.

Note that gain(r) is “conservative” in the sense that it
“discourages” applying multiples rules to one attribute when
subsequent changes to the attribute do not increase its match-
ability further. Also, it is “optimistic” in the sense that
whenever m(ai, r(S)) is lower than m∗(ai), this definition
does not “punish” r; it simply sets the contribution of r to
ai to 0. Otherwise, it tends to underestimate the actual
benefit of r, and RevSearcher ends up selecting fewer rules
than it could.

6. EMPIRICAL EVALUATION
We now describe experiments with mSeer. First, we ranked

a set of schemas according to matchability with (a) synthe-
sized schemas, and (b) real schemas. The rankings strongly
agree with one another. We thus conclude that for estimat-
ing matchability, synthesized schemas provide a promising
proxy for using difficult-to-obtain real schemas.

Second, we provide anecdotal evidence that matchability
reports produced by mSeer can help a schema designer iden-
tify likely matching problems.

Third, once we had revised a schema using the revisions
suggested by mSeer, we matched it against a set of real
schemas, and showed that we could improve matching ac-
curacy by 1.3-15.2% for 17 out of 20 schemas across four



Domain # # tables # attributes

schemas per schema per schema

Course 5 3 13-16
Inventory 10 4 9-11

Real Estate 5 2 26-35
Product 5 2 46-50

Table 3: Real-world domains in our experiments

domains (while obtaining no improvement or minimally re-
ducing the accuracy by 0.2-0.3% on the remaining 3). The
results thus suggest that mSeer is robust and can revise
schemas to improve their matchability across a range of do-
mains.

Finally, we showed that (a) the multi-appearance repre-
sentation could further improve matching accuracy by 7.1%
on average, (b) mSeer is robust for small changes in the size
of the synthetic workload, and (c) it requires only a few data
instances to do well. We now describe the experiments in
detail.

6.1 Experimental Setup
Domains: For research purposes, obtaining domains with
a large number of realistic schemas is well-known to be dif-
ficult1. For our experiments, we obtained publicly available
schemas [9, 12, 23] in four real-world domains, as shown
in Table 3. “Course” contains university time schedules.
“Inventory” describes business product inventories. “Real
Estate” lists houses for sale, and “Product” stores product
description of groceries.

Matching Systems: For experiments described in Sec-
tions 6.2-6.5, we employed a matching system called iCOMA,
which consists of a name matcher, a decision-tree matcher,
and a combiner. The name matcher compares names based
on edit distance. The decision-tree matcher compares at-
tributes based on their values, and the combiner combines
the similarity scores of the matchers by taking their aver-
age. The name matcher and the combiner are taken from
COMA++, a state-of-the-art matching library [3], and the
decision-tree matcher is added to iCOMA from LSD [12], so
that iCOMA can exploit data instances. For sensitivity anal-
ysis in Section 6.6, we also evaluated mSeer using a revised
version of iCOMA, taken from COMA++.

Experimental Methodologies: We briefly describe the
methodology employed for the main experiments (Section 6.4).
In those experiments, for each domain in Table 3, we first
randomly selected a schema to be the internal mediated
schema S, then computed its average matching accuracy
m with respect to the remaining schemas in the domain
(treated as future schemas). Next, we applied mSeer to re-
vise S into S∗. Then we computed the average matching
accuracy m∗ of S∗, again with respect to the remaining
schemas in the domain. Finally, we report the difference
m∗ − m as an estimate of the matchability improvement of
S (using mSeer) in real-world scenarios.

6.2 Utility of the Matchability Concept
We first examine what matchability scores can tell us.

Since we estimate such scores using synthetic workloads, it
is unlikely that they will be roughly the same as the true

1The largest domain that we are aware of is Thalia at
www.cise.ufl.edu/research/dbintegrate/thalia. But its schemas
are in XML, hence are not suitable for the current experiments.

scores (that can be computed if we know the true set of
target schemas). However, we hoped that they would help
us rank schemas, given that such ranking lies at the heart
of schema revision.

Consequently, we want to know that if we rank a set of
schemas using (a) synthetic workloads, and (b) real schemas,
how strongly would such rankings agree. Toward this end,
in each domain, say Course, we first selected a schema S,
then perturbed it using SE rules one rule at a time, to obtain
a set of schemas S = {S1, . . . , S10}.

Next, we ranked the schemas in S in decreasing order of
their matchability scores, computed using a synthetic work-
load. Since matchability scores vary depending on the par-
ticularities of a workload, we ranked a schema Si ∈ S higher
than a schema Sj ∈ S only if their scores differ by at least
ǫ (currently set to 0.005). We call the resulting ranked list
SynList.

We then created TarList, a similar ranked list of the schemas
in S , except now we computed their matchability scores us-
ing all schemas in Course other than S as a real-world target
workload.

Finally, we computed the distance between SynList and
TarList as the ratio between the number of disagreeing pairs
(with respect to their rankings) and the total number of
pairs. This is the Kendall distance, a popular IR measure
of the distance between two rankings [10], adapted to our
context.

We repeated the above process for all other schemas S in
Course, then computed the average Kendall distance. These
distances, for Course, Inventory, Real Estate, and Product,
are 0.28, 0.22, 0.19, and 0.27, respectively. For comparison
purposes, the average Kendall distance between TarList (the
ranking produced using real-world schemas) and a randomly
generated list, again for the above four domains, are 0.43,
0.44, 0.39, and 0.45, respectively, roughly twice the distances
produced using the synthetic schemas. This suggests that
matchability scores computed by mSeer are indeed useful
in helping rank schemas with respect to their matchability.
The schema revision results in Section 6.4 further quantify
this degree of “usefulness”, in showing that by using such
rankings (produced with synthetic workloads), mSeer was
able to revise schemas to improve their matchability across
all four domains.

6.3 Usefulness of Matchability Reports
We now provide anecdotal evidence that matchability re-

ports produced by mSeer can help the schema creator iden-
tify likely matching problems. Table 4 shows snippets of
matchability reports produced by mSeer (condensed and com-
piled in English, for exposition and space reasons). The re-
ports cover two schemas: Product1 comes from Product do-
main, and TPCH is the publicly available schema of the well-
known TPC-H benchmark (see www.tpc.org/tpch), which
we also experimented with to broaden our range of experi-
ence with mSeer. (We did not include TPCH in our other
experiments because we could not obtain a set of schemas
comparable to TPCH.)

Part 1 of Table 4 reports that iCOMA failed to match dis-

count and discounted, and incorrectly matched discontinued

and discounted. It is clear from examining this part that
attributes discount and discontinued of schema Product1 are
“too similar” (Case 3, see Section 4.1.1). In particular, their
names share the string “disco”, which can confuse a name



(1) iCOMA failed to match
“discount” of schema Product1 and  “discounted” of schemaProduct1_S1

iCOMA incorrectly matched
“discontinued” of schema Product1 and  “discounted” of schemaProduct1_S1

Suggestion:  revise the name or the data format of “discontinued” to move  
“discontinued” away from “discounted”

(2) iCOMA failed to match
“P_MFGR” of schemaTPCH  and  “P_MANUFACTURER_GROUP” of schemaTPCH_S1

iCOMA predicted no match for “P_MFGR” of schema TPCH
Suggestion: revise the name or the data format of “P_MFGR” to move “P_MFGR”

closer to “P_MANUFACTURER_GROUP”
(3) iCOMA incorrectly matched 

“C_COMMENT” of schema TPCH and  “P_COMMENT” of schemaTPCH_S1
iCOMA incorrectly matched 
“C_COMMENT” of schema TPCH and  “P_NOTES” of schemaTPCH_S2

Suggestion: revise the name or the data format of “C_COMMENT” to move 
“C_COMMENT” away from “P_COMMENT” and “P_NOTES”

Table 4: Compilation of report snippets generated
by mSeer

matcher (e.g., one using q-grams [3]). Given this, developer
P can change the name, e.g., from “discontinued” to “ter-
minated”, then rerun mSeer, to see if the problem has been
addressed.

Similarly, Part 2 of Table 4 reports that P MFGR failed to
match P MANUFACTURER GROUP. Here, the abbreviation
“MFGR” may have caused the names not to match. Note
that the knowledge “MFGR” is an abbreviation of “MAN-
UFACTURER GROUP” is highly domain specific. Since
we simply cannot know if a particular matching system will
possess such domain specific knowledge, it is better to revise
the TPC-H schema to make it match aware by expanding
such abbreviations.

Part 3 of Table 4 reveals a different problem. This part
first reports that C COMMENT matched P COMMENT in-
correctly. Given that both names share “COMMENT”, this
is not surprising. But then mSeer reports that C COMMENT

also incorrectly matched P NOTES, despite the fact that
their data values are quite different (one attribute records
customer comments, while the other records product com-
ments). A likely explanation for this is that the matching
system knows “COMMENTS” is a synonym of “NOTES”,
and thus makes the latter incorrect match. To address this
problem, it is important that the strings “C” and “P” in
the names must be fully expanded (e.g., to “CUSTOMER”
and “PRODUCT”) to “push” the attributes away from each
other as much as possible.

Other likely matching problems for the TPCH schema
(that we found from the mSeer report) includes abbrevia-
tions such as “MK”, the use of very short names for ID at-
tributes (making all of them “confusable” with one another),
and the merging of words without some separation charac-
ters, such as “RETAILPRICE” (instead of “RETAIL PRICE”)
and “ORDERSTATUS”.

From working with several mSeer reports, we found that
a promising future work direction would be to produce aids
in designing easily matched mediated schemas. Some can be
“best practice” rules for humans, e.g., “avoiding short pre-
fixes that carry crucial information (such as P COMMENTS)”,
“avoiding very short names for ID attributes”, etc. A richer
direction would be to provide a library of idioms, to be used
in constructing attribute names.

6.4 Automatic Schema Revision
Next, we examine how well mSeer can revise a schema to

0.4

0.5

0.6

0.7

0.8

0.9

1

Milwaukee Reed Rice Washington WSU

A
cc

ur
ac

y

Initial RevSearcher

0.4

0.5

0.6

0.7

0.8

0.9

1

Homeseekers NKY Texas Windermere Yahoo

A
cc

ur
a

cy

0.4

0.5

0.6

0.7

0.8

0.9

1

Inv1 Inv2 Inv3 Inv4 Inv5

A
cc

ur
ac

y

Course 
Schemas

Real Estate 
Schemas

0.4

0.5

0.6

0.7

0.8

0.9

1

Product1 Product2 Product3 Product4 Product5

A
cc

ur
ac

y

Inventory 
Schemas

Product 
Schemas

Figure 5: Matching accuracy of schemas produced
by mSeer vs. that of the original schemas

improve its matchability. Figure 5 shows the results for all
four domains, five schemas in each domain (Inventory has 10
schemas, from which we randomly selected five). Consider
the very first schema, Homeseekers of Real Estate (at the
topmost left corner of the figure). Here, the two bars show
the average matching accuracy of the original schema and
that of the schema produced by RevSearcher, respectively.
This average accuracy is computed by matching against the
target workload of Homeseekers, i.e., the set of all remaining
schemas in Real Estate. Note that this target workload
consists of real-world schemas; it approximates the true set
of target schemas that Homeseekers will be matched against
in the future. We generated the bars for other schemas
similarly.

The results show that RevSearcher was effective in im-
proving matching accuracy. RevSearcher was able to revise
schemas to achieve higher accuracy in 17 out of 20 cases, by
1.3-15.2%. It did not improve accuracy in one case (on Rice),
and reduced accuracy minimally in two cases (on Product2
and Product5), by 0.2-0.3%. The results thus suggest that
mSeer is robust and can revise schemas to improve their
matchability across a range of domains. As an aside, the
current unoptimized version of mSeer took 96-814 seconds to
produce a revised schema in the experiments, spending most
of time in searching for compatible rule sets (Section 5.2.2).
To reduce runtime, we are exploring better search techniques
and ways to reuse results across matching steps to compute
matchability scores incrementally.
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Figure 7: Accuracy with and without multi-
appearance representation

Room for Improvement: How much better could mSeer

revise a schema S if RevSearcher guided the search process
using S’s target workload, instead of a synthetic one? Fig-
ure 6 provides the answers for all four domains. In each
domain, the three bars show the accuracies of the original
schema, the schema produced by RevSearcher (using a syn-
thetic workload), and the schema produced by a version of
RevSearcher that uses the target workload, respectively. The
accuracies are averaged over all sources in the domain.

The difference between the first and the third bar is the
room for accuracy improvement. The results show that
RevSearcher has done quite well. It achieves on average
69.7% of the improvement achievable with full knowledge
(i.e., knowing the actual target workloads), demonstrating
that its search strategy selects SE rules effectively. By ex-
panding its set of SE rules, RevSearcher is likely to make in-
roads into the remaining 30%; and by pursuing an even bet-
ter search strategy, RevSearcher can make further improve-
ments, possibly beyond what is shown in the third bars.

6.5 Multi-Appearance Representation
Next, we examine the utility of multi-appearance repre-

sentation (MAR) in schema revision (see Section 4.1.3). Fig-
ure 7 shows the results for the real-world schemas in Course
and Inventory (experiments on other domains show similar
results). For each schema, the two bars show the accuracy of
mSeer in single-appearance and multi-appearance settings,
respectively, measured using the real schemas as the target
workloads.

The results show that using MAR significantly improves
the matchability of schemas, increasing accuracy in 9 out of
10 cases, on average by 5% in Course, and 3% in Inventory.
MAR failed to improve accuracy in only one case (on Wash-
ington). This suggests that MAR is quite promising as a
way to revise a schema with modest effort and yet making
it more match aware.

6.6 Sensitivity Analysis
Size of Synthetic Workload: Figure 8.a shows the accu-
racy of the revised schema that mSeer produces, as we vary
the number of schemas in the synthetic workload W . In the
figure the lines show average accuracies and the vertical bars
show the maximum-minimum accuracy ranges. The results
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Figure 8: Change in matching accuracy with respect
to (a) size of synthetic workload, and (b) number of
data instances
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Figure 9: Matching accuracy with a new matching
system

show that as W ’s size increases from 1 to 20, W captures the
results of more transformation rules, thus better represent-
ing true target workload. Consequently, matching accuracy
increases and the maximum-minimum fluctuations decrease.
After size 30-35, however, all transformation rules have been
captured in W , and as the size increases further, W ’s “dis-
tance” to the real workload increases, and its performance
starts to decrease. This result is consistent with the obser-
vations in [23], for tuning matching systems. Overall, the
results suggest an optimal workload size in the range of 20-
30. The results also show no abrupt degradation of accuracy,
thus demonstrating that mSeer is robust for small changes
in the workload size.

Number of Data Instances: Figure 8.b plots the ac-
curacy averaged over all sources in Real Estate, as we vary
the number of data instances available to mSeer (i.e., to the
decision-tree matcher). We chose Real Estate because it
has the most of data instances available. The results show
that more data instances led to a slow steady climb in accu-
racy. However, the accuracy is already quite high (within 2%
of the maximum accuracy achieved) for 3-5 data instances.
This suggests that mSeer requires only a few data instances
to do well, and thus does not impose an unduly heavy bur-
den on the schema creator.

New Matching System for mSeer: Next, we examine
the performance of mSeer with respect to a different match-
ing system. Instead of using system iCOMA described earlier
(in Section 6), we employed a new system where the name
matcher compares names using TF/IDF instead of edit dis-
tance, and the combiner takes the maximum of the similarity
scores instead of the average (see COMA++ [3]).

Figure 9 summarizes the results with this new match-
ing system, over all four domains. The results show that
RevSearcher was able to revise schemas to improve accuracy
in all four domains. RevSearcher for instance increased the
average accuracy in Inventory by 5.7%. The results thus sug-
gest that mSeer can be effective with more than one match-
ing system.



7. RELATED WORK
Schema matching has received increasing attention over

the past two decades (see [21, 13] for recent surveys). Many
matching techniques have been developed, employing for ex-
ample, machine learning [16, 12, 9], IR [7], and informa-
tion theory [15]. Recent work has also explored incremental
schema matching [5], self-organizing mapping [8], mapping
debugging [6], mapping compilation [17], discovering map-
ping expression [2], information capacity in schema integra-
tion [19], data matching in ontology integration [24], hier-
archy integration [27], and Web information integration [1,
4]. Once matches have been found and verified, they are
typically elaborated into mappings [21] using a tool such as
Clio [26].

A complementary problem (first raised in [14]) is then to
revise schemas to make finding semantic matches easier. As
far as we know, our work offers the first attack plan for this
problem, placed in the context of revising mediated schemas
of data integration systems. The work closest to ours is
eTuner [23]. That work however attacks a very different
goal, namely, given a schema S, how to tune a matching
system M (i.e., selecting the right matching components to
be executed and correctly adjusting their knobs) to maxi-
mize matching accuracy over future schemas. In a sense, our
problem can be considered complementary: given a match-
ing system M , how to “tune” (i.e., revise) a schema S, to
maximize matching accuracy of S with future schemas.

8. CONCLUSION AND FUTURE WORK
We have described the novel problem of analyzing and

revising mediated schemas to improve their matchability,
and presented an initial promising solution. Our work can
help to motivate further research in this novel direction to
schema matching. A sample of important issues are the
following. We have proposed a reasonable way to generate
synthetic schemas. But what is the optimal way? What
should be an optimal set of rules? Our analysis of matching
mistakes and related experiments have achieved the goal of
demonstrating that such a report of matching mistakes can
be very useful to the schema creator. But can we improve
the analysis further? In particular can we analyze better
matching mistakes of global matching systems? Likewise,
can we develop a better set of SE rules and a better search
technique? Many more interesting challenges remain, such
as developing an interactive environment (in which a creator
can accept or revise a suggested schema revision on the fly,
and can in general interact with the system in real time to
revise the schema) and generalizing the work here to other
data representations (e.g., XML) or problem contexts (e.g.,
revising schemas to facilitate record matching).

From a broader perspective, perhaps the most important
conclusion drawn from this work, as well as the eTuner one,
is that synthetic schemas can be very helpful for schema
matching, and thus deserves more studies into their genera-
tion and usage.
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