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ABSTRACT
Several recent papers have focused on OLAP over imprecise data,
where each fact can be a region, instead of a point, in a multi-
dimensional space. They have provided a multiple-world semantics
for such data, and developed efficient ways to answer OLAP aggre-
gation queries over the imprecise facts. These solutions, however,
assume that the imprecise facts can be interpretedindependently
of one another, a key assumption that is often violated in practice.
Indeed, imprecise facts in real-world applications are often corre-
lated, and such correlations can be captured as domain integrity
constraints (e.g., repairs with the same customer names andmod-
els took place in the same city, or a text span can refer to a person
or a city, but not both).

In this paper we provide a framework for answering OLAP ag-
gregation queries over imprecise data in the presence of such do-
main constraints. We first describe a relatively simple yet powerful
constraint language, and formalize what it means to take into ac-
count such constraints in query answering. Next, we prove that
OLAP queries can be answered efficiently given a databaseD∗ of
fact marginals. We then exploit the regularities in the constraint
space (captured in a constraint hypergraph) and the fact space to
efficiently constructD∗. We present extensive experiments over
real-world and synthetic data to demonstrate the effectiveness of
our approach.

1. INTRODUCTION
OLAP employs a multi-dimensional data model, where each fact

can be viewed as apoint in the corresponding multi-dimensional
space. If we relax the assumption that all facts are points, and allow
some facts to beregions, we must handle the resulting imprecision
when answering queries. For example, we can denote that a partic-
ular auto repair took place in the state of Wisconsin, without speci-
fying a city. Answering queries over such imprecise information is
widely recognized as important and has received increasingatten-
tion. In particular, we have recently developed an efficientsolution
[8, 7], which provides a possible-world interpretation forimprecise
facts, then computes the result of an aggregation queryQ to be the
expected value of evaluatingQ over all possible worlds.

A key assumption underlying the above solution is that the im-
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FactID Loc Auto Name Cost
p1 WI F150 John Smith 100
p2 WI F150 John Smith 250
p3 Madison Honda Dells 130
p4 Dells Honda Madison 130

Table 1: A sample automotive repair database.

precise facts areindependent[8]. This assumption is often violated
in practice, as the following example demonstrates:

EXAMPLE 1. Consider the automotive repair database in Ta-
ble 1, where each tuple describes a repair. Here, both factsp1 and
p2 are imprecise, because they do not specify the particular city in
Wisconsin (e.g., Madison, Dells, or perhaps Milwaukee) where the
repair took place. Now suppose that we wish to exploit thedomain
knowledge(something that we independently know to be true in the
real world, or a strong belief that we want to impose on the possi-
ble worlds considered in answering the query) that all repairs with
the same customer name and the same auto model take place in the
same city. Then factsp1 andp2 are not independent. For instance,
if in a particular world the repair of factp1 took place in Madison,
then so did the repair ofp2.

As another example, suppose the facts of Table 1 are extracted
from text documents that describe repairs. In particular, consider
the text snippet“Madison, Honda, broken ex. pipe, Dells & I-90,
towed 25 miles, $130”. A reasonable person-name extractor may
extract “Madison” and “Dells” as person names, and similarly a
reasonable location extractor may extract the same “Madison” and
“Dells” as location names. This results in the two factsp3 andp4

in Table 1, which reflect different interpretations of “Madison” and
“Dells”. However, we know that each text span can have only one
interpretation (e.g., either person name or location, but not both).
Consequently, factsp3 andp4 are not independent. In particular,
if we acceptp3 then we must eliminatep4 from the fact database,
and vice versa.

The above examples show that in OLAP over imprecise data, we
often have extra information about which combinations of comple-
tions of facts are possible. This extra information either reflects
the application logic (e.g., repairs with the same customernames
and models took place in the same city), or the logic of the fact-
derivation process (e.g., if facts are extracted from text then a text
span encodes only a single interpretation). A natural way toin-
terpret this information is asconstraintsover the set of possible
worlds. Then, given a set of such constraints, our problem isto an-
swer OLAP queries overonly the subset of the worlds that satisfy
the constraints.

This paper proposes an efficient solution to the above problem.
In what follows, we will first describe our prior framework on
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Figure 1: (a) Querying imprecise data in prior work, (b)-(c) exploiting domain constraints for querying imprecise datain this work.

OLAP over imprecise data [8, 7], then the challenges of pushing
constraints into this framework and our solutions.

Figure 1.a illustrates our prior framework. LetD be a database of
imprecise facts. A popular semantics [24, 19] interpretsD as a set
of possible worlds, such asw1 − w5 as shown in the figure, where
each world is created by selecting a possible completion foreach
fact. Now consider an aggregation queryQ overD. The answer to
Q, denoted asQ(D), is taken to be the expected answer ofQ over
all possible worlds (w1 − w5 in this case).

ComputingQ(D) by evaluatingQ over all possible worlds is
practically infeasible. Hence, the work [8] proposes an efficient so-
lution to this problem. First, it shows how the set of possible worlds
can be compactly encoded using anextended database(EDB for
short)D′, and how to createD′ from D using anallocation pol-
icy (see Figure 1.a). Next, it shows that queryQ can be evaluated
quickly in a single scan overD′, and the answer, denotedQ(D′), is
the same asQ(D). This work is followed up in [7] by developing
efficient allocation algorithms to computeD′ from D.

In this paper, we significantly extend the above framework (see
Figures 1.b-c). We begin by defining a language to represent do-
main constraints. Next, we modify the query-answering semantics
to exploit such constraints. Consider again the five worldsw1−w5

that result from the databaseD of imprecise facts. Given a set of
constraintsC, we retain only thevalid worlds, i.e., those that sat-
isfy C (which arew1, w3, w4 in this case, see Figure 1.b). Then
we define the answer ofQ over the imprecise databaseD and the
set of constraintsC, denotedQ(D, C), to be the expected answer
of Q over the valid worlds (Figure 1.b).

We then develop an efficient way to computeQ(D, C), without
enumerating all valid worlds. This is the central technicalchallenge
we address in this paper. Clearly, we cannot answerQ over EDB
D′, as in prior work, because that would violate our semantics of
considering only valid worlds. Instead, we prove that if we can con-
struct amarginal database(or MDB for short)D∗, which assigns
to each fact completion its marginal probability in the valid worlds,
then we can answerQ(D, C) efficiently in a single scan over MDB
D∗ (Figure 1.b, the lower half). This result is surprising, because in
many problem settings with domain constraints [19], even the ex-
istence of a MDBD∗ does not help compute exact query answers
(and often approximate solutions are proposed instead [19]). We
show that for the algebraic aggregation operators [16] commonly
used in OLAP queries (e.g., Sum, Count, approximate Average), it
is possible to compute an exact answer using the MDB.

We then turn our attention to the problem of efficiently construct-
ing MDB D∗, given an EDBD′ and a set of constraintsC. To solve
this problem, first we create a hypergraphG that captures the reg-
ularities in the constraint space (see Figure 1.c). Next, weexploit
these regularities, and useG to decomposeD′ into independent
connected components(e.g.,CC1 −CC3, as shown in Figure 1.c).
To ensure efficient decomposition, we store both the EDBD′ and
the constraint hypergraphG in a RDBMS and execute the decom-

position using SQL queries. We next process each component in
isolation to generate a portion of the MDB databaseD∗, then com-
bine these portions to obtain the finalD∗.

Processing each component is in itself a difficult problem. Even
though each componentCCi tends to be far smaller than the orig-
inal EDB D′, it is still often large enough to make exhaustive pro-
cessing impractical. To address this problem, we employ a tech-
nique calledvariable eliminationin the probabilistic inference lit-
erature [20]. The key idea is to we exploit regularities in both the
constraints and fact space, to fully complete certain imprecise facts,
which are “bottleneck” variables in the component. This breaks the
component into smaller independent “chunks” that now can beeas-
ily processed in isolation.

To summarize, this paper makes the following contributions:
• We describe a simple yet powerful language to model do-

main constraints, then define the semantics of query answer-
ing in OLAP over imprecise data in the presence of such con-
straints.

• In the above setting, we prove that a database of fact marginals
can be used to answer OLAP aggregation queries efficiently.

• We develop an algorithm to decompose an imprecise database
into independent components, exploiting regularities in the
constraint space, as well as relational optimization techniques.

• We develop an algorithm that can process each component
efficiently, by exploiting regularities in both the constraints
and the fact space. Taken together, our algorithms enable us
to quickly compute the database of fact marginals.

• We present extensive experiments to demonstrate that our al-
gorithms scale up to large data sets and complex constraints.

An extended version of this paper with all proofs can be found
in [9]. The rest of the paper is organized as follows. Section2
discusses related work. Section 3 provides background and intro-
duces our notation. Sections 4-6 describe our solution. Section 7
presents experimental results, and Section 8 concludes.

2. RELATED WORK
This is the first work we are aware of that addresses the issues

of performing OLAP aggregation over imprecise and uncertain data
with constraints. There is much work that separately addresses each
of these issues (OLAP aggregation, querying imprecise data, and
answering queries with constraints), which we will not attempt to
summarize here. Overviews of several different topics in OLAP
aggregation can be found in [10, 27].

Although constraints have been considered in the OLAP setting,
these constraints either addressed data modeling [21, 26] or were
constraints over query results over precise data [28]. The work on
constraints in OLAP has not considered imprecise data. Although
there has been much work addressing uncertain and imprecisedata
(e.g., [22, 30, 33, 32, 4, 17, 12, 29]), this work has not addressed
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answering OLAP aggregation queries over such data. The very
recent work by [4] presents an approach for efficiently representing
and querying arbitrary sets of possible worlds; however, they do
not consider aggregation queries.

Our work in [8] is the first work we are aware of to address se-
mantic issues specific to OLAP aggregation queries over imprecise
and uncertain data, namely maintaining consistency between sets
of related queries (e.g, roll-up and drill-down). The related work
sections in [8, 7] provides further details how that work (and this
current work as well) is distinct from prior related work involving
aggregation queries over imprecise data. However, neither[8, 7]
nor any of the related work described in these consider OLAP ag-
gregation over imprecise datain the presence of constraints.

While there has been considerable work on querying inconsis-
tent databases [5, 3, 11, 4, 6, 1, 15, 25], there has been relatively
little work addressing aggregation queries over such data.Com-
pared to this work, we make two significant contributions. First,
the constraint language we consider is significantly more general
than ones considered in most prior work. Typically, these prior
works only address constraints in the form of functional dependen-
cies. A notable exception is [15], which considers a language with
aggregate constraints. However, this work does not addressimpre-
cise data. Second, we considerOLAP aggregation queries, while
prior work in [5, 25] only addressesscalaraggregation queries and
do not address the additional consistency requirements present in
the OLAP setting [8].

3. PRELIMINARIES
We now review the framework in [8] for OLAP over imprecise

and uncertain data. Later we significantly extend this framework to
handle domain integrity constraints.

Data Representation: Standard OLAP considers two types of
attributes: dimensions (e.g.,Location) and measures (e.g.,Cost).
In prior work [8] we have extended this model to support impreci-
sion in dimension values. Specifically, each dimension in standard
OLAP takes value from a base domainB (e.g.,location takes value
from B = {Madison,Dells}). In the extended model, each di-
mension takes value from anhierarchical domainH overB.

DEFINITION 1 (HIERARCHICAL DOMAINS). A hierarchical
domainH over base domainB is a power set ofB such that (a)
∅ /∈ H , (b) H contains every singleton set (i.e., corresponds to
some element ofB), and (c) the values ofH either subsumes one
another or are disjoint, i.e.,∀h1, h2 ∈ H , h1 ⊇ h2, h1 ⊆ h2, or
h1 ∩ h2 = ∅. Non-singleton elements ofH are calledimprecise
values.

We then define afact table schemato be of the form
〈A1, . . . , Ak, M1, . . . , Mn〉, where each dimension attributeAi

has an associated domaindom(Ai) that is imprecise, and each
measure attributeMj has an associated domaindom(Mj) that is
numeric. Next, we define

FactID Loc Auto Cost pc,r

p1 Madison F150 100 1
p2 Madison S10 150 1
p3 Dells F150 100 1
p4 Madison F150 175 0.6
p4 Dells F150 175 0.4
p5 Madison F150 50 0.7
p5 Dells F150 50 0.3
p6 Madison F150 100 0.5
p6 Madison S10 100 0.5

Table 2: An EDB D′ for the database of factsD in Figure 2.a.

DEFINITION 2 (FACT AND FACT TABLE ). A fact tableD is
a collection of facts of the form〈a1, . . . , ak,m1, . . . , mn〉 where
ai ∈ dom(Ai) and mj ∈ dom(Mj). In particular, if dom(Ai)
is hierarchical,ai can be any leaf or non-leaf node in dom(Ai).
We will use the terms “fact table” and “imprecise database” inter-
changeably, when there is no ambiguity.

Intuitively, such a factr = 〈a1, . . . , ak, m1, . . . , mn〉 maps into a
regionreg(r) in thek-dimensional spaceS formed by the dimen-
sion attributesA1, . . . , Ak. To formalize this notion, we defined a
cell in S to be a vector〈c1, . . . , ck〉 such that everyci is an ele-
ment of the base domain ofAi. The regionreg(r) is then the set
of cells{〈c1, . . . , ck〉 | ci ∈ ai, i ∈ 1 . . . k}. Each cell inreg(r)
represents a possiblecompletionof fact r, formed by replacing all
non-leaf nodeai with a leaf node from the subtree rooted atai.

EXAMPLE 2. Figure 2.a shows a fact table with two dimension
attributes: Loc and Auto, and one measure attribute:Cost. The
dimensions take values from their associated hierarchicaldomains.
Figure 2.b shows the structure of these domains and the regions of
the facts.

Factsp1 − p3 are precise in that their dimension attributes take
leaf-node values. Therefore they map to individual cells inFig-
ure 2.b. Factsp4 − p6 on the other hand are imprecise and map
to the appropriate two-dimensional regions. For example, fact p6

is imprecise because dimensionAuto takes the non-leaf node value
Truck. The region ofp6 consists of cells(Madison,F150) and
(Madison,S10), which represent possible claims ofp6.

Possible-World Semantics for Querying: Next, we defined a
possible-world semantics for imprecise facts as follows. LetD be a
database of facts (i.e., a fact table, as defined earlier). Asdiscussed
earlier, completing an imprecise factr ∈ D means “assigning”r
to a cellc ∈ reg(r), thereby eliminating the imprecision ofr. By
completingall imprecise facts inD, we obtain a databaseW that
contains only precise facts. We callW apossible worldfor D, and
the multiple choices for completion (for each fact) clearlylead to a
set of possible worlds forD.

To formalize the above process, in [8] we first defined the notion
of allocation: given a factr, theallocationof r to a cellc ∈ reg(r)
is a non-negative quantitypc,r, calledallocation weight, which de-
notes the weight of completingr to cellc, such that
P

c∈reg(r) pc,r = 1.
Next, we defined anallocation policyto be a procedure that in-

puts a fact tableD and outputs a tableD′ that consists of the allo-
cations ofall facts inD. We now can define

DEFINITION 3 (CLAIM AND EXTENDED DATABASE EDB).
Let D be a fact table. For each factr ∈ D, an allocation pol-
icy creates a set of tuples{〈id(r), c, pc,r〉|c ∈ reg(r), pc,r >
0,

P

pc,r = 1}, whereid(r) is the id ofr. Observe that each pre-
cise fact has a single allocation of 1 for the cell to which it maps.



We call each tuple〈id(r), c, pc,r〉 a claim, and the collections of
all such claims anextended databaseD′, or EDB for short.
Intuitively, each claim for an imprecise factr corresponds to a pos-
sible completion ofr. In this work, we use the terms completion
and claim interchangeably. In [8, 7] we introduced several impor-
tant allocation policies, and showed how to efficiently execute them
over a fact tableD to generate the database EDBD′.

Now if we select from the EDBD′ a set of claims that corre-
spond to one claim per fact, then we obtain a possible worldW for
D. Furthermore, we compute theprobabilityof the worldW to be
the product of the allocation weights of all selected claim tuples.
(See [8] for a motivation of this procedure.)

EXAMPLE 3. Table 2 shows a possible EDBD′ for the database
of factsD in Figure 2.a. Here, attributeLoc = WI of fact p4

can complete to eitherMadison or Dells, thus creating the two
claims with idp4 in the table. These completions have probabilities
0.6 and 0.4, respectively (see columnpc,r of the table). Suppose we
select the very first completion for each of the factsp1 − p6. Then
we obtain a worldW with probability1 ·1 ·1 ·0.6 ·0.7 ·0.5 = 0.21.

Thus, given any database of factD and an allocation policyA, the
resulting EDBD′ conceptually defines a set of all possible worlds
W1, . . . , Wm, together with probabilitiesp1, . . . , pm, respectively.
We then defined the result of an OLAP queryQ overD to be the
expected value ofQ over the worldsW1, . . . , Wm. For instance, if
Q is Sum and its answers forW1, . . . , Wm arev1, . . . , vm, respec-
tively, then its answer forD is

Pm

i=1 pi ∗ vi.
In [8] we then demonstrated that the answer computed using the

above possible-world semantics have several desirable properties
(e.g., consistency and faithfulness). Finally, we showed how to
compute such an answer efficiently, via a single scan of the EDB
D′ (thus avoiding the expensive process of enumerating all possible
worlds). See [8] for more details.

4. CONSTRAINT LANGUAGE
We now describe a relatively simple yet powerful language to

specify domain constraints over the imprecise data. Sections 5-6
show how to execute OLAP queries in the presence of such con-
straints.

4.1 Syntax
We begin by defining the notion of atom, which we then use later

to define constraints:

DEFINITION 4 (ATOMS). Let D be a fact table (see Defini-
tion 2), anatomis of the form[r.A θ c], [r.A θ r′.A], exists(r), or
¬exists(r) where:

• r, r′ are either variables that bind to factIDs inD or specific
factIDs themselves, andr.A is the value of (dimension or
measure) attributeA of factr;

• θ ∈ {=,≤,≥, <, >} is a comparison operator over the ap-
propriate domain;

• c is a constant fromdom(A); and

• exists(r) (¬exists(r)) is a predicate that holds if factr
exists (cannot exist).

Note that in the above definition, constantc is from dom(A), and
hence can be either precise (e.g.,Madison) or imprecise (e.g.,
WI). The operators inθ can be the domain-specific version of the
comparison operators listed. For example, for dimensions extracted
from text “=” may be implemented as a string comparison routine.
The only requirement placed onθ is that each atom must evaluate
to logical true or false. We now can define constraints as follows:

DEFINITION 5 (CONSTRAINTS). A constraintis an implica-
tion of the formΦ1 ⇒ Φ2, whereΦ1, Φ2 are conjunctions of atoms
(i.e.,∧i atomi).

EXAMPLE 4. Using the above language, we can write the first
constraint introduced in Example 1, “repairs with the same cus-
tomer names and models took place in the same city”, as follows:

(r.Name = r′.Name) ∧ (r.Auto = r′.Auto)

=⇒ (r.Loc = r′.Loc).

Here r and r′ are two variables that bind to FactIDs in the fact
tableD. As another example, we can write the second constraint
in Example 1 “Madison can be either a person name or a city,
but not both, and so is the case withDells” as follows:

(p3.Loc = Madison) ⇒ (¬exists(p4))

(p4.Loc = Dells) ⇒ (¬exists(p3)).

Note that herep3 and p4 are not variables, but refer to specific
factIDs in the fact tableD.

As yet another example, for the fact table in Figure 2.a we can
write the constraint from Example 1, “if repairsp4 and p5 take
place inMad, then repairp6 refers to a car of modelF150 and
repair p3 does not exist”:

(p4.Loc = Madison) ∧ (p5.Loc = Madison) ⇒

(p6.T ruck = F150) ∧ (¬exists(p3))

As these examples demonstrate, this constraint language isrela-
tively simple, and yet already allows us to write expressivecon-
straints. Our experience with fact extraction in two real-world do-
mains – Web data in theDBLife system of theCimple project [14]
and emails in theAvatar project [23] – shows that we can use this
language to capture many domain constraints in those domains. In
Section 8 we briefly discuss generalizing this language to more ex-
pressive types of constraints (e.g., aggregations over a set of facts)
as future work. We do not consider detecting inconsistent con-
straints, and refer the reader to [9] for details.

4.2 Semantics
Let D be a fact table andC be a set of constraints as defined

earlier. We now describe what it means to answer OLAP queries
over D, given C. Recall from Section 3 that in the case of no
constraint, to answer an OLAP queryQ, we

1. create an EDB tableD′, whose tuples are claims, fromD,
using an allocation policy,

2. select claims fromD′ (one for each fact) to generate multiple
possible worldsW1, . . . , Wm, then compute a probabilitypi

for each worldWi, and

3. compute the expected answer over all these worlds:
Pm

i=1 pi ∗ ans(Q,Wi) and return it as the answerans(Q)
for Q.

To accommodate constraintsC, we keep the above multiple-world
semantics, but discard those that do not satisfyC. To do so, we
start with the following notion:

DEFINITION 6 (VALID WORLD ). Let W be a world created
by selecting claims, one for each fact, from an EDB table, as de-
scribed earlier, and letC be a set of constraints. Then each con-
straint ci ∈ C can be evaluated to TRUE or FALSE onW . In
particular, if ci contains variables, then it evaluates to TRUE iff all
possible bindings of the variables to factIDs inW makeci evalu-
ate to TRUE. We sayW is valid (wrt C), or W satisfiesC, iff all
constraints inC evaluates to TRUE onW .



EXAMPLE 5. Consider a simple example with two factsr1 =
(WI,F150) and r2 = (WI,F150), and the single constraint
“two facts with the same model must have the same location”.
There are 4 possible worlds, since bothr1 andr2 have two possi-
ble completion claims:{(Madison,F150),(Dells,F150)}.
The only valid worlds are where the same claim is selected forboth
r1 and r2. For example, if(Madison,F150) is selected forr1

in world W , then(Madison,F150) must be selected forr2 for
W to be valid.

Suppose after discarding invalid worlds fromW1, . . . , Wm, we ob-
tain the valid worldsWi1, . . . , Wik. Recall that they have been as-
signed probabilitiespi1, . . . , pik, which are now incorrect because
most likely these probabilities sum to less than 1. In the absence of
any additional information, a common solution for revisingthese
probabilities is to scale them proportionally, so that theysum to 1
[19]. We adopt this solution for our context. We now can define
our query semantics as follows:

DEFINITION 7 (CONSTRAINT-BASED QUERY SEMANTICS).
Given a fact tableD and a set of constraintsC, let Wi1, . . . , Wik

be the valid worlds (wrtC) with revised probabilitiespi1, . . . , pik,
as described above. Then for any OLAP queryQ, we return the
expected answer over the valid worlds

Pk

j=1 pij ∗ans(Q, Wij) as
the answer forQ overD in the presence ofC, denotedQ(D, C).

5. QUERY ANSWERING WITH MDB D*
We now describe our solution for answering OLAP queries over

an imprecise databaseD, given a set of constraintsC. We be-
gin by defining the types of queries we consider. While the OLAP
paradigm offers a rich array of query operators, the basic query con-
sists of selecting a value fromdom(Ai) for each dimensioni, and
applying an aggregation operator to a particular measure attribute.

DEFINITION 8 (BASIC QUERY AND QUERY REGION[8]). For
each dimensioni, define a query domain, denotedqdom(Ai), to be
some non-empty subset ofdom(Ai). A basic queryQ over a fact
tableD with schema〈A1, . . . , Ak,M1, . . . , Mn〉 has the form
Q(a1, . . . , ak; Mj ,A), where (a) eachai ∈ qdom(Ai) and to-
gethera1, . . . , ak describe the k-dimensional region being queried,
denotedreg(Q), (b) Mj is a measure of interest, and (c)A is an
aggregation function.

In this paper, as in [8], we consider the common aggregation
functions Sum, Count, and Average. All general queries (e.g., roll-
up, slice, drill-down, pivot, etc.) can be described in terms of re-
peated applications of basic queries. Hence, we focus on answering
basic queries in the presence of constraints.

EXAMPLE 6. Figure 3.a shows a databaseD of four facts and
a queryQ = “What is the Sum of Sales for Mad?” (shorthand for
Madison) over D. For queryQ, a1 is Model, with valueALL
(i.e., the one that contains all singleton values indom(A1)), a2 is
Loc, with valueMad, Mj is Sales, andA is Sum. Figure 3.b shows
a multi-dimensional view ofD. reg(Q) is the dotted region in this
view.

Recall from Definition 7 that answering a (basic) queryQ reduces
to evaluating it over all valid worlds. This basic approach is clearly
impractical. Hence we seek a more efficient solution. In the rest of
this section we first define the notion of a marginal database MDB
D∗, then prove that we can answerQ efficiently usingD∗. Later
in Section 6 we show how to efficiently constructD∗.

DEFINITION 9 (MARGINAL DATABASE MDB D∗). LetD be
an imprecise database andD′ be an EDB obtained fromD via an

allocation policy. LetC be a set of constraints, andW be the set
of all valid worlds (i.e., those that are derived fromD′ and satisfy
C, see Section 4).

Recall that each claimt in D′ consists of a precise factft and an
allocation weightwt. Letmt be the total probability of all worlds
in W whereft is true. That is,mt =

P

W∈W p(W ), whereft is
true inW andp(W ) is the probability ofW . Then we refer tomt

as the marginal probability offt, and refer to the pair(ft, mt) as
a marginal tuple. We refer to the set of all marginal tuples asthe
marginal database (MDB for short)D∗.

EXAMPLE 7. Continuing with Example 6, Figure 3.c shows an
EDB D′, obtained via an allocation policy, and a setC of just
one constraint, “two facts with the same model must have the same
location”, overD. FromD′ andC we can compute the MDBD∗
in Figure 3.d.

It is important to note that each tuple inD∗ has a corresponding
tuple in D′. Furthermore,D∗ depends only onD, a particular
allocation policy, and a set of constraintsC. It does not depend on
Q. Hence, once constructed,D∗ can be used to answer all queries.

Specifically, if Q is Sum, then we can computeQ(D∗) to be
the weighted sum over all cells ofreg(Q). Formally,Q(D∗) =
P

ft∈reg(Q) Q(ft) · mt, where(ft, mt) ranges over all tuples in
D∗, andQ(ft) is the value ofMj , the measure of interest ofQ (see
Definition 8).

EXAMPLE 8. The answer for queryQ in Figure 3.a is 1*0.78
+ 4*0.78 + 3*0.72 + 2*0.72 = 7.5

We can computeQ(D∗) for Count and Average (see [8] for details)
in an analogous fashion. Overall,Q(D∗) can be computed via a
single scan overD∗. We note that many existing optimizations for
evaluating OLAP queries over a fact table (e.g., materialized views
and indexes) could be used to further speed up query processing
afterD∗ has been materialized.

We now prove thatQ(D∗) is the same asQ(D, C) in Defini-
tion 7. This result is important because it suggests that we can fo-
cus our effort on constructing MDBD∗, which we do in Section 6.
For space reasons, we will state and prove the result for Sum only,
though the result and proof for Count and Average are similar.

PROPOSITION 1. Let C be a set of constraints, andQ(D, C)
be the answer toQ over an imprecise databaseD (Definition 7).
Let D∗ be an MDB obtained fromD andC. SupposeQ is a Sum
query. ThenQ(D, C) = Q(D∗).

PROOF. From Definition 7, we have

Q(D, C) =
X

i:Wi valid

pi ∗ Q(Wi) (1)

Let theDj , j = 1, . . . , k be an arbitrary k-partitioning of the facts.
We refer to the contents of the partition for worldWi asDj,i. Then,
from the distributivity of Sum, we obtain

Q(D, C) =
X

i:Wi valid

pi∗(
X

j

Q(Dj,i)) =
X

jk
1

X

i:Wi valid

(pi∗Q(Dj,i))

(2)
whereQ(Dj,i) is the result forQ on the facts in partitionDj,i

for world Wi. Let Yi,r,Q be a variable that takes value 1 if fact
r completes to a cellc ∈ reg(Q) in the valid worldWi, and 0
otherwise. Letvr be the measure value for factr. Then we have

Q(D, C) =
X

jk
1

X

i:Wi valid

pi ∗ (
X

r∈Dj,i

vr ∗ Yi,r,Q) (3)
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Figure 3: An example to illustrate query answering with MDB D∗.
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Figure 4: Visualization of Proof Example

By pulling vr out, we obtain

Q(D, C) =
X

jk
1

X

r∈Dj,i

vr ∗ (
X

i:Wi valid

pi ∗ Yi,r,Q) (4)

=
X

r∈D

vr ∗ (
X

c:c∈reg(Q)

mc,r) = Q(D∗). (5)

EXAMPLE 9. Continuing with Example 7, given the single con-
straint in Figure 3, only four out of 16 possible worlds satisfy the
constraint. Figure 3.e. shows these four worlds. Here each dotted
box denotes the query regionreg(Q). Recall that the probabilities
of the valid worlds are computed by normalizing their “old” prob-
abilities. For example, the “old” probabilityp1 of worldW1 is (0.7
* 0.6 * 0.5 * 0.1) = 0.021 Similarly,p2 = 0.189,p3 = 0.006, and
p4 = 0.054.

So the revisedp1, denotedpN
1 , is

pN
1 = p1

p1+p2+p3+p4
= 0.021

0.021+0.189+0.006+0.054
= 0.021

0.27
= 0.08.

Similarly,pN
2 = 0.7, pN

3 = 0.02,pN
4 = 0.2.

W.l.o.g., assume we create two partitionsD1 = {r1, r2} and
D2 = {r3, r4}, thus, i = 4 worlds, and j = 2 partitions for the ex-
ample. To visualize the summations in the proof, consider Figure 4.
The summation in Equation 2 of the proof can be thought of as eval-
uating the Sum query separately over each of these 8 “datasets”. In
Equation 2, we process all partitions for each world together (i.e.
process these “datasets” column-wise). In Equation 3, we now
process the same partition in each possible world together (i.e.,
process these datasets row-wise). Now, we describe how eachpar-
tition is processed (Lines 4 and 5). The value for Q on partition
Di can be considered the Sum of theSalesmeasure for facts which
complete to a cellc ∈ reg(Q). For example, consider factr1. The
only cell r1 completes to insidereg(Q) is (Cam,Mad). Thus,
Yr1,i,Q = 1 for i= 1,2 (i.e., worldsW1 andW2) with normalized
weights0.08 and 0.7 respectively; andYr1,i,Q = 0 for i = 3, 4.
Thus, factr1 contributes to the answer forQ in 0.78 of the possible

worlds, (i.e.,
P

i
pN

i ∗Yr,i,Q = 0.08(1) + 0.7(1) + 0.02(0) + 0.2(0)
= 0.78.

This is the sum of themc,r values for the claims in MDBD∗ for
fact r1 wherer1 completes to a cellc ∈ reg(Q). This can also be
interpreted as the expected contribution ofr1 to the answer toQ is
0.78∗sales(r1) = 0.78∗1 = 0.78, which is themc,r for r1 in D∗.

6. COMPUTING DATABASE MDB D*
We have shown that OLAP queries can be answered quickly,

given a MDBD∗. We now show how to construct MDBD∗ from
an EDBD′ and a set of constraintsC. Definition 9 immediately
suggests a naive algorithm to computeD∗: enumerate all possi-
ble worldsWi (i.e., by selecting one claim per fact fromD′), re-
tain only those that are valid (with respect toC), then compute the
marginalmc,r for each claim tuplec as the probability portion of
valid worlds where claimc is selected forr.

This algorithm is clearly infeasible in practice, due to theexpo-
nential number of possible worlds (in the size ofD). Let |D| be the
size ofD, and|c| be the maximal number of claims inD′ for any
fact. Then, the above has complexityO(|c||D|).

To address this problem, our solution is to (a) exploit the regu-
larities in the constraint space to decomposeD′ into independent
connected components, (b) exploit the regularities in the fact space
to process each component in isolation, yielding a portion of the
MDB D∗, then (c) combining these portions to obtain the entire
MDB D∗. To further speed up these steps, we employ a RDBMS
whenever possible. The rest of this section elaborates on the above
steps.
6.1 DecomposingD′ into Components

We first introduce the notion of constraint hypergraph, which we
use to capture the regularities in the constraint space. We then show
how to use this hypergraph to decomposeD′ into connected com-
ponents.

6.1.1 Constraint Hypergraph
We begin by establishing several notions.

DEFINITION 10 (CONFIGURATION). Let S = {r1, . . . , rj}
be a subset ofj facts in D. Let claims(r) be the set of pos-
sible claims forr in D′. We refer to an element(c1, . . . , cj) ∈
claims(r1)×· · ·×claims(rj) asconfigurationCS for {r1, . . . , rj}.

DEFINITION 11 (VALID CONFIGURATION). Configuration
CS = (c1, . . . , cj) for fact setS = {r1, . . . , rj} violatesa con-
straint c if there exists a subset ofCS violating the conjunction of
atoms inc. Otherwise, configurationCS satisfiesconstraintc.

CS is a valid configurationif all constraints in constraint setC
are satisfied; otherwise,CS is invalid. A configuration for all facts
in D is apossible world, and a valid configuration forD is avalid
possible world.



r1 r2 r3 r4

Figure 5: Hypergraph for the example in Figure 3

By this definition, a configurationCS may implicitly satisfy a con-
straintc which is not directly applicable toCS (e.g.,c has more
thanj variables orc mentions factIDs for facts not inS).

DEFINITION 12 (CONSTRAINT HYPERGRAPH). We define the
constraint hypergraphG = (V, H) as follows: For each factr ∈
D, create a corresponding nodevr ∈ V . LetS = {r1, . . . , rk} ∈
D be a set of facts such that (a) some configuration(c1, . . . , ck) of
S violate a constraint inC and (b) there exists no subset ofS where
a configuration of that subset violates a constraint inC. For each
suchS, introduce an undirected hyperedge(vr1

, . . . , vrk
) ∈ H .

EXAMPLE 10. Consider fact tableD in Figure 3.a, and a set
C of just one constraint “two facts with the same model must have
the same location”. The resulting hypergraphG = (V, H) for
D, shown in Figure 5, has a node inV for each of the 4 facts in
D. H has two hyperedges{r1,r2}, {r3,r4}. For example, the
edge{r1,r2} is added toH because the possible configuration
[(Cam,Mad),(Cam,Dells)] for r1 and r2 violates the con-
straint. Likewise, the edge{r3,r4} is added since configuration
[(Civ,Mad),(Civ,Dells)] for r3 and r4 violates the con-
straint.

Observe that a node is added to the constraint graph for eachfact
in D, not each claim tuple in the EDBD′. We now describe how to
use the constraint graphG to partitionD′ into sets of claim tuples
which can be processed separately to assign the marginals.

DEFINITION 13 (INDEPENDENT/DEPENDENTFACTS). Con-
sider factsr, r′ ∈ D, with possible claimsclaims(r), claims(r′)
respectively. LetWc′,r′ be the set of valid possible worlds where
claim c′ is selected for factr′. We definefrac(c, r) as the proba-
bility portion of all valid possible worlds where claimc is selected
for r, andfrac(c, r|Wc′,r′) as the probability portion ofWc′,r′

where claimc is selected for factr.
If frac(c, r) = frac(c, r|Wc′,r′) for all c′ ∈ claims(r′) and

c ∈ claims(r), we refer tor andr′ as independent. Otherwise,r
andr′ are dependent.

EXAMPLE 11. Continuing with Example 10, for the given con-
straint in Figure 3 the four valid possible worlds are shown in Fig-
ure 3.e, with each valid world having the following “revised” prob-
abilities, respectively:pN

1 = 0.08,pN
2 = 0.7, pN

3 = 0.02,pN
4 = 0.2.

(see Example 9).
Consider factsr1 andr2. The weighted fraction of valid worlds

where claimc1 = (Cam,Mad) is selected forr1 is 0.78,
(i.e. frac(c1, r1) = 0.78), since claim (Cam,Mad) is selected for
r1 in worlds w1 and w2, and pN

1 + pN
2 = 0.08 + 0.7 = 0.78.

Fact r2 has 2 possible claims, (Cam,Mad) and (Cam,Dells), with
(Cam,Dells) selected forr2 in worldsw3 andw4. However, in nei-
therw3 nor w4 is claimc1 selected forr1

(i.e.,frac(c1, r1|W(Cam,Dells),r2
) = 0). Since

frac(c1, r1|W(Cam,Dells),r2
) 6= frac(c1, r1), r1 andr2 are de-

pendent.
In contrast, consider factsr1 and r3, wherer3 has two possi-

ble claims,(Civ,Mad) and(Civ,Dells). It is easily verified
from Figure 3.e thatfrac(c1, r1) = frac(c1, r1|W(Civ,Mad),r3

)
= frac(c1, r1|W(Civ,Dells),r3

) = 0.78, and that a similar result
holds for the other possible claims of factr1. Thus, factsr1 andr3

are independent.

Intuitively, claims in MDBD∗ for set of factsS can have marginals
assigned separately of other facts inD−S if each fact inS is inde-
pendent of all facts inD−S. The next theorem gives the necessary
condition (in terms ofG) for two factsr, r′ to be dependent.

THEOREM 1. Consider factsr, r′ ∈ D. The existence of a path
betweenr, r′ in constraint hypergraphG is a necessary condition
for r, r′ to be dependent.

The existence of a path in the constraint hypergraph betweenr, r′

is not a sufficient condition forr, r′ to be dependent; see details in
[9].

COROLLARY 1. If there is no path in constraint hypergraphG
betweenr, r′, thenr, r′ are independent.

6.1.2 Generating Connected Components
Although identifying connected components in a given

disk resident graph is a well-studied problem, e.g., [2, 13,31], there
exists no straightforward application of these solutions to our prob-
lem setting, since we consider hypergraphs and the constraint hy-
pergraph is not provided as input (we only haveD′).

The algorithm we propose, calledGenerateComponent, takes as
input a given EDBD′ (as a RDBMS table with the schema given
in Definition 3) and constraints setC, and outputs the hyperedges
in G. The algorithm generates the hypergraphG in a “component-
wise” fashion, generating all edges for each connected component
Gi together. Thus, the connected components are identified during
the hypergraph generation process.

GenerateComponent starts by creating a relational database ta-
ble CompID with schema (factid, cid), which stores the component
identifiercid assigned to factfactid. Initially, all facts are given a
special “unassigned” cid. The algorithm continually selects a node
with unassignedcid as a “seed node”vr, and performs a breath-
first enumeration ofG from vr until the component containingvr

is completely enumerated. The edges in the component are gener-
ated separately for each constraintci ∈ C and stored in a separate
database tableCiEdges (e.g., edges for constraintc1 are stored in
tableC1Edges, edges forc2 in C2Edges, etc.). The schema for
eachCiEdge table is (fid1,. . . ,fidk) for k-constraintci. At each
step, the algorithm identifies a set of border nodes which require
expansion, and these are stored in the table activeSet. Edges are
generated only from nodes in activeSet by executing for eachcon-
straintc of the formA ⇒ B a SQL query of the form:
SELECT D1.factid, D2.factid,. . . , Dk.factid

FROM activeSet AS D1, EDB AS D2,. . . , EDB AS Dk

WHERE [logic for A] AND [¬ logic for B] AND [D2.fid < . . . < Dk.fid]

EXAMPLE 12. The constraint from Example 11 “all facts with
the same location must have the same model” generates the SQL
query:
SELECT D1.factid, D2.factid

FROM activeSet AS D1, EDB AS D2, EDB AS D3

WHERE D2.loc = D3.loc AND D2.model != D3.model AND D2.fid< D3.fid

After all of the queries generating edges for each constraint have
been executed, activeSet is set to nodes with unassignedcid in the
edges created by these queries, and thecid for the corresponding
tuples in CompID are updated to the current component id. This
query is executed until activeSet becomes empty. At this point, all
edges in the component have been generated. The algorithm re-
peats this process for a new “seed node”; if none is available, the
algorithm terminates. The complete pseudocode for GenerateCom-
ponent is listed in Algorithm 1.

THEOREM 2 (CORRECTNESS). The GenerateComponent Al-
gorithm correctly identifies all connected components in the con-
straint hypergraphG.



Algorithm 1 GenerateComponent Algorithm
1: // initialize CompID; CompID stores the component assignment
2: CREATE TABLE CompID(factid, cid) ASSELECT DISTINCT factid,

-1 FROM EDB
3: CREATE TABLE activeSet(fid);
4: initialize current component idccid to 0;
5: // while facts are not assigned to connected components
6: while ( 0 < SELECT COUNT (*) FROM CompID C WHERE C.cid == -1)

do
7: // increment the current connected component id
8: ccid← ccid + 1;
9: select fact r not yet assigned to a component (i.e., tuple in compID s.t. com-

pid.cid = -1)
10: initialize activeSet to r; UPDATE compID SET cid = ccid WHERE fac-

tid = r.factID
11: while (activeSet has tuples)do
12: // generates table with edges for each constraintci ∈ C
13: for (each constraintci ∈ C of form A⇒ B) do
14: // materialize conflict edges from activeset forci

15: INSERT INTO TABLE CiEdges (fid1,fid2,. . . ,fidk)
16: SELECT D1.factid, D2.factid,. . . , Dk.factid
17: FROM activeSet AS D1, EDB AS D2,. . . , EDB AS Dk
18: WHERE [logic for A] AND [¬ logic for B] AND [D1.fid < D2.fid

< . . . < Dk.fid]
19: // find the set of active nodes
20: CREATE TABLE activeTable AS
21: SELECT fid1 FROM C1Edges,CompID C WHERE (C.factid = fid1)

AND (C.cid == -1) UNION . . .

22: SELECT fidk FROM CkEdges,CompID C WHERE (C.factid = fidk)
AND (C.cid == -1)

23: // update the component ids for the activeSet
24: UPDATE CompID SET cid = ccid
25: WHERE CompID.factid IN (SELECT * from activeTable)
26: update activeSet to activeTable

6.2 Processing Components to Create Portions
of MDB D∗

Each connected componentGi of constraint hypergraphG cor-
responds to a partitionD′

i of EDB D′ such that claims inD′
i can

be assigned marginals by only processing other claims inD′
i. This

section describes the process to assign the marginalt.mc,r to each
claim in each identified component, thus generating the claims in
MDB D∗ corresponding toDi (see Figure 1.c).

The results in Section 6.1.1 suggest the followingComponent-
wise Naive Algorithm: For each connected componentGi = (Vi, Hi)
in G, enumerate every possible configuration for facts in imprecise
databaseD corresponding toVi. Then, for each claimt in MDB
D∗ for a fact inVi, assignt.mc,r the weighted portion of valid
configurations where claimc is selected forr. The complete MDB
D∗ is obtained by concatenating the portion output for each com-
ponent.

The complexity of this Component-wise Naive Algorithm is
O(N ∗ |c|m), whereN is the number of components,|c| is the
maximal number of claims inD′ for any fact, andm the maximal
number of imprecise facts in any component. Although this com-
pares favorably with the complexity for the brute force algorithm,
which wasO(|c||D|), we will present a more efficient algorithm
than Component-wise Naive in this section.

6.2.1 Reducing the Number of Enumerated Configu-
rations

We now present a more efficient algorithm for assigning marginals,
calledProcessComponent, which requires enumerating fewer con-
figurations that Component-wise Naive. Given the subgraph for
Gi = (Vi, Hi) and the corresponding partition of EDBD′

i as input,
ProcessComponent assigns a marginalt.mc,r to each correspond-
ing claim t in D∗. The final Marginal DatabaseD∗ is obtained
by concatenating the outputs of ProcessComponent for eachGi to-
gether.

At the highest level, ProcessComponent proceeds as follows: For
every claimt in D′

i, we maintain a running sum of configuration
weights for valid configurationsCVi

where claimc is selected for
fact r. The nodes inVi are partitioned into two setsI, J . Since
the nodes inVi correspond to facts in the imprecise databaseD, we
refer toVi as nodes or facts interchangeably. We enumerate each
possible configurationCJ for facts inJ , and computeconfigWeight
as the total weight of all valid configurations ofVi = I ∪ J for
whichCJ is a sub-configuration forJ (i.e., the claims selected for
facts inJ ∈ Vi are given byCJ ).

For eachCJ , configWeightis computed as follows: For each fact
rI ∈ I , we find the set of claimsc ∈ claims(rI)|CJ

for rI such
that(c, CJ ) is a valid configuration forrI ∪ J . Let the sum of al-
locations for these claims besumV alid(rI)|CJ

. configWeightis
then given by(

Q

rI∈J pc,rI
)∗ (

Q

rI∈I sumV alid(rI)|CJ
), and is

added to the running sum for each claim tuple corresponding to a
completion inCVi

. The complete pseudocode for ProcessCompo-
nent is listed in Algorithm 2.

PROPOSITION2 (COMPLEXITY). LetN be the number of com-
ponents,|c| the maximal number of claims inD′ for any fact, and
m be the maximal number of imprecise facts in any component.
Assume we partition thesem imprecise facts into two setsI, J of
sizemI , mJ s.t. mI is the size of setI , mJ is the size of setJ ,
andm = mI + mJ . Then, the complexity of ProcessComponents
is O(N ∗ |c| ∗ mI ∗ |c|mJ )

We observe that the complexity for ProcessComponents is an
improvement over Component-Naive, since ProcessComponent is
guaranteed to have a smaller exponent than Component-Naive(i.e.,
mJ < m). For the practical-sized datasets with up to several mil-
lion facts considered in our experiments (Section 7.1), thecomplex-
ity of ProcessComponent was not an issue. How far this extends to
other practical datasets is an intriguing issue for future work. The
reason for this was that the observed value formJ tended to be
small (i.e., less than 20 for datasets we consider). We note the
Naive Algorithm with complexityO(|c||D|) is clearly intractable
for practical-sized datasets. We now provide intuition forselecting
the “best” setJ of imprecise facts in the component.

Algorithm 2 ProcessComponent Algorithm
1: Input: EDB partitionD′

i, Constraint Hypergraph ComponentGi

2: Output: Marginals for MDBD∗i (corresponds toD′

i)
3: I← BestNonAdjecentSet(Gi)
4: J ← Vi − I
5: create MDB entriesD∗i for D′

i

6: initialize arraysumV alid[] // stores
P

I
pc,rI

wherec, CJ valid
7: for (each valid configurationCJ of J) do
8: for (each factrI ∈ I) do
9: sumV alid[rI ]← 0

10: for (eachc ∈ comp(r)) do
11: if (c ∪ CJ is valid configuration of{rI ∪ J}) then
12: sumV alid[rI ]← sumV alid[rI ] + pc,r

13: // pc,rJ
is allocation for completion used inCJ for rJ

14: configWeight← (
Q

J
pc,rJ

) * (
Q

rI∈I
sumV alid[rI ])

15: totalWeight← totalweight + configWeight

16: // update weights for each fact inJ
17: for (each factrJ ∈ J) do
18: t.mc,r ← t.mc,r + configWeight

19: // update weights for facts inI
20: for (each factrI ∈ I) do
21: for (eachc ∈ comp(r)) do
22: if (c ∪ CJ is valid configuration of{rI ∪ J}) then
23: t.mc,r ← pc,r ∗ configWeight

24: // normalize the weights int.mc,r

25: for (eacht ∈Mi) do
26: t.mc,r ←

t.mc,r

totalW eight

DEFINITION 14 (NON-ADJACENT SET). Consider a connected
componentGi = (Vi, Hi) in G. We refer toI ⊆ Vi as anon-



adjacent setif there does not exist a pair of nodesv, v′ ∈ I , such
thatv, v′ share an edge inHi.

A non-adjacent set is equivalent to the notion ofstrong indepen-
dent setin a hypergraphG = (V, H), which is defined as a set of
nodesI ⊆ V such that no pairv, v′ ∈ I share a hyperedge inH
[18].

THEOREM 3. Consider connected componentGi = (Vi, Hi)
with corresponding partitionD′

i of EDBD′ (i.e., the claims inD′

for facts corresponding to nodes inVi). LetVi = I ∪ J . If I is a
non-adjacent set inGi, then ProcessComponent correctly assigns
marginals to claim tuples inD′

i.

6.2.2 Identifying Non-adjacent Sets
The result in Theorem 3 holds for any possible non-adjacent set

in Vi. We now propose a cost model for comparing the cost of
marginal assignment by using the various possible non-adjacent
sets inGi.

DEFINITION 15 (COST MODEL). Let size(vr) be the num-
ber of completions for factr. Letα be a constant capturing the cost
of enumerating a configuration. Likewise,β is a constant for pro-
cessing a single completion for a single fact. AssumeVi = I ∪ J ,
whereI is a non-adjacent set. The cost of processing component
Gi using setsI andJ is given by

cost(Gi, I, J) = α(
Y

vJ∈J

size(vJ ))∗max{1, (β(
X

vI∈I

size(vI))}

The second term is required to be at least 1, to handle the special
case whenI = ∅.

In practiceα > β, since enumerating a configuration involves
more work than processing facts separately. For this case, Component-
Wise Naive Algorithm has the highest possible cost. The low-
est possible cost would be obtained by making the product of the
size(vI ) for vI ∈ I as large as possible.

PROPOSITION3 (OPTIMAL ). 1) For α > β, cost(Gi, I, J)
in our model is optimized whenI is assigned the non-adjacent set
with the largest product of sizes (i.e.,I s.t.

Q

vI∈I
size(vI) is max-

imized). 2) The problem BEST-NON-ADJACENT of finding theI
which minimizes cost(Gi,I,J) is an NP-complete problem.

We can trivially reduce the problem of finding the maximal weighted
strong independent set in an undirected hypergraph, which is NP-
complete [18], to BEST-NON-ADJACENT. The hypergraph given
as input to the weighted strong independent set problem is given as
input to BEST-NON-ADJACENT , along withα = |Vi|, β = 1,
where|Vi| is the size ofVi. The non-adjacent set returned forI
is the maximal weight strong independent set inG. Thus, a poly-
nomial time algorithm cannot exist for BEST-NON-ADJACENT.
[18] presents negative theoretical results on the existence of good
approximation algorithms for the weighted strong independent set
problem and the related problem of hypergraph coloring.

We now present an algorithmMaxNonAdjacentwhich find a
maximal non-adjacent set in a given hypergraph componentGi =
(Vi, Hi), which is an approximation of the maximal non-adjacent
set optimizing our cost model. Our algorithm is semi-external,
since we are only required to store in memory at all times a bit-
vectorstatus with an entrystatus(v) for each nodev ∈ Vi indi-
cating whetherv is in the maximal non-adjacent set or not. Essen-
tially, the MaxNonAdjacent algorithm scans the set of hyperedges
H , and greedily maintains the “best” strong independent set of V
for the edges seen. The pseudocode is listed in Algorithm 3.

Algorithm 3 MaxNonAdjacent Algorithm
1: Input: HypergraphGi = (Vi, Hi)
2: Output: Returns approximate maximal weighted non-adjacent setI ⊆ V
3: allocate bit-vectorstatus with a bit for eachv ∈ Vi

4: // define NON-ADJACENT = 0, ADJACENT = 1
5: for (eachvi ∈ V ) do
6: Initialize status(v) to NON-ADJACENT
7: for (each edge h∈ H) do
8: select nodev ∈ h with highest weight s.t. status(v) = NON-ADJACENT.
9: update status(v’) = ADJACENT for all other nodesv′ ∈ h

10: I← subset of nodes inV with status NON-ADJACENT

11: returnI

6.3 Combining D∗ Portions to Obtain Com-
plete D∗

We use GenerateComponent to identify the portion ofG for each
connected componentGi=(Vi, Hi). After generating the compo-
nent edges, ProcessComponent is called to generate MDBD∗ tu-
ples for facts corresponding to nodes inVi. Intuitively, identifying
strongly connected components in constraint graphG is equivalent
to partitioning EDBD′ into sets of claim tuples such that marginals
can be assigned to claims in each set independently of the other
sets. The following formalizes this intuititon.

THEOREM 4. LetGi = (Vi, Hi) be a connected component in
constraint graphG, and letD′

i be the EDB claims for the facts in
D which correspond to nodes inVi (see Definition 12). Then, the
marginals for claims inD′

i can be assigned independently of claims
not inD′

i using the ProcessComponent Algorithm.

After ProcessComponent completes, the edgesHi may be discarded.
After processing all components, all MDBD∗ claim tuples have
been generated. During algorithm execution, if ProcessComponent
finishes and any MDB claim for a component is assigned a marginal
of 0, then the constraint set is inconsistent. We can stop processing
immediately, and marginals of 0 are assigned for all MDB entries
in the component. When combining the portions ofD∗ together,
we handle an inconsistent set of constraints by insuring allMDB
claims have marginals set to 0, which is correct behavior by Defi-
nition 9.

7. EXPERIMENTAL RESULTS
To empirically evaluate the performance of the proposed algo-

rithms, we conducted experiments using both real and synthetic
data. The experiments were carried out on a machine running Cen-
tOS 4 with a dual Pentium 2.66 GHz processor, 2GB of RAM, and
a single IDE disk. All algorithms were implemented as Java appli-
cations that accessed a local instance of IBM DB2 UDB Version
8.1 using JDBC to interface with the database.

Since existing data warehouses cannot directly support multi-
dimensional imprecise data, obtaining “real-world” datasets is dif-
ficult. However, we were able to obtain one such real-world dataset
from an anonymous automotive manufacturer. The fact table con-
tains 797,570 facts, of which 557,255 facts were precise and240,315
were imprecise (i.e., 30% of the total facts are imprecise).There
were 4 dimensions, and the characteristics of each dimension are
listed in Table 3. Two of the dimensions (Sr-AreaandBrand) have
3 level attributes (includingALL), while the other two (Time and
Location) have 4.

Each column of Table 3 lists the characteristics of each level at-
tribute for the particular dimension, and ordered from top to bottom
in decreasing granularity. Thus, the bottom attribute is the cell-level
attribute for the dimension. The two numbers next to each attribute
name are, respectively, the number of distinct values the attribute
can take and the percentage of facts that take a value from that at-
tribute for the particular dimension. For example, for theSr-Area



dimension, 92% of the facts take a value from leaf-levelSub-Area
attribute, while 8% take a value from theArea attribute.

Sr-Area Brand Time Location

ALL(1)(0%) ALL (1)(0%) ALL (1)(0%) ALL (1)(0%)

Area(30)(8%) Make(14)(16%) Quarter(5)(3%) Region(10)(4%)

Sub-Area(694)(92%) Model(203)(84%) Month(15)(9%) State(51)(21%)

Week(59)(88%) City(900)(75%)

Table 3: Dimensions of real dataset

Of the imprecise facts, approximately 67% were imprecise ina
single dimension (160,530 facts), 33% imprecise in 2 dimensions
(79,544 facts), 0.01% imprecise in 3 dimensions (241 facts), and
none were imprecise in all 4 dimensions. For this dataset, noim-
precise fact had the attribute valueALL for any dimension.

For several experiments synthetic data was generated usingthe
same dimension tables as the real-world data. The process for gen-
erating synthetic data was to create a fact table with a specific num-
ber of precise and imprecise facts by randomly selecting dimension
attribute values from these 4 dimensions. Each tuple was 40 bytes
in size.

7.1 Algorithm Performance
We first evaluate the scalability of the Marginalization Algorithm

along two dimensions. The first is the “complexity” of constraint
setC and the second is the database size. While an obvious metric
exists for the latter, defining an appropriate metric for comparing
the “complexity” of different constraint sets on the same dataset is
more involved. For example, an obvious metric like the number of
constraints inC is potentially misleading since the amount of work
required to evaluate a constraintc depends on how many factsc
potentially applies to. For example, evaluating a single constraint
“All facts with the same model have the same cost” involves more
work than the constraint “All facts in the city Madison with the
same model have the same cost,” since the latter only appliesto
facts with location Madison and only pairs of these facts must be
considered to evaluate the constraint.

Using this intuition, the metric we define to measure the com-
plexity of a constraint is the number of potentialbindingsthe con-
straint has in the fact table. In other words, the number of potential
bindings for constraintc of the formA =⇒ B is the number of
times the conjunct of atoms inA could potentially hold in the fact
table. The potential bindings for a constraint setC is the sum of
potential bindings for each constraintc ∈ C.

For these experiments, we evaluate the scalability of the Marginal-
ization Algorithm with respect to constraint complexity onthe fol-
lowing three datasets: 1) the real Automotive dataset, 2) a randomly
selected subset of 200,000 facts from Automotive (selectedsuch
that the 60,000 facts (30%) were imprecise), and 3) a synthetically
generated dataset with 3.2 million total facts (of which 960,000
(30%) were imprecise). For each imprecise databaseD, we used
Count-based allocation [8] as an off-line process to createthe EDB
D′, which was stored in a relational table in the database. We ran-
domly generated 35 constraint sets with varying degrees of com-
plexity. Each constraint set was generated as follows: 1) First, we
create a constraint “template”A =⇒ B by: a) Randomly select-
ing 2 of the 4 dimensions,D1, D2 and create forA the following
conjunct of atoms: “r.D1 = r’.D1 AND r.D2 = r’.D2”, where r
and r’ are variables, and b) randomly selecting one of the remain-
ing dimensionsD3 to create an atom forB with similar form. 2)
We generate a set of constraints by repeatedly “instantiating” this
template k times (for various k between 20 and 100) as follows:
Randomly select valuesv1, v2 from dom(D1), dom(D2) respec-
tively, and add to the constraint the condition “whereD1 = v1 AND

D2 = v2.” The result of each such “instantiation” is a constraint,
and there arek constraints in the final constraint set.

All reported running times are “wall-clock” times and are warm
numbers. Although the step to generate edges begins processing
a constraint collection cold, the buffer pool is not flushed between
the SQL queries over the EDB table used to generate hyperedges
in the constraint hypergraph (see Section 6.1.2 for details). Thus,
subsequent queries would be warm, since EDBD′ tuples would
still be in the buffer. The database was not tuned in any manner
and no indexes were created over any tables. The buffer pool was
set to 100 MB for all experiments.

The results for the three datasets are shown in Figures 6, with
the figures displaying the running times versus number of possi-
ble bindings for each of the 35 randomly generated constraint sets,
along with the most appropriate “best-fit” curves. Along with the
total time, we also include the decomposition of the runningtimes
for the two main algorithm components, GenerateComponent and
ProcessComponent (see Section 6). Separate best-fit curveswere
determined for each algorithm component, and indicate thatwhile
the running time of GenerateComponent grows linearly, the run-
ning time for ProcessComponent appears exponential. The main
take-away from these results is that although our Marginalization
algorithm is theoretically exponential (see complexity analysis in
Section 6), it is indeed practical for real-world databaseswith mil-
lions of facts. Also, since Marginalization will be performed as an
off-line process in most settings, this performance is reasonable.

We conducted a second set of experiments to explore the scal-
ability of the Marginalization algorithm with respect to fact table
size. For these experiments, we used the process described above
to randomly generate a constraint set, and ran Marginalization on
the same three datasets. The results are shown in Figure 7, with
each figure showing for these datasets the total running timefor
Marginalization for a randomly selected constraint set. Weomit
results for other constraint sets since they were similar. From the
graphs, we see the running time increases linearly as the dataset
size increases. This indicates the scalability of the Marginalization
Algorithm with respect to fact table size.

7.2 Component Size
The next set of experiments examines the size and number of

connected components in the constraint hypergraph. For these ex-
periments, we used the same three datasets and 35 randomly gen-
erated constraint sets used for experiments in Section 7.1.The
results in Table 4 give the most extreme value observed over the
35 constraint sets, with each row corresponding to a dataset. The
Datasetcolumn contains the number of facts in the dataset.Min
# CC andMin # CC contain respectively the minimum and maxi-
mum number of components observed in the constraint hypergraph
over the 35 constraint sets.Largest Compand# Imp contain re-
spectively the total number of facts and the number of imprecise
facts in the largest observed component. We note that the largest
observed component also contained the most imprecise factsfor all
three datasets. Finally,# Confsgives the number of configurations
enumerated to process this largest component. For each dataset, the
largest component required enumerating the most configurations.

From Table 4 we see that for the datasets we consider no large
connected components emerge in the constraint graph. The com-
plexity analysis of the ProcessComponent step in Section 6.2 shows
the number of configurations enumerated by ProcessComponent
grows exponentially with respect to the number of imprecisefacts
in a component. Since no large connected component emerges,
we see that the number of configurations enumerated for even the
largest component remains reasonable despite the negativecom-
plexity results.
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Figure 6: Scalability with respect to constraint complexity

Dataset Min # CC Max # CC Largest Comp # Imp # Confs

200K 174198 205455 25 facts 7 2304

800K 691689 821733 78 facts 15 110592

3200K 2829814 3199461 120 facts 20 5308416

Table 4: Results for component size experiment

While these results demonstrate no large connected component
emerges in the constraint hypergraph, they do not provide insight
into the distribution of component sizes. We do not have enough
information to conclude whether most of the components are ex-
tremely small (i.e, contain 1 or 2 imprecise facts) or if a significant
number are “modestly” sized (i.e., contain 10 - 20 imprecisefacts).
This difference is significant since the number of configurations
ProcessComponent enumerates to process a component grows ex-
ponentially with the number of imprecise facts it contains.
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Figure 7: Scalability with respect to database size

The next set of results we present addresses this by reporting the
distribution for imprecise fact count over the components for each
dataset we consider. The results for each dataset over the 35con-
straint sets used in the prior experiments are given in Figures 8.a-c.
Each curve in a graph gives the number of components with the in-
dicated number of imprecise facts as the constraint set sizevaries.
E.g., the curve labelled “2 – 5” indicates the number of compo-
nents with between 2 and 5 imprecise facts. Constraint set size k
was defined in Section 7.1. We omit the curves for the range 0
to 1 imprecise facts since the number of configurations generated
by these components is negligible (i.e., less that 5% of the total
enumerated configurations) for the datasets we consider, and these
negatively impact the readability of the graph.
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Figure 8: Component size distributions for datasets (a) 200K,
(b) 800K (real Automotive), (c) 3200K

We draw the following two conclusions from these results. First,
as constraint set size increases, the number of modestly sized com-
ponents remains small. Only the number of extremely small com-
ponents (with between 2 - 5 imprecise facts each) increases no-
ticeably. Thus, the total number of configurations enumerated by

the ProcessComponents step for all connected components inthe
hypergraph remain reasonable as constraint set size increases.

7.3 Regularity Experiments
One way the Marginalization algorithm achieves algorithmic ef-

ficiency is by exploiting constraint-space regularity, which the next
set of experiments explores.

7.3.1 Constraint Partitioning
The next set of experiments examines how constraint-space reg-

ularity affects the distribution of connected component sizes. For
the constraint language we propose in Section 4.1, the “head” of a
constraintA =⇒ B partitions the facts into non-overlapping sets
such that each facts in each hyperedge are drawn from the sameset.

For example, consider a constraint “two facts with the same lo-
cation must have the same brand.” We can think of this constraint
as first partitioning all facts by theirLocationvalue. Then, each hy-
peredge introduced for this constraint contains only a set of facts in
the sameLocationpartition (e.g., facts which may have sameLoca-
tion, but potentially have different values forBrand). Since hyper-
edges only contain facts within the partition, the resulting compo-
nent can be no larger than the partition regardless of the number of
hyperedges present.Essentially, the distribution of these partition
sizes represents the worst-case distribution of componentsizes.

Our next set of experiments investigates the distribution of par-
tition sizes as constraint set size increases, and is similar to the
component size distribution experiments in Section 7.2. The same
35 constraint sets were used for these experiments and the results
are given in Figures 9.a-c. Each curve in a graph gives the number
of partitions with the indicated number of imprecise facts as the
constraint set size varies. E.g., the curve labelled “2 – 5” indicates
the number of partitions with between 2 and 5 imprecise facts. The
partitions are created by grouping together facts which satisfy the
head of the constraint, and the reported sizes are the numberof im-
precise facts in the partitions. Constraint set size k was defined in
Section 7.1. We omit the curves for the range 0 to 1 imprecise facts
for reasons similar to the ones given for the component size results
(Figure 8).
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Figure 9: Partition size distributions for datasets (a) 200K, (b)
800K (real Automotive), (c) 3200K

By directly comparing between these figures and the correspond-
ing results for component size distribution in Figures 8.a-c, we see
the observed component size distributions are quite similar to the
partition size distributions. Thus, we conclude that for the datasets



and constraint sets we consider, the component distribution is close
to worst-case. Despite this worst-case behavior, the totalnumber
of configurations ProcessComponents enumerates remains reason-
able.

7.3.2 Graph Connectivity
The purpose of this experiment is to directly measure the impact

of the Non-Adjacent set optimization on running time. For this
experiment, we used the Automotive dataset and generated a col-
lection of related constraint sets so that we could control the con-
nectivity of the constraint graph, which we define as the percentage
of possible edges within a constraint hypergraph that are actually
present. Intuitively, if the non-adjacent set optimization was not
used, the number of configurations enumerated by ProcessCompo-
nent would be the same regardless of the hypergraph connectiv-
ity (i.e., all possible configuration for each component would have
to be enumerated), thus increasing the running time of Process-
Component. The results in Figure 10 indicate the Non-Adjacent
set optimization significantly impacts running time if the hyper-
graph connectivity is low. For the real-world Automotive dataset,
the constraint sets we consider resulted in constraint hypergraphs
with very low connectivity (under 10% in many cases).
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Figure 10: Regularity Experiment

7.4 Summary of Experimental Results
Together, the results in Sections 7.2 and 7.3 explain the scala-

bility and efficiency of our approach, as observed in Section7.3.1.
The favorable distribution of connected component sizes weob-
served in Section 7.2 is a result of constraint-space regularity lead-
ing to many trivially small connected components. Second, the
non-adjacent set optimization significantly reduces the number of
configurations which ProcessComponents enumerates, and inprac-
tice significantly improves the performance of the Marginalization
Algorithm. We note that further experimentation on additional datasets
from other domains is required to determine the generality of these
results.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have significantly extended the framework for

OLAP over imprecise data presented in [8], to support domaincon-
straints. This extension removes the strong independence assump-
tions required by [8], which are often violated in practice.

There are several interesting directions for further study. First,
the constraint language we propose could be generalized to support
more expressive types of constraints, similar in spirit to the ones
proposed in [15]. For example, the language could be extended to
support constraints over aggregation query results in eachpossible
world (e.g., “The sum of all Sales in a world must be $1000”). A
second related direction would be to develop alessexpressive (but
still useful) constraint language that would allow for development
of more efficient marginalization algorithms, with the simpler lan-
guage having additional regularity in the constraint-space that the
algorithm can exploit. Finally, it would be fruitful to develop incre-
mental maintenance algorithms for the MDBD∗, similar in spirit
to the EDB maintenance algorithms proposed in [7]. Incremental
maintenance of the MDB is challenging since support is required
for both updates to the underlying fact table and the set of con-
straintsC.
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