
Object Matching for Information Integration: A Profiler-Based Approach

AnHai Doan Ying Lu Yoonkyong Lee Jiawei Han
{anhai,yinglu,ylee11,hanj}@cs.uiuc.edu

Department of Computer Science
University of Illinois, Urbana-Champaign, IL 61801, USA

Abstract

Object matching is a fundamental problem that arises in nu-
merous information integration scenarios. Virtually all ex-
isting solutions to this problem have assumed that the ob-
jects to be matched share the same set of attributes, and that
they can be matched by comparing the similarities of the at-
tributes. We consider the more general problem where the ob-
jects can also have disjoint attributes, such as matching tuples
that come from relational tables with schemas (age,name)
and (name,salary), respectively.

We describe PROM, a solution that also exploits the disjoint
attributes to improve matching accuracy. In the above exam-
ple, PROM begins by matching any two given tuples based
on the shared attribute name. Then it applies a set of pro-
filers, each of which contains some knowledge about what
constitutes a typical person. The profilers examine the tuple
pair to see if it can plausibly make up a person. For example,
a profiler may state that because the age is 9 and the salary
is 200K, the tuples do not make up a person and thus do
not match. Profilers can be manually specified by domain
experts, learned from training data, transferred from other
matching tasks, or constructed from external data. Thus, the
PROM approach is distinguished in that it not only can ex-
ploit disjoint attributes to improve matching accuracy, but can
also reuse knowledge from previous object matching tasks.

Introduction
Object matching is the problem of deciding if two given ob-
jects (e.g., two relational tuples) refer to the same real-world
entity. It is often used to consolidate information about enti-
ties and to remove duplicates when merging multiple infor-
mation sources. As such, it plays an important role in many
information management contexts, including information
integration, data warehousing, information extraction, and
text join in databases (e.g., (Tejada, Knoblock, & Minton
2002; Cohen 1998; McCallum, Nigam, & Ungar 2000;
Yih & Roth 2002; Bilenko & Mooney 2002; Lawrence, Bol-
lacker, & Giles 1999; Ananthakrishna, Chaudhuri, & Ganti
2002; Sarawagi & Bhamidipaty 2002; Gravano et al. 2003;
Hernandez & Stolfo 1995)).

Numerous solutions to object matching have been pro-
posed, in both the AI and database communities (see the
related work section). Virtually all of these solutions make
the assumption that the objects under consideration share

(movie, pyear, actor, rating)

(movie, genre, review, ryear, rrating, reviewer)

Figure 1: The schemas of two tables in the movie domain. There
are many correlations among table attributes (signified with ar-
rows) that can be exploited for object matching.

the same set of attributes. They then match objects by com-
paring the similarity of the shared attributes.

In this paper we consider the more general matching
problem where the objects can also have non-overlapping
(i.e., disjoint) attributes, such as matching tuples that come
from two relational tables with schemas (age,name) and
(name,salary). We observe that this problem frequently
arises in information integration, when querying a data
source, or when merging tuples coming from different
sources. In information integration, the sources are typically
developed in an independent fashion, and therefore are likely
to have overlapping, but different schemas. When dealing
with such sources, prior work has not exploited the disjoint
schema portions for the purpose of object matching.

In this paper we describe the PROM (Profiler-Based
Oject Matching) solution that can exploit the disjoint at-
tributes to maximize matching accuracy. The key observa-
tion underlying our approach is that the disjoint attributes are
often correlated, and that such correlation can be leveraged
to perform a “sanity check” for object matching. For exam-
ple, consider the two tuples (9,“Mike Smith”) and (“Mike
Smith”,200K). Assuming that they match, we would have a
“Mike Smith” who is 9 year old and has a salary of 200K.
This appears unlikely, based on our knowledge, specifically,
on the “profile” that we have about what constitutes a typ-
ical person. This profile tells us that such relationship be-
tween age and salary is unlikely to exist. Thus, the above
two tuples are unlikely to match.

As another example that illustrates the PROM approach,
consider two relational tables that contain information about
movies and their reviews, respectively. Figure 1 shows the
schemas of the two tables. The meaning of most schema
attributes are clear from their names, except perhaps pyear

and ryear, which specify the years when the movie was pro-
duced and reviewed, respectively, and rrating, which speci-
fies the rating as given by the reviewer.

Given two tuples from the tables, PROM begins by
matching the shared attribute movie (i.e., movie name), us-
ing any of the existing object matching techniques. If the
similarity between the names is low, PROM can discard the
tuple pair as no match. Otherwise, PROM applies a set of
modules called profilers to the tuple pair to perform “sanity
check”. A profiler contains knowledge about a specific con-
cept, such as movie, actor, or review. When given a tuple
pair that contain information about the concept, the profiler
can examine the pair to decide if it violates any constraint
on the concept.

In our movie example, a tuple pair contains information
about several concepts in the movie domains, and therefore
can be examined by many profilers. For example, a review
profiler may know that the year in which a review was pub-
lished must not preceed the production year of the reviewed
movie. Thus this profiler can check if the values of the dis-
joint attributes pyear and ryear satisfy that constraint. This
profiler may also know that certain reviewers (e.g., Roger
Ebert) have never reviewed any movie with an average rating
below 4 (out of 10). Thus, it may also check reviewer and
rating for this correlation. An actor profiler, on the other
hand, may know that a certain actor has never played in ac-
tion movies, and would check attributes actor and genre.
As yet another example, a movie profiler may know that the
average ratings of a movie tend to be positively correlated.
Thus, it may check attributes rating and rrating. Suppose
their values are 9 and 2, respectively, then the profiler may
conclude that the two tuples probably do not match. PROM
knows how to combine the conclusions of the many profil-
ers in order to arrive at a final matching decision for the tuple
pair.

A compelling property of profilers is that they contain
knowledge about domain concepts (e.g., movies, reviews,
persons, etc.). Hence, they can be constructed once, then
applied to many object matching tasks, as long as the tasks
involve the concepts. They can be constructed by domain
experts and users, and can also be learned from the data in
the domain (e.g., from all movie tuples in the Internet Movie
Database at imdb.com). Alternatively, they can also be con-
structed in the context of a specific matching task, from the
training data for that task. But afterwards, they can also be
transferred to other related matching tasks in the domain.

The PROM approach to object matching therefore pos-
sesses several desirable characteristics. First, unlike previ-
ous approaches, it can exploit disjoint attributes to maximize
matching accuracy. Second, it enables the construction and
transfer of matching knowledge (in form of profilers) across
matching tasks. Finally, it provides an extensible framework
into which to plug newly developed profilers, to further im-
prove matching accuracy. Such frameworks have proven
useful for solving other problems, such as schema match-
ing (Doan, Domingos, & Halevy 2001; Do & Rahm 2002;
Madhavan et al. 2003) and information extraction (Freitag
1998; Craven et al. 2000), but to our knowledge have not
been considered for object matching.

The key challenges facing PROM are to define, construct,
and combine profilers. In this paper we describe the first
steps toward solving these challenges. Specifically, the pa-
per makes the following contributions:

• We introduce the general object matching problem where
objects can also have disjoint attributes.

• We describe the PROM solution that exploits the disjoint
attributes to maximize matching accuracy. The solution
can reuse knowledge from previous matching tasks, and
provides an extensible framework into which new match-
ing knowledge can be easily incorporated.

• We present preliminary experimental results on two real-
world datasets that show the promise of the PROM ap-
proach. The results also show that extending existing
matching techniques in a straightforward manner to ex-
ploit disjoint attributes may actually decrease rather than
increase matching accuracy.

Problem Definition
We now describe the specific object matching problem that
we consider in this paper. Let T1 and T2 be two relational
tables. We say two tuples from the tables match if they re-
fer to the same real-world entity. A table attribute is called
a shared attribute iff it appears in both tables and any two
tuples that match must agree on the value of that attribute.
Other attributes are called disjoint attributes. We assume
that tables T1 and T2 have a non-empty set of shared at-
tributes.

For example, the two tables in Figure 1 share the attribute
movie. A matching pair of tuples from the two tables must
share the same movie name. In constrast, attributes rating
and rrating are not shared, because the same movie may
have different ratings.

Given the two tables T1 and T2, the matching problem
that we consider is to find all matching tuples between the
two tables. This is a very general problem setting which
arises in many contexts, including data integration (Tejada,
Knoblock, & Minton 2002), data warehousing (Ananthakr-
ishna, Chaudhuri, & Ganti 2002), and text join in databases
(Gravano et al. 2003). In the rest of the paper, we shall use
the terms “object” and “tuple” interchangeably when there
is no ambiguity.

The performance of matching algorithms have typically
been evaluated with matching accuracy and runtime effi-
ciency (Hernandez & Stolfo 1995; Ananthakrishna, Chaud-
huri, & Ganti 2002). As the first step, in this paper we shall
focus on improving matching accuracy. Improving runtime
is the subject of future research. In the experiment section
we describe our accuracy measures in detail. In the next sec-
tion we describe the PROM approach to solving the above
object matching problem.

The MOBS Approach
Figure 2 illustrates the working of PROM. Given two tu-
ples t1 and t2 from the input tables, the Similarity Estimator
computes a similarity value for the tuple pair and decides if
they can potentially match. Note that this similarity value is

Similar ity
Estimator

Match
Filter

Combiner
Matching

Pairs
T j

T2

t1

t2

T1

Hard
Profiler 1

Hard
Profiler n

User-specified
Constraints

Soft
Profiler 1

Soft
Profiler m

… …

Training data Exper t Knowledge
Domain

Data

Previous
Matching

Tasks

Figure 2: The working of the PROM system

computed based solely on the shared attributes. If this mod-
ule decides that the similarity value is low, it discards the
tuple pair, otherwise it passes the pair to the Match Filter.

The Match Filter uses a set of hard profilers to check if
the tuple pair could possibly match. A hard profiler contains
hard constraints on the concept that it profiles. If any hard
profiler says no, then the pair is discarded from further con-
sideration. Notice that the Match Filter can also take user
specified hard constraints (treating them as belonging to yet
another hard profiler).

Any tuple pair surviving the Match Filter is passed to the
Meta Profiler. This module employs a set of soft profilers.
Each soft profiler issues a confidence score that indicates
how well the tuple pair fits the profile maintained by the pro-
filer. The Combiner merges the confidence scores to obtain
a single overall score, then decides based on this score if
the tuple pair fit the profile and thus likely to match. If the
decision is “yes”, the pair is stored in the result table TJ ,
otherwise it is discarded.

We now describe the PROM module in more detail. We
note that the Similarity Estimator can employ any of existing
object matching techniques (see the related work section),
and hence is not discussed further. In the experiment section
we describe specific instantiations of the PROM architec-
ture for the real-world datasets.

Profilers: As mentioned earlier, a profiler contains a “pro-
file” of a concept, that is, the knowledge about what con-
stitute a typical instance of the concept. Most importantly,
given a tuple pair that include information about the concept,
the profiler can issue a confidence score on how well the pair
fits the concept “profile” (in a sense, on how well the data of
the two tuples fit together).

A hard profiler specifies “hard” constraints about a con-
cept, that is, constraints that any instance of that concept
must satisfy. An example of such constraints is that the re-
view year must not preceed the year when the movie is pro-
duced. As another example, an actor hard profiler covers
actors and may specify that a specific actor has never played
in a movie with the average rating less than 4.

Hard profilers can be constructed manually, or automat-
ically by examining the data in the domain, given that the

data is complete. For example, “hard” constraints about an
actor and his/her movie rating can be automatically derived
by examining all movies that involve the actor.

Note that the user can also specify “hard” constraints
about the matching process, and these constraints can be
thought of as making up a temporary hard profiler (see Fig-
ure 2). While other hard profilers cover general concepts and
thus can be transferred across matching tasks, some user-
supplied “hard” constraints may be task-specific and thus
not transferrable.

A soft profiler also covers a certain concept, but specifies
“soft” constraints that any instance of that concept is likely
to satisfy. A movie soft profiler may specify that the IMDB
rating and the Ebert rating of a movie are strongly correlated,
in that they would differ by less than 3. Most movies, but not
all, would satisfy this constraint.

Like hard profilers, soft profilers can also be constructed
in several ways. They can be elicited manually from domain
experts and users (then evaluated on some training data to
obtain confidence scores for the elicited rules). They can
also be constructed from domain data. For example, we can
learn a Bayesian network from movie instances in the IMDB
database. This Bayesian network would form a soft profiler
for movies. Soft profilers can also be constructed directly
from training data for a particular matching task. Given a
set of matching and non-matching pairs, virtually any learn-
ing technique can be applied to construct a classifier that in
essence represents a soft profiler.

Combining Profilers: Since the hard profilers issue
“yes/no” predictions whereas the soft profilers issue confi-
dence scores, we separate the combination of the two types
of profilers, as represented by the Match Filter and the Com-
biner. We also believe that separating the combination of
profilers this way improves matching accuracy over methods
that combine all profilers in a single stage; we are verifying
this with current research.

The Match Filter uses an AND combination to merge hard
profilers’ predictions. That is, if any hard profiler says no,
then the overall prediction is no and the tuple pair is dis-
carded. The Combiner merges soft profilers’ predictions by
computing the weighted sum of the confidence scores. The

weights are currently set manually, based on some experi-
ments on holdout data. In the future, we shall explore meth-
ods to set weights automatically, in a fashion similar to that
of (Doan, Domingos, & Halevy 2001).

Empirical Evaluation
We now present preliminary results that demonstrate the
utility of exploiting disjoint attributes and the potential of
the PROM approach.

Data: We evaluated PROM on two datasets, Citeseer
and Movies. The dataset Citeseer was obtained from
http://citeseer.nj.nec.com/mostcited.html, which lists highly
cited authors together with their homepages. An actual line
from this page is “J. Gray homepage-url1 ... homepage-
url5”, where the five homepage urls were suggested by a
search engine. The homepages belong to James Gray at
Walker Informatics, Jeffrey Gray at University of Alabama,
and so on. Only one homepage actually belongs to the cor-
rect Jim Gray (at Microsoft Research). Thus, the object
matching problem here is to match author names such as
“J. Gray” with their correct homepage urls.

We downloaded the top 200 authors, together with the
suggested homepages. Since in this first step we only con-
sider matching relational tuples, we manually converted
each homepage into a tuple, by extracting from the home-
page information such as name, name and rank of cur-
rent university, position, and graduation year. We removed
authors who have no associated homepage and performed
some simple text processing. (The exact tuple format and
data transformation procedures will be given in the full pa-
per.) The final dataset consists of 150 author names and 254
homepage tuples, for an average of 1.7 homepage tuples per
author.

The dataset Movies consists of two tables, with
formats (movie-name1,production-year,avg-rating)
and (movie-name2,review-year,ebert-rating,review).
They are obtained from the Internet Movie Database
(imdb.com) and Roger Ebert’s Review Page (sun-
times.com/ebert/ebertser.html), respectively. The tables
consist of about 10000 tuples and 3000 tuples, respectively.

Algorithms & Methodologies: We begin by describing
algorithms applied to the Citeseer dataset. First, we applied
Baseline, an algorithm that matches tuples based only on
the shared attributes: author name with homepage owner’s
name in our case. Baseline converts the values of the shared
attributes into a set of tokens, then compares the obtained
sets of tokens.

Next, we applied three extended traditional algorithms,
which extend existing object matching techniques that ex-
ploit only shared attributes to exploit also disjoint at-
tributes. Extended-Manual manually specifies the match-
ing rules (e.g., “if similarity(name1,name2) ≥ 0.8 but posi-
tion=student then the two tuples do not match”). Thus, in
a sense this method extends the manual method described
in (Hernandez & Stolfo 1995), which would exploit only
shared attributes such as “name1” and “name2”. Extended-
AR is similar to Extended-Manual, but uses the association
rule classification method of (Li, Han, & Pei 2001) to guide

the process of generating rules. The rules of Extended-AR
are then manually picked among the generated rules. In con-
strast to the above two (semi)-manual methods, Extended-
DT is completely automatic. It extends the decision tree
method in (Tejada, Knoblock, & Minton 2002), by adding
to the training dataset all disjoint attributes, and a new at-
tribute that specifies for each tuple pair its similarity value,
as computed based on the shared attributes.

Finally, we applied PROM. For the Similarity Estimator,
we used the Baseline algorithm described above. We cur-
rently used no hard profilers. We use three soft profilers: one
that consists of several “soft” manually specified rules, one
that uses decision tree techniques, and one that uses associ-
ation rule techniques.

We applied similar algorithms to the Movies dataset. We
then evaluated matching accuracy using three measures: re-
call (number of correct matching pairs in the join table di-
vided by total number of correct matching pairs), precision
(number of correct matching pairs in the join table divided
by total number of pairs in the join table), and F-value (de-
fined as 2∗recall∗precision/(recall+precision)). These
measures have been used widely in the object matching liter-
ature. They also suit our objectives of developing matching
methods that maximize precision and recall.

On each dataset, we performed 4-fold cross validation,
and report the average recall, precision, and F-value. We
took care to create folds that are representative of the overall
dataset (see (Bilenko & Mooney 2002) for an example of
such fold creation).

Results: Since the results on both datasets are similar, we
report only those of Citeseer. Table 1 shows the evaluation
results for this dataset. Each column in the table lists recall,
precision, and F-value (in that order) for a specific object
matching algorithm.

The results for Baseline (first column) show that it
achieves high recall (99%) but low precision (67%), thereby
demonstrating that matching based on the shared at-
tributes only (names in this case) can be quite inaccu-
rate. Extended-Manual (second column) decreases recall
slightly (by 2%) but increases precision substantially (by
16%), thus demonstrating that exploiting disjoint attributes
(any attribute other than names in this case) can signifi-
cantly boost matching accuracy. Extended-AR (third col-
umn) shows similar, albeit slightly worse, performance to
Extended-Manual.

The automatic method Extended-DT (fourth column)
shows some surprising results: its precision is substan-
tially lower than that of Baseline (58% vs. 67%). This
is unusual because one would expect that Extended-DT
improve matching precision, by virtue of exploiting dis-
joint attributes. A close inspection reveals that many rules
that Extended-DT constructed do not refer to the similar-
ity values of the input tuples at all. In other words, these
rules match tuples based solely on exploiting the correlation
among the disjoint attributes, ignoring the shared attributes.
(The previous two methods do not have any such rules be-
cause those rules are manually constructed or verified.) It’s
thus clear that such rules will not be very accurate on the

Man+DT+AR
Baseline

Man AR extDT DT Man+DT Man+AR

CiteSeer
0.99

Extended Traditional PROM

P

R

F

0.67

0.80

0.97

0.86

0.91

0.96

0.82

0.88

0.67

0.87

0.76

0.95

0.78

0.85

0.91

0.58

0.71

0.96

0.71

0.81

0.97

0.83

0.89

Table 1: Experimental results on the Citeseer dataset

testing data. This surprising result suggests that extending
prior matching techniques in a straightforward manner to
handle disjoint attributes may actually decrease rather than
increase matching accuracy.

For the PROM algorithm, besides examining its perfor-
mance with respect to the baseline and extended algorithms,
we also want to know if adding more profilers would be
better accuracy-wise than fewer profiler. Thus, we ran four
variations of PROM (see the last four columns of Table 1.
The DT variation uses only one soft profiler, which is the
decision tree method. Man+DT uses the soft manual pro-
filer and the soft decision tree profiler. Man+AR is similar
to the above variation, but replacing the decision tree with
the association rule classifier. Finally, Man+DT+AR is the
complete PROM algorithm.

The results of PROM show that the DT variation beats the
Extended-DT. This suggests that extending prior matching
techniques to exploit disjoint attributes in the PROM man-
ner is promising and potentially better than a straightforward
extension of traditional techniques. The results also show
that the complete PROM system (last column) achieves the
highest F-value (0.91) over any previous method, due to high
precision and recall. (In particular, this algorithm found
the correct Jim Gray homepage that the Baseline algorithm
could not.) The results suggest that PROM obtains the best
performance and that adding more profilers may improve
matching accuracy, because more matching knowledge can
be utilized.

Summary: The preliminary results on the two datasets
suggest that:

• exploiting disjoint attributes can substantially improve
matching accuracy, but

• exploiting them by straightforwardly extending existing
techniques may actually decrease rather than increase
matching accuracy, and

• the PROM approach can exploit disjoint attributes and
domain knowledge to improve accuracy over baseline and
extended traditional methods.

Discussion: We are currently experimenting with several
new methods to learn profilers in these domains (e.g., Naive
Bayes as well as methods that do not require training data).
We also plan to transfer the profilers constructed in these
matching tasks (e.g., the decision tree soft profiler) to other
related matching tasks to examine the effect of transfer-
ring such knowledge. We are also particularly interested in

learning profilers from domain data, independently of any
matching task (e.g., learning movie and actor profilers from
imdb.com), then applying these profilers to matching tasks
in the domain.

Related Work
Our work builds upon numerous matching solutions that
have been developed in the AI, database, and data min-
ing communities (e.g. (Tejada, Knoblock, & Minton 2002;
Cohen 1998; McCallum, Nigam, & Ungar 2000; Yih &
Roth 2002; Bilenko & Mooney 2002; Lawrence, Bollacker,
& Giles 1999; Ananthakrishna, Chaudhuri, & Ganti 2002;
Sarawagi & Bhamidipaty 2002; Gravano et al. 2003;
Hernandez & Stolfo 1995; Galhardas et al. 2000; Ra-
man & Hellerstein 2001)). Earlier solutions employ man-
ually specified rules to match objects (Hernandez & Stolfo
1995). Many subsequent solutions learn matching rules
from a set of training data created from the input tables (Te-
jada, Knoblock, & Minton 2002; Bilenko & Mooney 2002;
Sarawagi & Bhamidipaty 2002). Several solutions focus on
efficient techniques to match strings (Monge & Elkan 1996;
Gravano et al. 2003). Others also address techniques to
scale up to very large number of objects (McCallum, Nigam,
& Ungar 2000; Cohen & Richman 2002). The commonality
underlying these solutions is that they match objects by com-
paring the shared attributes. Our solution extends these pre-
vious solutions by adding another layer that utilizes the cor-
relations among the disjoint attributes, to maximize match-
ing accuracy. Our use of attribute correlation bears some re-
semblance to the work (Kang & Naughton 2003), in which
the authors exploit statistical correlation among schema at-
tributes to find semantic mappings between the attributes of
two relational tables.

The topics of knowledge reuse and incorporating prior
knowledge have been studied actively in the AI community.
More closely related to our approach, several AI works have
considered the issue of reusing classifiers that are learned in
other domains (e.g., (Cohen & Kudenko 1997)). Our work
differs from these in several aspects. First, we also reuse
knowledge types other than classifiers (e.g., the manual pro-
filers). Second, when reusing classifiers we do not attempt to
reuse arbitrary classifiers from other domains. Instead, we
advocate building task-independent classifiers and reusing
only those. This is possible in our context due to the frequent
recurrence of common concepts in matching tasks within a
domain. For example, any matching task in the movie do-
main is likely to involve the concepts of movie, review, actor,
and so on.

Recently, knowledge reuse has received increasing at-
tention in the database community, and several works on
schema matching (Berlin & Motro 2002; Do & Rahm 2002;
Madhavan et al. 2003; Doan, Domingos, & Halevy 2001)
and data integration (e.g., (Rosenthal et al. 2001)) have in-
vestigated the issue. Our work can be seen as a step in this
direction. To our knowledge, this is the first work that at-
tempts to reuse knowledge in the context of object matching.

Conclusion & Future Work
Object matching plays an important role in a wide variety of
information management applications. Previous solutions to
this problem have typically assumed a uniform setting where
objects share the same attributes. In this paper we have
considered a more general setting where objects can have
different but overlapping sets of attributes. Such a setting
commonly arise in practice, where data sources are inde-
pendently developed and thus are unlikely to share the same
schemas.

We have proposed the PROM solution that builds upon
previous work, but exploits the disjoint attributes to substan-
tially improve matching accuracy. To do this, PROM em-
ploys multiple profilers, each of which contains information
about a certain concept in the matching task. The profilers
can be specified by domain experts, learned from training
data that is obtained from the input objects, transferred from
related matching tasks, or constructed from domain data.
Most importantly, the profilers contain task-independent in-
formations and thus can be reused once constructed. This
makes the PROM approach labor-saving and maximizing
accuracy on any particular matching task. Preliminary ex-
periments on two real-world datasets show the promise of
the PROM approach.

Our approach also suggests a broader knowledge-reuse
methodology: within any particular task, isolate knowledge
that is task-dependent (e.g., similarity knowledge) from that
which is task-independent (e.g., profile knowledge). The lat-
ter, once learned, can be reused across tasks. This method-
ology is clearly not always applicable, but can be effective
in appropriate settings, as we have demonstrated. Our future
research, besides developing the PROM solution – as dis-
cussed in the experiment section, will aim to further explore
this idea.

References
Ananthakrishna, R.; Chaudhuri, S.; and Ganti, V. 2002. Elimi-
nating fuzzy duplicates in data warehouses. In Proc. of 28th Int.
Conf. on Very Large Databases.

Berlin, J., and Motro, A. 2002. Database schema matching using
machine learning with feature selection. In Proceedings of the
Conf. on Advanced Information Systems Engineering (CAiSE).

Bilenko, M., and Mooney, R. 2002. Learning to combine trained
distance metrics for duplicate detection in databases. Technical
Report Technical Report AI 02-296, Artificial Intelligence Labo-
ratory, University of Texas at Austin, Austin, TX.

Cohen, W., and Kudenko, D. 1997. Transferring and retraining
learned information filters. In Proc. of the AAAI Conf. (AAAI-97).

Cohen, W., and Richman, J. 2002. Learning to match and cluster

entity names. In Proc. of 8th ACM SIGKDD Int. Conf. on Knowl-
edge Discovery and Data Mining.

Cohen, W. 1998. Integration of heterogeneous databases without
common domains using queries based on textual similarity. In
Procceedings of SIGMOD-98.

Craven, M.; DiPasquo, D.; Freitag, D.; McCallum, A.; Mitchell,
T.; Nigam, K.; and Slattery, S. 2000. Learning to construct
knowledge bases from the World Wide Web. Artificial Intelli-
gence 118(1-2):69–113.

Do, H., and Rahm, E. 2002. Coma: A system for flexible com-
bination of schema matching approaches. In Proceedings of the
28th Conf. on Very Large Databases (VLDB).

Doan, A.; Domingos, P.; and Halevy, A. 2001. Reconciling
Schemas of Disparate Data Sources: A Machine Learning Ap-
proach. In Proceedings of the ACM SIGMOD Conference.

Freitag, D. 1998. Multistrategy learning for information extrac-
tion. In Proc. 15th Int. Conf. on Machine Learning (ICML-98).

Galhardas, H.; Florescu, D.; Shasha, D.; and Simon, E. 2000.
An extensible framework for data cleaning. In Proc. of 16th Int.
Conf. on Data Engineering.

Gravano, L.; Ipeirotis, P.; Koudas, N.; and Srivastava, D. 2003.
Text join for data cleansing and integration in an rdbms. In Proc.
of 19th Int. Conf. on Data Engineering.

Hernandez, M., and Stolfo, S. 1995. The merge/purge problem
for large databases. In SIGMOD Conference, 127–138.

Kang, J., and Naughton, J. 2003. On schema matching with
opaque column names and data values. In Proc. of the ACM SIG-
MOD Int. Conf. on Management of Data (SIGMOD-03).

Lawrence, S.; Bollacker, K.; and Giles, C. L. 1999. Autonomous
citation matching. In Proc. of the 3rd Int. Conf. on Autonomous
Agents.

Li, W.; Han, J.; and Pei, J. 2001. CMAR: Accurate and efficient
classification based on multiple class-association rules. In Proc.
of the Int. Conf. on Data Mining (ICDM-01).

Madhavan, J.; Bernstein, P.; Chen, K.; Halevy, A.; and Shenoy,
P. 2003. Matching schemas by learning from a schema corpus.
In Proc. of the IJCAI-03 Workshop on Information Integration on
the Web.

McCallum, A.; Nigam, K.; and Ungar, L. 2000. Efficient clus-
tering of high-dimensional data sets with application to reference
matching. In Proc. 6th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining.

Monge, A., and Elkan, C. 1996. The field matching problem:
Algorithms and applications. In Proc. 2nd Int. Conf. Knowledge
Discovery and Data Mining.

Raman, V., and Hellerstein, J. 2001. Potter’s wheel: An interac-
tive data cleaning system. In The VLDB Journal, 381–390.

Rosenthal, A.; Renner, S.; Seligman, L.; and Manola, F. 2001.
Data integration needs an industrial revolution. In Proceedings of
the Workshop on Foundations of Data Integration.

Sarawagi, S., and Bhamidipaty, A. 2002. Interactive dedupli-
cation using active learning. In Proc. of 8th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining.

Tejada, S.; Knoblock, C.; and Minton, S. 2002. Learning domain-
independent string transformation weights for high accuracy ob-
ject identification. In Proc. of the 8th SIGKDD Int. Conf. (KDD-
2002).

Yih, W., and Roth, D. 2002. Probabilistic reasoning for entity and
relation recognition. In Proc. of COLING’02.

