
Toward Scalable Keyword Search over Relational Data

Akanksha Baid, Ian Rae, Jiexing Li, AnHai Doan, and Jeffrey Naughton
University of Wisconsin, Madison

{baid, ian, jxli, anhai, naughton}@cs.wisc.edu

ABSTRACT
Keyword search (KWS) over relational databases has recently re-
ceived significant attention. Many solutions and many prototypes
have been developed. This task requires addressing many issues,
including robustness, accuracy, reliability, and privacy. An emerg-
ing issue, however, appears to be performance related: current KWS
systems have unpredictable running times. In particular, for certain
queries it takes too long to produce answers, and for others the sys-
tem may even fail to return (e.g., after exhausting memory). In this
paper we argue that as today’s users have been “spoiled” by the
performance of Internet search engines, KWS systems should re-
turn whatever answers they can produce quickly and then provide
users with options for exploring any portion of the answer space
not covered by these answers. Our basic idea is to produce answers
that can be generated quickly as in today’s KWS systems, then to
show users query forms that characterize the unexplored portion
of the answer space. Combining KWS systems with forms allows
us to bypass the performance problems inherent to KWS without
compromising query coverage. We provide a proof of concept for
this proposed approach, and discuss the challenges encountered in
building this hybrid system. Finally, we present experiments over
real-world datasets to demonstrate the feasibility of the proposed
solution.

1. INTRODUCTION
The success of search engines demonstrates that untrained users

are comfortable using keyword search to find documents of interest
to them. Over the past decade, this success has spawned tremen-
dous interest in keyword search (KWS) over relational databases,
in order to accommodate users who cannot issue a formal struc-
tured query or are unaware of the database schema. DBXplorer [2],
DISCOVER [12], and BANKS [1] were among the first systems
that supported keyword search over relational databases, and many
other systems (e.g. [4, 10, 11, 21, 24, 26, 28, 29, 30]) have since
been developed. As more structured data becomes available at or-
ganizations and on the Web, and as more untrained users want to
use such data, we expect that more efforts will be devoted to build-
ing such systems in the near future.

Naturally, building such systems requires addressing many is-
sues, including robustness, accuracy, reliability, and privacy. How-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

ever, in our own effort, we have been struck by how quickly we
were hit with the first roadblock: current KWS solutions have un-
predictable performance issues. Specifically, while the systems
produce answers quickly for many queries, for many others they
take an unacceptably long time, or even fail to produce any answer
after exhausting memory. Clearly, such a performance profile is
unacceptable for a real-world system.

In this paper we investigate how to address this problem. We
begin by examining the problem and argue that it is a fundamen-
tal problem unlikely to be solved in the near future by software
or hardware advances. Intuitively, this is because current KWS
solutions often require the solution of sub-problems that are NP-
complete. Consequently, the time spent on these problems often
grows very quickly.

Next, based on our experience with KWS systems, we argue that
KWS systems should produce answers under an absolute time limit
(say a few seconds), even if such answers are only partial in some
sense. This is largely because (a) Web search engines have con-
ditioned most users to expect near-instantaneous responses from
KWS systems, an expectation likely to be carried over to the re-
lational setting, and (b) KWS is by nature often an interactive en-
terprise, which requires responses at interactive speed. We then
argue that when showing these (possibly partial) answers, the sys-
tem should also somehow characterize the portion of the answer
space that is as yet unexplored, so the user knows what it is that he
or she is potentially missing. The system should then allow for a
way for the user to explore this portion of the answer space should
he or she choose to do so. We propose that one way to do so is to
provide form interfaces to characterize the yet-unexplored answer
space. We believe that the above two requirements of “time limit”
and “overview of the yet-unseen” can help increase the chances
that the KWS system will be perceived as useful and will be widely
adopted by real-world customers.

We hope that our work will be viewed as an attempt to open the
debate on what it takes to bypass the performance bottleneck of
current KWS systems without compromising on query coverage.
Toward this goal we make the following contributions:
• A discussion of performance issues in current KWS solutions
• A minimal-overhead fix, based on the ideas of “time limit” and
“overview of the as-yet-unseen using query forms”
• A concrete realization of the fix for a candidate-network based
KWS system and,
• Experiments with a real-world dataset to demonstrate the ef-
fectiveness and feasibility of the proposed approach when cou-
pled with some representative KWS systems, namely, DISCOVER,
BANKS-II, BLINKS and EASE.

The rest of this paper is structured as follows: we discuss the
limitations of current keyword search solutions in Section 2. The
basic idea behind our solution is presented in Section 3. Section 4
describes the the detailed implementation of our approach for a

candidate-network based KWS system. Section 5 contains an ex-
perimental evaluation of our approach over the DBLife and DBLP
datasets. Related work is presented in Section 6, and we conclude
in Section 7.

2. CURRENT KWS SOLUTIONS
Current KWS systems falls into two broad categories: candidate

network based systems and graph based systems. In this section,
we briefly describe both these solutions and then discuss their per-
formance problems.

Candidate-network based solutions: DISCOVER [12] and DBX-
plorer [2] are examples of the first approach. In these systems text-
indices over the data and the user’s keywords are used to generate
“candidate networks” (CNs) by using an approach similar to BFS,
with the aid of the underlying schema. Intuitively, each CN en-
codes a way to join the relations in the database to produce answers
to the user’s keyword query. The CNs are then translated into SQL
queries and the corresponding queries are executed to obtain result
tuples. In some KWS systems, the answers of the executed queries
may be pipelined and presented to the user, as more SQL queries
are being generated and executed. The answers may be ordered
using a predefined ranking function before being presented to the
user. Note that some of the generated candidate networks may not
lead to any result tuples.

Data/Graph based solutions: BANKS [1, 15], BLINKS [10]
and DBPF [8] are examples of the second approach. These solu-
tions are not schema-aware. Consequently, these approaches can
be applied to any data that can be modeled as a graph. In the re-
lational context, the nodes correspond to actual keywords and the
edges correspond to key-foreign key relationships between the un-
derlying data. Results of keyword queries are usually modeled as
trees that connect nodes matching the keywords.

2.1 Performance problems
As we pointed out earlier, KWS systems suffer from a funda-

mental problem: they cannot guarantee a performance “cap” in the
sense that certain user queries may take a very long to complete.
This often happens as the number of joins or the fanout of the nodes
increases.

Figure 1 shows four queries (of varying complexity) issued over
a CN-based KWS system, for which the run time increases as the
number of joins is increased on the X-axis. In fact, for our ex-
perimental setting, the queries “agrawal chaudhuri das” and “de-
witt widom,” exhaust system memory at 5 and 6 joins respectively.
The other two queries,“keyword search sigmod” and “publications
icde,” exhaust memory at 7 and 8 joins respectively. All queries run
for times between 200 and 400 seconds for long join sequences.

The fundamental reason for this drastic degradation in perfor-
mance is that even though different approaches to keyword search
use different techniques, at the core they all deal with the prob-
lem of searching a graph to find all sub-graphs that satisfy cer-
tain properties. It is well-known that variations of this problem
(i.e., the minimum Steiner tree problem) are NP-hard [15]. For in-
stance, the number of CNs is known to be exponential in the query
size [11], unbounded in the presence of cycles in the schema graph,
and bounded by the size of the data in the presence of many-to-
many relationships in CN-based KWS systems. This makes query
execution prohibitively expensive.

Consequently, as shown in Table 1, as we increase the number
of allowed joins the run time of the CN generation step increases
exponentially. For example, using the query “dewitt widom,” as we
increase the number of allowed joins from 2 to 4 to 6, the number of
candidate sub-graphs for CNs that the KWS system must generate
and consider (called joining networks) increases from 178 to 6,592
to 218,842. As this number grows, it soon overwhelms the amount
of available memory, which causes the system to return with no

Figure 1: The performance of KWS degenerates as the number of joins grows for
four-keyword queries, issued over a candidate network based KWS system.

answer. To reduce the run time, KWS systems often find only CNs
of up to a certain maximum number of joins, thus compromising
coverage.

Number of Joins 0 1 2 3 4 5 6
Number of JNs 2 14 178 1214 6592 37788 218842
Number of CNs 0 0 6 6 46 46 296

Table 1: The number of join networks (JNs) and candidate networks (CNs) for the
query “dewitt widom.” As the number of allowed joins increases, the number of joining
networks to be explored grows exponentially, adding to the total response time.

It may be possible to further optimize our implementation of
KWS or implement a version of KWS for bounded main memory
(by spooling to disk) but it is unlikely that we can escape the expo-
nential growth of CN generation. Several efforts have focused on
quickly producing just the top-k answers (of the ranked list), based
on the heuristic that a user is likely to look only at the top few re-
sults produced by the system. Work on top-k answers falls into two
groups: those that produce the exact top-k (e.g., [11]) and those
that produce approximate top-k answers (e.g., [9, 17, 18]). While
these approaches work very well in certain settings, they may fail
in cases where a good ranking function is not available. Further-
more, these approaches are not effective when the top-k answers
themselves require long join sequences.

Other recent solutions (e.g., [9, 18]) guarantee a polynomial bound
on producing the first few answers. However, this theoretical bound
is with respect to the size of the database, so it can translate into an
impractical run time. More importantly, these bounds only hold for
relatively simple ranking functions, such as ranking answers based
on the height of their trees [11, 26]. Many ranking functions used
in practice are more complex or contain “black-boxes” defined by
the user. In such cases, again we have no way to estimate how long
the search for even the first few top answers will take.

In summary, the run time performance of current KWS systems
for relational databases is unpredictable. Given a user query, we
have no way to know in advance how long it will take before the
user sees any result. For certain queries this time can be very long
indeed—on the order of tens of minutes—and more unsettlingly,
for other queries, the system may even fail to return. This unpre-
dictability is fundamental, and it poses a serious problem for adopt-
ing such systems in practice. We note that KWS systems suffer
from this unpredictability especially for queries that involve long
join sequences. In the next sections, we consider combining KWS
with a forms based solution that does not suffer from this problem.

3. KEYWORD SEARCH USING FORMS
The basic idea of using forms in querying structured data is not

new, of course. It has been used extensively for many years for
naı̈ve users to query Web databases (e.g., querying books on Ama-
zon.com). Most recently [13] used forms to make databases easier
to query. Additionally, [5] used forms to allow a naı̈ve user to pose
SQL queries with complex constructs over relational data. The fo-
cus of [5] was on using forms as a powerful and intuitive interface
to issue queries with complex SQL constructs. However, they did

Figure 2: An illustration of our proposed approach that combines KWS (in the left
pane) and KWS-F (in the right pane).

not address performance issues or queries with long join sequences,
and they did not consider operating in the same space as a generic
KWS system.

We claim that the idea in [5] can be extended to apply to our
setting. Hence, in what follows, we will first describe that solution,
which we refer to as KWS-F. Next, we argue why KWS + KWS-F
would be a good hybrid solution. Finally, we discuss that hybrid
solution in depth.

3.1 Overview of KWS-F
The work in [5] was motivated by a simple question: how can we

enable naı̈ve users to pose complex SQL queries over a relational
database, given that they do not know SQL? The basic idea is as
follows. First, given the database, generate a set of SQL queries
that are most likely to be asked by naı̈ve users. Next, generate a
set of query forms that encode those SQL queries (multiple SQL
queries may map to the same form). The number of forms gen-
erated could be very large, in hundreds or even thousands. A key
challenge of this work is how to search for forms effectively.

Two inverted indexes, one on the data set (DataIndex) and the
other on the set of forms (FormIndex), are used to address this chal-
lenge. Given a keyword query Q = q1, . . . , qm the system first
maps each term qi to a set of possible schema-term interpretation-
s/mappings {I{qi}} using the DataIndex. After this mapping is
complete, a set of form-queries {Qform} is generated, where each
query in {Qform} is conjunctive and contains m schema terms
(one for each qi), such that each term is derived from the corre-
sponding I{qi}.

All the queries in Qform are issued over the FormIndex, which
returns a set of form-ids, identifiers of the forms that contain all
the terms in Q. The final answer is the union of all the forms re-
turned. At this point, the user can examine this list, find the desired
form, fill it out, and submit it. Once the form is instantiated and
submitted, the SQL query corresponding to that particular form is
evaluated and the results are displayed to the user.

Limitations of KWS-F While KWS-F works well for queries
with complex SQL constructs, we believe that using KWS-F alone
for simple keyword search is not a good idea. The main reason
for this is that user queries in a KWS system fall roughly into
two groups: easy queries and hard queries. Easy queries run very
quickly, while hard queries take a long time or may not even return,
as we discussed earlier.

KWS-F displays a set of forms, and the user must examine the
forms, select promising ones, fill them out, submit them, exam-
ine the results, and potentially repeat, a tedious process. Thanks
to its predictable performance, KWS-F is suitable for hard queries
despite this tedium; however, KWS is more appropriate for easy
queries where performance is not as important.

3.2 A case for combining KWS and KWS-F
We now make the case for combining KWS and KWS-F to build

a keyword search system for relational data by describing some
cases where KWS and KWS-F work as complementary approaches.

To achieve predictable performance and good coverage: As
we stated earlier, we believe that a KWS system, if it is to be
adopted widely, must be responsive and predictable. To implement

Figure 3: System architecture for the proposed hybrid approach.

the above idea, a natural solution is to impose a time limit on the
keyword search system: when the time limit has been reached, a
(possibly partial) result must be returned to the user no matter what.

In case the system has been able to explore only a portion of the
answer space within this time limit, it runs the risk of having shown
the users only some suboptimal answers, or worse, missed desired
answers all together. In such cases, we believe it is highly desirable
that the system give the user an idea about what the unexplored
portion of the answer space “looks like” and what the user can do
to explore that portion.

One way to do this is to combine KWS and KWS-F. Figure 2
illustrates this proposal. Given the keyword query “dewitt widom,”
the system returns a set of answers, just as in a traditional KWS
system. But unlike these traditional KWS systems, our system also
returns a set of forms to characterize the unexplored portion of the
answer space. If the user does not find what he or she wants in the
answers on the left, he or she can examine the forms on the right,
and then click on a desired form to fill and submit.

Data and schema dependence is an artifact of KWS. For instance
KWS performs badly for star schema or graphs with many outgoing
edges. However, it is very efficient for simple queries over a simple
schema. In contrast, by using forms and imposing a time limit,
independent of schema, the hybrid system mitigates the impact of
this dependence. Thus in a sense combining KWS and KWS-F
allows us to use each approach where it works best: KWS to handle
easy queries, and KWS-F to handle hard queries.

When ranking cannot help: Ranking can be of great benefit in
a KWS system. A wealth of top-k systems successfully avoid ex-
posing the performance bottleneck inherent to KWS to the end user
by using a good ranking function. A system that combines KWS
and KWS-F can also greatly benefit from the presence of a good
ranking function. However, there are cases where a good ranking
function does not exist or when many result tuples having the same
score are returned in response to a user query. Additionally, top-
k systems may also fail when the number of answers to a keyword
query is less than k and all of the answers require many joins. Com-
bining KWS and KWS-F can allow the user to explore the search
space in these cases where KWS alone could be inefficient.

Forms offer a “guidance effect”: We believe that by combin-
ing KWS and KWS-F, forms can potentially offer a good transition
to go from an unstructured keyword query to the results of a struc-
tured query. Bernstein et al. [3] make a similar observation when
they state that when querying structured data, a partially structured
query interface is preferable to a completely unstructured interface
because of its guidance effect.

In the next section we describe the proposed hybrid approach in
detail in the context of a DISCOVER-like candidate network based
system, and address the various challenges we face in building such
a system.

4. THE HYBRID APPROACH
We start with an overview of our proposed hybrid approach and

then drill down into its various aspects in the sections that follow.

Algorithm 1 : Hybrid approach (Phase 0)
Input: Set of tables T = {t1, t2, . . . , tN}
Parameters: Maximum number of joins Mmax

Output: A set of form-ids F
Algorithm:
F0 = {forms consist of a single table t}
F1 = {forms consist of two table pairs (ti, tj), where i ≤ j}
for (k = 2; k ≤Mmax; k ++) do

for each pair of forms fi and fj ∈ Fk−1, where i ≤ j do
if (fi.t2 = fj .t1, fi.t3 = fj .t2 . . .fi.tk = fj .tk−1)

Create a new form f by combining fi.t1, fi.t2,. . . , fi.tk , and fj .tk
Insert f in Fk

return F =
⋃Mmax

k=0 Fk

Figure 4: For the toy schema (a) the modified form generation algorithm is faster
than the previous algorithm that does not eliminate duplicate join sequences, and (b)
the modified form generation algorithm generates fewer forms even for long join se-
quences. Y-axis is in log scale.

To keep the discussion concrete, we describe the details of the pro-
posed hybrid system using DISCOVER [12], which is a CN based
system. However, as we discuss later, our approach can be applied
to other KWS systems as well.

4.1 Overview
The architecture of the proposed hybrid system is shown in Fig-

ure 3. Like a KWS-F system, we start by generating a large set of
forms offline. We refer to this stage as Phase 0. In Section 4.2 we
propose a modification to the form generation algorithm in [5].

In Phase 1, the user’s keyword query Q is sent to KWS′, which
is a KWS system modified to operate within a time limit T . Specif-
ically, the modified system attempts to only generate those CNs and
executes those SQL queries that can be completed within time T .
Eventually KWS′ will terminate, either because (a) it has finished
executing all generated SQL queries, or (b) the time limit T has
been reached, whichever is earlier. We describe this phase in more
detail in Section 4.3

At this point, KWS′ sends query Q together with a status report
on its execution to the KWS-F subsystem. This system executes
query Q to obtain a ranked list of forms, as in a traditional KWS-F
system. We refer to this portion as Phase 2.

Next, in Phase 3, the KWS-F subsystem examines the status re-
port sent by KWS′ to see which forms have been “covered” by the
KWS′ subsystem. These forms are eliminated from the ranked list
of forms. After this removal, the KWS-F subsystem returns the re-
vised list of forms. The hybrid system then combines this list of
forms with the list of answers produced by KWS′ and presents this
combination to the user.

We will now drill deeper into each phase of the hybrid approach
starting with Phase 0.

4.2 KWS-F: form generation (Phase 0)
As in KWS-F systems, form generation in the hybrid system is

also performed offline. [5] presents a form generation algorithm
that generates forms combinatorially based only on the key-foreign
key relationships in the underlying schema graph. However, in try-
ing to use this form generation algorithm for long join sequences,
we observed that the number of forms generated grows steadily and
that the set of generated forms contains many duplicates. As an ex-
ample, applying this algorithm with Mmax = 8 to the toy schema

Algorithm 2 : Hybrid approach (Phase 1)
Input: A keyword query Q = [q1, q2, . . . , qn]
Parameters: Total query execution time T
Output: A set of unexecuted SQL queries S, result data tuples R, and list of CN
templates G

Main:
Pick keyword ordering
S = {}, R = {}, G = {}
Start thread CNgen

Start thread SQLexec

wait for CNgen and SQLexec to complete
return S, R and G

CNgen thread:
prev = null
while execution time ¡ T and CN generation has not terminated

cnj ← GenCN(Q) //modified GenCN from KWS
Map cnj to corresponding SQL query sj
Add sj to S //sorted on query cost C
curr = GenCNTemplate(sj)
if prev is not null and prev 6= curr

G← G ∪ prev
prev = curr

return G

SQLexec thread:
while (execution time ¡ T and S has elements) or CNgen is running

if S has elements:
s←Dequeue(S)
R← R ∪ Execute(s)

return R and S

in Figure 4 generates a total of 29,523 forms, of which 29,304 are
duplicates; this leaves only 219 unique join sequences.

Duplicate form elimination is important for increasing the effi-
ciency of the form generation step, minimizing storage, and pre-
senting the forms to the user. To address this issue, we propose
a modified form generation algorithm (Algorithm 1). The algo-
rithm takes the maximum number of allowed joins and the schema
graph as the input and generates all possible key-foreign key join
sequences until the maximum number of joins is reached.

Determining equivalent join sequences is simple in the keyword
search context, because our join sequences do not contain any pro-
jections or selections, and also because like KWS systems, we con-
sider only key-foreign key joins. This allows us to exploit the prop-
erty that joins are both associative and commutative. If there are N
tables in the schema graph and the maximum number of joins al-
lowed is Mmax, then the new approach generates

∑m=Mmax
m=0

(
N+m
m+1

)
join sequences, instead of

∑m=Mmax
m=0 Nm+1. Figure 4 shows this

gain for the toy schema.
Furthermore, in terms of query coverage, since a form is like

a template for multiple CNs, the forms in a KWS-F system can
cover all the queries generated by any KWS system, i.e., the forms
in KWS-F system have at least the same expressive power as any
KWS system that explores only key-foreign key joins.

4.3 KWS′ (Phase 1)
Phase 1 is the modified KWS system. In this subsection we will

address the changes we make to a traditional DISCOVER-style CN
based system, with a focus on CN generation and SQL query exe-
cution. These changes are specific to DISCOVER-like systems.

In Phase 1, we start by exploring how the time budget T needs to
be divided between the two major components of KWS′: CN gen-
eration and SQL execution. There are multiple options and various
constraints that we need to take into account in order to utilize T
well in our hybrid system.

One option is to start SQL query execution only after CN genera-
tion has terminated. However, as we pointed out in Section 2.1, CN
generation can take up a large portion of the total query execution
time in a KWS system as the number of allowed joins increases.
Therefore, waiting for CN generation to terminate before starting
the SQL query execution step is not a good option.

We could divide T into two parts and then spend the first part
generating CNs and the second part executing the SQL queries for
the generated CNs. The main issue with this approach is that it is
hard to determine how T should be divided. Failure to estimate this
division accurately can lead to the system being idle when it could
be generating more CNs or executing more SQL queries.

One natural alternative that comes to mind is to interleave CN
generation and SQL query execution, as is done by most current
KWS systems. While this approach has the advantage of not wast-
ing any CNs that were generated, it does not take query cost into
account at all. With this approach, the system could end up execut-
ing a time-consuming query that was generated prior to many inex-
pensive queries. Based on this observation, we propose a heuristic
that is intended to maximize the number of SQL queries that the
hybrid system executes.

To account for query execution cost, we propose Algorithm 2
where CN generation and SQL query execution are performed in a
producer-consumer fashion using two separate threads. Once a CN
cnj is generated, the corresponding SQL query sj is placed in a pri-
ority queue S, which is ordered by query execution cost C. In our
implementation, this cost C is in disk page fetches and is obtained
by using the EXPLAIN function of the underlying database. The
value of C depends on various factors, like the distribution of the
underlying data, machine specifications, join selectivity estimates,
etc. Estimating C accurately is a complex problem and is outside
the scope of this work. However, we note that most query optimiz-
ers estimate the relative costs for multiple queries fairly accurately
and that this is sufficient for our approach because we only use C
to determine the query execution order.

In addition to S, we also maintain a list of CN templates G. A
CN template contains the tables involved in a CN and is obtained by
applying the function GenCNTemplate over a SQL query sj . We
also modify the CNGen algorithm in DISCOVER to produce CNs
in a particular order. More specifically, we ensure that all CNs that
map to a particular CN template are generated together. We will
talk about S, G, and the reason for this modification to CNGen in
Section 4.5.

While CN generation continues, SQL queries are executed based
on where they occur in the priority queue S. When the system times
out, it could be the case that some SQL queries were generated and
placed in the queue, but not executed. The results R of the executed
queries, the priority queue of unexecuted queries S, and the list of
CN templates G are then passed to the next phase of the hybrid
system. In Phase 3, these values are used to minimize the overlap
between the portion of the search space that was explored by KWS′

and KWS-F.

4.4 KWS-F: search (Phase 2)
Once KWS′ has terminated, the results R of the executed queries

are displayed to the user. In addition to this the query Q and the
execution status of KWS′ are passed to the KWS-F subsystem. If
KWS′ completes in the given time budget, no forms need to be
displayed. Otherwise, the hybrid system is left with the task of
allowing the user to explore the search space that KWS′ could not
explore given the time budget T .

This is accomplished by using forms and this step is exactly like
the form-search step in [5]. The forms that the hybrid system con-
tains were generated in Phase 0. In addition to this, a full-text index
FormIndex over the forms was also created in Phase 0. As de-
scribed in Algorithm 3 of the hybrid system, we take each term qi
in the user query Q and map it to its corresponding schema term,
retaining any schema terms already present in Q. The Bucket Al-
gorithm in [5] is used to generate multiple conjunctive, schema
term queries which cover all possible interpretations of the user
query Q. This set of modified queries is issued over FormIndex,
and the union of the resulting forms F is returned.

Algorithm 3 : Hybrid approach (Phase 2)
Input: A keyword query Q = [q1, q2, . . . , qn]
Output: A set of forms F

Algorithm:
FormTerms[] = {}, F = {}, B = {}
//Get all interpretations of each qi in FormTermsi
for each qi ∈ Q

if DataIndex(qi) returns < table > // qi is a data term
Add each table to FormTerms[i]

Add qi to FormTerms[i] // qi could be a form term
B = {BucketAlgorithm(FormTerms[])} // set of conjunctive, schema
queries
// Get form-ids based on the queries in B
for each bj ∈ B
F ← F ∪ {FormIndex(bj)}
return F

We now have a list of forms F and the set of results R from the
queries that KWS′ executed within the time budget T .

4.5 Minimizing overlap (Phase 3)
As discussed earlier, Phase 1 of the hybrid algorithm passes S

(the list of unexecuted SQL queries), R (the results of executed
queries), and G (a list of CN templates) to Phase 3. In Phase 3, we
focus on the interaction between the KWS′ and KWS-F subsystems
of the hybrid system. In particular, we explore the various options
of dealing with the overlap in the SQL queries that both subsystems
cover.

There are two reasons why overlap minimization is important:
(i) we do not want to display redundant forms for simple queries
already answered by KWS, and more importantly, (ii) given that
the screen real estate is a limited resource we try to eliminate as
many forms as possible.

To this end, we focus on the relationship between the CNs gener-
ated, the SQL queries that were executed by KWS′, and the forms
returned by KWS-F. Many CNs (and their corresponding SQL
queries) can map to a single form. This mapping implies that we
cannot eliminate a form returned by the KWS-F subsystem unless
all the corresponding SQL queries were generated and also exe-
cuted to completion in Phase 1.

In other words, if a query corresponding to a form f is present
in the priority queue S, we cannot remove f from the list of forms
returned to the user. However, this does not mean that we can dis-
card a form f if no query corresponding to it is present in S. This is
because it may very well be that KWS′ timed out before generating
all the CNs corresponding to f . Thus, we can discard a form f only
if the following two conditions have been met:
Condition 1. All CNs that map to the form f have been generated
in Phase 1. The list of CN templates G populated in Phase 1 is used
to verify this condition.
Condition 2. All SQL queries corresponding to the form f have
been executed in Phase 1. The list of unexecuted queries S is used
to verify this condition.

We now explain how Condition 1 is verified by using G, the list
of CN templates. As mentioned earlier, a CN template consists of
the tables involved in a CN and is obtained by applying the function
GenCNTemplate over a SQL query s. As shown in Algorithm 2,
we populate G during the CN generation in Phase 1. We modified
the CN generation function GenCN used in KWS′ to ensure the
following property: all the CNs corresponding to SQL queries that
map to same set of tables are generated “together,” i.e., the GenCN
function moves on to generate the next set of queries only after all
the queries corresponding to a particular CN template are gener-
ated. Further, as shown in Algorithm 2, we populate G with a new
CN template g only after all the SQL queries corresponding to g
have been generated.

The above property leads us to the following claim: Let tg be
the time when CN template g is placed in G. Let ts be the time
when a SQL query s is placed in S. Then, ∀s ∈ S, if ts > tg

Algorithm 4 : Hybrid approach (Phase 3)
Input: A set of unexecuted SQL queries S, result data tuples R, list of CN tem-
plates G and the set of forms F
Output: Result data tuples R and list of forms F ′

Algorithm:
F ′ = F, tempForm = {}, canDiscard = true
Sort S on number of joins
for each CN template gi ∈ G

for each SQL query sj ∈ S
canDiscard = true
if number of joins in sj > number of joins in gi

break
if GenCNTemplate (sj) = gi

canDiscard = false
if canDiscard = true

tempForm← form corresponding to ({gi})
F ′ ← F ′ − tempForm

return R, F ′

Figure 5: Comparing FormGen and the modified FormGen algorithm that eliminates
duplicates, for the DBLife schema. The number of maximum joins is shown on the
X-axis. The Y-axis shows the difference in the number of forms on the log scale. The
new approach generates 30-40% fewer forms.

then GenCNTemplate(s) 6= g. In other words, @ s ∈ S such that
ts > tg and GenCNTemplate(s) = g.

The presence of a CN template g in G therefore ensures that all
the SQL queries corresponding to it were generated. Further, the
absence of a query s in S corresponding to g implies that the query
must have been executed. Phase 3 of the hybrid approach uses these
properties for minimizing the overlap as presented in Algorithm 4.
We start by looking at all the unexecuted queries in S and sorting
them based on the number of joins in descending order. We do
this for performance reasons because G is already sorted by the
number of joins given that CNs are generated iteratively. We go
through each CN template g in G, and if there is no query in S that
can map to the current template g, then the corresponding form can
be discarded from F . This leaves us with a set of forms F ′.

At this point the set of forms F ′ and the results of the executed
SQL queries R are presented to the user. Given the many-to-one
mapping between SQL queries and forms, we note that the overlap
minimization algorithm does not guarantee that all overlap between
KWS′ and KWS-F can be eliminated.

5. EXPERIMENTAL EVALUATION
In this section we evaluate our proposed hybrid approach. We ran

our experiments using PostgreSQL 8.3.6 on an Intel(R) Core(TM)
2 Duo 2.33 GHz system with 3 GB of RAM. All query process-
ing algorithms were implemented in Java, and JDBC was used to
connect to the database. The inverted indexes for KWS-F were im-
plemented using Lucene [25]. We evaluated the proposed approach
over the DBLP [7] and the DBLife [6] datasets. We used a 40 MB
snapshot of the DBLife dataset which has 801,189 tuples in 14 ta-
bles. We downloaded the current version of dblp.xml which is 680
MB in size. The corresponding relational data measures 1340 MB.

5.1 Sub-systems of the hybrid approach
We now present some results for our DISCOVER-based imple-

mentation of the hybrid system described in Section 4. Due to space
constraints we present these results only over the DBLife dataset.
Evaluating the modified form generation algorithm: Figure 5
shows the number of duplicate forms that the modified form gener-
ation algorithm eliminates when compared to the algorithm in [5].
The number of forms is plotted on a log scale. In our setting, where

Figure 6: Number of queries executed at T = 15 seconds for the interleaved and
producer-consumer style query execution approaches. The producer-consumer ap-
proach performs better in most cases.

Figure 7: (a) Shows the distribution of the estimated execution times for the SQL
queries generated in response to the keyword query “dewitt widom.” This distribution
shows that taking SQL query execution cost into account can help increase the total
number of SQL queries executed by the KWS sub-system within the time limit T . (b)
Shows the number of queries and forms eliminated by the hybrid system after overlap
minimization.

a very large number of forms exist, eliminating duplicate forms
is important for storage reasons as well as ranking and presenting
forms. We find that on average, for the DBLife schema, the new
approach generated 30-40% fewer forms than the form generation
algorithm in [5].
Evaluating KWS′: Figure 6 compares the two approaches outlined
for the interaction between CN generation and SQL query execu-
tion in the presence of a timeout based strategy: (i) the interleaved
approach, where the SQL query corresponding to a CN is executed
before the next CN is generated, and (ii) the producer-consumer
style interaction where SQL queries are ordered and run based on
their estimated execution cost. We set the timeout T = 15 seconds,
and plot the number of SQL queries executed by each approach,
with time on the X-axis. The producer-consumer based approach
that takes SQL query execution cost into account performs better
than the interleaved approach in most cases.

Figure 7(a) shows the distribution of the SQL queries gener-
ated in response to the keyword query “dewitt widom.” Of the 296
queries, 201 queries take under 2 ms each to execute while 3 queries
take around 200 ms each. This tells us that taking SQL query exe-
cution cost into account can help increase the total number of SQL
queries executed by the KWS′ sub-system. We find that ordering
the queries by estimated execution cost does yield some benefit,
i.e., the overall number of queries executed increases.
Evaluating the overlap minimization algorithm: We start by
defining a metric for overlap minimization. Even though KWS′

and KWS-F operate at different granularities (SQL queries and
forms, respectively), the results of both approaches can be mapped
to SQL queries. Since the number of ways in which a form can
be instantiated is very large (and is data dependent), the overlap
for a particular keyword query can be calculated as follows. In
addition to keeping track of the CN templates whose CN gener-
ation has run to completion (i.e., the CNs in G), we also keep
track of the number of SQL queries that were generated for each
CN template in Phase 1 (KWS′) of the hybrid approach. Let this
number be N (gi) for each gi ∈ G. Let G′ be the set of CN
templates, s.t. the form corresponding to each gi ∈ G′ has been
eliminated. The metric to quantify overlapM is computed as fol-
lows: M =

∑
gi∈G′

N (gi)/
∑

gi∈G
N (gi) . The goal of the overlap

Figure 8: Keyword queries issued over the DBLP dataset.

Figure 9: The online response times for BANKS-II, BLINKS, and the hybrid ap-
proach over the DBLP dataset. T = 5 seconds for the hybrid approach and Mmax =
10 for all three approaches. Other than the obvious claim, this graph demonstrates that
(1) there are keyword queries for which current KWS systems are inefficient and (2)
response time can be bound to an acceptable number with the hybrid system, without
compromising query coverage.

minimization algorithm in the hybrid approach is to maximizeM
without compromising query coverage. M=1 implies that there is
no overlap between the queries executed by KWS′ and the forms
displayed.

We set T to 15 seconds and run the hybrid system for 4 key-
word queries. Figure 7(b) shows the number of forms and the num-
ber of SQL queries eliminated for each query and also shows the
correspondingM values. For the query “agrawal chaudhuri das,”
M = 0.96. This implies that after the overlap minimization step
there is only 4% overlap between the forms displayed to the user
and the queries already executed by KWS′. The forms for the re-
maining 4% of the queries cannot be eliminated because not all
the SQL queries that correspond to those forms were executed by
KWS′ within time T .

5.2 Hybrid approach for other KWS systems
Up until now, we have presented the results for our DISCOVER-

based implementation of the hybrid system. In this section, we
show through experiments that the benefits of the hybrid approach
also apply to more recent systems like BANKS-II, BLINKS, and
EASE. We present the results for all these systems over the DBLP
dataset using the 10 queries listed in Figure 8.

Our goal for this evaluation is three-fold. First, even though the
low run time for the hybrid system is to be expected, given that
we place a time limit on its execution, we want to know how it
fares compared to the state-of-the-art in KWS systems, for the same
query coverage. Second, given various values for time limits, we
want to determine the increase in coverage provided by the hybrid
approach for various KWS systems. Third, given that the hybrid
approach leverages offline computation (i.e., offline form genera-
tion and indexing) to achieve predictable performance, we are inter-
ested in examining and comparing the pre-computation strategies
employed by other KWS systems to the hybrid approach proposed
in this paper.

We start by looking at BANKS-II and BLINKS, starting with
short descriptions of both systems.

BANKS-II: Like BANKS-I, BANKS-II [1] operates on a data
graph where each tuple is a node and each foreign-key relationship
between tuples is represented as a bidirectional edge. In BANKS-I
single source shortest paths iterators are run in a BFS fashion from
each node containing a keyword. As soon as the iterators meet, a
result is produced. This technique is improved in BANKS-II which
uses both forward and backward expansion. While BANKS-II per-
forms well for a variety of keyword queries, its performance sig-
nificantly degrades in the presence of high-degree nodes during the
expansion process.

BLINKS: Another graph based approach —BLINKS—avoids
the NP-hard Steiner tree problem by giving up on completeness of

Figure 10: Breakdown of query coverage of the KWS and KWS-F subsystems for
BANKS-hybrid and BLINKS-hybrid for different values of timeout T .

answers. Specifically, it uses “distinct root” semantics and only ex-
plores a portion of the search space. This allows for efficient answer
generation at the cost of some coverage and greatly improves the
run-time performance. BLINKS [10] also uses data partitioning in
addition to bidirectional search proposed in BANKS [1]. This sys-
tem relies heavily on the ranking function used and performance
guarantees cannot be made if the ranking-function is a black-box.
The system returns only the roots of the answers and their distances
from each keyword query. Reconstructing the answer trees from
this information requires extra work. Additionally, the graph and
bi-level index used in BLINKS must fit in memory for BLINKS to
be efficient.

Figure 9 shows the online run-times for BANKS-II and BLINKS
alongside the time taken by the hybrid approach when T is set to
5 s. These numbers are for the 10 queries listed in Figure 8. We
remove ranking from both systems and set the maximum number of
joins allowed in the result tuples to 10. Even though these numbers
demonstrate the obvious, they show that adding forms to a KWS
system might be necessary because there are queries for which each
of these systems have poor performance, and also that adding forms
to each of these systems can reduce the absolute time with very
little overhead.

Our second goal is to experimentally evaluate the gain in cover-
age obtained by using the hybrid approach. The number of results
that would be generated if the KWS system was allowed to run to
completion is considered to be 100% coverage. Consider the key-
word query Q1 for which BANKS-II and BLINKS take 56 seconds
and 18 seconds, respectively, to achieve 100% coverage. We plot
the coverage achieved by the KWS and KWS-F portions of the hy-
brid system as we vary the time limit T on the X-axis in Figure 10.
As an example if T was set to 5 seconds, BANKS would get 18%
coverage while the remaining 82% would be covered by forms in
the hybrid system. This demonstrates the usefulness of forms in
increasing the query coverage of a KWS system, specially for in-
teractive response times (i.e., low values of T).

EASE: Offline pre-computation is a common technique used
by many systems to better online performance. Graph based ap-
proaches like EASE [21], [22], [27] and TASTIER [20] heavily uti-
lize offline computation by indexing sub-graphs. These approaches
are similar to generating and indexing forms offline, but operate at
the data level by exploiting the notion of r-radius Steiner graphs [21].
Since these systems bypass the expensive graph search process,
they have good response times (on the order of a few seconds).

Table 2 shows the offline time spent by all 5 systems. DIS-
COVER requires no pre-computation, while BANKS and BLINKS
need to pre-compute information about the underlying graph. 22
MB is the size of the graph file used by BLINKS and BANKS. For
the DBLP dataset, our implementation of EASE required 30 GB
of disk space and over 90 minutes of pre-computation time. This
offline computation helps EASE achieve good online performance.
The interested reader can refer to the appendix for more experi-
ments with EASE.

As shown in Table 2, KWS-F causes very little offline overhead
compared to EASE. Furthermore, by virtue of their nature, EASE-
like approaches are vulnerable to changes in the underlying data.
In contrast, forms are generated solely on schema information and
are indifferent to changes in the data itself. More importantly, since

DISCOVER BANKS-II BLINKS EASE Hybrid
Offline time 0 137 s 68 s 92 min 5 s
Offline storage space 0 22 MB 22 MB 30 GB 1 MB

Table 2: Offline time and storage space consumed by each of the 5 systems.

submitting a form corresponds to executing a SQL query over the
actual data, not only can the hybrid approach help EASE for in-
teractive values of T , it can also help with correctness during the
time when changes in the data have not yet been propagated to the
index.
6. RELATED WORK

The breadth and depth of work related to the ideas presented in
this paper is extensive.

KWS systems: In the interest of space and since we have already
covered some KWS solutions like DISCOVER, BANKS, BLINKS,
KWS-F and EASE in previous sections, we will talk about other
related work here.

CN generation remains the most costly component in most sys-
tems and is proven to be exponential. Sagiv et al. [9, 18] and [17]
present an algorithm for enhancing the performance of locating
minimal and total sub-graphs within a graph. Ding et al. [8] pro-
pose a dynamic programming based solution for finding candidate
networks. While their approaches have the ability to speed up the
selection of candidate networks in KWS, all the systems recog-
nize that at some point the space of join networks gets so large that
searching through it becomes infeasible. Our focus is to provide an
alternative in this case.

Top-k: A wealth of work exists in top-k systems. [11, 26] and
many others use ranking strategies that favor short join sequences,
and focus only on generating the top few answers efficiently. Luo
et al. [26] treat tuples as “virtual documents” and use search engine
like retrieval and ranking. Top-k systems perform well in practice
when a good ranking function exists and when the user is only in-
terested in the top few answers, all of which require very few joins.
However, in the event that a good ranking function does not exist,
or when retrieving the top-k answers itself is very expensive, the
hybrid approach offers a viable alternative.

Forms: A system that exploits KWS over forms for querying a
relational database was proposed by Chu et al. [5]. Unlike [5], who
focus on providing complex query constructs like aggregates, group
by, and so forth, we are focused only on answering those queries
that KWS can answer. Jayapandian et al. [13, 14] described an
approach that automatically generates forms for a database based
on a sample query workload. Since their goal is to create a small
set of forms, they do not consider the problem of choosing from a
set of forms. Instead, when the forms do not support a user query,
they allow users to modify an existing form.

DataCloud [19] and DataLens [23] are some recent works that
offer an overview of the search space to the user, like forms do.

Avatar [16] combines KWS with form-based support for struc-
tured querying. However, their goal is not to solve the performance
problem we identify in this paper; rather, it is to suggest struc-
tured queries that may be of interest to users based upon their key-
word queries. All of this form-based work emphasizes the fact that
non-programmers often find forms a useful way to query structured
data.

7. CONCLUSION
Our goal in this paper was to explore techniques that allow key-

word search over relational data to be implemented in such a way
that the system can guarantee a reasonable response time. Our main
idea is to let the traditional keyword search generate all the answers
it can within some time bound, and to augment the search with a
form-based approach that “covers” potential answers that the key-
word search could not find in the specified time limit. Results from
experiments with this approach indicate that it is successful in al-
ways returning a covering combination of answers and forms in a
bounded and predictable amount of time.

We regard this work as a first step toward building this kind of
system, and hope that it is a springboard for follow-on work that
improves the performance and quality of such systems. In general,
exploring the trade-offs between the form-based component and
the keyword-based component is fertile ground for future work.
For example, a form that returns no answers when executed can
convey information to the user about facts that are not present in
the database, which is something that seems difficult to capture
with a pure keyword-based approach. As another example, if a
keyword search returns too many answers that have similar rank-
ings, exhibiting a form may prompt a user to fill in attributes and
narrow her search more easily than requiring her to come up with
additional keywords to disambiguate the results. Most likely the
answers to these and other related questions will require studies of
user behavior when interacting with such systems.

8. REFERENCES
[1] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe, P. Parag, and

S. Sudarshan. BANKS: browsing and keyword searching in relational
databases. In VLDB ’02.

[2] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: enabling keyword search
over relational databases. In SIGMOD ’02.

[3] A. Bernstein and E. Kaufmann. Making the semantic web accessible to the
casual user: Empirical evidence on the usefulness of semiformal query
languages. In TKDE.

[4] Y. Chen, W. Wang, Z. Liu, and X. Lin. Keyword search on structured and
semi-structured data. In SIGMOD ’09.

[5] E. Chu, A. Baid, X. Chai, A. Doan, and J. Naughton. Combining keyword
search and forms for ad hoc querying of databases. In SIGMOD ’09.

[6] DBLife. http://dblife.cs.wisc.edu,.
[7] DBLP. http://www.informatik.uni-trier.de/˜ley/db/,.
[8] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Finding top-k

min-cost connected trees in databases. In ICDE ’07.
[9] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword proximity search in

complex data graphs. In SIGMOD ’08.
[10] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: ranked keyword searches on

graphs. In SIGMOD ’07.
[11] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-style keyword

search over relational databases. In VLDB ’2003.
[12] V. Hristidis and Y. Papakonstantinou. Discover: keyword search in relational

databases. In VLDB ’02.
[13] M. Jayapandian and H. V. Jagadish. Automated creation of a forms-based

database query interface. Proc. VLDB Endow., 1(1).
[14] M. Jayapandian and H. V. Jagadish. Automating the design and construction of

query forms. In ICDE ’06.
[15] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and

H. Karambelkar. Bidirectional expansion for keyword search on graph
databases. In VLDB ’05.

[16] E. Kandogan, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H. Zhu.
Avatar semantic search: a database approach to information retrieval. In
SIGMOD ’06.

[17] G. Kasneci, M. Ramanath, M. Sozio, F. M. Suchanek, and G. Weikum. STAR:
Steiner-tree approximation in relationship graphs. ICDE’09.

[18] B. Kimelfeld and Y. Sagiv. Efficiently enumerating results of keyword search
over data graphs. Inf. Syst., 33(4-5).

[19] G. Koutrika, Z. M. Zadeh, and H. Garcia-Molina. Data clouds: summarizing
keyword search results over structured data. In EDBT ’09.

[20] G. Li, S. Ji, C. Li, and J. Feng. Efficient type-ahead search on relational data: a
tastier approach. In SIGMOD ’09.

[21] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. EASE: an effective 3-in-1
keyword search method for unstructured, semi-structured and structured data.
In SIGMOD ’08.

[22] G. Li, X. Zhou, J. Feng, and J. Wang. Progressive keyword search in relational
databases. In ICDE ’09.

[23] B. Liu and H. V. Jagadish. Datalens: making a good first impression. In
SIGMOD ’09.

[24] F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective keyword search in
relational databases. In SIGMOD ’06.

[25] Lucene. http://apache.lucene.org,.
[26] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k keyword query in

relational databases. In SIGMOD ’07.
[27] A. Markowetz, Y. Yang, and D. Papadias. Reachability indexes for relational

keyword search. In ICDE ’09.
[28] L. Qin, J. X. Yu, and L. Chang. Keyword search in databases: the power of

RDBMS. In SIGMOD ’09.
[29] M. Sayyadian, H. Lekhac, A. Doan, and L. Gravano. Efficient keyword search

across heterogeneous relational databases. In ICDE ’07.
[30] S. Tata and G. M. Lohman. Sqak: doing more with keywords. In SIGMOD ’08.

APPENDIX
A. EXPLAINING THE PREDICTABLE PER-

FORMANCE OF KWS-F OVER KWS
In Section 2.1, we identified the performance bottlenecks that

make current KWS solutions unpredictable and therefore difficult
to adopt. We claim that KWS-F approaches do not suffer from
these same performance problems and are suitable for queries with
long join sequences. In this section, we highlight the fundamen-
tal differences between KWS-F and KWS systems that allow us to
make this claim.
Preliminaries: Let TKWS = TTSGen + TCNGen + TSQLExec

(+TUser) be the total time taken by a KWS system, where TTSGen

is the time for generating the tuple sets, TCNGen is the candidate
network generation time, and TSQLExec is the time to execute all
the generated SQL queries. TUser corresponds to the time taken
by the user to browse through the results of all the executed SQL
queries and find the relationships of interest to them.

Let TKWS−F = (TFormGen)+TFormSearch+(T ′User)+T ′SQLExec

be the the total time taken by a KWS-F system, where TFormGen

is the time spent on offline form generation and is not a part of the
response time of the system. TFormSearch is the time taken to go
from the user’s keyword query to the point where the system dis-
plays the forms to the user. T ′User is the time taken by the user to
choose and fill the form(s) that interest him, and T ′SQLExec is the
time taken to execute only the corresponding SQL queries.

Query FormGen FormSearch CNGen FormGen FormSearch CNGen
3 joins 6 joins

agrawal chaudhuri das 1.09 0.065 0.38 2.15 0.08 NA
dewitt widom 1.09 0.05 0.234 2.15 0.06 81.2
sigmod keyword search 1.09 0.09 0.5 2.15 0.09 18
publications icde 1.09 0.1 0.09 2.15 0.16 249

Table 3: Comparing TCNGen in a KWS system to TFormGen and
TFormSearch in a KWS-F system. All times are in seconds.

Analysis: In our experiments we find that TTSGen is small (i.e., a
few milliseconds) even for long join sequences. We ignore TTSGen

for the remainder of this discussion and structure this discussion
around the performance bottlenecks in a KWS system: TCNGen

and TSQLExec.
The CNGen step in a KWS system is analogous to the combi-

nation of the form generation and form search steps in a KWS-F
system. Table 3 shows TFormGen (offline) and form TFormSearch

along with TCNGen for 4 queries. While the CN generation times
are comparable to the sum of form generation and form searching
times for 3 joins, TCNgen gets much larger in the 6 join case. In
what follows, we investigate the causes for this time difference.

We start by comparing the properties of CNs and forms. In a
KWS system, there is a one-to-one correspondence between CNs
and SQL queries. On the other hand, there is a one-to-many cor-
respondence between forms and SQL queries in a KWS-F system.
Said otherwise, each form can be instantiated in many ways and
each instantiation corresponds to a SQL query. Also, form instan-
tiation is performed by the user, i.e., forms do not contain any data
terms. Each CN on the other hand maps to an executable SQL
query. In a way, this implies that KWS-F systems operate at a dif-
ferent granularity than KWS systems.

Table 1 shows that as the number of joins increases, the number
of joining networks that needs to be explored to generate candidate
networks increases exponentially. As discussed in Section 2.1, it is
well-known that variations of the CN generation problem are NP-
complete. This complexity is at the core of the poor performance
of CN generation in the presence of long joining sequences.

As stated earlier, the CNs in a KWS system are both total (con-
tain all the keywords specified by the user) and minimal (we can-

Figure 11: SQL query times for the query “dewitt widom” with 6 joins. A small
number of queries take a disproportionately large execution time.

not remove any tuple from a CN and still have a total CN). While
being total is required, minimality is imposed to bind the CN gen-
eration step in a KWS system. Forms, on the other hand, contain
schema terms and no data terms. Therefore, unless the user’s key-
word query contains only schema terms, the forms returned to the
user cannot be total by design. Also, since the form instantiations
are user-dependent, the minimality condition does not hold. The
forms in KWS-F system are therefore neither total nor minimal.
This relaxed requirement contributes to the scalability of a KWS-F
system.

In summary, obviously KWS-F systems do not scale by effi-
ciently solving the NP-complete problem that CN generation faces.
Instead, the predictable performance comes from the fundamental
differences between CNs and forms and from the pre-computation
of forms, which allows replacing the CN generation problem in a
KWS system with the much simpler document search problem in a
KWS-F system. Additionally, even though the forms in a KWS-F
system are in some sense an approximation of the CNs in a KWS
system, a user can find any answer that KWS system would return
using a KWS-F system.

In addition to the sub-problems that each system solves, it is im-
portant to note that the results obtained by both systems are also
very different. The final result of a KWS system is a set of data
tuples R. The elements in R are obtained after the KWS system
executes a number of SQL queries. In contrast, a KWS-F system
returns a set of forms F . Each form maps to a set of SQL queries
and needs to be instantiated and executed to get to the resulting data
tuples.

Query Approach Number of Joins
1 2 3 4 5 6 7 8

agrawal chaudhuri das
KWS # JNs 14 196 3252 46714 581340 NA NA NA

CNs 0 0 0 88 88 NA NA NA
Hybrid # JNs 14 196 3252 46714 42311 42401 42415 42458

CNs 0 0 0 88 88 87 86 88

dewitt widom
KWS # JNs 14 178 1214 6592 37788 218842 NA NA

CNs 0 6 6 46 46 296 NA NA
Hybrid # JNs 14 178 1214 6592 37788 52063 52231 53095

CNs 0 6 6 46 46 46 46 46

keyword search sigmod
KWS # JNs 7 21 93 896 7357 60294 555328 NA

CNs 1 1 1 8 45 45 NA NA
Hybrid # JNs 7 21 93 896 7357 60294 27210 27179

CNs 1 1 1 8 8 45 45 45

publications icde
KWS # JNs 4 13 60 595 5121 43378 208359 406567

CNs 0 0 0 7 7 55 55 55
Hybrid # JNs 4 13 60 595 5121 43378 208359 406567

CNs 0 0 0 7 7 55 55 55
Table 4: Comparing the join networks and candidate networks generated for KWS
and for the hybrid approach. As the number of joins allowed grows, many JNs need to
be considered before finding a CN, thus leading to a performance bottleneck.

A KWS system executes all the SQL queries that it generates.
We find that the number of queries to be executed can grow very
quickly and that executing all of them can take up a large portion of
the total execution time. We also find that as the number of queries
grows, a small number of queries (typically those involving long
joins) take up a disproportionately large portion of the execution
time. The keyword query “dewitt widom,” for example, generates
6 SQL queries to be executed for 2 joins, and this grows to 296
for 6 joins. Figure 11 shows that of these 296 queries, 201 queries
take under 2 ms each to execute while 3 queries take around 200
ms each. Evaluating these expensive queries might be unnecessary
if we are not even sure if the user is interested in them. A KWS-

F system leverages user input and only executes those queries in
which the user shows interest.

B. DBLIFE SCHEMA
The schema for DBLife (dblife.cs.wisc.edu) is presented in Fig-

ure 12. This dataset describes entities and relationships in the database
research domain.

Figure 12: Relational schema for the DBLife dataset.

C. OPTIMIZING KWS′
The following optimizations can also help with the performance

of the KWS′ sub-system of the proposed hybrid system.

C.1 Number of joins as a parameter
Like DISCOVER, the hybrid approach could also use a value

M (maximum number of allowed joins) to restrict the number of
CNs that the system evaluates. This value can be determined based
on the schema, for schemas without many-to-many relationships
or cycles. For other schemas this value can be set to a reasonable
number. A conservative estimate of Mmax in a traditional KWS
system would hurt coverage. In the hybrid approach a conservative
estimate of M only means that a form will be displayed for CNs of
size greater than M . A reasonable choice for M could be the point
at which a steep increase in candidate network generation time is
observed for a set of representative queries. Setting this value in
addition to T can help the system tremendously by reducing the
overhead required in retaining all CNs that would need to be ex-
panded if this threshold was not set.

C.2 Starting keyword

Figure 13: All 6 permutations of the keyword query “hristidis keyword search”
are plotted, for a varying number of joins. The figure shows that choice of starting
keyword for CN generation greatly impacts performance.

As in [1, 10] we find that choosing the appropriate starting key-
word can make a tremendous difference in the number of CNs to

be explored given that most KWS systems use BFS for CN genera-
tion. As an example, for the query “dewitt gamma” starting with the
keyword “dewitt” that maps to the Person relation greatly increases
the amount of work involved in CN generation. This is because
the Person relation has key-foreign key relationships with 9 other
tables in the DBLife schema. Instead, starting with the keyword
“gamma” that maps to the Publications relation and has only one
edge is more advisable. Determining which keyword to start from
depends heavily on the underlying schema. For instance, starting
with a keyword corresponding to a fact table in a snowflake schema
is not advisable.

We use the following heuristic to choose the starting keyword:
we start with the set of keywords entered by the user and map each
of them to the relations to which they belong. Using the undirected
version of the schema graph of the underlying database, for every
keyword ki we pick the relation with the maximum degree di. Here
di is the maximum number of edges that the keyword ki could
generate. We then pick the keyword with the minimum di value as
our starting keyword. Clearly it is possible to have a schema for
which the above algorithm is not very useful. Any other algorithm
for choosing the starting keyword may be chosen and plugged-in
as appropriate.

Figure 13 demonstrates the effect of choosing the right starting
keyword for the 6 permutations of the query “hristidis keyword
search” in a KWS system. We fix the number of Mmax for the
KWS approach at 6. Since the Person table has the maximum
fanout in the DBLife schema, starting with a person name as the
first keyword leads to worse performance than in the other 4 cases.

D. EXPERIMENTS WITH THE EASE SYS-
TEM

Figure 14 shows the run times for EASE for the 10 keyword
queries in Figure 8.

Figure 14: EASE leverages offline computation to achieve good on-line query per-
formance.

