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ABSTRACT
Many applications increasingly employ information extrac-
tion and integration (IE/II) programs to infer structures
from unstructured data. Automatic IE/II are inherently
imprecise. Hence such programs often make many IE/II
mistakes, and thus can significantly benefit from user feed-
back. Today, however, there is no good way to automatically
provide and process such feedback. When finding an IE/II
mistake, users often must alert the developer team (e.g., via
email or Web form) about the mistake, and then wait for
the team to manually examine the program internals to lo-
cate and fix the mistake, a slow, error-prone, and frustrating
process.

In this paper we propose a solution for users to directly
provide feedback and for IE/II programs to automatically
process such feedback. In our solution a developer U uses
hlog, a declarative IE/II language, to write an IE/II pro-
gram P . Next, U writes declarative user feedback rules that
specify which parts of P ’s data (e.g., input, intermediate, or
output data) users can edit, and via which user interfaces.
Next, the so-augmented program P is executed, then en-
ters a loop of waiting for and incorporating user feedback.
Given user feedback F on a data portion of P , we show how
to automatically propagate F to the rest of P , and to seam-
lessly combine F with prior user feedback. We describe the
syntax and semantics of hlog, a baseline execution strategy,
and then various optimization techniques. Finally, we de-
scribe experiments with real-world data that demonstrate
the promise of our solution.
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1. INTRODUCTION
Over the past decade, the topic of extracting and inte-

grating structures from unstructured data (e.g., Web pages,
emails, and blogs) has received much attention [20, 18, 33,
16, 28]. Earlier works [33] have focused on developing indi-
vidual extraction/integration techniques (henceforth IE/II
techniques for short). Some recent works [16] then consider
how to combine such techniques to form larger and more
complex IE/II programs, those typically required by real-
world applications.

To write such programs, these recent works have pro-
posed several declarative IE/II languages, such as UIMA
[18], GATE [11], AQL [32], and xlog [35]. They show that
IE/II programs written in such languages are easier to de-
velop, debug, and maintain than those written in procedural
languages such as Perl and Java. Many other recent works
then examine how to optimize programs written in such lan-
guages [26, 35, 32], to execute them effectively over evolving
data [7, 8], to make them best-effort [34], to add provenance
[3, 25], among others. Such IE/II programs have started to
make their way into large-scale real-world applications, in
both academic and industrial settings [16].

In these settings, such IE/II programs have proven highly
promising, but they still suffer from a glaring limitation:
there is no easy way for human users to provide feedback
into the programs. To understand why user feedback is crit-
ical, consider DBLife, a real-world IE/II application that we
have maintained for over three years [13, 14]. DBLife reg-
ularly crawls a large set of data sources, extracts and inte-
grates information such as researchers’ names, publications,
and conferences from the crawled Web pages, then exposes
the structured information to human users in the form of a
structured Web portal. Since automatic IE and II are inher-
ently imprecise, an application like this often contains many
inaccurate IE/II results, and indeed DBLife does. For exam-
ple, a researcher’s name may be inaccurately extracted, or
the system may incorrectly state that X is chairing confer-
ence Y . Being able to flag and correct such mistakes would
significantly help improve the quality of the system. And
given that at least 5-10 developers work on the system at
any time (a reasonable-size team for large-scale IE/II ap-
plications), the developer team alone can already provide a
considerable amount of feedback. Even more feedback can
often be solicited from the multitude of users of the system,
in a Web 2.0 style.

The problem, however, is that there is no easy way to
provide such feedback. The current “modus operandi” is
that whenever one of us (developers) finds a mistake (e.g.,
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Figure 1: An illustration of our approach: given the set of data sources in (a), a developer U writes the
IE/II program P in (b) to extract titles and abstracts of talks from the data sources; next U writes the user
feedback rules in (c) to specify which parts of P users can edit and via which UIs; the system then executes
P and exposes the specified data portions for users to edit, as shown in (d).

the name “D. Miller R” should actually be just “Miller R”),
we email a designated developer. If we receive emails from
users about mistakes, we forward them to the designated
developer as well. The “victim” developer then delves into
the internals of the IE/II program to locate and correct the
mistake, and then restarts the program to propagate the
correction. Needless to say, this developer soon becomes
overwhelmed and resented at having to do all of the mun-
dane work, and this solution obviously does not scale with
the amount of user feedback.

A better solution then is to provide automatic ways for
developers and users alike to provide feedback, like many
current applications have done. For example, if a user finds
an IE/II mistake, he or she can report it using a form in-
terface, then the system can automatically incorporate the
report.

This is also the approach we take in this paper, but our
goal is to develop a general and efficient solution. Our basic
idea is as follows. After writing an IE/II program P , a
developer U writes a set of declarative user feedback rules
to specify which data portions D of P (e.g., input data,
intermediate data, or output data) users can edit1, via which
user interfaces (UIs). Then when executing P for the first
time, the system materializes and exposes D via these UIs.
Given a user edit, the system updates D, propagates the
update to the rest of the program P , then waits for the next
user edit. The following tiny example illustrates the above
idea.

Example 1.1. Suppose developer U wants to crawl the
set of data sources listed in Table dataSources of Figure 1.a
to discover research talks. Then U may start by writing a
program P in a declarative IE/II language. Figure 1.b shows
such a sample program in the xlog language (see Section 2.1
for details). Roughly speaking, this program crawls the data
sources (each to the specified crawl depth) to obtain a set of
Web pages (in relation webPages(p); see Rule R1). Next,

1Henceforth we use “users” to refer to both developers and
system users.

it extracts titles and abstracts from the Web pages (Rules
R2 and R3, respectively). Finally, it outputs only those (ti-
tle,abstract) pairs where the title appears immediately before
the abstract (Rule R4).

Next, U may write a set of user feedback rules, such as
Rules R5−R7 in Figure 1.c. Rule R5 creates a view
dataSourcesForUserFeedback(url,crawl-depth) from Table
dataSources(url,crawl-depth,date), then exposes this view via
a spreadsheet UI for users to edit. Note that this view does
not allow users to edit data sources added to the system be-
fore 1/1/2009 (e.g., because those data sources have been
vetted by the developers). Note also that users can easily add
new data sources by adding new tuples to the view. Sim-
ilarly, Rules R6 and R7 allow users to edit titles and (ti-
tle,abstract) pairs, respectively, using a form UI. Here, no-
tation p#no-edit in Rule R6 states that p (i.e., the Web page
in which a title appears) can be inspected but not edited by
users.

The system now proceeds to execute program P for the
first time. Conceptually, it compiles P into the execution
plan in Figure 1.d, then evaluates this plan “bottom up”, in a
fashion similar to evaluating relational execution plans [35]
(see also Section 2.3). During the evaluation, the system
also materializes and exposes the views specified by Rules
R5−R7 via the appropriate UIs, for subsequent user feedback
(see Figure 1.d).

After the initial execution, the system then enters a loop
of obtaining and incorporating user feedback. For exam-
ple, after a user has modified the crawl depth of a url in
the view dataSourcesForUserFeedback(url,crawl-depth), the
system would modify the base table dataSources(url,crawl-
depth, date) accordingly, then propagate this modification by
re-evaluating the execution plan. It then waits for the next
user feedback, and so on.

As described, the above approach provides an automatic
way to incorporate user feedback. Users can now provide
feedback directly to the system instead of waiting for devel-
opers to manually incorporate it. Realizing this approach,



however, raises many challenges. In this paper, we identify
these challenges and provide initial solutions.

We begin by considering how to model IE/II programs and
user feedback, and how to incorporate such feedback. To ad-
dress these issues, we develop hlog, a declarative language
for writing “user feedback aware” IE/II programs (such as
the one in Figure 1). hlog builds on xlog [35], and thus can
be viewed as a Datalog extension, equipped with declarative
user feedback rules. Incorporating user feedback into hlog
programs turned out to be quite tricky. To see why, con-
sider again program P in Figure 1.b. Suppose a user X has
deleted a tuple (t, a) from the output table talks. Suppose
later a user Y inserts a new data source tuple (u, c, d) into
the input table dataSources. Consequently, we re-execute
P to propagate Y ’s update from table dataSources to ta-
ble talks. A straightforward re-execution however will re-
introduce the deleted tuple (t, a), “wiping out” the update
of X. Furthermore, what if when processing the new data
source tuple (u, c, d), program P discovers the same talk
(t, a)? Should we keep this tuple, or delete it according
to X’s feedback? To address these problems, we develop a
provenance-based solution for interpreting and incorporating
user feedback.

After defining the syntax and semantics of hlog, we de-
velop a baseline solution for executing hlog programs. We
show how to store and manipulate tuple provenances, as well
as user feedback. We discuss in particular the trade-offs be-
tween maximizing the amount of user feedback incorporated
into a program P and minimizing the execution time of P .

Finally, we develop a set of optimization techniques to
speed up the baseline solution for executing hlog programs.
First we examine how to execute such programs incremen-
tally, after each user feedback. Incrementally updating re-
lational operators (e.g., σ, π and ��) has been studied ex-
tensively (see the related work section). Incrementally up-
dating IE/II operators is more difficult, due to their “black-
box” nature. To address this problem, we identify a set of
incremental properties that the developer can use to char-
acterize IE/II operators. Once the developer has identified
such properties, we can automatically construct incremental
update versions for these operators.

The second set of optimization techniques that we develop
concerns concurrency control. Multiple users may happen
to view and update the exposed program data at the same
time. To ensure the consistency of the program data, we
need to enforce concurrency control (CC). To do that, we
could require developers to force all data and IE/II com-
putation into an RDBMS and use its CC capabilities. In
practice, however, developers usually choose not to do so
(at least not today) for ease-of-development or various per-
formance reasons. Hence we seek to develop CC solutions
outside RDBMS. In this paper, we show how to explore the
graph structure of an IE/II program to design efficient CC
mechanisms.

In summary, we make the following contributions:

• Introduce the problem of allowing users to edit the
data in an IE/II program to improve the quality of
the program results.

• Develop a declarative language (hlog) with well-defined
semantics that allows developers to quickly write IE/II
programs with the capabilities of incorporating user
feedback.

• Develop a solution to execute programs written in hlog.

• Propose optimization techniques for enhancing the per-
formance of IE/II programs in terms of runtime and
concurrency degree.

• Conduct extensive experiments over real-world data
that demonstrate the promise of the proposed approach.

2. SYNTAX AND SEMANTICS
In this section we describe the syntax and semantics of

hlog, our proposed declarative language to write “user feed-
back aware” IE/II programs. We first describe xlog, a re-
cently developed Datalog variant for writing declarative IE
programs [35], then build on it to describe hlog. For ease
of exposition, we will focus on IE programs, deferring the
discussion of II aspects to Section 2.4.

2.1 The xlog Language
We now briefly describe xlog (see [35] for more details).

Like in traditional Datalog, an xlog program P consists of
multiple rules. Each rule is of the form p :– q1, · · · , qn, where
p and qi are predicates, p is the head of the rule, and qi’s
form the body. Each predicate in a rule is associated with
a relational table. A predicate is extensional if its table is
provided to program P , and is intensional if its table must
be computed using rules in P .

xlog extends Datalog by supporting procedural predicates
(p-predicates) and functions (p-functions), as real-world IE
often involves complex text manipulations that are com-
monly implemented as procedural programs. A p-predicate
p is of the form p(a1, · · · , an, b1, · · · , bm), where ai and bj

are variables. Predicate p is associated with a procedure g
(e.g., written in Java or Perl) that takes as input a tuple
(u1, · · · , un), where ui is bound to ai, i ∈ [1, n], and pro-
duces as output a set of tuples (u1, · · · , un, v1, · · · , vm). A
p-function f(a1, · · · , an) takes as input a tuple (u1, · · · , un)
and returns a scalar value. The current version of xlog does
not yet support recursion nor negation.

Example 2.1. Figure 1.b shows an xlog program P with
four rules R1−R4 that finds talks from a set of data sources.
P has one extensional predicate (dataSources), four inten-
sional predicates (webPages, titles, abstracts, and talks), three
p-predicates (crawl, extractTitle, and extractAbstract), and
one p-function (immBefore).

The p-predicate crawl(url,crawl-depth,p) for example takes
as input a url u and a crawl depth d (e.g., 3), crawls u to
the specified depth, then returns all tuples (u, d, p) where p
is a page found while crawling u. As another example, the
p-function immBefore(title,abstract) returns true only if the
input title appears immediately before the input abstract.

The output of an xlog program P is then the relation
computed for a designated head predicate, as illustrated in
the following example:

Example 2.2. Consider again program P in Figure 1.b
with talks being the designated head predicate. Conceptu-
ally, for each url in dataSources, P applies the (procedure
associated with) crawl predicate to crawl that url to a pre-
specified depth. This yields a set of Web pages p (see Rule
R1). Next, P applies the extractTitle predicate to each Web
page p to extract talk titles (Rule R2). Similarly, P applies



extractAbstract to extract talk abstracts (Rule R3). Finally,
P applies immBefore to each pair of title and abstract and
outputs only those pairs where immBefore evaluates to true
(Rule R4).

2.2 The hlog Language: Syntax
We now describe hlog. To write an hlog program, a devel-

oper U starts by writing a set of IE rules that describes how
to perform the desired IE task. These rules form an xlog
program P . U then writes a set of user feedback rules, or
UF rules for short, that describes how to provide feedback
to the data of program P .

The data of P falls into three groups, input, intermediate,
and output data, as captured in the tables of the extensional,
intensional, and head predicates, respectively. Today many
IE applications allow editing only the input and output data.
We found however that editing certain intermediate data can
also be highly beneficial, because correcting an error early
can drastically improve IE accuracy “down the road”.

Furthermore, the boundary between intermediate and out-
put data is often blurred. Consider for instance an IE pro-
gram that extracts entities from text, discovers relations
among entities, then outputs both entities and relations as
the final results. Here entities are both intermediate results
(since the program builds on them to discover relations) and
final results. Clearly, correcting the entities can significantly
improve the subsequent relation discovery process.

Consequently, in hlog we allow users to edit all three groups
of data, that is, the extensional, intensional, and head pred-
icates. Suppose U has decided to let users edit such a pred-
icate p. Then U writes a UF rule of the form

v#w :– p, q1, · · · , qn.

This rule specifies a view v :– p, q1, · · · , qn over p, so that
users can only inspect and edit p’s data via the view v. Here
each qi is a built-in predicate“a op b”, where a is an attribute
of p, op is a primitive operator (e.g., “=”, “>”), and b is an
attribute of p or a constant. As such, v is a combination
of selections and projections over p. Currently we consider
only such views because they are updatable: user edits over
them can be unambiguously and efficiently translated into
edits over p.

Using the notation v#w, the UF rule also specifies that
users can edit view v via a user interface (UI) w. We assume
that the system has been equipped with a set of UIs (e.g.,
spreadsheet, form, wiki, and graphical), and that w comes
from this set. Formally, we define a user interface w as a
pair 〈fout, fin〉, where fout is a function that renders the
data of a view v into the format that w can display, and
fin is a function that translates actions users perform on w
into operations (queries and updates) over v. Consider the
spreadsheet interface for example. Here the fout function
converts view data into a spreadsheet file that the interface
can read and display. The fin function then translates user
actions, such as deleting a row from a spreadsheet, into view
updates, such as deleting a tuple from v. We discuss user
actions in more details in Section 2.3.2.

Example 2.3. UF rule R5 in Figure 1.c specifies view
dataSourcesForUserFeedback over predicate dataSources. The
view allows users to edit only data sources added to the sys-
tem on or after 1/1/2009 (e.g., possibly because all data
sources added earlier have been vetted by the developer), via

dataSources(url,crawl-depth,date)

extractAbstract(p,abstract)

crawl(url,crawl-depth,p)

extractTitle(p,title)

p
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… … …

title  abstract
… …

title   p
… …
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extractAbstract(p,abstract)

crawl(url,crawl-depth,p)

extractTitle(p,title)

p

σimmBefore(title,abstract)

url crawl-depth date
… … …
url crawl-depth date
… … …

title  abstract
… …
title  abstract
… …

title   p
… …
title   p
… …

Figure 2: Execution graph of the hlog program in
Figures 1.b-c, as reproduced from Figure 1.d.

a spreadsheet UI. UF rule R6 allows users to edit extracted
titles via a form UI. Here p#no-edit means that users can
inspect but cannot edit the url p.

2.3 The hlog Language: Semantics
In the following, we first describe a baseline semantics

that is straightforward but fails to incorporate previous user
feedback. Then we describe a better semantics that removes
this limitation.

2.3.1 Baseline hlog Semantics
Recall from the introduction that after developer U has

written an hlog program P , the system executes P for the
first time, materializing and exposing certain data portions
D of P for user edits. It then enters a loop of waiting for
and processing user feedback. In what follows we describe
these steps in details.

Initial Execution: Given an hlog program P , first we
compile the xlog portion of P (i.e., the IE rules) into an
execution plan G. We omit the details of this compilation;
see [35] for a complete description. Since the current ver-
sion of xlog does not yet support recursion nor negation, the
execution plan G can be viewed as a directed acyclic graph
(DAG), with “leaf nodes” at the bottom and a “root node”
at the top. Figure 2 shows a sample execution plan (repro-
duced from Figure 1.d) for the xlog program in Figures 1.b.
Note that the internal nodes of such a plan are either rela-
tional or (procedural) IE operators.

Next, we evaluate the execution plan G in a “bottom up”
fashion, starting with the leaf nodes. During the evaluation
we materialize and expose certain data portions D of P via
certain UIs. Specifically, if the hlog program P contains a
UF rule that involves view v over predicate p and UI w,
we materialize the data of p and the data of v, and then
expose the data of v via UI w. Note that this differs from a
traditional xlog (or RDBMS) execution, where intermediate
data typically is not materialized (unless for optimization
purposes). Here, we must materialize the data of p and v so
that later we can incorporate user feedback. Figure 2 shows
how the data of three predicates has been materialized and
exposed, according to the UF rules R5−R7 in Figure 1.c.

Loop of Waiting for and Processing User Feedback:
After the initial execution, we enter a loop of waiting for and
processing user feedback. Suppose a user performs an up-
date M over a view v (e.g., modifying, inserting, or deleting
a tuple; see Section 2.3.2). Then we translate this update
M over view v into an update N over the “base” predicate



p. In the next step, we start a user feedback transaction, or
transaction for short. This transaction performs the update
N on the (materialized) data of p. Next, it propagates the
update “up” the execution graph G. That is, suppose the
data from p is part of the input to an operator q of G, then
we re-execute q with the newly revised p. Next we re-execute
operators that depend on q, and so on. The transaction ter-
minates after we have re-executed the root-node operator.
We then wait for the next user transaction, and so on.

It is important to note that we consider propagating a
user update only up the execution graph. Propagating up-
date down the execution graph would require being able to
“reverse” the input-output of IE blackboxes (i.e., given an
output, compute the input). We believe requiring the IE
blackboxes to be “invertible” may be too strong a require-
ment.

Since multiple users may provide feedback at the same
time, we need a way to enforce concurrent execution of the
user transactions. To do that, we could require developers to
force all data and IE/II computation into an RDBMS and
use its CC capabilities. In practice, however, developers
usually choose not to do so (at least not today) for ease-
of-development or various performance reasons. Hence we
seek to develop CC solutions outside RDBMS. For now, we
adopt a simple CC solution: a user transaction T will x-lock
the whole execution graph at the start (of its execution) and
unlock the graph after the finish. Call this solution graph-
locking. (See Section 4 for more efficient CC solutions.)

Let T = {T1, T2, . . . , Tn} be a set of user transactions
started and finished during the time period [x, y]. It is easy
to see that the above algorithm guarantees a serial execution
of the transactions. Hence, at the end of the time period,
the final output of graph G (i.e., the output of the root oper-
ation) incorporates all user updates encoded in T , in some
serial order. This semantics is well defined. However, its
notion of incorporating user updates is severely limited, in
that it often clobbers previous user feedback: when an oper-
ator p in the execution graph is re-executed, its new output
will simply replace the old one; thus any previous user up-
dates over p’s output will be lost. In the next subsection,
we consider how to address this problem.

2.3.2 Extending Baseline Semantics to Handle Pre-
vious User Feedback

Preliminaries: We start with three preliminaries. First,
we observe that any user feedback F in our framework can be
viewed as feedback over the output O of some (relational or
IE) operator p in the execution graph G. (This is always true
except when F is over a leaf node of G, that is, an extensional
table. But we can easily handle this by pretending that each
extensional table is the output of some dummy operator.)

Second, to be concrete, we will assume that a user update
F (we use “user update” and “user feedback” interchange-
ably) can be only one of the followings: deleting a tuple
t ∈ O, modifying a tuple t ∈ O to t′, or inserting a tu-
ple t into O, where O is the output of an operator p. More
complex types of user feedback exist, and our current frame-
work can be extended to deal with many of these. But we
will leave an in-depth examination of this issue as future
work.

As a final preliminary, we will develop this subsection as-
suming that operator p is unary, that is, it takes as input a
single table I . The notions we will develop can be general-

ized in a straightforward fashion to the case where p takes
as input a set of tables.

Tuple Provenance: We are now ready to consider how to
save user updates on O, and then apply them when p is re-
executed. A simple solution is to save a user update F as an
update operation (e.g., insertion, deletion, or modification),
and then apply the operation when p is re-executed. This
solution, however, may incorporate user updates incorrectly,
as the following example illustrates.

Example 2.4. Suppose that given input I, p produces out-
put O, and that a user has deleted an incorrect tuple t from
O. Now suppose that we modify input I into I ′, and that
re-executing p given I ′ produces output O′, which consists
of a single tuple t. Then using the above solution we should
delete t from O′. But what happens if t is indeed the correct
output for p(I ′)? In this case we have incorrectly applied an
old user update.

This example suggests that we should interpret a user up-
date on an output tuple based also on the provenance of
that tuple from the input data. Specifically, suppose p takes
as input a single table I and produces an output table O.
Then we define the provenance of a tuple t ∈ O to be the
set St of tuples in I that p uses to produce t.

We require that given any input I , p produces not just the
output O, but also the provenances of all tuples in O, such
that each tuple t has a unique provenance (i.e., a set St in
input I). If p is a relational operator, then it is relatively
easy to modify p to do so. If p is an IE operator, then it is
more difficult, but often do-able, especially for the creator of
p. In the worst-case scenario, we can take the whole input
table to be the provenance for each tuple in the output.

We further require that each operator p is monotonic, in
the sense that if I ⊆ J then p(I) ⊆ p(J). Most IE operators
satisfy this requirement, and this requirement gives us a
well-defined interpretation of user update, as we will see
below.

Interpreting and Incorporating User Updates: Hav-
ing defined provenance, we can now interpret user update as
follows. Suppose a user deletes a tuple t from output O of
operator p. Let St ⊆ I be the provenance of t, and M be
p(St), the result of applying p to St.

Let M ′ be the result obtained after deleting tuple t from
M . Then we assume that by deleting the tuple t from output
O, the user means to state that p(St), the output of applying
p to St, should really be M ′, not M .

Under this interpretation, the above user update can be
(conceptually) saved as a tuple (St, M

′), and we can incorpo-
rate this update in case p is re-executed as follows. Suppose
p is re-executed over a new input I ′, and produces output
O′. Then we check to see if St appears in I ′. If yes, we
remove from O′ all tuples whose provenance is St (since p
is monotonic, p(St) will appear in O′), then add to O′ all
tuples in M ′.

We now discuss how to handle other types of user updates.
Suppose a user modifies a tuple t in the output O into t′,
then we can interpret, save, and incorporate this modifica-
tion update in a similar fashion. Suppose a user inserts a
tuple t, then we ask the user for the provenance of t. Given
the provenance, we can again interpret, save, and incorpo-
rate the insertion in the same manner. If the user does not
give the provenance of t, then we create a special provenance



S∗, and use it as the provenance of t. We assume that S∗

appears in any input set I .

The New hlog Semantics: We are now ready to recon-
sider hlog semantics. In this new semantics, we redefine the
notion of a user feedback transaction. Here, given an up-
date (St, M

′) on an output tuple t of an operator, a trans-
action T first incorporates the update (see the preceding two
paragraphs), and then propagates it up the execution graph,
exactly as in Section 2.3.1.

However, before propagating the update up the graph,
T saves the update (St, M

′) as a tuple for operator p so
that if a subsequent transaction T ′ re-executes p, T ′ can
incorporate this update. Over time, many updates may be
saved for p, and they should be saved in their arrival order.
When transaction T ′ incorporates these updates, it should
incorporate them in that order.

As for transaction T itself, whenever it re-executes an op-
erator q (that depends on p in the execution graph), T checks
to see if q has any saved updates, and then incorporates these
updates in their arrival order.

Again, we assume that each user transaction T will x-lock
the whole execution graph at the start (of its execution) and
unlock the graph after the finish.

Let T = {T1, T2, . . . , Tn} be a set of user transactions, as
defined above, during a time period [x, y]. It is easy to see
that the above graph-locking algorithm guarantees a serial
execution of the transactions. Hence, at the end of the time
period, the final output of graph G (i.e., the output of the
root operation) incorporates all user updates encoded in T ,
in some serial order. Here, the notion of incorporating user
updates is more expressive than that in Section 2.3.1, in the
sense that a previous user update is clobbered only if there
exists a new user update on the same tuple with the same
provenance.

In the rest of the paper, we will use the above conceptual
algorithm to express the semantics of hlog.

2.4 Extending hlog to Handle II
So far we have introduced hlog as a language for writ-

ing IE programs. Since real-world applications often involve
II activities, such as schema matching and de-duplication,
developer U also needs a language to write II programs. Fur-
thermore, since II is often semantics-based, and automatic
II techniques are error prone, U also wants to leverage user
feedback to improve the quality of II results.

Consequently, we have extended hlog to support II op-
erations, in the same way that we support IE operations.
Specifically, to create an II operator p, developer U first
models it as a p-predicate or a p-function. Then U imple-
ments a procedure g (e.g., in Perl) that carries out the II
activity, and associates p with g. To enable users to provide
feedback on p’s results, U writes a user feedback rule in a way
similar to those written for IE predicates. We are currently
exploring the power and limitation of this hlog extension in
handling real-world II applications.

3. EXECUTING HLOG PROGRAMS
We now describe a baseline solution to execute hlog pro-

grams, according to the user update semantics discussed in
Section 2.3.2.

Let P be an hlog program. In Section 2.3.2, we already
discuss a high-level algorithm to execute P , including the
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Figure 3: Example provenance tables for a case
where operator p takes as input two tables and pro-
duces as output a table with three tuples.

initial execution and the subsequent loop of waiting for and
processing user feedback. In this section, we focus on two
most difficult steps of this algorithm: how to store prove-
nance and how to exploit it to incorporate user feedback.
The remaining steps are relatively straightforward.

3.1 Storing Provenance Data
Let p be an operator that takes as input two tables I1 and

I2 and produces as output a table O. Recall from Section
2.3.2 that the provenance R of each tuple t ∈ O is then a
pair (S1, S2), where S1 ⊆ I1 and S2 ⊆ I2. That is, p uses
the tuples in S1 and S2 to produce tuple t. Our goal is to
store the provenances of all tuples in O.

Assume that all tuples in I1, I2, and O come with unique
IDs (it is relatively easy to modify p to do so). Then we can
store the above provenances in four tables, as illustrated in
Figure 3. Table PO stores for each tuple in O the ID of its
provenance R. Thus the first row of PO states that output
tuple with tid=1 in O has a provenance with rid=1.

Table PR then stores for each provenance the IDs of its
component sets, one for each input table. The first row
of PR states that provenance with rid=1 consists of sets
with sid1=1 and sid2=1. Table PS1 then stores for each
component set all of its component tuples. The first row of
PS1 for example states that the set with sid1=1 consists of
the two tuples with tids 1 and 3 in the input I1.

In the case that p takes a single input table, or more than
two input tables, we can store its provenances in a simi-
lar fashion. For each operator p whose output is subject
to user feedback, we require p to output provenance tables
as described above, after each execution. Whenever a user
updates the output of p, the provenance tables must also be
updated, to reflect the user update. Such updating is rel-
atively straightforward, and we will not describe it further,
for space reasons.

3.2 Storing and Incorporating User Feedback
Consider an operator p that takes as input a single table.

We now use p to describe how we store and incorporate user
feedback. (The algorithm below generalizes in a straightfor-
ward fashion to the case of multiple input tables.)

Suppose when executed for the first time, p takes input I1

and produces output O1, as well as provenance tables PO1,
PR1, and PS1, as illustrated in the left part of Figure 4.

Now suppose a user updates a tuple t ∈ O1, with the
provenance rid1. Then we can just store this update as rid1

(after we have updated output table O1 and the provenance
tables appropriately). Recall from Section 2.3.2 that concep-
tually we should store a user update as (St, M

′), specifying
that the value of p(St) is M ′. Here, St is represented by
rid1, and M ′ is captured inside O1, that is, M ′ consists of
exactly those tuples in O1 that have provenance rid1. Thus
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Figure 4: An example of incorporating user feed-
back.

as long as we store rid1 and O1, we have effectively stored
(St, M

′).
Suppose that two more user updates come in on the out-

put of p, and that we further store these updates as rid2 and
rid3 (see Figure 4). In general, then, the set of user updates
stored at p is a set of provenance IDs (together with the
latest output table of p). These provenance IDs are unique.
That is, if we have two updates with the same provenance,
then the latter will override the former, and so we only need
to store each provenance ID once.

Now suppose a transaction T re-executes p with input I2,
and produces output O2, together with provenance tables
PO2, PR2, and PS2 (see the right part of Figure 4). Trans-
action T must then incorporate user updates rid1, rid2, and
rid3 into the output of p.

Consider the first update rid1 (we can process these up-
dates in any order; the end results will be the same). To
incorporate this update, we first use the provenance tables
PR1 and PS1 to find the provenance S1 ⊆ I1 (see Figure 4).
Next, we check to see if S1 is also a provenance in I2. If so,
then we say that update rid1 is applicable to I2.

In this case, suppose the provenance ID of S1 in I2 is
rid′

1 (which can be different from rid1, see Figure 4). Then
to incorporate update rid1, we remove from O2 all tuples
with provenance rid′

1, then copy into O2 all tuples of O1

with provenance rid1. Note that if update rid1 conceptually
specifies that p(St) must be M ′ (as discussed earlier), then
copying from O1 to O2 in effect sets the value of p(St) in O2

to be M ′.
If S1 is not a provenance in I2, then we say that the update

rid1 is not applicable to I2, and we ignore this update. We
proceed in a similar fashion with updates rid2 and rid3.

After we have processed all of these updates, we revise the
set of updates stored at operator p. To do so, we keep all
updates that are applicable, but revise their rids, and drop
all inapplicable updates. For example, since update rid1

is applicable, we keep it, and revise its rid to rid′
1 (since

we now store I2 and O2, no longer I1 and O1, where rid
is a valid rid). Suppose update rid2 is applicable, then we
do the same, and keep the new rid rid′

2. Suppose update
rid3 is not applicable, then we will drop it from the set of
updates maintained at operator p (see Figure 4). In theory,
we can keep the inapplicable updates around, in case later
they become applicable. Doing so, however, would require us
to store extra input and output tuples (i.e., the St and M ′)
for each inapplicable update. This may take up a significant
amount of space over time. Hence, for now we choose not
to keep the inapplicable updates around.

We have thus described an algorithm to process user up-
dates. Only one minor issue remains. Earlier we state that
given a provenance S1 in I1, we must check to see if it is also

a provenance in I2. Checking this by comparing the con-
tents of the tuples is often expensive. We can speed up this
checking using a variety of methods, including incremental
ID maintenance, which we will discuss in Section 4.2.

4. OPTIMIZING HLOG EXECUTION
We now describe several optimization techniques to speed

up program execution. First we describe how to incremen-
tally execute an IE/II operator. Then we describe two con-
currency control methods that exploit the graph structure of
an IE/II program to achieve higher degrees of concurrency
than the whole-graph-locking method in Section 2.3.

4.1 Incremental Execution
In the baseline solution, we execute an operator p from

scratch each time. This is inefficient when only a small
amount of p’s input has been changed, and most of p’s out-
put remains the same. In this section, we describe how to
execute an IE/II operator efficiently by incrementally updat-
ing its output. The basic idea is to exploit certain properties
of the operator with respect to incremental update.

Incrementally updating the output of an operator after its
input has been changed is not a new problem. In the rela-
tional setting, view maintenance [2, 23] considers a similar
problem, where we would like to incrementally update a ma-
terialized view after its input relations have been changed.
As one solution, we can use the distributive property [2] of
the basic relational operators (i.e., σ, π and ��) to derive
incremental updates to the view.

If we view an IE/II operator p as a view definition, then
the input of p is the set of base relations in the view defi-
nition, and the output of p is the materialized view. How-
ever, unlike relational operators whose semantics are well-
understood, the operator p in general is a blackbox, and the
distributive property may not hold on p.

To incrementally execute an IE/II operator, we extend
the ideas from relational view maintenance. Instead of using
a single property to describe all operators, we introduce a
set of fairly general properties. Although an operator can
be a blackbox, we can make it less “black” by allowing the
developer to specify which properties hold for the operator.
Given these properties, we can then update the output of
the operator incrementally.

In the following, we first present five such properties. Then
we provide an algorithm that exploits these properties to
construct incremental versions of an operator automatically.

Incremental-Update Properties: Let p be an operator
which takes n tables I1, · · · , In as input, and outputs table
O. Each property below captures some incremental relation-
ship between an input table Ii ∈ {I1, · · · , In} and output O.
For conciseness, we use Ri(S) to denote I1, · · · , In with Ii

replaced by S. That is, Ri(S) = I1, · · · , Ii−1, S, Ii+1, · · · , In.

Definition 1 (Closed-Form Insertion). An operator
p is closed-form insertable w.r.t. an input table Ii if and only
if there exists a function f such that for any set ΔI of tu-
ples to be inserted into Ii, the condition p(Ri(Ii ∪ ΔI)) =
f(Ri(ΔI),O) holds.

Definition 2 (Closed-Form Deletion). An operator
p is closed-form deletable w.r.t. an input table Ii if and only
if there exists a function f such that for any set ΔI of tu-
ples to be deleted from Ii, the condition p(Ri(Ii − ΔI)) =
f(Ri(ΔI),O) holds.



The two closed-form properties state that instead of exe-
cuting p over the updated Ii (together with other input ta-
bles) from scratch, we can execute the function f that exam-
ines ΔI , which is often much smaller than Ii, to compute the
new output. The function f may invoke p on Ri(ΔI). For
example, consider the crawl operator in Figure 1.b, which
crawls the set of data sources in table dataSources to find
Web pages. If we add new data source tuples into table
dataSources, we can obtain the new output by executing the
function f that first crawls the new sources and then inserts
the crawled Web pages into the current output.

To define the next property, we first define the notion of
partitioning function. We say a function f is a partitioning
function w.r.t. a table I if and only if f partitions I into k
disjoint subsets {S1, · · · , Sk}, where k > 0, and I =

⋃k
i=1 Si.

Denote the application of f to I as f(I) = {S1, · · · , Sk}.
Definition 3 (Input Partitionability). An operator

p is input partitionable w.r.t. an input table Ii if and only if
there exists a partitioning function f on Ii such that

• p(I1, · · · , In) =
⋃

Sk∈f(Ii)
p(Ri(Sk)), and

• f(Ii) is a non-trivial partitioning, in that at least one
subset Sj , j ∈ [1, k], is a proper subset of Ii.

Intuitively, a partitioning function f partitions an input
table into disjoint sub-tables. The input partitionability
property implies that the output of an operator on one sub-
table is independent of those of the other sub-tables. That
is, if the input table is changed, we can update the output
by first identifying all the changed sub-tables in the input,
applying the operator to them, and then combining the out-
puts of these sub-tables with the outputs of those unchanged
sub-tables. For example, consider the operator extractTitle
in Rule R2 of Figure 1.b, which extracts titles from Web
pages. A simple partitioning function on its input table
webPages is to partition the table tuple by tuple. As a re-
sult, the output of the operator over the entire input table is
the union of the titles extracted from each page. Note that
extractTitle also has the two closed-form properties above.

As another example, consider a simple IE/II program that
discovers people entities from a set of Web pages. First, the
program takes each seed name (e.g., “David Smith”) from
a dictionary, and generates name variants (e.g., “D. Smith”
and “Smith, D.”). It then finds the mentions of these vari-
ants in the Web pages. After that, it executes an II operator
getPeopleEntities that groups the obtained mentions by their
seed names, and then outputs an entity for each group. The
operator exhibits the input partitionability property where
the partitioning function partitions the input mentions by
their seed names. If new mentions are inserted into the in-
put of the operator, we can incrementally update its output
by executing the operator over the partitions that the new
mentions belong to, and then unioning the outputs with
those of the other partitions. However, unlike in the pre-
vious example, this operator does not have the closed-form
properties.

Definition 4 (Partition Correlation). An operator
p is partition correlated w.r.t. an input table Ii if and only if
there exists a function f such that for an arbitrary partition
〈S1,S2〉 of Ii where Ii = S1∪S2, the condition p(I1, · · · , In) =
p(Ri(S1)) ∪ p(Ri(S2)) ∪ f(Ri(S1), Ri(S2)) holds.

Unlike the input partitionability property where the out-
put of an operator comprises the output of the operator

over each input partition, the partition correlation property
captures the cases where the output also contains results
obtained from both partitions. Take a data matching oper-
ator p for example. Suppose that p takes a single table as
input. For each pair of input tuples, p outputs their tuple
IDs, together with a score measuring the similarity of the
two tuples. Suppose a few more tuples are now inserted into
the input table. For certain types of data matching oper-
ator p, we can incrementally update the output as follows.
Let the old input table be partition S1 and the set of in-
serted tuples be S2. First, we execute p over S2 to compute
p(R1(S2)) = p(S2). Next, we apply a function f to S1 and
S2. The function computes the similarity score of each pair
of tuples, one from each partition. We then union p(S1),
which is the old output O, with p(S2) and f(S1, S2) to get
the new output.

Definition 5 (Attribute Independence). Let A be
a proper subset of attributes in an input table Ii, and Ā be
the rest of the attributes in Ii. An operator p is independent
of Ā in Ii if and only if given any two instances S1 and S2

of Ii, πA(S1) = πA(S2) ⇒ p(Ri(S1)) = p(Ri(S2)).

Some operators evaluate only a subset of attribute values
of an input tuple. In this case, changes to the unused at-
tributes have no effect on the output of such operators. The
attribute independence property captures this case.

The incremental properties above are operational. Each
property implies its own way of incrementally updating the
output of an operator. Thus, to incrementally execute an
operator p, we need to know which properties apply to p and
for each property, the specific function f that realizes it (e.g.,
the function f that satisfies the condition p(Ri(Ii ∪ ΔI)) =
f(Ri(ΔI),O) in Definition 1). Given these, we can construct
incremental versions of p accordingly.

Property Specification: To allow the developer to spec-
ify the incremental-update properties of an operator p, we
extend hlog by adding a language construct“p(Ii):{(type,f)}”.
The construct lists a set of properties that p has with re-
spect to its input table Ii. Each property is specified by a
pair (type, f), where type is the type name of the property,
and f is the function that the developer needs to provide
to instantiate the property (See Definitions 1-5). Here, type
can take values from {ci, cd, ip, pc, ai}. The values in the
set stand for closed-form insertion (ci), closed-form deletion
(cd), input partitionability (ip), partition correlation (pc),
and attribute independence (ai). The function f has dif-
ferent forms depending on the type of the property. For
example, if type = ci, then f takes as input (1) a set of
tuples inserted into an input table Ii, (2) all the other in-
put tables, and (3) the old output table, and produces a
new output table. If type = ai, then f is the function that
projects out the set of attributes that are irrelevant to the
operation of p (See Definition 5).

Figure 5 shows an example of property specifications for
predicates crawl, extractTitle, and extractAbstract in Figure
1.b. In the figure, P1 specifies two closed-form properties for
predicate crawl. (The two properties must be specified in
pairs. That is, if the developer U specifies the closed-form
insertion property for an operator p, U must also specify the
closed-form deletion property for p.) The closed-form inser-
tion property, for example, is obtained from the observation
that when new tuples are added to dataSources, we can up-
date table webPages by first crawling pages from these new



# f1: crawls pages from the new data sources, and inserts them into webPages
# f2: deletes from webPages the pages crawled from the deleted data sources
P1:        crawl(dataSources) : {(ci, f1), (cd, f2)}
# f3: partitions webPages tuple by tuple
P2:        extractTitle(webPages) : {(ip, f3)}
P3:        extractAbstract(webPages) : {(ip, f3)}

Figure 5: An example of incremental-update prop-
erty specification.

sources and then adding them to webPages. Furthermore,
P2 and P3 specify input partitionability properties for pred-
icates extractTitle and extractAbstract. They share the same
partitioning function f3 because table webPages can be par-
titioned in the same way (i.e., tuple by tuple) to satisfy the
property for both predicates. Note that the developer does
not need to specify all the applicable properties for an opera-
tor. For example, in addition to the closed-form properties,
the operator crawl also has the input partitionability and
attribute independence properties. Instead of specifying all
the properties, the developer can specify those that he or
she deems cost-efficient to execute.

Also note that each specification alone enables us to in-
crementally execute an operator p when among all the in-
put tables of p, only the one given in specification has been
changed. Therefore, to enable incremental update for any
changes to the input of p, the developer needs to specify
properties for each input table of p.

Algorithm: Once the developer has specified incremen-
tal properties for an operator p, we can create incremental
versions of p accordingly. Figure 6 gives the pseudo-code of
the algorithm that we currently use to realize incremental
execution of p for each property specification. Briefly, the
algorithm takes as input the specification, the old input and
output tables, and the new input table I ′

i. To compute the
new output, the algorithm first computes I+ and I−, the set
of tuples inserted into Ii and the set of tuples deleted from
Ii. It then executes the function f given in the specification
to update the old output.

4.2 Incremental ID Maintenance
Consider a single-input operator p. Let I1 and O1 denote

its input and output from its previous execution, and I2 and
O2 denote its new input and output. Recall from Section 3.2
that to decide whether a user update F to O1 is applicable
to O2, we check whether the provenance R ⊆ I1 of F is also
a provenance in I2. One way to check this is to compare the
contents of tuples in R with those in each provenance of I2.
But this is often expensive. If two tuples t ∈ I1 and t′ ∈ I2

have the same ID if and only if they have the same content,
then we only need to compare R with each provenance in I2

by their tuple IDs, which is much more efficient. Call such a
condition ID consistency. To ensure this condition, clearly
we need to reconcile the tuple IDs whenever the input table
I1 of p has been re-computed to be another input table I2,
by some operator q (below p in the execution graph).

By using incremental update, we can save a lot of ID rec-
onciliation effort. This is because when we incrementally
execute q, the unchanged tuples are retained in the output
table of q (which is the input table I2 discussed above for
p). Thus for these tuples, their IDs are consistent (i.e., the
same), and we only need to reconcile IDs for the newly gen-
erated output tuples. Specifically, for each new tuple t, we

Algorithm: Generic Incremental Update Algorithm
Input: Spec: p(Ii)← (type, f)

I1, · · · , In – the old input tables of p
I′i – the new value of the ith input table
O – the old output table of p

Output: O′ – the new output table
Process:
1. O′ = ∅; I+ = I′i − Ii; I− = Ii − I′i;
2. if (type = ip) then
3. {S1:u} = f(Ii); {S′

1:v} = f(I′i);
4. for each P ∈ {S1:u} ∩ {S′

1:v}
5. O′ = O′ ∪ {output of partition P in O};
6. for each P ∈ {S′

1:v} − {S1:u}
7. O′ = O′ ∪ p(Ri(P ));
8. else if (type = ci) then
9. O′ = f(Ri(I

+), O);
10. else if (type = cd) then
11. O′ = f(Ri(I−), O);
12. else if (type = ai) then
13. if (f(I+) �= f(I−)) then
14. O′ = p(Ri(I′i));
15. else O′ = O;
16. else if (type = pc) then
17. U = p(Ri(I−));
18. O′ = O − U − f(Ri(I−), Ri(Ii − I−));
19. U = p(Ri(I

+));
20. O′ = O′ + U + f(Ri(I+), Ri(Ii − I−));
21. return O′;

Figure 6: Generic Incremental Update Algorithm.

check whether t is present in the old output. If so, we set t’s
ID to be its ID in the old output. Otherwise, we assign t a
new ID, which is guaranteed to be different from that of any
other tuple. Therefore, by leveraging incremental execution,
we can maintain ID consistency incrementally.

The above notion of ID consistency, however, requires the
tables to have set semantics, that is, they cannot contain du-
plicates. This requirement may not work for certain IE/II
operators in practice. To address this problem, we can em-
ploy a more relaxed notion of ID consistency. We say that
tuple IDs are consistent across two tables I1 and I2 if when-
ever two tuples t1 ∈ I1 and t2 ∈ I2 have the same ID, they
are duplicates. This consistency notion is more relaxed in
that two tuples with different IDs can still be duplicates.

Using this relaxed ID consistency notion, when checking
whether provenance R ⊆ I1 is also a provenance of I2, for
each tuple t ∈ R, we check for its presence in I2 by first
checking if its ID appears in I2. Only if we do not find its
ID in I2 would we resort to comparing its content against
the content of tuples in I2.

4.3 Improved Concurrency Control
The simple graph-locking policy in Section 2.3 requires

a transaction to exclusively lock the entire execution graph
before it starts. Since a transaction only executes one opera-
tor at any time, exclusively locking the whole graph excludes
other transactions from executing other operators. By ex-
ploiting the fact that an execution graph is a DAG, we can
design more efficient concurrency control solutions. In what
follows we describe two such methods: table locking and
operator skipping.

4.3.1 Table Locking
Recall that a user feedback transaction starts by updating

the table whose view the user has edited. Refer to this
table as the starting table. The transaction then re-executes



operators that depend on the starting table, and so on. It
terminates after it has re-executed the root-node operator.

The table-locking policy does not require a transaction T
to lock the entire execution graph G. Instead, it requires
T to acquire locks on individual tables before it updates its
starting table or executes an operator. Specifically:

• Before updating the starting table S, T requests an ex-
clusive lock on S. Let p be the operator2 that produces
S. T also requests exclusive locks on the provenance
tables and the update table (i.e., the table stores all
user updates to S) of p, in an all or nothing fashion.
T releases these locks when the update is completed.

• Before executing an operator p, T requests share locks
on all the input tables of p in an all or nothing fashion.

• Before writing the output of p, T acquires exclusive
locks on p’s output, provenance, and update tables, in
an all or nothing fashion. After writing the output, T
releases these locks, together with the share locks on
the input tables of p.

Compared to the two-phase locking of the execution graph,
the table-locking policy allows a transaction to interleave its
lock acquisition and releasing activities. To execute an op-
erator p, a transaction locks only the tables related to p.
Furthermore, it releases these locks as soon as the output
of p is written. Therefore, the policy allows other transac-
tions to execute an operator q as long as there is no input
dependency between p and q (i.e., p and q are not connected
in the execution graph). The following theorems state that
the table-locking policy guarantees the consistency of the
system and that concurrent execution is deadlock-free.

Theorem 1 (Consistency). Given a set of transac-
tions {T1, T2, · · · , Tn}, if all transactions follow the table-
locking policy, then the system remains consistent after exe-
cuting these transactions if it is consistent before.

Theorem 2 (Deadlock Freedom). The table-locking
policy cannot produce a deadlock.

We omit the proofs for space reasons. See the extended
technical report [6] for more details.

4.3.2 Operator Skipping
Consider a set of transactions {T1, · · · , Tn} running con-

currently on an execution graph G. Consider an operator p
in G. Let T be the last transaction that executes p. Recall
that a transaction executes operators in G upwards. Thus
at the time T executes p, all the input tables of p are at
their final states (i.e., no other transactions will change the
value of any input table of p). This suggests that once the
input tables of p are at their final states, it is sufficient to
have only one transaction execute p to update its output. In
other words, transactions other than T can skip executing
p, and let T execute p and write the output.

Suppose after T executes p, the output of p is changed.
Then by definition, T must execute each operator q which
takes p’s output as input. Suppose for simplicity that q is a
single-input operator. Then T also writes the final value of

2If S is an extensible predicate, then we pretend that it is
the output of a dummy operator (see Section 2.3.2). In this
case, T x-locks S only.

the output of q. This suggests that a transaction T ′ (T ′ �= T )
can also skip executing q since the final state of q is set by
T . Applying this reasoning recursively, T ′ can skip executing
those operators in G that are reachable from p. If T ′ can
skip all the operators it needs to execute, T ′ can commit
immediately given that T commits eventually.

Based on this idea, we extend the table-locking policy to
allow a transaction to skip executing an operator if some
other transaction will eventually read the final values of the
input of the operator and overwrite the output. We call the
extended policy operator skipping.

To implement operator skipping, we maintain a transac-
tion ID list for each operator. When a transaction T starts,
it adds its ID to the list of each operator it is going to ex-
ecute. Before executing an operator p, T checks whether
it is the only transaction in p’s list. If so, T executes p;
otherwise, T skips p. In either case, T removes its ID from
p’s list. Operator skipping also guarantees consistency and
deadlock freedom since it follows the table-locking policy.

5. EMPIRICAL EVALUATION
As a proof of concept, we conducted a preliminary case

study by applying our user feedback solution to DBLife [13],
a currently deployed IE and II application. Our goal is to
evaluate the efficiency of the solution in incorporating user
feedback into IE and II programs, focusing specifically on
the optimization techniques proposed in Section 4. The ex-
periments show that the incremental execution approaches
can reduce the program execution time considerably, and
that by exploiting the DAG structure of an execution graph,
the concurrency control methods, table locking and operator
skipping, can significantly improve the system performance
in terms of both transaction throughput and response time.

Application Domain: DBLife [13] is a prototype sys-
tem that manages the data of the database community us-
ing IE and II techniques. Given a set of data sources (e.g.,
homepages of database researchers and conference websites),
DBLife crawls these data sources regularly to obtain data
pages, and then applies various IE and II operators to the
crawled pages to discover entities (e.g., people and organi-
zations) and relationships between them (e.g, affiliated-with
and give-talk). A variety of user services, including brows-
ing and keyword search, are then provided over the obtained
entities and relationships.

Methods: To evaluate the effectiveness of the framework,
we implemented a modified version of the DBLife system
under the framework. The modified DBLife system contains
13 operators, as listed in Table 1. These operators, rang-
ing from crawling data sources to extracting mentions, to
finding entities and relationships, cover the most essential
operators in the entire DBLife workflow. Input to the modi-
fied DBLife program consists of four tables, which store data
sources, researcher names, organization names, and publica-
tion titles, respectively. Output of the program consists of
three entity tables and three relationship tables, produced
by the last six operators in Table 1.

To evaluate the efficiency of the system in incorporating
user feedback, we exposed the output of each operator, to-
gether with the four input tables, for user feedback. For sim-
plicity, we used identity views to expose these 17 tables. We
built a transaction simulator to generate user feedback trans-
actions on one snapshot of the program data. The simulator



Inc. Properties
DBLife Operators ci cd ip ai pc
Get Data Pages � � � � �
Get People Variations � � � �
Get Publication Variations � � � �
Get Organization Variations � � � �
Find People Mentions � � � �
Find Publication Mentions � � � �
Find Organization Mentions � � � �
Find People Entities �
Find Publication Entities �
Find Organization Entities �
Find Related People � � � �
Find Authorship � � �
Find Related Organizations � � � �

Table 1: Incremental properties of DBLife operators.

generated a user transaction as follows. First, it randomly
selected one of the 17 tables. Then it randomly deleted one
tenth, inserted one tenth, and modified another one tenth of
the tuples in the table to simulate user feedback.

5.1 Incremental Execution
Broad Applicability of Incremental Properties: When
developing DBLife [13], we did not expect its operators to
be executed incrementally. Thus, we did not design them
to be incrementally updatable. However, all the DBLife op-
erators surprisingly have at least one incremental property
presented in Section 4.1, and many of them have several.
Table 1 lists the incremental properties (checkmarked in the
table) of the operators we experimented with. This sug-
gests that these properties may have a broad applicability
to many real-world IE and II operators.

Efficiency of Incremental Execution: To evaluate the
incremental update and incremental ID maintenance meth-
ods in Sections 4.1 and 4.2, we developed three versions of
DBLife. They are (1) the basic version which executes each
operator from scratch, (2) the incremental update version
which executes the operators incrementally (the properties
used for each operator are underlined in Table 1), and (3)
the incremental update with ID maintenance version which
leverages incremental update to maintain ID consistency.

In the experiment, we first initialized each version of the
system by running the DBLife program over a given set of
data sources. We varied the size of the set so that it gave
100-600 pages, at an interval of 100 pages. For each version,
we then simulated 170 user feedback transactions, 10 on
each table. Next, we executed these transactions separately.
After each transaction completed, we restored the system to
its initial state.

Figure 7 compares the average transaction execution time
in the three versions as the size of data sources varies. As
we expected, the basic version has the longest average exe-
cution time. As the size of data sources increases, the gap
between the basic version and the incremental versions in-
creases. Note that in the experiment, each transaction was
simulated to update about one-third of the tuples in a table.
Thus if a transaction updates only a few tuples in a table as
a user is likely to do, the gain of incremental update will be
even more significant. Figure 7 also suggests that leverag-
ing incremental update to maintain ID consistency is a good
strategy to reduce the execution time.
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Figure 7: Transaction runtime in different DBLife
versions.
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Figure 8: Comparison of transaction throughput.

5.2 Concurrency Control
In the next step, we evaluated the two concurrency con-

trol policies proposed in Sections 4.3.1 and 4.3.2. We used
graph-locking policy which requires a transaction to exclu-
sively lock the entire execution graph before execution as
the baseline. In the experiment, we fixed the size of data
sources to 500 pages, and used the incremental update with
ID maintenance approach to execute the operators. Again,
we simulated 170 user feedback transactions, 10 for updating
each table. These transactions were then started one after
another in a random order, at an interval of one second. The
same order was used for comparing different policies in the
experiment. We recorded the starting time and the com-
mit time of each transaction, and also measured the space
consumption of the system at different times.

Figure 8 shows the number of transactions completed at
any given time. The total time to complete 170 transac-
tions for the graph-locking (GL), table-locking (TL) and
operator-skipping (OS) policies is 7605, 5965 and 641 sec-
onds, respectively. It is clear that TL and OS outperform
GL since they allow transactions to be executed concur-
rently. However, the improvement of TL over GL in terms
of throughput is not as significant as we expected. This is
because many of the operators are long-running and CPU-
bounded. Thus although TL allows multiple transactions to
execute different operators at the same time, these transac-
tions have to compete for CPU intensively.

Figure 8 also demonstrates that OS outperforms the other
two policies significantly in terms of transaction through-
put in any period of time. This is not surprising because
each transaction by definition must propagate updates on
its starting table all the way to the end tables in the pro-
gram. Thus two transactions may easily overlap in terms of
the operators to execute. This is especially true for those



min max average
Graph-locking 0s 7,584s 3,203s
Table-locking 1s 5,485s 1,841s
Operator-skipping 0s 457s 43s

Figure 9: Comparison of transaction response time.

Figure 10: Space consumption under different con-
currency control policies. Numbers in brackets give
the number of active transactions at a certain time.

operators that produce the end tables. In particular, big
transactions (e.g., those updating the input tables) usually
subsume small transactions (e.g., those updating the end
tables). Therefore, a transaction is likely to skip execut-
ing an operator p if some other transaction will eventually
overwrite the output of p.

Table 9 lists the response time of the transactions un-
der different policies. The average response time of table-
locking is nearly one half of that of graph-locking, and the
average response time of operator-skipping is only 1/40 of
that of table-locking. Comparing the maximum response
time of the three policies, we also observe much difference.
Operator-skipping outperforms the other two significantly
because small transactions tend to commit immediately when
there are active transactions in the system that subsume
them. As a result, fewer transactions compete for CPU or
IO resources.

Figure 10 shows the amount of space used by DBLife at
different time points during concurrent execution. As we
can see, the total amount of space consumed remained at the
same level, regardless of the number of active transactions in
the system. Variations were mostly caused by the updates
from the transactions.

By decomposing the total space consumption in Figure 10,
we see that the extra amount of space incurred to store the
provenance data and the user update data is reasonable. On
average, provenance data only takes about 5.7% of the space
that the program data needs. Furthermore, the growing rate
of the space consumption is much lower than that of the data
sources. This is because intermediate results take up most
of the space, and they are independent of the data sources.

6. RELATED WORK
Soliciting and incorporating user feedback to improve IE/II

results has received much attention in recent years. Recent
works include using user feedback to correct schema match-
ing results [15, 36], to generate integrated schemas [9], and

to manage data in community information systems [17, 12,
29] and dataspace systems [19, 27]. While these works fo-
cused on leveraging user feedback to improve results of indi-
vidual IE/II operations, our work aims to build an end-to-
end framework where user feedback can be incorporated into
various stages of a complex workflow. To allow developers
to write programs for such workflows, we also proposed a
declarative language hlog, which extends recently developed
IE language xlog [35] by providing constructs for specifying
user interactions.

Using the derivations of updates, i.e., their provenance [5,
4] or lineage [10] for update reconciliation was also explored
in [22]. In their work, the authors proposed a provenance
model and used it for trust policies and incremental deletion.
In contrast, we use provenance information to interpret the
semantics of user updates and incorporate updates into ex-
ecution results.

Many early works [2, 23, 24] have proposed and studied in-
cremental view maintenance algorithms. Recent works have
also considered how to incrementally execute IE/II opera-
tors [1, 7]. The proposed approaches, however, are specific
to schema matching [1] and information extraction [7] set-
tings. Thus they are not easily extensible to other operators.
Our goal, in contrast, is to support incremental execution for
a broad class of operators, whose semantics is unknown to
the system.

Transaction concurrency control in relational databases
has been well studied in the literature [21, 30, 31]. To the
best of our knowledge, our work is the first attempt in ex-
ploiting the DAG structure of IE/II programs to provide
efficient concurrency control outside RDBMS.

7. CONCLUSION AND FUTURE WORK
Despite recent advances in improving the accuracy and ef-

ficiency of IE/II programs, writing these programs remains a
difficult problem, largely because automatic IE/II are inher-
ently imprecise, and there is no easy way for human users
to provide feedback into such programs. To address this
problem, we proposed an end-to-end framework that allows
developers to quickly write declarative IE/II programs with
the capabilities of incorporating human feedback. In addi-
tion to the framework, we also provided optimization tech-
niques to improve the efficiency and concurrency of program
execution. Experiments with DBLife demonstrated the util-
ity of the framework.

Our work has raised more research problems than those
solved. For example, what are the strength and weakness of
different user interfaces in supporting human interactions?
How can we extend the framework to support views over
multiple tables? Supporting multiple-table views requires
us to revisit the semantics of program execution. This is
because user updates on such views may potentially update
multiple tables in an execution graph, and incorporating up-
dates will be much more complicated. Furthermore, in this
work, we assume that users are either reliable or there is a
control mechanism that can filter and aggregate unreliable
user feedback into reliable feedback. As a next step, we plan
to investigate issues raised from unreliable user feedback,
and develop such mechanisms. Finally, we plan to conduct
user studies to evaluate the usability of the framework.
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