
Modeling Entity Evolution for Temporal Record Matching

Yueh-Hsuan Chiang
University of Wisconsin

Madison
1210 W Dayton Street

Madison, WI 53706, USA
yhchiang@cs.wisc.edu

AnHai Doan
University of Wisconsin

Madison
1210 W Dayton Street

Madison, WI 53706, USA
anhai@cs.wisc.edu

Jeffrey F. Naughton
University of Wisconsin

Madison
1210 W Dayton Street

Madison, WI 53706, USA
naughton@cs.wisc.edu

ABSTRACT
Temporal record matching recognizes that if the entities represented
by the records change over time, approaches that use temporal in-
formation may do better than approaches that do not. Any such
temporal matching method relies at its heart on a temporal model
that captures information about how entities evolve. In their pio-
neering work, Li et al. used an efficiently computable model that
simply tries to predict if an attribute is expected to change over a
given time interval. In our work, we propose and evaluate a more
detailed model that focuses on the probability that a given attribute
value reappears over time. The intuition here is that an entity might
change its attribute value in the way that is dependent on its past
values. In addition, our model considers sets of records (rather than
simply pairs of records) to improve robustness and accuracy. Ex-
perimental results show that the resulting approach improves both
accuracy and resistance to noise while incurring a minimal over-
head.

1. INTRODUCTION
Record matching takes a collection of records and determines

which records belong to the same real world entity (see [8, 12] for
recent surveys). The vast majority of work in record matching has
assumed that the records come with no temporal information. In
practice, however, we often have temporal information in the form
of time stamps associated with records. Examples include author
records in DBLP [2], donor records in federal campaign finance
data sets [3], and time stamps in tweets [4].

It has been shown that approaches that use temporal information
can do better than approaches that do not, especially when the en-
tities described by a data set may change or evolve their attribute
values over time [14]. Any such temporal matching method relies
at its heart on a temporal model that captures information about
how entities evolve. This immediately gives rise to the question:
“what kind of model should one use?” It should be simple enough
to be easy to construct, yet powerful enough to be effective and
robust in the presence of noise.

In their pioneering work, Li et al. used an efficiently computable
model that simply tries to predict if an attribute is expected to
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Table 1: Records of the same author from DBLP.

rid eid name affiliation co-authors year
r1 e1 Lei Wang Xidian University Licheng Jiao 1999
r2 e1 Lei Wang Xidian University Licheng Jiao 2000
r3 e1 Lei Wang Xidian University Licheng Jiao 2001
r4 e1 Lei Wang Xi’an Univ. of Tech. Yinling Nie, Weike Nie, Licheng Jiao 2005
r5 e1 Lei Wang Xi’an Univ. of Tech. Yinling Nie, Weike Nie, Licheng Jiao 2006
r6 e1 Lei Wang Xi’an Univ. of Tech. Liya Wang, Yinling Nie 2006
r7 e1 Lei Wang Xidian University Jiaji Wu, Licheng Jiao, Li Zhang, Guangming Shi 2007
r8 e1 Lei Wang Beijing U. of A&A Zheng Wang, Chen Yang, Li Zhang, Qiang Ye 2009
r9 e1 Lei Wang Xidian University Licheng Jiao, Jiaji Wu, Guangming Shi 2009
r10 e1 Lei Wang Xidian University Licheng Jiao, Jiaji Wu, Guangming Shi, Yanjun Gong 2010

change over a given time interval [14]. Because it only models
“change” and “no change” it, for example, cannot tell the differ-
ence between an attribute that changes from one value to another
chosen at random, and an attribute that changes only between val-
ues drawn from a small, entity-dependent set. Their model is also
a “point to point” model that considers pairs of records rather than
sets of records.

We present and evaluate a more complex model. It is not “point
to point”; rather, when processing records in increasing temporal
order, and deciding whether or not to add a new record to a growing
cluster, it uses all the records in the cluster to answer the question.
That is, rather than saying “given record r1, does record r2 refer
to the same entity?”, it says “given a cluster C of records already
determined to refer to a single entity, does a new record r refer to
the same entity?”

Furthermore, our model is able to learn patterns more detailed
than just “change/no change.” In particular, our model focuses on
the probability of a value re-appearing over time. The intuition
here is that an entity might change its attribute values in a way that
is dependent on or predicted by its past values. One possibility
is that some of an entity’s attributes might change over time yet
have an affinity for a small set of values that are associated with the
entity. For example, if a person’s location attribute has taken on the
values {Madison, Silicon Valley, Taiwan} in the past, then these
values may be more likely to appear in this person’s records in the
future than, say, “France.” In other cases, it is also possible that an
evolving attribute never changes its value back to a previously seen
value. As we will show, by learning probabilities of recurrence, our
model is able to make better predictions than those made by simply
predicting “change/no change”.

EXAMPLE 1.1. Consider a real world example from DBLP shown
in Table 1, which contains several publication records associated
with the same author — Lei Wang. From his publication records,
we observe that Lei Wang changed both his affiliation and co-authors
over time, but in both attributes there exist underlying affinities: Lei
Wang returned to Xidian University in 2007 after leaving there in
2001, and over time he also had certain reappearing co-authors



Figure 1: How the proposed model works in the training and matching phases of a temporal matching framework.

even though the coauthor set itself evolved over time. Thus there
is potential for a model that considers the recurrence of values to
provide better insight than one that does not. 2

At a high level, shown in Figure 1, our approach to record match-
ing is the following. We begin with a training data set, which con-
sists of a set of records and their associated entities. We train a
temporal model with this data set, attempting to capture useful in-
formation about how the entities in the data set evolve. Later, when
we are solving the target record matching problem over an unla-
beled data set, we use this temporal model as input to the similarity
computations performed in the course of this matching. Intuitively
speaking, the temporal model tells us how to weight similarities on
various attributes. For example, if the temporal model suggests that
similarity on a given attribute is not very reliable due to entity evo-
lution, then the result of the similarity computation will be given a
low weight. In this paper we focus on the definition of a new tem-
poral model and use it along with previously proposed temporal
clustering techniques.

Returning to the training phase of our model, there are many dif-
ferent things we could try to learn. A simple approach would be to
merely learn how frequently values change in each attribute of the
record set under consideration (this is the approach in [14]). More
complicated approaches could focus on either evolution within en-
tities, or global evolution among entities, or both. We consider evo-
lution within entities, because, as we will see in our experiments, if
one has good predictions about intra-entity evolution, one can draw
useful conclusions about inter-entity evolution.

Our approach for intra-entity evolution is to look at the entire
sequence of records corresponding to each entity in the labeled data
set and to calculate the probability for each time period that the
entity corresponding to the records is likely to change its value to
one not seen previously. We call this a “mutation model,” and it
allows us to answer the question “given that two records with time
stamps disagree on some attribute A, how likely is that they refer
to the same entity that has evolved to change its A-value?” (If the
answer is “it is likely” then we would view this disagreement on
attribute A as unconvincing and give it low weight in the similarity
computation.)

Perhaps surprisingly, this mutation model can also help answer
the question “given two records with different time stamps from
two different entities, how likely is it that they will evolve to share
a value on some attribute?” As a partial intuition for this, note that
for every pair of entities that evolve to share attribute values, at least
one of them must have evolved to change attribute values — which
is captured by the mutation model.

The precise definition and computation of this mutation model

is somewhat complex. However, our experiments show that the
greater insight provided by the mutation model is useful, leading to
substantially better precision and recall, along with lower sensitiv-
ity to noisy or missing data, than the previously proposed frequency
of change model.

Of course, such a model does not come for free, so a reasonable
question is: is this more detailed model worth it? Does it take a
long time to compute? Does it lead to better clustering decisions?
Does it have any other good properties? In the rest of this paper, we
will show (a) how to compute the proposed model in a way that is
not expensive, and (b) how it can be used to make better matching
decisions, and (c) that it is more robust to noise.

In more detail, we make the following contributions:

• We introduce the notion of mutation, which describes the sit-
uation when an entity changes an attribute to a value that has
not appeared in that attribute in the history of that entity.

• We describe an algorithm that learns and uses statistics about
attribute value recurrence to model entity evolution based on
the notion of mutation. Our model is able to handle both
single-valued and multi-valued attributes.

• We demonstrate how to utilize entity-dependent information
to improve matching accuracy when records are processed in
increasing temporal order.

• We propose an effective approximation of our model that
reduces computational overhead while producing equivalent
matching quality.

• We analyze the matching accuracy and robustness to noise
of our model by a set of experiments on several real world
temporal matching tasks. The results show that our model
improves both matching accuracy (up to 40% in F-1 score)
and robustness to noisy data over the state-of-the-art tem-
poral model, while producing minimum computational over-
head (less than 5%).

The paper is organized as follows. The next section defines the
problem of temporal record matching and reviews necessary back-
ground. Section 3 describes our temporal model and its learning
process. Section 4 introduces how to apply our temporal model in
similarity computation. Section 5 presents our experiments. Sec-
tion 6 reviews related work, and Section 7 discusses future work
and draws conclusions.

2. PRELIMINARIES



This section gives the problem definition and briefly reviews the
state of the art technique for temporal record matching proposed
in [14].

2.1 Definitions
We now define the problem of temporal record matching.

DEFINITION 2.1. (TEMPORAL RECORD MATCHING) Consider
a domainD of entities (not known a-priori) and a set R of records.
Each record r ∈ R is of the form of 〈x1, ..., xn, t〉, where t is
the time stamp of the record r, and each xi, 1 ≤ i ≤ n, is the
value of attribute Ai at time t for the associated entity in domain
D. The goal of temporal record matching is to find a clustering of
the records in R that satisfies the following properties: 1) records
in the same cluster refer to the same entity in domain D, and 2)
records in different clusters refer to different entities in domain D.
2

As the entities described by a temporal data set may change or
evolve their attribute values over time, a temporal matching tech-
nique must deal with ambiguity caused by this evolution. One of
such ambiguity is within-entity temporal disagreement, or temporal
disagreement for short:

DEFINITION 2.2. (WITHIN-ENTITY TEMPORAL DISAGREEMENT).
Within-entity temporal disagreement arises when two records re-
ferring to the same entity have dissimilar values on one attribute
because over time their associated entity evolves its state on that
attribute. 2

For example, a person may change his or her address and phone
number, so two records referring to the same person at different
times may disagree on those attributes.

A second kind of ambiguity is between-entity temporal agree-
ment, or temporal agreement for short:

DEFINITION 2.3. (BETWEEN-ENTITY TEMPORAL AGREEMENT).
Between-entity temporal agreement arises when two records refer-
ring to two different entities have identical or highly similar values
on one attribute because over time one of the entities evolved to
have the same value in some attribute as that previously held by
the other. 2

Returning to our example, it is possible that one person might get
the phone number of a second person when the first person takes
over the second person’s office.

As a result, a temporal matching algorithm must handle how en-
tities might evolve over time to resolve temporal disagreement and
agreement.

2.2 Notation
We will use the following terms. For attribute values, we use the

term “A-value” to describe a value for attribute A, r.A and r.t to
denote theA-value and the time stamp of record r respectively, and
v ∈ A to denote v is an A-value.

To describe the attributes and the time stamps of an entity or a
list of records, we use the following notation. Let E be an entity
and 〈r1, ..., rn〉 be a list of records associated with E. We use E.A
to denote the set of A-values of E, which is the union of A-values
of its associated records:

E.A = {r1.A, r2.A, ..., rn.A}. (1)

If A is a set-valued attribute, then E.A is defined as the union of
elements of the A-values of E’s associated records:

E.A = {v|v ∈ r.A ∧ r ∈ E}. (2)

We use E.t to denote the ordered list of time stamps of E given
records r1, ..., rn, sorted in increasing temporal order:

E.t = 〈r1.t, r2.t, ..., rn.t〉. (3)

2.3 Review of Temporal Record Matching
Existing techniques for non-temporal record matching typically

consist of two main components: a similarity measure to determine
how likely it is that two records refer to the same real world entity,
and a clustering algorithm that groups records based on their simi-
larity. Li et al. [14] proposed the first solution for temporal record
matching. It consists of three main components — a similarity
measure, a temporal model, and a temporal clustering algorithm.
Here we review the two temporal components in more detail:
Temporal model: Typically, the similarity between two records is
computed based on attribute value similarities. However, if entities
evolve over time, attributes that change become less reliable indica-
tors for record matching. In view of this, Li et al. proposed building
a temporal model that learns how entities evolve in a labeled data
set and use it to determine the importance of each attribute in record
similarity computations as follows:

sim(r, r′) =

∑
A∈A

wA(r, r′) · simA(r.A, r′.A)∑
A∈A

wA(r, r′)
(4)

where simA is the similarity metric for attribute A and wA is the
weighting function derived from a temporal model. Intuitively, at-
tributes that are less “stable” are less trusted as indicators in match-
ing.
Temporal clustering: In [14], the term temporal clustering was
presented to describe clustering algorithms that process records in
increasing temporal order. One can view a cluster of records all
with time stamp previous to time t as representing the history of its
associated entity up to time t.

As the main focus of this paper is on temporal modeling, we will
omit reviewing temporal clustering algorithms, focusing instead on
the temporal modeling approach — the time decay model — pro-
posed in [14].

2.3.1 The Time Decay Model
The time decay model [14] attempts to capture the effect of time

elapsing on value evolution. It consists of two components. The
first is disagreement decay, which handles the ambiguity caused by
within-entity temporal disagreement:

DEFINITION 2.4. (DISAGREEMENT DECAY). Let ∆t be a time
interval andA ∈ A be a single-valued attribute. The disagreement
decay of A over time ∆t, denoted by d 6=(A,∆t), is the probability
that an entity changes its A-value within time ∆t. 2

The second component is agreement decay, which handles the
ambiguity caused by between-entity temporal agreement:

DEFINITION 2.5. (AGREEMENT DECAY). Let ∆t be a time
interval and A ∈ A be an attribute. The agreement decay of A
over time ∆t, denoted by d=(A,∆t), is the probability that two
different entities share the same A-value within time ∆t. 2

When computing the similarity between two records, the weight
of each attribute value is determined by the complement of the
agreement- and disagreement-decay on that attribute. Specifically,
consider two records r and r′. The weight wA of their similarity



on attribute A is computed as follows:

wA(r, r′) =


1− d=(A,∆t) simA(r, r′) > θh
1− d 6=(A,∆t) simA(r, r′) < θl
1− simA(r, r′) · d=(A,∆t) otherwise
−(1− simA(r, r′)) · d 6=(A,∆t)

(5)
where simA(r, r′) denotes the A-value similarity between r and
r′, ∆t is the time difference between r and r′, and θl and θh are
thresholds indicating low and high similarity respectively.

3. OUR TEMPORAL MODEL
This section describes our temporal model — the mutation model.

During the discussion, we will assume that, as proposed in [14], a
clustering algorithm that processes records in increasing temporal
order will be used.

3.1 Approach Overview
At the most basic level, our mutation model answers the follow-

ing question: consider a cluster C of records that have been deter-
mined to correspond to the same entity, and a record r with time
stamp r.t greater than that of any record in C. Suppose that r also
corresponds to the entity associated with C. For a given attribute
A of r, what is the probability that the value in r.A, say v, does
not appear in attribute A in any record in C? As a bit of terminol-
ogy, if v does not appear in A in any record of C, then we call r a
“mutant record,” attempting to capture the notion that the entity in
question has changed substantially. Hence our goal can be restated
as computing the probability that r is a mutant record.

We will explain later how this is used in temporal matching, but
the intuition is that if it is likely that r is a mutant record, then the
fact that v does not match anyA value inC should not be construed
to suggest that r and C do not refer to the same entity. In addition,
if we are expecting a mutation based C, then we are not expecting
to see a C record with a matching A-value, so if we see a matching
A-value it is possibly from temporal agreement.

Our main idea is to calculate, for each attribute, the probability
that the value appearing in that attribute will recur after one, two,
three, ... time units. So if C has only one record in it, say r1, with
time stamp r1.t, and r.t − r1.t = ∆t, then the probability p that
the value r1.A will reappear in ∆t time units is the complement of
the probability that r is a mutant record, and 1 − p is our desired
probability.

Extending this to multiple records in C requires combining the
“predictions” of each of the records in C (since they are all at dif-
ferent temporal distances from r). We use a heuristic, described
below, to do so.

3.2 Entity Mutation
This section introduces our concept of entity mutation. We say

that an entity has had a mutation if an attribute changes to a value
that has not been seen in the last ∆t time units, where ∆t is a
tunable parameter.

DEFINITION 3.1. (ENTITY MUTATION). Let E be an entity
and A be an attribute. We say that E has a mutation on attribute
A at time t if E changes its A-value at time t to a value v such
that none of the records associated withE in the past ∆t time units
from time t has v as its A-value. 2

If A is a set-valued attribute, then the mutation condition is de-
fined as E changing itsA-value to v such that none of the elements
in v appears in any A-values in E in the past ∆t time units from
time t.

Figure 2: Example of learning attribute value recurrence where
each solid / dashed line represents a recurrence his / miss respec-
tively.

Based on the concept of mutation, we further define the notions
of mutant record and mutation point of an entity as follows.

DEFINITION 3.2. (MUTATION POINT / MUTANT RECORD).
Let ∆t be a time interval and A ∈ A be an attribute, which can be
either single-valued or multi-valued. Let r be a record associated
with a real world entity E with time stamp r.t and value r.A =
{r.a1, ..., r.an} on attribute A. We call r a mutant record of entity
E on attributeA within time ∆t if none of the records inE ∆t time
units ago share a common value with r on attribute A, and we call
r.t a mutation point of entity E. 2

As a special case, if ∆t is set to infinity, then mutant records of
one entity on a single-valued attribute are those records containing
a value on that attribute that has not appeared in any record associ-
ated with the same entity previously.

EXAMPLE 3.1. Consider an example from DBLP shown in Ta-
ble 1. If we look at the affiliation attribute and set the time interval
∆t to be less than 7 years, then r1, r4, r7, r8 are mutant records
of entity e1 on the affiliation attribute, and time points 2005, 2007,
and 2009 are the mutation points of entity e1 respectively. However,
if we set ∆t to be greater than or equal to 7 years, then only r1, r4

and r8 are mutant records of entity e1. If we look at the co-authors
attribute, then r1 and r4 would be the only mutant records on the
co-author attribute if ∆t is between 2 to 4 years. In addition, if ∆t
is greater than 4 years, then only the first record r1 would be the
mutant record on the co-author attribute. 2

We now introduce the mutation functionMA(R, t):

DEFINITION 3.3. (MUTATION FUNCTION). Let A be an at-
tribute, R = {r1, ..., rn} be a list of records associated with an
entity E, and t a specified time. The mutation functionMA(R, t)
returns the probability of entity E having a mutant record on at-
tribute A at time t given the record history R of entity E. 2

While an upper-bound time interval ∆t could be included in the
mutation function, here we omit this parameter and set it to infinity
for simplicity. This makes the mutation functionMA(R, t) return
the probability that the entity associated with the input list R of
records has an A-value at time t that is different from all the A-
values in R.

In the rest of this section, we will introduce how we learn the
mutation function from a training data set based on statistics about
attribute value recurrence. How to apply the mutation function in
similarity computation will be described in the next section (Sec-
tion 4).



3.3 Attribute Value Recurrence
To learn the mutation function, we collect the statistics of at-

tribute value recurrence from the given training data set. Here we
first introduce the notion of recurrence hit and miss:

DEFINITION 3.4. (∆t RECURRENCE HIT). We say that a value
v has a ∆t recurrence hit, or ∆t recurrence for short, if v satisfies
following conditions: 1) value v occurs in some entity E on at-
tribute A, and 2) v recurs ∆t time units later in the same entity E.
2

DEFINITION 3.5. (∆t RECURRENCE MISS) We say that a value
v has a ∆t recurrence miss on attribute A if v satisfies following
conditions: 1) value v occurs in some entity E on attribute A, and
2) v does not recur in E over the next ∆t time units. 2

EXAMPLE 3.2. Consider an example from DBLP shown in Ta-
ble 1 and look at the value ’Licheng Jiao’ on the co-authors at-
tribute. We can see that value ’Licheng Jiao’ appears in year 1999,
2000, 2001, 2005, 2006, 2007, 2009, and 2010. By the definition
of recurrence, ’Licheng Jiao’ has five 1-year recurrences, three 2-
year recurrences (1999 to 2001, 2005 to 2007 and 2007 to 2009),
and several other recurrences. 2

Now we describe how we learn the statistics of attribute value
recurrence. Without loss of generality, we may assume all attributes
are set-valued attributes by viewing each single-valued attribute as
a set-valued attribute having a single element, and we will use the
notation described in Section 2.2.

Given a training data set E, where records are grouped accord-
ing to their associated entities, we learn the statistics of value re-
currence on attribute A as follows:

Step 1: For each entity E = 〈r1, r2, ...〉 with its records sorted in
increasing temporal order, maintain the occurrence historyE.tv∈A
⊆ E.t for each value v ∈ E.A that appears in E on attribute A.
Each occurrence history E.tv∈A = 〈t1, t2, ...〉 is an ordered list of
time stamps sorted in increasing temporal order, where each time
stamp describes a time point when entityE has value v on attribute
A. For example, consider the entity shown in Table 1. Its occur-
rence history of value ’Licheng Jiao’ on the co-authors attribute
would be 〈1999, 2000, 2001, 2005, 2006, 2007, 2009, 2010〉.
Step 2: For each occurrence history E.tv∈A, identify and fill in
possible missing occurrences. For each consecutive pair of time
stamps ti, ti+1 in E.tv∈A, if entity E does not have any records
with time stamp within (ti, ti+1), then we assume that entityE has
its A-value equal to v from time ti to ti+1 and insert all possible
time stamps ti < t < ti+1 into E.tv∈A. For example, consider
the example in Table 1. Since ’Licheng Jiao’ is listed in the co-
author attribute of entity e1 in 2001 and 2005, and e1 has no records
from 2002 to 2004, we shall not exclude the possibility that e1 in
fact worked with ’Licheng Jiao’ from 2001 to 2005. Therefore,
the missing occurrences of ’Licheng Jiao’ between 2002 and 2004
should be filled in.

Step 3: Count and aggregate the numbers of hits hA
∆t and misses

mA
∆t of ∆t-recurrences on attributeA from the updated occurrence

histories of all attribute values for each 0 < ∆t ≤ tmax. This
can be done by using a sliding window that iterates through each
occurrence history.

Step 4: For each ∆t, smooth the hit and miss counts of its recur-
rence by applying a Gaussian filter with variance in proportional to
∆t.
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Figure 3: The results of learning the probability of ∆t recurrence
from the DBLP-Ambiguous data set on different attributes. Note
that both paper title and co-authors attributes are processed as set-
valued attributes.

Step 5: Construct the recurrence function RA(∆t) based on the
following equation:

RA(∆t) =



1 ∆t = 0

hA
∆t

(hA
∆t +mA

∆t)
1 ≤ ∆t ≤ tmax

hA
∆tmax

(hA
∆tmax

+mA
∆tmax

)
∆t ≥ tmax

0 otherwise
(6)

We setRA(∆t) = RA(∆tmax) for all ∆t > ∆tmax for simplic-
ity.

EXAMPLE 3.3. Consider Table 1 again, where we would like
to learn the recurrence function of the affiliation attribute. Suppose
we are currently processing value “Xidian University” and would
like to count the recurrence hits and misses for one- and two-year
time intervals. Then we will learn (3, 2) and (2, 2) recurrence hits
and misses for one- and two-year time intervals respectively. Fig-
ure 2 shows the occurrence history of value “Xidian University”
and its recurrence hits and misses for one- and two-year time in-
tervals. 2

Figure 3 shows the curves of recurrence rates on four different at-
tributes: author’s name, author’s affiliation, paper title (segmented
into terms) and co-authors, learned from the DBLP-Ambiguous
data set (described in detail in Section 5). We observe that 1) the
proposed model is able to learn different evolution types; 2) au-
thors in this data set never change their names; 3) authors are more
likely to move back to their previous affiliations after publishing pa-
pers for many years; 4) the probabilities of working with the same
scholar and working on similar topics decays over time, but their
speed of these decays differ.

We give the algorithm for learning attribute value recurrence in
Algorithm 1.

3.4 Capturing Entity Mutation
We now discuss how to construct the mutation functionMA(R, t).

We start by considering single values and then extend the idea to
consider multiple values.

Consider the case where we compute part of the mutation func-
tion by looking at only one value v on attribute A given a list
R of records associated with the same real world entity. We use
Mv∈A(R, t) to denote the simplified mutation function that only
returns the probability of the entity described by R not having its
A-value equal or contain v at time t. To compute such an entity-
dependent probability, we first consider all records in R that have



Algorithm 1 LEARNVALUERECURRENCE(E, A,∆tmax)

Input:

• E, a set of entities, where each entityE = 〈r1, ..., r|E|〉 con-
sists of a list of records sorted in increasing temporal order.

• A, the attribute of interest.

• ∆tmax, the maximum time interval considered.

Output:

• RA(∆t), the recurrence function.

1: // Initialize the counters for ∆t recurrence hit / miss.
2: for ∆t = 1 to tmax do
3: hA

∆t ← 0,mA
∆t ← 0

4: end for
5: CA ← {〈hA

1 ,m
A
1 〉..., 〈hA

∆tmax
,mA

∆tmax
〉}

6: for all E ∈ E do
7: E.A← {} // The set of ever-occurred A-values in E.
8: E.t← 〈〉 // The list of ever-occurred time stamps in E.
9: for all ri ∈ E do

10: E.t = E.t ∪ ri.t
11: for all v ∈ ri.A do
12: if v /∈ E.A then
13: E.A← E.A ∪ v
14: E.tv∈A ← 〈〉 // Init the occurrence history for v.
15: end if
16: // Update the occurrence history.
17: E.tv∈A ← E.tv∈A ∪ ri.t
18: end for
19: end for
20: for all v ∈ E.A do
21: // Functions are defined in Algorithm 2. and 3.
22: E.tv∈A ← UPDATEHISTORY(E.tv∈A, E.t)
23: // Update the recurrence counts (hA

∆t and mA
∆t) in CA.

24: CA ←UPDATECOUNTS(E.tv∈A, CA,∆tmax,max(E.t))
25: end for
26: end for
27: // Construct the recurrence functionRA(∆t).
28: RA ← {〈0, 1〉}

29: RA ←RA ∪ { 〈∆t,
hA

∆t

(hA
∆t +mA

∆t)
〉| 1 ≤ ∆t ≤ ∆tmax}

30: RA ←RA ∪ { 〈∆t,
hA

∆tmax

(hA
∆tmax

+mA
∆tmax

)
〉|∆t > ∆tmax}

31: RA ←RA ∪ {〈∆t, 0〉|∆t < 0}
32: return RA

their A-value equal to v and time stamps earlier than t. Then, we
view each such record r as a “predictor” and invoke the recurrence
function with time interval t−r.t to obtain the probability that value
v reappears at time t given that v appears at time r.t. Finally, we
combine all the probabilities estimated by each predictor record.

How to best combine the predictions from the predictor records
is an interesting question. The combination should be a probability
(between zero and one); also, the combination probability that a
value appears plus the combination probability that a value does
not appear should equal one. A possible approach that satisfies this
would be to average the probabilities from all the predictors. But
this is somehow unsatisfying; for one thing, a sum tends to lessen
the impact of variations in small probabilities (for example, if most

Algorithm 2 UPDATEHISTORY(E.tv∈A, E.t)

Input:

• E.tv∈A, time stamps of v’s occurrence of E in increasing
temporal order.

• E.t, time stamps of entity E in increasing temporal order.

Output:

• E.tv∈A, the updated time stamps of v’s occurrence.

1: for all ti ∈ E.tv∈A do
2: // If true, then E has no records with
3: // its time stamp between ti−1 and ti.
4: if i > 1 and ¬∃t ∈ E.t s.t. ti−1 < t < ti then
5: // Insert the missing time stamps of occurrence.
6: for t = ti−1 + 1→ ti − 1 do
7: E.tv∈A ← E.tv∈A ∪ t
8: end for
9: end if

10: end for
11: return E.tv∈A

Algorithm 3 UPDATECOUNTS(E.tv∈A, C
A,∆tmax, tElatest)

Input:

• E.tv∈A, time stamps of v’s occurrence of entityE in increas-
ing order.

• CA = {〈hA
1 ,m

A
1 〉..., 〈hA

∆tmax
,mA

∆tmax
〉}, hA

∆t and mA
∆t

are the ∆t-recurrence hit and miss counters respectively.

• ∆tmax, the maximum time difference considered.

• tElatest , the latest time stamp of entity E.

Output:

• CA, the updated CA.

1: // update the recurrence hits hA
∆t and misses mA

∆t

2: // stored in CA for all possible ∆t.
3: for all t ∈ E.tv∈A do
4: for ∆t = 1 to ∆tmax do
5: if t+ ∆t ≤ tElatest then
6: if t+ ∆t ∈ E.tv∈A then
7: hA

∆t ← hA
∆t + 1

8: else
9: mA

∆t ← mA
∆t + 1

10: end if
11: end if
12: end for
13: end for
14: return CA

of the probabilities are close to one, the impact of an outlier small
probability changing from say 0.01 to 0.02 is negligible.)

Accordingly, instead we use the product of the probability that all
of the predictors will say “no” (the value will not recur) normalized
by the sum of the probability that all predictors will say “yes” and
the sum of the probability that all predictors will say “no.” We



express this more precisely below.

Mv∈A(R, t) =

∏
r∈Rv,t

(1−RA(t− r.t))∏
r∈Rv,t

RA(t− r.t) +
∏

r∈Rv,t

(1−RA(t− r.t)) (7)

Rv,t = {r|r ∈ R ∧ r.t < t ∧ v ∈ r.A} (8)

The denominator of the above equation contains two products:
the left product computes the probability of all observer records
in Rv,t saying that value v will reappear at time t, while the other
product on the right computes the probability of all observer records
in Rv,t saying that value v will not reappear at time t.

Note that the overall goal is to improve matching by deciding
weights for attributes. The important thing here is the relative
weights of the attributes, not the absolute values of the weights.

Intuitively, the general form of the mutation probabilityRA(R, t)
can be computed by considering all possible values v ∈ R.A (us-
ing the notation defined in Equation 2) that have appeared in at least
one of the records in R:

MA(R, t) =
∏

v∈R.A

Mv∈A(R, t) (9)

The computation of mutation function could be expensive. This
can be somewhat amortized by caching the result and reusing it
for each R during the clustering process. When R is updated by
including one additional record, the result can be incrementally up-
dated by further maintaining the occurrence history of different val-
ues for each cluster.

3.5 An Approximation of Mutation Function
While caching improves the computational cost of our algorithm,

in some cases it may still be too high. Therefore, we propose the
following approximation, which essentially treats all different val-
ues in R.A as the same value instead. This relaxes the need for
maintaining and iterating through the occurrence history of each
attribute value. Again, without loss of generality, we assume each
attribute is a set-valued attribute by treating each single-valued at-
tribute as a set-valued attribute with one value.

MA(R, t) =

∏
r∈Rt

(1−RA(t−r.t))|r.A|

∏
r∈Rt

RA(t−r.t)|r.A|+
∏

r∈Rt

(1−RA(t−r.t))|r.A| (10)

Rt = {r|r ∈ R ∧ r.t < t} (11)

where |r.A| is the number of values on attribute A in r.
The above approximation looks very similar to the single-valued

mutation function (Equation 7) as it treats different values of R.A
as the same value. In addition, the iterating of each individual value
v ∈ R.A is replaced by simply counting the number of elements
in R.A. Note that as we will later discuss in this section, the full
version (Equation 9 and 7) and the approximated version (Equa-
tion 10) have identical numerators. The difference is in the de-
nominator, where the approximated version has a value no greater
than that of the full version. In addition, when the target attribute
is a single-valued attribute, the two versions will be identical. Our
experiments (described in Section 5.5) show that the two versions
of mutation functions do not have noticeable differences in result
quality, but the approximated version can substantially improve
running time.

Here we further discuss the difference between the full version
and the approximated version of the mutation function.

We first look at the numerators of the two versions. In the orig-
inal mutation function, the numerator is the product of the numer-
ators ofMv∈A(R, t) of all different values in R.A, which can be
rewritten as follows:

∏
v∈R.A

∏
r∈Rv,t

(1−RA(t− r.t)) =
∏

r∈Rt

∏
v∈r.A

(1−RA(t− r.t))

(12)
where both sides of the above equation enumerate all possible val-
ues on attribute A in R which time stamp is greater than t. Since
the values of any record r on attribute A will have the same time
stamp, the above equation can be simplified further:

∏
r∈Rt

∏
v∈r.A

(1−RA(t−r.t)) =
∏
r∈Rt

(1−RA(t−r.t))|r.A| (13)

where the right hand side of the equation gives the numerator of
the approximated mutation function (Equation 10), which further
shows that both the full version and the approximated version of
the mutation function have identical numerator.

Now we turn our focus on their denominators. In the full ver-
sion of the mutation function, its denominator is the product of
the denominators of theMv∈A(R, t), which can be expended and
rewritten as follows:∏

v∈R.A

( ∏
r∈Rv,t

RA(t− r.t) +
∏

r∈Rv,t

(1−RA(t− r.t))

)
=∏

v∈R.A

∏
r∈Rv,t

RA(t− r.t) +
∏

v∈R.A

∏
r∈Rv,t

(1−RA(t− r.t)))

+ remaining terms.
(14)

where on the right hand side, the first term is the product of all pos-
sible recurrence ratesRA(t− r.t) reported by the observer records
in R and the second term is the product of the complements of all
possible recurrence rates (1 − RA(t − r.t)) reported by the ob-
server records in R. These two terms forms the denominator of the
approximated mutation function.

3.6 Application to Fuzzy Clustering
In fuzzy clustering algorithms, the probability p(r ∈ R) of each

record belonging to a cluster is “fuzzy” (between 1 to 0) in the
same sense as fuzzy logic. This probability is determined at run
time by a fuzzy clustering algorithm, and a record could be put
into multiple clusters with differing probabilities for each. To ex-
tend our model to work for fuzzy clustering algorithms, we further
weight the importance of each observer record based on the prob-
ability p(r ∈ R) of each record belonging to its cluster. Below is
the modified version of the mutation function that works for fuzzy
clustering techniques:

Mv∈A(R, t) =

∏
r∈Rv,t

p(r ∈ R)(1−RA(t− r.t))∏
r∈Rv,t

p(r ∈ R)RA(t− r.t) +
∏

r∈Rv,t

p(r ∈ R)(1−RA(t− r.t))

(15)

MA(R, t) =
∏

v∈R.A

Mv∈A(R, t) (16)

where we reuse the previous notation Rv,t defined in Equation 8.
Similarly, we extend the approximated version of the mutation

function as follows:



MA(R, t) =

∏
r∈Rt

p(r ∈ R)(1−RA(t− r.t))|r.A|∏
r∈Rt

p(r ∈ R)RA(t− r.t)|r.A| +
∏

r∈Rt

p(r ∈ R)(1−RA(t− r.t))|r.A|

(17)
and again, the definition of Rt can be found in Equation 11.

4. APPLYING OUR TEMPORAL MODEL
We now describe how we utilize the proposed mutation model to

weight the importance of each attribute in similarity computations.
The weight is computed based on the entity-dependent probability
of temporal agreement and disagreement. Then, we will introduce
how we compute the similarity between two records.

We will use the following example task during the discussion.

EXAMPLE 4.1. Consider a pair of records r and r′. We would
like to compute their similarity based on attribute value similar-
ities. We use simA(r.A, r′.A) to denote their value similarity on
attributeA. Without loss of generality, we assume that r′ has a time
stamp no later than the time stamp of r, and let ∆t = r′.t− r.t be
the time difference between r and r′. In addition, we assume that
record r is currently grouped into cluster Cr that consists of a list
Rr = {r1, ..., rn} of n records. 2

Given two records r and r′, we ask the following two questions:
1) if r and r′ have dissimilar values on attributeA, what is the prob-
ability that the value r.A in the entity described in cluster Cr does
not recur at time r′.t? 2) if r and r′ have similar values on attribute
A, what is the probability that the value r.A does not recur in the
entity described by cluster Cr at time r′.t? To answer the above
questions, we utilize the value-based mutation functionMv∈A de-
fined in Equation 7 to determine the probability of all values in r.A
not reappearing at time r′.t:

Mv∈r.A(Rr, r
′.t) =

∏
v∈r.A

Mv∈A(Rr, r
′.t) (18)

If the approximate version is used, then we use Equation 10 to
approximateMv∈r.A(Rr, r

′.t).
To answer the first question, if the value in r.A is not likely to

reappear at time r′.t, the fact that r.A and r′.A do not have similar
values should not be construed as suggesting that r and r′ do not
refer to the same entity. As a result, a lower weight will be assigned
to attribute A.

On the other hand, in the second question, if we are expecting
that the values in r.A will not reappear at time r′.t, then we are
not expecting to see a record belonging to Cr having its A-value
similar to r.A at time r′.t. So, if r.A and r′.A match in this case,
it is likely from between-entity temporal agreement, and thus we
should still assign a lower weight to A.

Putting it all together, we use the following equation to determine
the weight of each attribute:

wA(r, r′) =

{
1 + ϑM · (1−Mv∈r.A(Rr, r

′.t)) sim(r.A, r′.A) ≥ θA
1− ϑM · Mv∈r.A(Rr, r

′.t) otherwise
(19)

where ϑM is a parameter that controls the importance of the mu-
tation function, and θA again is a learned threshold indicating high
similarity on attribute A.

Here we have used the heuristic that the weights given to the
attributes where the two records agree on their values are always
higher than the weights given to the attributes where the two records
disagree. This heuristic ensures that the final record similarity will
never be dominated by several low similarity attributes if at least
one high similarity attribute is observed.

Finally, the temporal similarity between two records r and r′ is
defined to be the weighted average of their attribute value similari-
ties based on the weights derived from our mutation model:

sim(r, r′) =

∑
A∈A

wA(r, r′) · sim(r.A, r′.A)∑
A∈A

wA(r, r′)
(20)

5. EXPERIMENTAL EVALUATION
This section describes our experimental setup and results.

5.1 Experiment Settings

5.1.1 Data Sets
To evaluate the matching quality of different approaches, we

consider three subsets from two real world data sets: a benchmark
of European patent data [1] and the DBLP data set [2]. Two of
the tasks, Euro-Patent and DBLP-WW, are the tasks used in Li’s
work [14].

DBLP-Ambi matching task: We created a labeled subset from
DBLP by selecting 21 different groups of records which contain
2664 records in total. Each group contains multiple authors sharing
the same name. Examples are “Ajy Gupta”, “Li Zhang”, “Rajesh
Kumar”, “Min-Soo Kim”, “Arnab Roy”, and so forth. Again, in
this matching task, the author’s affiliation information is manually
filled in for each record.

Euro-Patent matching task: From the patent data, which is also
used in [14], we extracted inventor records with attributes name and
address; the time stamp of each record is the patent filing date. The
benchmark involves 359 inventors of French patents. For purpose
of comparison, we also followed the practice in [14] of using only
last name initial and first name for each inventor.

DBLP-WW matching task: From the DBLP data, we used the la-
beled “Wei Wang” subset also used in [14] containing 738 records.
The data provider has manually identified 18 authors for ground
truth and filled in the author affiliation attribute for each record.
One important property of this matching task is that all authors have
the same name, Wei Wang.

Table 2 briefly summarizes the matching tasks used in our exper-
iment.

5.1.2 Implementation
We consider the following approaches for handling temporal agree-

ment and disagreement:
• -NONE: This approach does not use any strategy to handle

temporal agreement and disagreement.
• -DECAY: This is the time decay model proposed in [14].
• -MUTAA: This is the approximate version of our proposed

model (Eq. 10, described in Section 3).
• -MUTAF: This is the full version of -MUTAA (Eq. 7 and

Eq. 18, described in Section 3 and Section 4). This model
is only used for analyzing the effectiveness of our proposed
approximation.

Recall that in general a temporal matching approach requires
both a temporal model and a clustering algorithm. In our exper-
iments we tried three different clustering algorithms, testing each
with all four temporal models. The clustering algorithms used
were:

• PART: The partition algorithm proposed in [10], a single-
stage approach that does not cluster in any temporal order.



Table 2: Temporal matching tasks

Name Total # Pairwise Attributes Years Note
# Records Record Relations

DBLP-Ambi 2664 3.5 million author’s name, affiliation (manually
filled), paper title, co-authors

1987 - 2012 258 authors share only 21 names; most
entities evolve.

DBLP-WW 738 0.3 million author’s name, affiliation (manually
filled), co-authors

1991 - 2010 All authors share the same name; most
entities evolve. also used in [14]

Euro-Patent 1871 1.7 million author first name initial, author last
name, affiliation

1978 - 2003 Fewer entities evolve; also used in [14].
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Figure 4: Result quality on DBLP matching tasks.

• EARLY: The early binding algorithm [14], a single-stage
temporal clustering approach that considers records in in-
creasing temporal order and uses a single pair of records
when making cluster merging decisions.

• ADJUST: The adjusted binding algorithm [14], the leading
clustering approach in that paper, a multi-stage temporal clus-
tering approach which uses an EM-style fuzzy clustering to
iteratively refine the temporal clustering results.

All the techniques were implemented as single-threaded Java
programs, and we ran the experiments on a Linux machine with
a 2.40 GHz Intel CPU and 1GB of RAM.

Similarity measure: We applied edit distance similarity [13] for
all scalar attributes. For multi-valued attributes, we did not use the
regular Jaccard similarity [11] because the records in our match-
ing tasks rarely share more than one or two elements on the multi-
valued attributes we considered (e.g., co-authors). As a result,
the regular Jaccard similarity usually reports a low similarity score
even when two records show substantial match on the multi-valued
attributes in our matching tasks. Instead, we use the following vari-
ation on Jaccard similarity, where the denominator is the size of the
smaller set:

simA(r.A, r′A) =
|r.A ∩ r′.A|

min(|r.A|, |r′.A|) (21)

This variation returns the percentage of the smaller set covered
by the larger.

Models and thresholds learning: We used a cross-validation pro-
cess to learn the temporal models and the thresholds for each match-
ing task. We used a three-fold cross-validation, which divides the
data set into three disjoint partitions with nearly equal size. We
learned temporal models and thresholds from one partition at a time
and used them to test with the rest of the data set.

Parameter settings: For the time decay model and the temporal
clustering algorithms proposed in [14], we followed the parame-
ter settings that were used in their experiment. For the parameters

that used in our model, we set θM = 0.5 (used in Eq. 19) in our
experiments.

5.1.3 Metrics
We compared pairwise matching decisions with the ground truth

and measured the quality of the result by precision (P), recall (R),
and F-measure (F). We denote the set of false positive pairs by FN ,
the set of false negative pairs by FN , and the set of true positive
pairs by T . Then, P = |T |

|T |+|FP |
, R = |T |

|T |+|FN |
, and F = 2PR

P+R
.

5.2 Matching Accuracy
Here we explore and discuss the matching accuracy of different

approaches on the three matching tasks.

5.2.1 DBLP-Ambiguous Matching Task
In this matching task, 258 entities share only 21 different names,

and most author entities evolve on all other attributes: affiliations,
paper titles, and co-authors. As a result, the key to high matching
accuracy is to resolve the ambiguity on name by handling evolution
on all other attributes. Figure 4a shows the matching accuracy of
different clustering algorithms paired with different temporal mod-
els. Note that since we do not profile MUTAF, three clustering algo-
rithms with three temporal models gives nine approaches. Higher
is better in this graph.

From the results, we first observe the pure non-temporal tech-
nique PART-NONE only produces 27.01% in F-1 score. However,
when being paired with a temporal model, PART can produce a
higher matching accuracy: a 38.68% in F-1 score when paired
with the time decay model and a 76.28% in F-1 score when paired
with our proposed model — MUTAA. Second, applying a temporal
model to a clustering algorithm in general improves F-1 score: our
model MUTAA improves 10% to 50% in F-1 score compared with
no temporal model while the time decay mode — DECAY improves
from 2% to 12% in F-1 score as compared with no temporal model.

The readers might wonder at this point why a non-temporal match-
ing technique might produce a lower precision than a temporal
matching technique. It is because without considering temporal
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Figure 5: Result quality on the Euro-Patent matching task.

information, a non-temporal matching technique might incorrectly
merge two records which in fact refer to two different entities caused
by between-entity temporal agreement. This contributes to its low
precision.

In addition to the case where authors might move back to their
“home affiliations”, we also observed the following cases where
our mutation model does better than the time decay model: 1) an
author might have out-of-date affiliation associated with his / her
publications for one or two years when he / she moves from one
affiliation to another; 2) publications of the same author are usually
associated with different co-authors over time while many of his
/ her co-authors re-appear in that author’s publication history over
time.

Comparing our mutation model with the time decay model, our
approach improves 40% in matching accuracy over the time de-
cay model when a non-temporal clustering technique is used and
improves 8% to 10% in matching accuracy over the time decay
model when temporal clustering approaches are used.

5.2.2 DBLP-WW Matching Task
The DBLP-WW matching task evaluates how each approach han-

dles the special case when all author entities in the same data set
share the same name. In addition, author entities also evolve on all
other attributes. Figure 4b compares the result qualities of differ-
ent clustering techniques paired with different models for handling
evolution and ambiguity.

Similar to what we have seen in the DBLP-Ambiguous matching
task, applying a temporal model will improve matching accuracy
over applying no temporal model: The proposed MUTAA improves
5% to 25% in F-1 score over using no temporal model, while the
state-of-the-art model — DECAY — improves 2% to 15% in F-1
score over using no temporal model.

Compared with the state-of-the-art temporal model — DECAY,
our model MUTAA improves up to 10% in F-1 score in the DBLP-
WW matching task.

5.2.3 Euro-Patent Matching Task
Unlike the previous two matching tasks, there are relatively few

entities described in the Euro-Patent matching set whose attributes
evolve over time. This situation has two implications. First, as this
matching task has fewer evolving entities, all approaches have less
trouble separating records belonging to the same entity. Second,
because fewer entities evolve over time, there are relatively fewer
temporal clues that any temporal model can utilize. Figure 5 shows
the matching accuracy of different approaches.

First, as we have discussed, since there are fewer evolving en-
tities, the non-temporal solution — PART-NONE — performs rela-
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Figure 6: Running time comparison.

tively better than it did in the previous two matching tasks: 83.17%
in F-1 score with 95.65% precision and 73.58% recall. Second,
temporal cluster approaches alone without using a temporal model
do not bring noticeable improvement on accuracy (≤ 1% improve-
ment). Third, we observe that while not many temporal clues are
available in this matching task, using a temporal model still brings
some improvement in matching accuracy: our model MUTAA im-
proves 2% to 4% in F-1 score over using no temporal model while
the decay model improves 2% to 3% in F-1 score over using no
temporal model.

5.2.4 Summary
When most entities described in the data set evolve over time,

our proposed model improves 10% to 50% in matching accuracy
over using no temporal model while the state-of-the-art temporal
model improves 2% to 15% over using no temporal model. When
only a few of the entities described in the data set evolve over time,
the temporal models provide a limited improvement (2% to 4%) in
accuracy over using no temporal model.

Compared with the state-of-the-art temporal model, our model
improves up to 40% in F-1 score when a non-temporal clustering
algorithm is used, and up to 10% in F-1 score when a temporal
clustering algorithm is used.

5.3 Results on Running Time Efficiency
We analyzed the running time efficiency of different temporal

models by running them with different clustering approaches. As
different clustering techniques spend different amounts of time fin-
ishing different matching tasks, we treat the running time of using
no temporal model as 1.0 and report the running time of using tem-
poral models in proportion to that.

The results in Figure 6 show that both DECAY and MUTAA in-
troduce acceptable running time overhead compared to a solution
without using any temporal model. Compared with DECAY, our
model MUTAA introduces 2% running time overhead when running
with a hard clustering algorithm (EARLY) and 5% running time
overhead when running with a fuzzy clustering algorithm (ADJUST).
The difference between hard- and fuzzy- clusterings is due to the



Table 3: Attributes and the types of their simulated noise.

Attribute Considered types of simulated noise
Name typo
Affiliation typo, missing value, incorrect reference
Co-authors typo, missing value
Publication Year numerical error
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Figure 7: Results on robustness to noise.

fact that clusters in the fuzzy clustering tend to have more frequent
updates. As a result, the caching strategy used in our model will
become less effective.

5.4 Results on Noise Tolerance
To test the impact of noise on different temporal models, we sim-

ulated the following and added them to the original data sets:

• typo: simulated by randomly replacing a small number of
characters by their keyboard neighbors. Characters include
numbers.

• missing value: simulated by deleting the whole value.

• incorrect reference: simulated by replacing the original value
by a completed random value.

• numerical error: simulated by adding or subtracting a small
number in proportion to the original value.

Table 3 lists the types of noise we added to different attributes in
our matching tasks.

We analyze the noise tolerance of different temporal modeling
approaches by comparing their learned model, which essentially
can be described as a sequence of numeric values, from the clean
data set and the one from the noisy data set and measuring the dif-
ference. We here define the noise affect rate as the difference in
proportion to the original value sequence. Let Vc = 〈vc,1, ..., vc,t〉
and Vn = 〈vn,1, ..., vn,t〉 be two sequences of values learned by
the same temporal model from the original clean data set and the
noisy data set respectively, where t is the maximum time interval
we considered. We define the noise affect rate as the sum of ab-
solute difference between each pair of values over the sum of the
values of the clean value sequence Vc:

NOISEAFFECTRATE(Vc, Vn) =

∑t
i=1 |vc,i − vn,i|∑t

i=1 vc,i
(22)

Figure 7 compares the noise affect rates and the robustness against
noise of the time decay model [14] (DECAY) and the proposed mu-
tation model (MUTAA). The robustness against noise is defined as
the inverse of the noise affect rate, and the figure shows the normal-
ized result where we treat the robustness of DECAY as 1.00.

(a) Example statistics learned from clean data.

(b) Example statistics learned from noisy data.

Figure 8: Learning from clean and noisy data.

From the results shown in Figure 7, we observe that our pro-
posed model has better noise resistance than the previously pro-
posed model. Here are reasons that might contribute to this result.
First, our model does not impose a continuous life span segmented
by change points. This improves robustness to noise as any con-
tinuous life span could be easily corrupted by noise into multiple
shorter life spans. Second, since our mutation model looks at mul-
tiple records when making its predictions, it is more robust than the
decay model, which only looks at a single record.

Overall, our mutation model is 2X to 5X more robust against
noise than the existing time decay model.

EXAMPLE 5.1. Consider an example shown in Figure 8a where
we have a value with 5-year life span in the original data. In this
data, the disagreement decay model will simply learn one sample
of a 5-year life span. However, suppose the attribute value of one
record is incorrectly represented as shown in Figure 8b. Then the
observed life span pattern will be corrupted and thus the disagree-
ment decay model learns one sample of 2-years and one sample of
1-year life spans instead: 1/6 records corrupted introduces signif-
icant differences in the learned result. In contrast, since our ap-
proach learns the mutation function based on the statistics about
each individual value recurrence, such incorrect data only intro-
duces a limited effect. In the clean data, our approach learns a
{5/5, 4/4, 3/3, 2/2, 1/1} of 1- to 5-year recurrence rates, while
in the noisy data, our model learns a {3/4, 2/3, 2/2, 2/2, 1/1}
of 1- to 5-years recurrence rate: 1/6 records corrupted introduce
a 11.67% (less than 1/6) bias in the recurrence rate learned from
surrounding records of the corrupted one. 2

5.5 Effectiveness of Approximation
Here we compare the result quality and running time between the

full version of the mutation function and the approximated version
of mutation function discussed in Section 3.4 by applying them
to different temporal matching tasks and measuring the resulting
quality and running time. Since the running time varies with the
size of matching tasks, we treat the running time of the full version
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Figure 9: Full vs. approximate versions of our model.

ADJUST-MUTAF as 1.0 and report the running time of the approx-
imated version in proportion to ADJUST-MUTAF. The results are
shown in Figure 9.

Our experimental results show that when using the approximated
version of the mutation function, we can save around 30% to 40%
in running time without losing noticeable level of result quality: the
approximated version finishes 2664 records in 1320 seconds while
the full version finishes in 1905 seconds.

6. RELATED WORK
[7, 9, 18] proposed different record matching / deduplication

techniques, but their techniques all assume value difference are due
to different representations of the same value and record values do
not change over time. Several temporal data models [15] and tem-
poral knowledge discovery paradigms [16] have been proposed in
the past. However, their main focus are not on record matching.
Yakout et al. proposed behavior based linkage [19] based on pe-
riodical behavior patterns of each entity. While our approach is
based on the statistics about event recurrences, it does not try to
find periodic entity evolution patterns. [17] proposed a recurrence
based approach to learn and recognize complex temporal sequence,
but their model is based on neural networks and Hebbian learning
rules. Both [5], [6], and [14] proposed the notion of time decays,
but their definition and application of time decay are different. [5]
and [6] use time decay to reduce the effect of older tuples on data
analysis. Li et al. [14] is the work closest to our work here, and we
have discussed it in detail inline where appropriate.

7. CONCLUSION
We have proposed a new temporal model for handling entity evo-

lution. Unlike existing models, our model focuses on the probabil-
ity of a value re-appearing over time. Our experimental results on
various real world temporal matching tasks show that our model
improves both matching accuracy (up to 10% to 40%) and noise
resistance (2X to 5X) over the state-of-the-art model while intro-
ducing minimal running time overhead (≤ 2%).

Substantial room for future work remains. For example, entity
evolution breaks the assumptions of blocking techniques [8]. An
evolution aware blocking operator is needed for matching temporal
records at large scale. Also, our model is of course only one point
in a spectrum of models that seek to be more sophisticated in mod-
eling evolution — it would be interesting to explore whether more
complex models can yield better matching quality with acceptable
overhead. Finally, in some sense temporal matching works by rec-
ognizing that the temporal dimension in a matching problem has
special properties. It would be interesting to see if other dimen-
sions can also be exploited — in particular, a special treatment of
spatial information might be useful.
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