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Abstract

Entity matching (a.k.a. record linkage) plays a crucial

role in integrating multiple data sources, and numerous

matching solutions have been developed. However, the so-

lutions have largely exploited only information available in

the mentions and employed a single matching technique.

We show how to exploit information about data sources

to significantly improve matching accuracy. In particular,

we observe that different sources often vary substantially

in their level of semantic ambiguity, thus requiring differ-

ent matching techniques. In addition, it is often beneficial

to group and match mentions in related sources first, be-

fore considering other sources. These observations lead

to a large space of matching strategies, analogous to the

space of query evaluation plans considered by a relational

optimizer. We propose viewing entity matching as a com-

position of basic steps into a “match execution plan”. We

analyze formal properties of the plan space, and show how

to find a good match plan. To do so, we employ ideas from

social network analysis to infer the ambiguity and related-

ness of data sources. We conducted extensive experiments

on several real-world data sets on the Web and in the do-

main of personal information management (PIM). The re-

sults show that our solution significantly outperforms cur-

rent best matching methods.

1. Introduction

Entity matching decides if two given mentions in the

data, such as “David Smith” and “D. Smith”, refer to the

same real-world entity. This problem arises in many ap-

plications that integrate data from multiple sources. Con-

sequently, numerous solutions have been developed (e.g.

[19, 13, 24, 10, 5], see [23] for a recent tutorial).

While much progress has been made, the current so-

lutions have largely exploited only information within the

mentions, and employed a single matching solution, hence-

forth called a matcher. These restrictions often lead to the

dilemma that no matter which matcher we select, we fail to

match correctly a significant number of mentions, as illus-

trated below.
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Figure 1. Matching mentions in four Web data sources.

Example 1.1 Figure 1 shows five simplified Web pages that be-

long to four data sources: Luis Gravano’s homepage (source d1),

the Columbia database group website (d2), DBLP (d3), and Chen

Li’s homepage (d4). Suppose that we have extracted various men-

tions from these pages (e.g., “L. Gravano”, “K. Ross”, “Text

Databases”, etc.), and have inferred co-author relationships such

as “K. Ross is a co-author of L. Gravano”. Now consider match-

ing the two mentions “Chen Li” in Chen Li’s DBLP homepage (on

the right of the figure):

Chen Li, Jian Zhou. Entity Matching. KDD 03

Chen Li, Chris Brown. Interfaces. HCI 99

Suppose these refer to two different researchers called “Chen Li”

(in database and HCI, respectively). To distinguish them, we may

want to employ a “conservative” matcher s1 that declares two

mentions matched only if they share the same name (based on

some string similarity measure) and at least one co-author. Then

matcher s1 would make the correct decision of not matching the

above two “Chen Li” mentions. However, it would fail to match

the two “Luis Gravano” mentions in Luis Gravano’s homepage:

L. Gravano, K. Ross. Text Databases. SIGMOD 03

L. Gravano, J. Sanz. Packet Routing. SPAA 91

Though these mentions share no co-authors, they clearly refer to

the same person since they occur on Luis Gravano’s homepage.

If we employ a more “relaxed” matcher, such as a matcher s0

that declares two mentions matched if they share the same name,

we would have the reverse situation. We would correctly match the

above two “L. Gravano” mentions, but would incorrectly match

the two “Chen Li” mentions in Chen Li’s DBLP homepage. 2

Thus, in the above example it appears that no matter how

we select a matcher (s1 or s0), we make incorrect match-

ing decisions for certain subsets of mentions. This dilemma

arises in many matching scenarios. The fundamental reason

is the varying degree of “semantic ambiguity”. Frequently,

some subsets of data (e.g., homepages) are less ambiguous
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Figure 2. (a) The matching strategy used by current solu-

tions, and (b)-(c) strategies that employ multiple matchers.

with respect to matching, while some other subsets (e.g.,

DBLP) are significantly more ambiguous. In such scenar-

ios, a “conservative” matcher such as s1 will avoid many

false matches for ambiguous cases, but prevent us from

matching less ambiguous ones, whereas a more “relaxed”

matcher such as s0 will reverse the situation.

The Soccer Solution: In this paper we describe Soc-
cer (Source Conscious Compiler for Entity Resolution), a

solution to the above problem. Our first idea is as fol-

lows. In many practical settings we know the underlying

data sources where the mentions come from. As discussed

above, such sources often vary significantly in their level

of “semantic ambiguity”. Thus, we estimate the ambiguity

of the data sources, then apply multiple matchers: a more

conservative one to more ambiguous sources, and a more

relaxed one to others, as illustrated below.

Example 1.2 Continuing with Example 1.1, Figure 2.a shows

the matching strategy of current solutions [23]: take the union of

all mentions in sources d1 − d4, then apply a single matcher, e.g.,

s1. Now suppose we know that s1 (matches mentions if they share

similar names and at least one co-author) is too “conservative”

for sources d1, d2, and d4 (the homepages and group page), be-

cause they are not highly ambiguous. Then we can apply the more

relaxed matcher s0 (e.g., matches mentions if they share similar

names) to these sources, take the union of all mentions in d1 − d4

(but keeping the predicted matches), then finally apply matcher s1

to the union. The resulting “match plan” is shown in Figure 2.b.2

By replacing matcher s1 with a more “relaxed” matcher s0

on less ambiguous data sources, we benefit in two important

ways. First, mentions in those sources can now be imme-

diately matched. Second, these matched mentions provide

extra information for subsequent matchers. To see this, con-

sider the two mentions “L. Gravano” in d1:

L. Gravano, K. Ross. Text Databases. SIGMOD 03

L. Gravano, J. Sanz. Packet Routing. SPAA 91

Once we have matched them using s0, we can “enrich” each

mention by adding to its set of co-authors all co-authors of

the other mention [13]. Thus, the co-author sets of both “L.

Gravano” mentions will be {“K. Ross”, “J. Sanz”}. These

mentions will now share co-authors with the first and third

mentions of “Luis Gravano” in DBLP, and hence will match

those.

Thus, the more we can “enrich” mentions (in a way that

minimizes possible mistakes, such as adding incorrect co-

authors), the more mention pairs we can potentially match.

This leads to the second idea underlying Soccer – it is often

beneficial to group and match mentions in related sources

first, before considering other sources:

Example 1.3 Suppose we know that sources d1 and d2 are re-

lated in that they refer to a set of related people. Then we can

apply the match plan in Figure 2.c. This plan is similar to the

one in Figure 2.b, except here we apply s0 to the union of d1 and

d2, rather than to each of them individually. With this plan, all

four mentions “L. Gravano” in d1 and d2 will match (because s0

is applied). Consequently, the co-author set of “L. Gravano” is

now {“K. Ross”, “J. Sanz”, “J. Zhou”}. This enables the match-

ing of the mentions “L. Gravano” with the second mention “Luis

Gravano” in DBLP, a matching that the previous plan cannot do.

2

The plan in Figure 2.c is what Soccer would return in this

matching scenario.

Motivations: The original motivation for Soccer came

from our current work on building DBLife, a vertical por-

tal for the database research community [12]. A key chal-

lenge in DBLife is to match mentions of various entity

types (e.g., researchers, publications, conference) across

a broad range of database-related data sources (researcher

homepages, group pages, DBworld, conference homepages,

etc.). We observed that these sources vary significantly in

their semantic ambiguity. Another motivation for our work

came from the personal information management (PIM)

area (e.g., [13]), where a key problem is to match men-

tions from disparate sources, such as email folders, files,

directories, etc. PIM data sources also often exhibit signif-

icantly varying degrees of semantic ambiguity. For exam-

ple, an email folder that stores messages of several mailing

lists can be highly ambiguous, but far less so is a folder that

stores messages from co-authors of a specific ICDE paper.

Section 5 shows that Soccer outperforms current matching

methods on a data set sampled from DBLife and a PIM data

set.

Contributions: Our first contribution in developing Soc-

cer is to define the match problem. Specifically, we treat

each matching algorithm as a “blackbox” operator called

matcher, then cast mention matching as the problem of find-

ing an optimal match plan in a large plan space, where each

plan specifies which matcher to apply to each data source,

and which sources should be grouped. Figures 2.a-c show

examples of such plans.

We then consider a restricted version of the above gen-

eral problem. Specifically, current matching solutions can

be viewed as the domain expert executing a default plan

qdef that employs a single matcher, denoted as s1, that he or

she believes will provide the highest accuracy [23]. We as-

sume the expert can also provide another matcher, denoted

as s0, that is more “relaxed” than s1. Matcher s0 can often

be quickly constructed from s1, by “relaxing” the similar-

ity measures or thresholds employed by s1 (see Section 2).
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Figure 3. Examples of (a) mention and attributes, and

(b)-(c) match plans.

Our goal then is to find a plan q+ that employs both s1 and

s0, and significantly outperforms the default plan qdef . This

problem setting is practical, and yet simple enough to pro-

vide a tractable first study of compositional approaches to

mention matching. Considering a more general setting is a

subject of future work.

We turn to the difficult challenge of estimating the se-

mantic ambiguity and relatedness of the data sources. We

observe that the entities mentioned in the data sources (e.g.,

people, publications, etc.) and their relationships (e.g., co-

authors, advising, etc.) usually form a “social network”

graph [31]. If a part of this graph is dense, then it is likely

to refer to a strongly cohesive “social group”, where enti-

ties are highly related to one another. In a sense, the more

cohesive a group is, the less ambiguity exists, suggesting

that a more relaxed matcher is appropriate. Drawing from

this observation, we build a “social network” graph using

(among others) the matches predicted by the more conser-

vative matcher s1, then exploit the graph to estimate source

ambiguity and relatedness.

Finally, we show that, while it may be intractable to find

the best plan q∗, we can efficiently find a good plan q+ us-

ing the above source ambiguity and relatedness estimates.

We formally analyze the properties of the matching prob-

lem, and provide general conditions under which plan q+

(which employs both matchers s1 and s0) provably achieves

equivalent or higher accuracy than the default plan qdef of

employing just matcher s1.

2. Problem Definition

In this section we first define a general match problem,

which casts mention matching as finding an optimal match

plan in a large plan space. We then describe a restriction of

this problem considered further in this paper.

We assume that the set of mentions M to be matched

comes from a set of data sources D. Example sources in-

clude homepages, DBLP, DBworld, email folders, and Bib-

tex files. Mentions fall into multiple types: people, papers,

conferences, etc. We will describe how Soccer matches

mentions of a single type, then discuss how to extend Soc-
cer to match mentions of multiple types in Section 4.

We represent each mention m with a set of attributes

(e.g., name, co-authors, and pub-venues). Attributes can

be atomic (e.g., name), or set-valued (e.g., co-authors).

Many algorithms have been proposed to extract mention at-

tributes from the raw data (e.g. [1, 7, 33]). Hence, similar

to recent work on mention matching [5, 13, 24, 10], we as-

sume that the attributes have been extracted, and focus on

the problem of matching the mentions. Figure 3.a shows an

example mention m extracted from Luis Gravano’s home-

page in Figure 1.
We denote a match prediction as mi = mj , stating

that mentions mi and mj refer to the same real-world en-
tity. When employed as an operator within a match plan, a
matcher often takes as input not just mentions (and associ-
ated data sources), but also predictions from other matchers,
and leverages the input to make more predictions. Hence,
we formally define matchers as follows:

Definition 1 (Matcher) A matcher s takes as input a triple

(N, A, P ) and produces as output a triple (N, A, P ′), where N
is the set of mentions from a set of data sources A, P and P ′ are

sets of match predictions, and P ⊆ P ′.

Virtually any current matching algorithm can be viewed as

a matcher in our problem context. To illustrate matchers,

we briefly describe one way that matcher s1 (mentioned in

the introduction) may work:

Example 2.1 (Matcher s1) First, matcher s1 defines a match

function f that, when taken as input two people mentions mi and

mj , predicts “matched” only if they share similar names and at

least one co-author, i.e., only if

[sim(mi.name, mj .name)≥t]∧[|mi.co-authors∩mj .co-authors|≥1]

is true, where sim(mi.name, mj .name) is a function that mea-

sures the similarity between two input strings [6], and t is a thresh-

old set by the domain expert.

Matcher s1 then proceeds in iterations. In each iteration it

starts by using the match predictions it already has (if any) to “en-

rich” the mentions. For instance, given the prediction “L. Gra-

vano” = “Luis Gravano”, s1 enriches “L. Gravano” by adding to

its set of co-authors all co-authors of “Luis Gravano”, and vice

versa. Next, s1 applies the match function f to all mention pairs

(after enrichment) to predict matches (in practice various assump-

tions are often made so that s1 does not have to consider all men-

tion pairs, only a promising subset, see [26]). Matcher s1 repeats

the above two steps until a convergence criterion is reached (e.g.,

when the set of predicted matches has stabilized). 2

Examples of matching solutions that follow this “iterative

enrich and match” approach include [4, 13, 24, 29].
Soccer aims to employ multiple matchers, some being

more “relaxed” than others. We say matcher s0 is more
“relaxed” than matcher s1 if on any input the predictions
made by s0 contain those made by s1. Formally,

Definition 2 (Relaxed Matcher) Let the set of predictions made

by a matcher s on input (N, A, P ) be Pred(s, (N, A, P )). Then

we say matcher s0 is more relaxed than matcher s1 if and only if

∀ (N, A, P ) Pred(s0, (N, A,P )) ⊇ Pred(s1, (N, A,P )).

We can create relaxed matchers in many ways. One way

to do so is to start with a matcher s1 (e.g., supplied by a



domain expert), then “relax” the match function employed

by s1. For example, suppose s1 states that “two mentions

match only if they share similar names and at least one co-

author.” Then we can “relax” this condition to “two men-

tions match only if they share similar names,” and obtain a

new matcher s0. As another example, if the matcher em-

ploys a threshold for predicting matches, then lowering this

threshold often creates a relaxed matcher.
Given a set of data sources D and a set of matchers S,

a match plan specifies a strategy to match mentions in D,
using matchers in S. Formally,

Definition 3 (Match Plan & Plan Space) Let D and S be de-

fined as above, then a match plan q is a tree where (a) each leaf

is a triple (N, A, ∅) where A ⊆ D and N are the mentions of A,

and (b) each internal node is either a matcher s ∈ S or the union

operator, and (c) the root is a matcher s ∈ S. The set of all such

plans form a plan space for D and S.

In a sense, a match plan is similar to an execution tree in
relational contexts. The plan specifies which matcher is
applied to which subset of data sources, and how sources
are grouped. Figures 3.b-c show two example plans. The
first plan (Figure 3.b) groups all four data sources by taking
the union of all mentions, then applies a matcher s1 to this
union. The second plan (Figure 3.c) first groups sources d1

and d2, then applies matcher s0 to their mentions. Next,
matcher s0 is applied to the mentions in d4. Finally, the
plan takes the union of all the mentions (from d1 ∪ d2, d3,
and d4), and applies s1 to the union. We can now define the
general match problem as follows:

Definition 4 (General Match Problem) Given (a) a set of data

sources D with a set of mentions M , (b) a set of matchers S and

(c) a utility function U defined over the matching process (U can

take into account performance factors such as matching accuracy,

execution time, etc.), the general match problem is to find the op-

timal match plan q∗. Formally, let Q be the space of all possible

match plans over D and S. Then, q∗ = argmaxq∈Q U(q).

Match Problem Considered by Soccer: In this paper we
consider a restricted version of the above general problem.
First, like most recent work on mention matching (e.g. [13,
24, 9]), we consider maximizing only accuracy:

Definition 5 (Matching Accuracy) Given a set of data sources

D with mentions M and a plan q over D, let P (q) be the match

predictions made after executing q, and let P∗ be the correct set

of predictions over M . Then, the accuracy of q is F1(q) =
2 · Pr(q) · Re(q)/[Pr(q) + Re(q)], where precision Pr(q) =
(|P (q) ∩ P∗|)/|P (q)|, and recall Re(q) = (|P (q) ∩ P∗|)/|P∗|.

Next, we consider only two matchers. This version

is still practical, and yet sufficiently simple to provide a

tractable first study of our compositional approach. Specif-

ically, for the data set D we assume that the domain expert

has developed the best single-matcher solution, according

to his or her knowledge, and would use this solution today

if Soccer is not available. We view this solution as a default

plan qdef with a single matcher s1.

Social network-based
cohesion calculator

Plan q+

Relaxation Oracle

Plan Optimizer

Plan Executor

Data sources D

Matchers s1 , s0 

Mentions M

Predicted matches

Figure 4. The Soccer architecture.

Next, we ask the expert to create a more relaxed matcher

s0 (often by just relaxing the similarity measure employed

by s1, as discussed above). With D, the two matchers s1

and s0 define a space Q of match plans, which also includes

the default plan qdef . It turns out that finding the optimal

plan q∗ in Q may be intractable (Section 4). Hence, we set-

tle for the more modest goal of finding a good plan q+ that

significantly improves accuracy over qdef . In what follows

we describe how Soccer finds plan q+, then describes cer-

tain general conditions under which q+ is provably equiva-

lent to or better than qdef .

3. The Soccer Approach

The Soccer architecture consists of three main modules

(Figure 4). Given a set of mentions M over data sources D,

a matcher s1, and a more relaxed matcher s0, the relaxation

oracle uses matcher s1 to analyze the data sources D. In

doing so, it requires some minimal feedback from the user

to learn a cutoff threshold. Once this is done, given any set

of data sources A ⊆ D, the oracle can predict whether A is

“relaxable”, i.e., whether the more relaxed matcher s0 can

be reliably applied to A.

Next, the plan optimizer repeatedly calls the relaxation

oracle to evaluate the “relaxability” of various subsets of

data sources, and uses this information to find a match plan

q+ that can achieve significantly higher accuracy than the

default plan qdef . Finally, the plan executor executes q+,

and returns the predicted matches.

The rest of this section describes the relaxation oracle,

and Section 4 describes the plan optimizer. The plan execu-

tor is relatively straightforward and is not described further.

Relaxable Sets of Data Sources: To describe the relax-

ation oracle, we start with the notion of “relaxable” sets.

Consider a set of data sources A ⊆ D and two matchers

s1, s0. When there is no ambiguity, we will write s1(A) (or

s0(A)) to mean applying s1 (or s0) to the mentions of A.
Suppose that s0 is more relaxed than s1. Now consider

a match plan q (over data sources D) that contains a frag-
ment s1(A). Let q′ be the new plan obtained by replacing
s1(A) in q with s0(A). We may think that q′ is better than
q because s0 is more relaxed than s1. However, this is not
necessarily so. Matcher s0 being more relaxed only means
that s0(A) makes more predictions than s1(A) (Definition
2). A number of the extra predictions may still be incorrect,
hence overall q′ may still achieve lower accuracy than q. If
a subset of data sources A is such that given any plan q, s0
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Figure 5. An example to illustrate the process of creating a “social network” graph in the relaxation oracle.

can be applied to A in place of s1 to obtain an equivalent or
better plan q′, then we call A “relaxable.” Formally,

Definition 6 (Relaxable Set) A set of sources A is relaxable with

respect to s1 and s0 over data sources D if and only if for any

match plan over D that contains fragment s1(A), replacing that

fragment with s0(A) would result in an equivalent or better plan.

Given any set of data sources A ⊆ D, the goal of the

relaxation oracle is to predict if A is relaxable. The plan

optimizer then uses this information to find a good plan q+.

In what follows we describe how the oracle predicts such

relaxabilities.

Leveraging “Social Network” Cohesion: To predict re-

laxabilities, we leverage ideas from the area of social net-

work analysis [31]. Specifically, we observe that the entities

mentioned in the data sources and the relationships between

the entities form a “social network” graph G. Now consider

a set of data sources A, which corresponds to a subgraph

GA of G. If this subgraph is dense, then it is likely to re-

fer to a strongly cohesive social group, where entities are

highly related to each other.

In such a cohesive group, there is often less ambiguity,

such that entities often need to be mentioned only infor-

mally without specifying all applicable attributes. For ex-

ample, within the pages of a database group, a person can

often be mentioned just by name (e.g., “Luis” or “Luis Gra-

vano”), without title, email, and affiliation. Less cohesive

settings, such as calls for papers or the Web, would require

specifying more attributes (e.g., “Luis Gravano, Columbia

University”), in order to disambiguate entities. Thus, in a

sense, the more cohesive a group is, the more reliably we

can apply a relaxed matcher.

Drawing on this observation, we compute a cohesion

score for subgraph GA. If this score exceeds a certain

threshold t, then we say the set of data sources A is highly

cohesive, i.e., less ambiguous. Hence, we predict A to be

relaxable, i.e. we can safely use the more relaxed matcher

s0 on A. To realize these ideas, we must address three key

issues: building the “social network” graph G, computing

the cohesion of any subgraph of G, and computing the re-

laxability threshold t. We now address these issues in detail.

Building the “Social Network” Graph: Recall that this is

a graph of entities and relationships over the data sources

D. We approximate this graph as follows.

1. Apply Matcher s1 to Match Mentions: In the absence

of any extra knowledge, matcher s1 is the best algorithm

for mention matching according to the domain expert (i.e.,

the user in this case). Hence, we apply s1 to match the

mentions M over the data sources D. Figure 5.a shows the

people mentions in the four data sources from Example 1.1,

with edges denoting predicted matches.

2. Create Entities to Form Graph Nodes: Next, within

each data source d ∈ D, we create a set of entities. Each

entity consists of all mentions in d that match (either as de-

clared by s1 in Step 1, or by transitivity). We treat each

so-created entity as a node in the ER graph. For example,

the four mentions in d4 in Figure 5.a become two nodes in

d4 in Figure 5.b, where the pairs of matching “C. Li” and

“J. Zhou” mentions in d4 have both been consolidated. In

Figure 5.b, each node is labeled by the last initial of the real-

world entity it represents (e.g. “G” for Luis Gravano). Note

that Luis Gravano has multiple nodes in d1 because matcher

s1 failed to match his mentions in d1.

3. Create Relationships to Form Graph Edges: Finally, we

create three types of relationship edges between the entities.

• Equivalence: We create an edge representing an

equivalence relationship between any two entities E1 and

E2 where at least one mention of E1 and one mention of

E2 match (see Step 1). Figure 5.b shows edges denoting

these equivalence relationships.

• Co-occurrence: This type of relationship captures the

intuition that if the mentions of two entities often co-occur

in the data, then they are likely to be related in some way.

There are many schemes to compute co-occurrences. Cur-

rently we use the following. After creating equivalence rela-

tionships we have in effect created a set of cliques, such that

each clique maps to one real-world entity. For any two such

cliques Ci and Cj , we compute N(Ci, Cj), the number of

data sources where their mentions co-occur. If N(Ci, Cj)
exceeds a threshold k (currently set to 2), then we add an



edge (to represent co-occurrence relationship) between ev-

ery two graph nodes n ∈ Ci and m ∈ Cj . Two mentions

are judged to co-occur in a data source only if they both ap-

pear in at least one data page of the source. For example,

Figure 5.c show all co-occurrence edges involving Kenneth

Ross when k = 2. That is, edges exist between nodes for

Kenneth Ross and nodes for Luis Gravano and Jorge Sanz

in sources d1 and d3. Note that since the entity node for “K.

Ross” in source d2 is not equivalent to any other node (Fig-

ure 5.b), its mentions co-occur with those of other cliques

only in one source d2. Thus, that node has no co-occurrence

edges connected to it.

• Domain-specific relationships: Finally we add edges

that represent any domain-specific relationships that we can

infer from the data. For example, if each mention has an

attribute co-authors, then we can infer co-author relation-

ships between mentions, and add edges that represent this

relationship between the corresponding entities.

Figure 5.d shows edges between all pairs of nodes whose

entities are co-authors. For example, since Chen Li and Jian

Zhou are co-authors, there is now an edge between all pairs

of Chen Li and Jian Zhou nodes. The final ER graph then

includes all the edges in Parts b-d of Figure 5.

Computing the Cohesion of Data Subsets: Once the

graph G has been constructed, given any set A of data

sources we exploit G to compute a cohesion score for A.

The social network and graph theory communities have ex-

tensively discussed various notions of cohesion, and em-

ployed this notion in numerous applications (e.g., to find

social cliques in large groups of people) [31]. A common

intuition underlying many notions of cohesion is as follows.

A group of nodes is cohesive if it has high internal con-

nectivity (group members are highly related among them-

selves), and low external connectivity (group members are

not very related with outsiders) (e.g., [31, 15]).

We apply this intuition to our context, and com-

pute cohesion based on a measure proposed in [31].

Specifically, let GA be the subgraph of G correspond-

ing to the set of data sources A. Then, the inter-

nal connectivity of a set A is computed as the average

pairwise distance between nodes in GA: iCon(A) =
[
∑

ni,nj∈NA;i<j x(ni, nj)]/(|NA|(|NA|−1)/2), where NA

is the set of nodes in GA, and x(ni, nj) is the distance

between nodes ni and nj . Since GA is unweighted, we

set the distance between two nodes with at least one edge

between them to 1, and to 0 otherwise. If the denom-

inator is 0 (i.e. there is only one node), we assign it

a default internal connectivity of 1. The external con-

nectivity of A is computed as the average pairwise dis-

tance between nodes in GA and outside GA: eCon(A) =
[
∑

ni∈NA;nj∈N−NA
x(ni, nj)]/(|NA|(|N |−|NA|)), where

N is the set of nodes in G, and x(ni, nj) is the same dis-

tance function as used for internal connectivity.

The cohesion of A can then be computed as C(A) =
iCon(A)/eCon(A). If eCon(A) is 0, i.e., A is not con-

nected to any outside source, we assign it a default connec-

tivity of 1, which intuitively neither rewards nor penalizes

A’s cohesion for its lack of external connectivity.

Learning the Relaxability Threshold: Recall that if the

cohesion of A, C(A), exceeds a threshold t, the oracle de-

clares that A is highly cohesive, and hence is relaxable. We

now discuss how to learn t. We employ a simple active

learning scheme that engages the user in binary probing as

follows. First, we sort all sources in D in decreasing or-

der of their cohesion. Suppose the resulting ranked list is

d1, · · · , dn. Next, we set the upper bound tu (on t) to C(d1)
and lower bound tl to C(dn). In general, suppose that the

sources currently with cohesion tu and tl are di and dj , re-

spectively. Then, we select the source d⌊i+(j−i)/2⌋ (which

ranks between di and dj ) and ask the user if it is relaxable,

i.e., whether we can reliably apply matcher s0 to it. If the

user says yes, we set tl = C(d⌊i+(j−i)/2⌋), otherwise we

set tu = C(d⌊i+(j−i)/2⌋). This continues until j − i = 1, at

which point we set t to the average of C(di) and C(dj).
In our experiments over three domains (Section 5), the

user only had to inspect a small number of data sources (1-

7), and it took the user less than 5 minutes per source to

decide if a source is “relaxable”. This was because sources

often come with rich human-understandable meta-data that

describes the nature of mentions in the source and enables

the user to quickly decide whether matcher s0 would be ap-

propriate. Automating this step further is a subject of our

future research.

4. Finding an Optimized Plan
Ideally, we would find q∗, the globally optimal plan in

the plan space. However, finding q∗ may be intractable,

as we briefly discuss later. Hence, we aim instead to find

a plan that is likely to significantly outperform the default

plan qdef (one that applies s1 to data sources D).
Intuitively, we can improve qdef by using the relaxation

oracle to find all relaxable subsets of data sources, then ap-
plying the more relaxed matcher s0 to these sources, before
applying s1. Specifically, let A1, . . . , Ak be all subsets of
D that the relaxation oracle predicts to be relaxable, and let

qr = s1(s0(A1), s0(A2), . . . , s0(Ak), (D − ∪k
i=1Ai)) (1)

be a plan that applies s0 to the relaxable sets A1, . . . , Ak,

unions the results with (D−∪k
i=1Ai), then applies s1 to the

union. Then qr is likely to be better than qdef (and prov-

ably so if the oracle is perfect, i.e., if all of its relaxability

predictions are true). Furthermore, since qr applies s0 to all

relaxable subsets of D, it should be optimal in some sense.

Indeed, we show later that under certain general conditions

it is optimal among all plans reachable from qdef using a

small set of rewriting rules.

So qr is likely a good plan. However, finding it turns out

to be still prohibitively expensive. Constructing qr reduces



to finding all relaxable subsets of D. The naive solution is

to enumerate all 2|D| subsets of D and call the relaxation

oracle to predict the relaxability of each. This is clearly im-

practical for large D. Furthermore, the approach of gener-

ating all relaxable subsets in a compositional fashion (e.g.,

by combining two relaxable sets into a larger relaxable one)

is also unlikely to work, because it is not difficult to prove

that (a) a set A being relaxable does not imply that all of its

subsets are relaxable, and (b) sets A and B being relaxable

does not imply that A ∪ B is relaxable.

Given these observations, we turn to approximation. We

implement algorithm GFinder, which produces a plan q+

that approximates qr.

The GFinder Algorithm: GFinder does not find all

relaxable subsets of D, but it does find a substantial number

of such sets, in a greedy fashion. It then constructs plan

q+ using Formula 1, but replaces the sets A1, . . . , Ak in the

formula with those relaxable sets that it has found. Thus, q+

is just an approximation of qr. Our experiments (Section 5)

show that q+ still significantly outperforms qdef .

Specifically, GFinder starts by using the relaxation ora-

cle to find all relaxable individual data sources. Let these

sources be d1, . . . , dm. Then GFinder initializes a set

D+ = {S1, . . . , Sm}, where each set Si = {di} is a re-

laxable set of size one. Next, GFinder greedily grows the

sets in D+. For each pair Si and Sj in D+, GFinder em-

ploys the relaxation oracle to compute the cohesion of their

union, then selects the pair with the highest cohesion. Sup-

pose this pair is S1 and S2. If S1 ∪ S2 is declared relaxable

by the oracle, then GFinder removes S1 and S2 from D+,

replaces them with S1∪S2, then repeats the above “growth”

step. If S1 ∪ S2 is declared unrelaxable, or if all the origi-

nal sources in D+ have been merged into one set, GFinder
stops this process to “grow” relaxable sets.

Suppose D+ consists of relaxable sets A1, . . . , Ap when

the above process terminates. Then GFinder returns the

plan q+ = s1(s0(A1), s0(A2), . . . , s0(Ap), (D−∪p
i=1Ai)).

Guarantees of Optimality: GFinder produces a plan

q+ that captures our intuition about applying more relaxed

matchers to relaxable sets of sources to obtain a plan that is

better than qdef . We now show that under certain general

conditions, we can prove this. We also prove that plan qr

(which we try to approximate with q+) is optimal among all

plans reachable from qdef using a set of rewriting rules. Fi-

nally, we briefly show that finding the globally optimal plan

q∗ may be intractable. This suggests that finding plans that

outperform qdef might be a more fruitful research direction

than trying to find the globally optimal plan q∗.

We start by defining two intuitive properties of a match-

ing problem: globality and orderliness. Globality captures

the intuition that global matching should override the pre-

dictions of any local matching using the same matcher:
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Figure 6. Seven rewrite rules for match plans.

Definition 7 (Globality) A matching problem with matchers S
has the globality property if and only if for all s ∈ S, any plan

fragment s(s(A),B) can be rewritten as s(A,B) (and vice versa)

to obtain a plan with the same accuracy.

Orderliness states that a relaxed matcher should override the
predictions of more conservative matchers. It reflects our
intuitive understanding of the relaxability of matchers:

Definition 8 (Orderliness) A matching problem with matchers s1

and s0 – where s0 is more relaxed than s1 – has the orderliness

property if and only if any plan fragment s0(s1(A)) or s1(s0(A))
can be rewritten as s0(A) (and vice versa) to obtain a plan with

the same accuracy.

Globality and orderliness very commonly hold in practical

matching scenarios (e.g., they hold for all matching scenar-

ios in our experiments). Given these properties, we now can

prove that plan q+ outperforms qdef :

Theorem 1 (Quality of Plan q+) If globality and orderliness

hold, and if the relaxability predictions of the oracle are accu-

rate, then plan q+ as found by GFinder achieves equal or higher

accuracy than plan qdef .

Regarding plan qr, observe that Definitions 6-8 in effect de-
fine seven rewriting rules that we can use to rewrite plans
(see Figure 6). We can now prove that:

Theorem 2 (Optimal Reachable Plan) Assume that globality

and orderliness hold and that the relaxability predictions of the

oracle are accurate. Then plan qr as defined in Equation 1 is op-

timal among all those plans reachable from qdef , using the above

seven rewriting rules.

It immediately follows that qr is equivalent to or better than

q+, since q+ can also be reached from qdef using the above

rewriting rules. Regarding global optimality, we can prove

the following:

Theorem 3 (Shape of the Globally Optimal Plan) If globality

and orderliness hold, then any plan involving matchers s1

and s0 can be rewritten into an equivalent plan of the form

s1(s0(A1), s0(A2), . . . , s0(Ak), (D − ∪k
i=1Ai)). Consequently,

we only need to look for the globally optimal plan q∗ among those

of the above form.

An immediate question then arises: since plan qr also has

this shape, is it globally optimal? The answer is no. In par-

ticular, it is possible to construct matching scenarios where

the globally optimal plan q∗ applies s0 to a non-relaxable

subset A. This suggests that q∗ is not always qr (since the

latter applies s0 only to relaxable subsets). It further sug-

gests that it may be intractable to find q∗, given the large

space of possible candidates and little observed regularity in
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Figure 7. (a) Three real-world domains used in our ex-

periments and (b) the schemas for each domain.

that space (e.g., any plan that applies s0 to a non-relaxable

subset can potentially be a candidate).

Handling Multiple Types of Mentions: We have de-

scribed applying Soccer to match mentions of a single

type. Recent work has shown that in settings with multi-

ple types of mentions, matching mentions of all types to-

gether can improve accuracy [13, 21, 5, 28, 29]. Hence,

we consider extending Soccer to collectively match men-

tions of multiple types. To do so, for each mention type

t, we now assume two matchers st
0 and st

1. Next, we find

an optimized match plan qt
+ for each mention type t, by

proceeding as described earlier in Sections 3-4. Finally, to

match the mentions we perform only one modification to

a multi-type matching algorithm. For any matching deci-

sion between mentions mi and mj of type t, we consult the

match plan qt
+. If qt

+ applies st
0 to a subset that contains

mi and mj , we apply the match function from st
0 to mi and

mj; otherwise we apply the function from st
1. In a sense,

this is similar to “executing” the plans for all the mention

types simultaneously.

5. Empirical Evaluation

We now experimentally compare Soccer and current

matching solutions, and examine the relative utility of the

various Soccer components,

Data Sets: Figure 7 describes three real-world data sets

for our experiments. Researchers consists of 189 data

sources that cover database research-related activities (e.g.,

researcher homepages, conference websites, DBworld, part

of DBLP, etc.). We built wrappers to extract mentions

of people, articles, and venues, resulting in 14,444 people

mentions (Figure 7). We also manually identified all men-

tions that correctly belong to each entity. This resulted in

192,130 correct pairs of matching people mentions. Note

that this manual result is used only to evaluate the accuracy

of matching algorithms.

We proceeded similarly to create PIM and Movies data

sets. The 30 PIM data sources came from personal data

of one of the authors (currently there are no public PIM

data sets). They include email folders (each is treated as

a source), LaTeX and Bibtex files, and Unix directories,

among others. The 151 Movies data sources include ac-

tor home pages in IMDB (imdb.com), sources obtained

from querying Yahoo Movie Search with actor names, and

sources containing movie related news articles.

Matching Algorithms: For comparison, we use Semex,

a state-of-the-art matching algorithm [13]. Semex works

well for mentions with missing attribute values, with set-

values, and for PIM contexts. For each data set, we first

tuned Semex to maximize its accuracy, by designing the

best possible similarity measure and tuning its parameters

on set-aside data. This essentially simulated tuning as car-

ried out by a domain expert. For Soccer, we then treat the

tuned Semex as the “conservative” matcher s1. Next, we

replaced the similarity measure in Semex with a more “re-

laxed” similarity measure which match mentions based only

on their names. This more “relaxed” version of Semex is

then treated as matcher s0. Finally we applied Soccer with

matchers s0 and s1. Our goal is to see if Soccer outper-

forms the tuned Semex, and if so, by how much.

5.1. Matching Accuracy

Figure 8 shows the accuracy of Semex versus Soc-

cer. Each numeric cell lists F1, precision, and recall, in

that order. Rows “Semex” and “Soccer” show that Soc-

cer achieves comparable or significantly higher accuracy

than Semex in all eight cases (except on “venue” for Re-

searchers, where its F1 was lower by 0.3%).

In four cases, F1 improvement ranges from moderate

(3.2%) for “people” in PIM, to quite substantial (9.2-15.2%)

for “people” and “articles” in Researchers and “actors”

in Movies. Since Soccer could apply matcher s0 on se-

lected subsets of data sources, it was able to increase re-

call significantly, while only minimally hurting precision.

For instance, for “people” of Researchers, Soccer im-

proves recall by 16.8%, while reducing precision by only

1.2%. For “actors” of Movies, recall increases dramatically

from 62.6% to 84.9%, and precision also slightly rises from

79.9% to 80.7%. The remaining four cases show no or little

F1 improvement. In some cases Semex already achieves

very high F1 (e.g., 95.2-99.6%), leaving little room for

Soccer to improve. In others (e.g., “movies”), Soccer was

not able to find many relaxable sources (to which it could

apply s0).

Finally, Row “# questions” of Figure 8 shows that Soc-

cer required only minimal feedback from the user (1-7

questions), to learn the relaxation threshold.

5.2. Contributions of Soccer Components

We now examine the relative contributions of Soccer

components. For each entity type (e.g, “person”, “article”,

etc.), Figure 9 lists respectively the accuracy of Semex,

Soccer1, Soccer2, and Soccer.

Soccer1 is the “barebone” version of Soccer that applies

matcher s0 only to the individual data sources that are re-
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Figure 9. Matching accuracy of Semex versus three

Soccer variations.

laxable (not to groups of data sources, as in Soccer). Fig-

ure 9 shows that, compared to Semex, applying s0 to the

individual sources already increases accuracy significantly

by 0.6-8% F1 in five cases, without hurting the remaining

three cases. This often happens when some individual data

sources contain a significant amount of information about

various entities (e.g., an almost complete list of co-authors

of a researcher). In these cases applying s0 to such sources

improves recall significantly, without hurting precision.

Recall that Soccer attempts to maximize accuracy by

finding the largest possible groups that are relaxable. Is

it important to find the largest possible groups? We ex-

plored this issue with Soccer2. In this version we mod-

ified GFinder so that in each iteration, instead of select-

ing the pair with the highest cohesion, it selects a random

pair of sources. In essence, Soccer2 does not attempt to

find the largest possible groups of sources that are relax-

able, but only examines random groups and keeps those that

are relaxable. Compared to Soccer1, Soccer2 significantly

increases accuracy by 0.8-12.8% F1 in four cases. This of-

ten happens when the data is “dense”, such that even two

randomly selected sources, when combined, are likely to

contain a significant amount of information about entities.

However, for people in PIM and actors in Movies, Soccer

further improves accuracy over Soccer2 by 0.5% and 3%,

respectively, suggesting that in some cases it is indeed ben-

eficial to be even more aggressive and find the largest pos-

sible groups of data sources that are relaxable.

5.3. Scalability of Soccer

The first line of Figure 10.a shows the time it takes for

Soccer to generate the optimized plan q+ (Section 4), as

we increase the number of data sources from 10 to 180

(these sources were randomly sampled from Researchers
domain). The results show that this time grows quite mod-

estly and that Soccer can generate an optimized plan q+ in

a reasonable amount of time (e.g., under three minutes for

180 sources, using our unoptimized Soccer version). This

plan generation time is composed of (a) the time it takes to

run matcher s1 (the second line of Figure 10.a), and (b) the

time it takes using the predictions of s1 to construct the so-

cial network and to run GFinder algorithm, excluding the

time spent interacting with the user to learn the relaxability

threshold (the third line of Figure 10.a). The results show

that running matcher s1 clearly dominates the time Soccer
takes to generate plan q+. In contrast, constructing the so-

cial network and running GFinder takes far less time. Much

research has focused on improving the run time of current

matching solutions (e.g., [19, 4, 26]). Since we often use

these solutions as matcher s1 in Soccer, the above analysis

suggests that advances in the above line of research should

also help significantly reduce the plan generation time of

Soccer.

In the next step, we compare the run time of the opti-

mized plan q+ produced by Soccer with that of the default

plan (matcher s1 in our case). The results (see Figure 10.b)

show comparable run times. In three cases, Soccer actu-

ally took less time. This is mostly due to using matcher s0,

which is not as expensive timewise as matcher s1.

6. Related Work

Numerous mention matching solutions have been devel-

oped, under a variety of names: record linkage, (fuzzy) tu-

ple matching, entity matching, merge/purge, reference rec-

onciliation, and others (e.g. [14, 2, 19, 13, 25, 30, 22,

17, 32, 8, 11], see [23] for a recent survey). These works

have largely employed a single matching technique. Soc-

cer takes a next logical step of treating each proposed tech-

nique as a “blackbox” matcher, then showing how multi-

ple matchers can be employed to improve matching accu-

racy. In doing so, it exploits information about data sources,

which to the best of our knowledge has not been considered

by prior work.

Social network analysis [31] has been applied to a vari-

ety of data management applications, most notably to Web

search [27] and keyword search in relational and XML

databases [18, 3]. Recent work [20] analyze the link struc-

ture of a social network to disambiguate the mentions repre-

sented by the network nodes. In contrast, we employ social

network analysis to determine the semantic properties and

relatedness of data sources.

Soccer proposes a compositional, multi-component ap-

proach to mention matching, taking cues from the composi-

tional nature of relational data management. The work [4]

has applied this compositional approach - however, the goal

of this work is to optimize for run-time efficiency of a sin-



ghighjklmnolpqrstsuvwxsvtjjyz{|}ol~��j�l��l~����y}{mz~����stj�i��m�|l~�g��klmnol�������yz{|}ol~�����l��l~������������������ ¡¢£¤¢ ¥�¦§̈
©ª©«©¬­©¬®©©̄©®©°©¬­©¬±©¬«©²³́µ¶́·̧¹́³º·»¼½¶µ»¾¿²·̧¹́³ÀÁ»ÂÃ²·̧¹́³Ä³»ǺÀÁÄ́Å³Ä·µ¶»¹́Æ³ÀÇÈÀµ½Éµ»¼ÀÁ»ÊË·»¼¹ÀÌÍÎÏÐÑÒÓÔÕÖ×ÖØÙÚÛÜÝÞßàáßâá

Figure 10. (a) Time for Soccer to generate the optimized

plan q+, and (b) run time of q+ versus that of qdef (in sec-

onds).

gle matcher, by minimizing the calls to a similarity function

that compares mentions. In contrast, our work focuses on

using multiple matchers to optimize accuracy. Recent sys-

tems [16, 14] have proposed compositional frameworks for

data cleaning. However, the main goal of these frameworks

is to allow the user to specify and tune plans manually. In

contrast, our work focuses on optimizing mention matching

plans automatically with minimal user feedback.

7. Conclusion & Future Work

Current mention matching approaches have largely ex-

ploited only information within the mentions and employed

a single matching solution. We have described Soccer,

a novel approach that exploits information about the data

sources and employs multiple matching solutions to signif-

icantly improve matching accuracy. Soccer casts mention

matching as finding a good match plan in a large plan space,

where each plan specifies which matching solution is ap-

plied to which subset of data sources, and how sources are

grouped. Soccer leverages ideas from social network anal-

ysis to efficiently find a good plan. Extensive experiments

over three real-world data sets show that our solution signif-

icantly outperforms state-of-the-art matching methods. As

future work, we plan to further develop compositional men-

tion matching approaches. In particular, we plan to consider

more expressive match plan spaces (e.g., considering more

than two matchers, or subsets of data not just at the data-

source level). We also plan to consider more general utility

functions, such as those that combine both execution time

and matching accuracy.
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