
Merging Interface Schemas on the Deep Web via Clustering Aggregation

Wensheng Wu, AnHai Doan
University of Illinois, Urbana, USA

Clement Yu
University of Illinois, Chicago, USA

Abstract

We consider the problem of integrating a large num-
ber of interface schemas over the Deep Web, The scale of
the problem and the diversity of the sources present seri-
ous challenges to the conventional manual or rule-based
approaches to schema integration. To address these chal-
lenges, we propose a novel formulation of schema inte-
gration as an optimization problem, with the objective of
maximally satisfying the constraints given by individual
schemas. Since the optimization problem can be shown
to be NP-complete, we develop a novel approximation al-
gorithm LMax, which builds the unified schema via recur-
sive applications of clustering aggregation. We further ex-
tend LMax to handle the irregularities frequently occurring
among the interface schemas. Extensive evaluation on real-
world data sets shows the effectiveness of our approach.

1. Introduction
The Deep Web consists of a large number of Web

databases whose contents are hidden behind their query in-
terfaces. Virtual data integration over Deep Web sources is
an emerging research problem which has received great at-
tention (e.g. [2, 4, 5, 6]). The challenges of the problem
arise largely from two aspects: (1) scale: there are typically
a large number of Web databases in any domain of interest;
and (2) diversity: these databases often vary greatly in their
structure, coverage, vocabulary, and querying capabilities.

As an important step towards the integration of Web
databases, we consider the problem of integrating their
query interfaces. Query interface to a Web database is typ-
ically structured, containing a set of query attributes which
are grouped and ordered based on their relative semantics.
The structure of the interface can be naturally represented
with a hierarchical schema such as ordered tree [6]. To il-
lustrate, Figure 1(a) shows a query interface to an airfare
database and Figure 1(b) shows its schema as an ordered
tree.

The integration of interface schemas is typically accom-
plished in two steps: schema matching, which identifies
semantic correspondences among interface attributes; and
schema merging, which constructs a unified schema given
the discovered mappings of the attributes. Such a unified

schema should encompass all unique attributes over the
given set of interfaces, and should be structurally and se-
mantically well-formed. For example, Figure 1(c) shows
schema Sv for a different airfare query interface, where
attribute marked with x′ matches with attribute x in the
schema Su of Figure 1(b). Figure 1(d) shows a unified
schema which integrates the schemas Su and Sv .

While interface schema matching has been well stud-
ied [4, 5, 6], the problem of merging interface schemas
has received relatively little attention. As discussed above,
the interface schemas are greatly diversified due to the au-
tonomous nature of the sources. As a result, structural con-
flicts, as exemplified by the fact that different interfaces may
represent a different set of attributes and may organize the
attributes in quite different ways, are prevalent over the in-
terfaces. For example, while schema Su arranges the at-
tributes by location and date, schema Sv groups them on
departure and returning. The resolution of structural con-
flicts over a large number of interface schemas thus poses
serious challenges that call for a novel scalable solution.

In this paper, we present a first systematic study on the
problem of merging a large number of interface schemas.
We propose a novel formulation of schema integration as
an optimization problem (Section 2), where each interface
schema in essence expresses certain constraints on the uni-
fied schema and the goal is to construct a unified schema
such that these constraints are maximally satisfied. Since
the optimization problem can be shown to be NP-complete,
we propose a novel approximation algorithm LMax, based
on recursive applications of clustering aggregation [3] (Sec-
tion 3). We further extend LMax to cope with the irregular-
ities prevalent over interface schemas (Section 4). Finally,
we present the experimental results (Section 5). The exten-
sion to LMax for producing ordered schemas is given in the
full version of the paper.

2. Schema Integration as an Optimization
Problem

First, we formally define interface schemas, constraints,
and the schema integration problem.
Definition 1: (Interface schema) We view each interface
schema as an ordered tree of elements. Each leaf element
corresponds to an attribute on the interface. Each internal

(a) An airfare query
interface Q

root

Where...? When...? Number...
k

Class ...

Departure Return
Date Date

a b
tofrom

dc e

day
time

month
f

month
day

h

time

adult
childreni j

g

(b) Su: the schema of Q

l

from date to date

PreferencesDeparture

month
date

year

adult
senior

airline
class

Return Passengers

a’ b’

c’ f’ g’

i’ k’

d’ m

omonth
date

year
n

root

(c) Sv : the schema of a different
airfare interface

date
Return

When...?

a b
from to

adult
airline

class

ko

PreferencesNumber...

root

Where...?

f g h m

year
c d e l

time
day

month
time

day
month

year

senior

children
i j n

date
Departure

(d) A schema unifying Su and Sv

FIGURE 1: Examples of query interface, schema, and unified schema

element has an ordered set s (|s| > 1) of sub-elements,
each of which may be either a leaf element or an internal
element. Sub-elements are ordered by the sequence their
corresponding attributes (if leaf elements) or groups of at-
tributes (if internal elements) appear on the interface. �

For example, Figure 1(b) shows the schema Su for the
interface in Figure 1(a). Elements in the schema are anno-
tated with labels from the interface. In the following, we
will also use parenthesis notation to represent the schemas.
For example, schema Su may be represented as ((a, b) ((c,
d, e) (f , g, h)) (i, j) k).

As discussed earlier, each of the interface schemas to be
integrated essentially expresses certain preferences over the
unified schema. These preferences can be encoded in two
types of constraints: (a) structural constraints, which are
expressed over the ancestor-descendant relationships on the
lowest common ancestor (LCA) of attributes and thus re-
strict the structure of the unified schema; and (b) precedence
constraints, which are expressed over the sequence of at-
tributes and thus restrict the ordering of the elements in the
unified schema. We now formally define these constraints.
Definition 2: (Structural constraint) Consider a schema
S and denote the lowest common ancestor of two attributes
x and y in S as LCA(x, y). Consider three attributes x, y

and z in S. We say that there exists a structural constraint
in form of (x, y)z from S, if LCA(x, y) < LCA(x, z) and
LCA(x, y) < LCA(y, z), where n1 < n2 denotes that ele-
ment n1 is a proper descendant of element n2. �

Example 1: (a, b)c is a structural constraint from the
schema Su. Intuitively, it indicates, according to Su, at-
tributes a and b (both on the location of flight) are more
closely related than either to c (which is on the date of
flight). �

Given a set of structural constraints without conflicts, [1]
gives a polynomial time algorithm to construct a tree which
satisfies all the given constraints. But when there are con-
flicts in the given structural constraints, the algorithm in [1]
can not be applied. In our integration problem, conflicts
are prevalent. For example, (a′, c′)b′ from Sv conflicts with
(a, b)c from Su. In general, constraint (x, y)z conflicts with

(x, z)y and (y, z)x. Given two conflicting constraints, it
is impossible to find a unified schema which satisfies both
constraints.
Definition 3: (Precedence constraint) Consider a schema
S and a sequence of attributes, denoted as qs, obtained from
a pre-order traversal of S. We say that there exists a prece-
dence constraint between two attributes x and y, denoted as
x ≺ y, from the schema S, if x appears before y in qs. �

Example 2: The sequence qsu
for schema Su is

<a, b, c, d, e, f, g, h, i, j, k>. As such, a ≺ b, a ≺ d

are two precedence constraints from Su. �

Based on the above definitions, we cast the integration
problem as an optimization problem:

Integration problem OPT: Given a set of interface
schemas S with a set of distinct attributes A, find a unified
schema G such that (1) G’s leaf elements are attributes in A;
(2) the number of structural constraints from the schemas
in S, which are satisfied by G, is maximized; and (3) the
number of precedence constraints from the schemas in S,
which are satisfied by G, is maximized.

3. Approximating OPT via Clustering Aggre-
gation

It is not difficult to prove that OPT is NP-complete. This
section presents the algorithm LMax which gives an ap-
proximate solution to OPT. Essentially, LMax views the
construction of a unified schema as a process of forming re-
cursive partitions over a set of attributes such that structural
constraints from the interface schemas are satisfied as much
as possible. To illustrate, consider integrating schemas Su

and Sv . To start with, LMax is given a set A of 15 unique
attributes (numbered a–o) over the two schemas. At the first
iteration, LMax will create a root node r, form a partition
over the attributes in A, and then create a list of children for
r, each corresponding to a cluster in the partition. The same
process is then recursively applied to each child of r, given
the attributes in the cluster associated with that child.

We first introduce several necessary concepts.
Definition 4: (Cluster, maximum cluster, and cluster-
ing) Consider a schema S which contains a set of attributes

LMAX(S, A, r)
Input: S, a set of interface schemas;

A, a set of distinct attributes over the schemas in S.
Output: r, the root of a unified schema G

(1) if A = {a} /* A has only one attribute */
r ← NODE(a)

(2) else if A = {a, b}
r1 ← NODE(a), r2 ← NODE(b), r ← NODE(r1, r2)

(3) else /* A has at least three attributes */
(a) {Cr1

, Cr2
, ..., Crk

} ← PARTITION(A, S)
(b) for each Cri

, 1 ≤ i ≤ k, do
S ′ ← S|Cri

LMAX(S ′, Cri
, ri)

(c) r ← NODE(r1, ..., rn)

FIGURE 2: The LMax algorithm

A. For each node n in S, we define a cluster Cn as the set
of attributes (i.e. leaf elements) in the sub-tree rooted at n.
A cluster C is a proper cluster if C ⊂ A. A proper cluster
is a maximum cluster if it is not a subset of any other proper
clusters in S. The set of all maximum clusters in S forms a
clustering over the attributes in A. �

Example 3: The maximum clusters in Su are {a, b},
{c, d, e, f, g, h}, {i, j}, {k}, each associated with a child
of the root. �

Definition 5: (Restriction) A restriction of a schema S on
a set of attributes X , denoted as S|X , is a schema given
by: (1) pruning all attributes in S which are not in X ; (2)
pruning the internal node if all its children are pruned; (3)
replacing the internal node with only one child by its child.

A restriction of a set of schemas S = {S1, ..., Sn} on X ,
denoted as S|X , is a set of schemas {S1|X, ..., Sn|X}. �

Example 4: Su|{a, b, c, d, k} = ((a, b) (c, d) k). �

Based on the above definitions, LMax algorithm is given
in Figure 2. Note that NODE(a) creates a leaf node with the
attribute a; and NODE(n1, ..., nk) creates an internal node
with ni’s as the children.

Given a set of schemas S = {S1, S2, ..., Sn}, and a set
of unique attributes A over the schemas in S, LMax builds
a unified schema G as follows. If A has only one attribute
a, it simply returns NODE(a) as the root of G. If A has
only two attributes a and b, G is a tree with two leaves:
NODE(a) and NODE(b). Otherwise, it first forms a partition
P = {Cr1

, Cr2
, ..., Crk

} over the attributes in A. Then for
each cluster Cri

, it recursively creates a sub-tree rooted at
ri based on a set of restricted schemas S|Cri

. Finally, it
returns NODE(r1, r2, ..., rk) as the root of G.

We now describe the PARTITION function, the key com-
ponent of the LMax algorithm, in detail.

PARTITION: PARTITION(A, S) finds a partition over the
attributes in A such that the structural constraints from the
schemas in S are satisfied as much as possible.

Consider a partition P over A where P = {C1, C2, ...,
Ck}. Consider further a schema S ∈ S. Suppose that M =

{C ′
1
, C ′

2
, ..., C ′

l} is a set of the maximum clusters in S. We
observe that, to satisfy as many structural constraints from
S as possible, P should be such that if two attributes x, y

are in the same cluster Ci ∈ M , then both x and y should
also be placed in the same cluster, say Cj ∈ P . Otherwise,
all constraints of the form (x, y)z will be violated. On the
other hand, having x, y ∈ Cj will satisfy all the constraints
of the form (x, y)z for some z 6∈ Ci. In other words, we
may regard M as a clustering over the attributes in A (pos-
sibly with some missing attributes), and a good partition P

should be such that it agrees with M on the cluster labels of
the attributes.

Denote the set of such clusterings asM = {M1, ..., Mn},
where Mi is the clustering given by the schema Si. Since
different schemas may give different clusterings, our prob-
lem is a problem of clustering aggregation: we seek a par-
tition P such that P maximally agrees with the clusterings
inM. Unfortunately, clustering aggregation is also a NP-
complete problem [3]. As such, PARTITION implements an
approximation algorithm which can be regarded as a variant
of the AGGLOMERATIVE algorithm in [3].

Given a set of attributes A and a set of clusteringsM =
{M1, ..., Mn}, PARTITION proceeds as follows. For every
pair of attributes a and b in A, their potential of being in the
same cluster, denoted as p(a, b), is given by the number of
clusterings in M which place a and b in the same cluster,
subtracted by the number of clusterings which place a and
b in different clusters. PARTITION starts by placing each
attribute in A in a cluster by itself. It then repeatedly merges
two clusters with the largest potential, where the potential of
two clusters is given by the group-average of the potentials
of the attributes in the two clusters. The merging process
stops when no two clusters have a positive potential.

Example 5: Consider S = {Su, Sv, Sw}, where Su and Sv

are schemas in Figure 1(b) and 1(c) respectively, and Sw is
homogeneous to Su (with the same attributes and structure).
Thus, S contains a set A of 15 unique attributes numbered
from a to o. The first call to PARTITION with A and S re-
turns P = {{a, b}, {c, d, e, f, g, h, l, m}, {i, j, n}, {k, o}}.
By recursive applications of PARTITION on each cluster in
P , LMax produces a unified schema shown in Figure 1(d).�

4. Handling Irregular Interface Schemas
Compared to other types of schemas, e.g., schemas in

relational databases, interface schemas are typically much
less regular. In particular, we observe that the structure of
some interfaces may be implicit in that the attributes may
be simply listed one after another without explicit group
delimiters. This poses challenges to schema extraction al-
gorithms. As a result, the obtained schema may not fully
capture the grouping relationships of attributes on the inter-
face. The irregular schemas may greatly affect the perfor-
mance of PARTITION which assumes that maximum clus-

ters of each schema S indicate S’s preferences on dividing
attributes into groups.

To address this challenge, consider again a set of
schemas S, some of which may be irregular. A key ob-
servation is that we can exploit other schemas in S to iden-
tify the irregularities in the irregular schemas, assuming that
not every schema in S is irregular. Specifically, consider a
schema Si ∈ S. We observe that if attributes a, b ∈ Si ap-
pear in different maximum clusters of Si, but both appear in
the same maximum cluster of some other schema Sj ∈ S,
then it is very likely that the grouping relationship between
a and b is implicit on the interface of Si. Motivated by the
above observation, we extend LMax based on the concept
of global maximum clusters defined as follows.

Definition 6: (Global maximum cluster) Consider a set
of schemas S = {S1, ..., Sn}, where each schema Si ∈ S
gives a set of maximum clusters Mi = {Ci1 , Ci2 , ..., Cik

}.
We say that a maximum cluster Cij

∈ Mi is a global max-
imum cluster if it is not a proper subset of any maximum
clusters of any other schemas in S. �

We denote the set of global maximum clusters over the
schemas in S as CS = {CS

1
, CS

2
, ..., CS

m}, and denote the
set of unique attributes in the schemas of S as A. (It is
important to note that the clusters in CS may not form a
partition over A, due to structural conflicts in the schemas
of S.)

Based on the above definition, we modify PARTITION in
LMax. Recall that, given a set of attributes A and a set of
clusteringsM = {M1, ..., Mn}, where Mi is a set of max-
imum clusters obtained from schema Si ∈ S, PARTITION

forms a partition over A via clustering aggregation.
The modified PARTITION consists of the following steps:

(1) obtain CS , the set of global maximum clusters; (2) trans-
formM into a new set of clusteringsM′ = {M ′

1
, ..., M ′

n},
where M ′

i is obtained from Mi by combining clusters in
Mi, which are subsets of the same global maximum cluster
in CS , into one cluster; (3) perform the clustering aggrega-
tion withM′ instead ofM.

The LMax algorithm with the new PARTITION is de-
noted as GMax.

5. Empirical Evaluation

We have evaluated both the LMax and GMax algorithms
on a real-world data set over varied domains. The goal
of the experiments was to examine if the produced unified
schemas are semantically well-formed, and to compare the
performance of the two algorithms.

For all experiments, we used a data set which contains
a total of 100 interface schemas extracted from the query
interfaces to Web databases in five domains: airfare, auto,
book, job, and real estate, with 20 schemas for each domain.
Table 1 gives the statistics of the data set.

Real Estate

Max Avg Min Max Avg Min Max Avg

715 10.75

10 5.1 42

102

4.6

3 6.7 1 6

5.4 2

23

14

7 1

1

1

1 2 3.6

2.4

2 2.3

2 2.1

2 2.7

2

4

3

3

3

55.1

1.3

1.7

1.1

2.4

Internal NodesLeaf Nodes Depth
Domain

Airfare

Automobile

Book

Job

Min

TABLE 1: Domains and statistics of the data set
An objective measure on the quality of a produced uni-

fied schema is to compare the unified schema with the op-
timal unified schema. But since finding optimal schemas
is computationally expensive, we use an alternative mea-
sure PerSC, which is the percentage of strong structural
constraints from the given set of interface schemas satis-
fied by the unified schema. A structural constraint (x, y)z
is a strong constraint if it appears more often in the given
set of interface schemas than its conflicting constraints, i.e.,
(x, z)y and (y, z)x. Intuitively, since conflicting constraints
from different schemas can not be satisfied simultaneously,
we expect that the optimal schema should satisfy the strong
constraints.

Alg. Airfare Auto Book Job Real Est. Average
LMax 73.6 74.0 91.8 73.7 63.6 75.3
GMax 89.9 95.6 91.8 89.5 89.0 91.2

TABLE 2: The performance of LMax vs. GMax

Table 2 shows the performance of LMax and GMax on
the data set, measured by their PerSC scores. We observe
that the PerSC scores of LMax range from 63.6% in the real
estate domain to 91.8% in the book domain. We further
observe that GMax improves the performance significantly
over four domains, with a 15.8% increase in the job domain
and as high as 25.4% increase in the real estate domain.
These indicate the prevalence of irregularities in the inter-
face schemas. Overall, the average PreSC score increases
from 75.3% to 91.2%. This indicates the effectiveness of
GMax in handling the irregular interface schemas.

References

[1] A. Aho, Y. Sagiv, T. Szymanski, and J. Ullman. Inferring a
tree from lowest common ancestors with an application to the
optimization of relational expressions. SIAM, 10(3).

[2] L. Barbosa and J. Freire. Searching for hidden-web databases.
In WebDB, 2005.

[3] A. Gionis, H. Mannila, and P. Tsaparas. Clustering aggrega-
tion. In ICDE, 2005.

[4] B. He and K. Chang. Statistical schema matching across Web
query interfaces. In Proc. of SIGMOD, 2003.

[5] H. He, W. Meng, C. Yu, and Z. Wu. Wise-integrator: an
automatic integrator of web search interfaces for e-commerce.
In VLDB, 2003.

[6] W. Wu, C. Yu, A. Doan, and W. Meng. An interactive
clustering-based approach to integrating source query inter-
faces on the Deep Web. In SIGMOD, 2004.

