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Abstract

The problem of integrating data from multiple data sources — either on the Internet or within
enterprises — has received much attention in the database and AI communities. The focus has
been on building data integration systems that provide a uniform query interface to the sources.
A key bottleneck in building such systems has been the laborious manual construction of seman-
tic mappings between the query interface and the source schemas. Examples of mappings are
“element location maps to address” and “price maps to listed-price”. We propose a multistrategy
learning approach to automatically find such mappings. The approach applies multiple learner
modules, where each module exploits a different type of information either in the schemas of
the sources or in their data, then combines the predictions of the modules using a meta-learner.
Learner modules employ a variety of techniques, ranging from Naive Bayes and nearest-neighbor
classification to entity recognition and information retrieval. We describe the LSD system, which
employs this approach to find semantic mappings. To further improve matching accuracy, LSD
exploits domain integrity constraints, user feedback, and nested structures in XML data. We
test LSD experimentally on several real-world domains. The experiments validate the utility
of multistrategy learning for data integration and show that LSD proposes semantic mappings
with a high degree of accuracy.



Find houses with 2 bedrooms priced under 200K

1 \.

\

source schema3
T
Wrapper Wrapper
realestate.com homes.com homeseekers.com

Figure 1: A data integration system in the real-estate domain.

1 Introduction

The number of structured data sources available online is growing rapidly. Integrating data across
such sources holds the potential to better many aspects of our lives, ranging from everyday activities
such as reading news and choosing a movie to important tasks such as buying a house and making
a business decision. Manually integrating data from multiple sources, however, is extremely labor
intensive. Hence, researchers in both the database and AI communities have proposed building
data integration systems (e.g., [GMPQ"97, LRO96, IFF+99, LKG99, FW97, KMA*98]). Such a
system provides a uniform query interface to a multitude of data sources, thereby freeing the user
from the tedious job of accessing the individual sources, querying them, and manually combining
the answers.

Consider for example a data integration system that helps users find houses on the real-estate
market (Figure 1). The system provides the uniform interface in terms of a mediated schema
that captures the relevant aspects of the real-estate domain. The mediated schema may contain
elements such as ADDRESS, PRICE, and DESCRIPTION, listing the house address, price, and de-
scription, respectively. The system maintains for each data source a source schema that describes
the content of the source. Wrapper programs, attached to each data source, handle data formatting
transformations between the local data model and the data model in the integration system.

Given a user query formulated in the mediated schema, such as “find houses with 2 bedrooms
priced under $200K”, the system translates the query into queries in the source schemas, executes
these queries with the help of the wrappers, then combines the data returned by the sources to
produce the final answers.

To translate user queries, a data integration system uses semantic mappings between the me-
diated schema and the local schemas of the data sources. Examples of mappings are “element
ADDRESS of the mediated schema maps to element location of the schema of realestate.com” and
“PRICE maps to listed-price”. Today, such semantic mappings are specified manually by the system
builder, in a very labor-intensive and error-prone process. The acquisition of semantic mappings
therefore has become a key bottleneck in deploying data integration systems. The emergence of
XML [XML98] as a standard syntaz for sharing data among sources further fuels data sharing ap-
plications and underscores the need to develop methods for acquiring semantic mappings. Hence,
the development of techniques to automate the mapping process has now become crucial to truly
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Figure 2: Source realestate.com provides data in XML format, as shown in (a). Once we have
manually provided the mappings between the source schema and the mediated schema (the five
arrows in (b)), a system can learn many different matching hypotheses from schemas in (b) and
source data in (c), then apply them to predict mappings for a new source homes.com in (d).

achieve large-scale data integration.

In this paper we describe a machine learning approach to automatically create semantic map-
pings. Throughout the discussion, we shall assume that the sources present their data in XML and
that the mediated- and source schemas are represented with XML DTDs (see Section 2 for more
details on XML). The schema-matching problem is then to find semantic correspondences between
the elements of the mediated schema and the source DTDs.

The key idea underlying our approach is that after a small set of data sources have been manually
mapped to the mediated schema, a schema-matching system should be able to automatically learn
from these mappings to successfully propose mappings for subsequent data sources.

Example 1 Consider the data-integration system in Figure 1. Suppose we have source realestate.com
in Figure 2.a, for which we have manually specified the semantic mappings. This amounts to speci-
fying the five arrows in Figure 2.b. The first arrow, for example, states that source-schema element
listed-price matches mediated-schema element PRICE.

Once we have specified the mappings, a machine learning system can exploit different types of
information in the source schema and data, for the purpose of finding future semantic mappings. It
can exploit the names of schema elements: knowing that office matches OFFICE-PHONE, it could
construct a hypothesis that if an element name contains the word “office”, then that element is
likely to be OFFICE-PHONE. The system can also look at example phone numbers in the source data
(Figure 2.c), and learn the format of phone numbers. It could also learn from word frequencies: it
could discover that words such as “fantastic” and “great” appear frequently in house descriptions.
Hence, it may hypothesize that if these words appear frequently in the data instances of an element,
then that element is likely to be DESCRIPTION. As yet another example, the system could also



learn from the characteristics of value distributions: it can look at the average value of an element,
and learn that if that value is in the thousands, then the element is more likely to be price than
the number of bathrooms.

Once the system has learned from the manually provided mappings, it is then able to find
semantic mappings for new data sources. Consider source homes.com in Figure 2.d. First, the
system extracts data from this source to populate a table where each column consists of data
instances for a single element of the source schema. Next, the system examines the name and the
data instances of each column, and applies the learned hypotheses to predict the matching mediated-
schema element. For example, when examining column extra-info, the system could predict that
it matches DESCRIPTION, because the data instances in the column frequently contain the words
“fantastic” and “great”, and therefore are likely to be house descriptions.O

In general, there are many different types of information that a schema-matching system can
exploit, such as names, formats, word frequencies, positions, and characteristics of value distribu-
tions. It is important that the system exploit all such types of information, in order to maximize
matching accuracy. Consider element contact-agent of source homes.com (Figure 2.d). If the system
exploits only the name “contact-agent”, it can only infer that the element relates to the agent, and
hence matches either AGENT-NAME or AGENT-PHONE. If the system exploits only the data values
of the element, it can recognize only that they are phone numbers, and hence the element matches
either AGENT-PHONE or OFFICE-PHONE. Only when combining both types of information can
the system correctly infer that the element matches AGENT-PHONE.

Clearly, no single learning technique will be able to exploit effectively all types of information.
Hence, our work takes a multistrategy learning approach [MT94]. To predict mappings for a new
data source, we propose applying a multitude of learning modules, called base learners, where
each base learner exploits well a certain type of information, then combining the base learners’
predictions using a meta-learner. The meta-learner uses the manually mapped sources to learn
a set of weights for each base learner. The weights indicate the relative importance of the base
learners and can be different for each mediated-schema element, reflecting that different learners
may be most appropriate in different cases.

We have developed the LSD (Learning Source Descriptions) system, which employs the above
multistrategy learning approach to semi-automatically create semantic mappings. To improve
matching accuracy, LSD extends multistrategy learning to exploit domain integrity constraints
that appear frequently in database schemas, and to incorporate user feedback on the proposed
mappings. It also employs a novel learning technique that utilizes the nested structure inherent in
XML data.

In this paper, we focus on describing multistrategy learning, the central component of the LSD
system. We discuss additional techniques employed by LSD briefly in Section 4 and in detail in
[DDHO01]. Specifically, we make the following contributions:

e We propose the use of multistrategy learning for finding semantic mappings. In addition to
providing accuracy superior to that of any single learner, the technique has the advantage of
being highly extensible when new learners are developed.

e We describe the implementation of multistrategy learning in the LSD system. LSD extends
multistrategy learning to exploit domain constraints, user feedback, and XML structure, in
order to propose semantic mappings with high accuracy.



<house-listing>
<location>Seattle, WA</location>
<price> $70,000</price>
<contact><name>K ate Richardson</name>| | <!ELEMENT price ~ (#PCDATA)>

<IELEMENT houselising (Iocation?, price,contact)> <IELEMENT LISTING (ADDRESS,USTED-PRK:E, CONTACT-|NFO)>

<IELEMENT location (#PCDATA)> <!ELEMENT ADDRESS  (#PCDATA)>
<IELEMENT LISTED-PRICE (#PCDATA)>

<phone>(206) 523 4719</phone>| | <IELEMENT  contact (name, phone)> <IELEMENT CONTACT-INFO (FNAME, LNAME, AGENT-PHONE)>
</contact> <IELEMENT name (#PCDATA)> <IELEMENT FNAME (#PCDATA)>
</house-listing> <IELEMENT phone (#PCDATA)> <IELEMENT LNAME (#PCDATA)>

<IELEMENT AGENT-PHONE (#PCDATA)>

(a) An XML house listing in asource S (b) The schemaof source S (c) The mediated schema

Figure 3: Examples of XML listing, source schema (DTD), and mediated schema.

o We describe experiments on several real-world data integration domains. The results validate
the utility of multistrategy learning, and show that with the current set of learners, LSD
already obtains high predictive accuracy of 71-92% across all tested domains.

The paper is organized as follows. The next section defines the schema-matching problem.
Section 3 describes our multistrategy learning approach. Section 4 describes the current LSD
implementation. Section 5 presents our experiments. Section 6 discusses the limitations of the
current LSD system. Section 7 reviews related work. Section 8 discusses future work and concludes.

2 The Schema-Matching Problem

The goal of schema matching is to produce semantic mappings that enable transforming data
instances of one schema into instances of the other [MHH(00, RBO1]. In many common cases,
the mappings are one-to-one (1-1) between elements in the two schemas (e.g., “location maps to
ADDRESS”), while in others, the mappings may be more complex (e.g., “num-baths maps to HALF-
BATHS + FULL-BATHS”). In this paper we focus on computing 1-1 mappings between the schemas.
In a separate paper [DDH02] we discuss extending multistrategy learning to compute more complex
mappings.

We emphasize that the input to the schema matching problem considered here is already struc-
tured data. In many data-integration applications, it is necessary to precede schema matching
by a data extraction phase. In this phase, unstructured data (e.g., text, HTML) is mapped to
some structured form (e.g., tuples, XML). Data extraction has been the focus of intensive research
on wrappers, information extraction, and segmentation (e.g., [Kus00a, AK97, HGMN*98, Fre98]),
often also benefiting from machine learning techniques.

2.1 Schema Matching for XML DTDs

The eXtensible Markup Language [XML98] is increasingly being used as a protocol for the dissem-
ination and exchange of information between data sources. Hence, in this paper we consider the
problem of discovering semantic mappings in the context of XML data. In addition to encoding
relational data, XML can encode object-oriented, hierarchical, and semi-structured data. An XML
document consists of pairs of matching open- and close-tags, enclosing elements. Fach element
may also enclose additional sub-elements. A document contains a unique root element, in which all
others are nested. (In general, an XML element may also have a set of attributes. For the purpose
of this paper we treat its attributes and sub-elements in the same fashion.)
Figure 3.a shows a house listing stored as an XML document. Here “(location)Seattle, WA (/location)”

is an XML element. The name of this element is “location”, and the data value is “Seattle, WA”.



We consider XML documents with associated DTDs (Document Type Descriptors). A DTD
is a BNF-style grammar that defines legal elements and relationships between the elements. We
assume that the mediated schema is a DTD over which users pose queries, and that each data
source is associated with a source D'TD. Data may be supplied by the source directly in this DTD,
or processed through a wrapper that converts the data from a less structured format. Figures 3.b-c
show sample source- and mediated-D'TDs in the real-estate domain. Throughout the paper, we shall
use this font to denote source-schema elements, and THIS FONT for mediated-schema elements.

Given a mediated DTD and a source DTD, the schema-matching problem is to find semantic
mappings between the two DTDs. In this paper we start by considering the case of finding one-to-
one (1-1) mappings between tag names of the source DTD and those of the mediated DTD. For
example, in Figures 3.b-c, tag location matches ADDRESS, and contact matches CONTACT-INFO.
Intuitively, two tags (i.e., schema elements) match if they refer to semantically equivalent concepts.
The notion of semantic equivalence is subjective and heavily dependent on the particular domain
and context for which data integration is performed. However, as long as this notion is interpreted
by the user consistently across all data sources in the domain, the equivalence relations LSD learns
from the training sources provided by the user should still apply to subsequent, unseen sources.

2.2 Schema Matching as Classification

Our approach rephrases the problem of finding 1-1 mappings as a classification problem: given the
mediated-D'TD tag names as distinct labels ¢y, ..., c,, we attempt to assign to each source-schema
tag a matching label. (If no label matches the source-schema tag, then the unique label OTHER is
assigned.)

Classification proceeds by training a learner L on a set of training ezamples {(x1,¢;1), - -, (Tm, cim)},
where each z; is an object and c;; is the observed label of that object. During the training phase,
the learner inspects the training examples and builds an internal classification model (e.g., the
hypotheses in Figure 2.a) on how to classify objects.

In the matching phase, given an object x the learner L uses its internal classification model to
predict a label for z. In this paper we assume the prediction is of the form

((e1,81), (c2,82), .-+, (Cns8n))s

where 37| s; = 1 and a pair (¢;, s;) means that learner L predicts  matches label ¢; with confidence
score s;. The higher a confidence score, the more certain the learner is in its prediction. (In
machine learning, some learners output a hard prediction, which is a single label. However, most
such learners can be easily modified to produce confidence-score predictions.)

For example, consider the Name Learner which assigns a label to an XML element based on
its name (see Section 4.1 for more detail). Given an XML element, such as “(phone) (235) 143
2726(/phone)”, the Name Learner inspects the name, which is “phone”, and may issue a prediction
such as ((ADDRESS,0.1), (DESCRIPTION,0.2), (AGENT-PHONE,0.7)).

3 Solution: Multistrategy Learning

We propose a multistrategy learning approach to the schema-matching problem. OQOur approach
operates in two phases: training and matching. In the training phase we manually mark up the
schemas of a few data sources, then use them to train the learners. In the matching phase we apply
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Figure 4: The training phase of our multistrategy learning approach.

the trained learners to predict mappings for new sources. We now describe the two phases in detail.
In Section 4 we describe the implementation of the two phases in the LSD system.

3.1 The Training Phase

Suppose we start with the mediated schema shown in Figure 4.a. To create data for training, we
take a source realestate.com and match its schema with the mediated schema. Figure 4.a shows
that source element location has been matched with mediated-schema element ADDRESS, listed-
price with PRICE, and so on.

Next, we extract from realestate.com a set of house listings. Figure 4.b shows several such
listings in XML. (For ease of exposition, we abbreviate all XML closing tags to (/).) We train the
base learners using the extracted listings. Each base learner tries to learn to distinguish among the
mediated-schema elements, so that when presented with an XML element from a new source, the
learner can predict whether it matches any mediated-schema element, or none.

Even though the goal of all base learners is the same, each of them learns from a different type of
information available in the extracted data or the source schema. Thus, each learner processes the
extracted data into a different set of training examples. For example, consider the Name Learner
and the Naive Bayes Learner (both are described in detail in Section 4.1). The Name Learner
matches an XML element based on its tag name. Therefore, it extracts the tag names from the
data and pairs them with their true labels to form the training examples shown in Figure 4.c (under
the heading “Name Learner”). Example (location,ADDRESS) states that if an XML element has
the name “location”, then it matches ADDRESS.

The Naive Bayes Learner matches an XML element based on its data value. Therefore, it
extracts the data values from the house listings and pairs them with their true labels to form
the training examples shown in Figure 4.c (under the heading “Naive Bayes Learner”). Example
(“Miami, FL”,ADDRESS) states that “Miami, FL” is an ADDRESS. The learner can form this
example because “Miami, FL.” is an instance of source element location, and we have told it that
location matches ADDRESS.

If we have more sources for training, we simply add the training data obtained from those sources
to the training data from realestate.com. Finally, we train each base learner on its respective set of
training examples.

In addition to training the base learners, we may also have to train the meta-learner, depending
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Figure 5: The matching phase of our multistrategy learning approach.

on what meta-learning technique we use. In Section 4.2 we propose a meta-learning technique
based on stacking and describe training the meta-learner in detail.

3.2 The Matching Phase

Once the learners have been trained, we are ready to perform schema matching on new sources.
Figure 5 illustrates the matching process on source homes.com. We begin by extracting a set
of house listings from homes.com. Next, for each source-schema element we collect all the XML
instances of that element (from the extracted listings). Figure 5 shows that for each of the three
elements area, day-phone, and extra-info we have collected three XML instances.

We now consider matching each source-schema element in turn. Consider the first element:
area. We begin by matching each XML instance of the element. Consider the first XML instance:
“(area)Seattle, WA(/)”. To match this instance, we apply the base learners. The Name Learner ex-
amines the name of the instance, which is “area”, and issues a prediction. The Naive Bayes Learner
examines the data value of the instance, which is “Seattle, WA”, and issues another prediction.
The meta-learner then combines the two predictions into a single prediction for the first XML
instance. This prediction is ((ADDRESS, 0.8), (DESCRIPTION, 0.2)) (Figure 5). There are many
possible ways to combine the base learners’ predictions, depending on the particular meta-learning
technique being employed. In Section 4.2 we propose and describe in detail a specific meta-learning
approach that uses stacking [Wol92, TW99).

After making a prediction for the first XML instance of area, we proceed similarly to for the
remaining two instances (note that in all cases the input to the Name Learner is “area”), and obtain
two more predictions as shown in Figure 5.

The prediction combiner then combines the three predictions into a single prediction for area.
The current prediction combiner simply computes the average score of each label from the given
predictions. Thus, in this case it returns (ADDRESS,0.7), (DESCRIPTION,0.3).

We proceed similarly with the other two source-schema elements: day-phone and extra-info.
The output from the prediction combiner in these cases are the two additional predictions shown
in Figure 5.
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Figure 6: The two phases of LSD.

Finally, we examine the three predictions output by the prediction combiner for the three source-
schema elements, and return the labels with the highest confidence scores as the matching labels.
For the example in Figure 5, we would predict that area matches ADDRESS, day-phone matches
AGENT-PHONE, and extra-info matches ADDRESS. In this particular case, multistrategy learning
achieves a matching accuracy of 66%, because out of three predictions, it makes an incorrect one:
matching extra-info to ADDRESS. The next section briefly discusses how multistrategy learning is
augmented with a variety of techniques, in order to improve matching accuracy.

Remark 1: Figure 5 shows that to match a source-schema element, say area, each base learner
takes as input a row in the data column for area. One may ask why not apply each base learner
directly to the entire data column, because we are ultimately interested in matching columns, not
rows. Obviously, for learners that only use schema information (e.g., the name matcher), there
is no difference. For learners that use row data, the difference is between having few examples
with a long description for each example, and having many examples with a short description for
each on. Machine learning algorithms typically work much better in the latter case. Notice that
longer example descriptions imply a potentially larger instance space. (For example, if an example
is described by n Boolean attributes, the size of the instance space is 2".) Learning is easier when
the instance space is small and there are many examples. When the instance space is large and
there are few examples, it becomes very hard to tell where the frontiers between different classes
are. Thus it is preferable to consider each row as a separate example.O

4 The LSD Implementation

We have developed the LSD system that semi-automatically create semantic mappings. LSD imple-
ments the proposed multistrategy learning approach. To further improve matching accuracy, LSD
extends multistrategy learning to incorporate domain integrity constraints and user feedback, and
employs a novel learning technique that exploits the nested structure inherent in XML data.
Figure 6 shows the architecture of LSD. The system consists of four major components: base
learners, meta-learner, prediction combiner, and constraint handler. It operates in two phases:



training and matching. In the training phase LSD first asks the user to manually specify the
mappings for several sources. Second, it extracts some data from each source. Third, it creates
training examples for the base learners from the extracted data. As we saw in Section 3.1, different
base learners require different sets of training examples. Fourth, it trains each base learner on
the training examples. Finally, it trains the meta-learner using the training examples of the base
learners. The output of the training phase is the internal classification models of the base-learner
and the meta-learner.

In the matching phase the trained learners are used to match new source schemas. Matching a
target source proceeds in three steps. First, LSD extracts some data from the source, and creates
for each source-schema element a column of XML elements that belong to it. Second, it applies the
base learners to the XML elements in the column, then combines the learners’ predictions using the
meta-learner and the prediction combiner. Finally, the constraint handler takes the predictions,
together with the available domain constraints, and outputs 1-1 mappings for the target schema.
The user can either accept the mappings, or provide some feedback and ask the constraint handler
to come up with a new set of mappings.

We now describe the base learners and the meta-learner employed by LSD in detail. Then we
briefly describe domain constraints and the constraint handler.

4.1 The Base Learners

LSD uses the following base learners:

The Name Learner matches an XML element using its tag name (expanded with synonyms and
all tag names leading to this element from the root element). The synonyms are domain specific and
are manually created by examining 10-20 randomly selected data listings in the domain. The Name
Learner uses Whirl, the nearest-neighbor classification model developed by Cohen and Hirsh [CH98].
This learner stores all training examples of the form (expanded tag-name,label) that it has seen so
far. Then given an XML element ¢, it computes the label for £ based on the labels of all examples
in its store that are within a distance ¢ from ¢. The similarity distance between any two examples
is the TF/IDF distance (commonly employed in information retrieval) between the ezpanded tag
names of the examples. See [CH98] for more details.

This learner works well on specific and descriptive names, such as price or house_location. It
is not good at names that do not share synonyms (e.g., comments and DESCRIPTION), that are
partial (e.g., office to indicate office phone), or vacuous (e.g., item, listing).

The Content Learner also uses Whirl. However, this learner matches an XML element using
its data value, instead of its tag name as with the name learner. Therefore, here each example
is a pair (data-value,label), and the TF/IDF distance between any two examples is the distance
between their data values.

This learner works well on long textual elements, such as house description, or elements with
very distinct and descriptive values, such as color (red, blue, green, etc.). It is not good at short,
numeric elements such as number of bathrooms and number of bedrooms.

The Naive Bayes Learner is one of the most popular and effective text classifiers [DH74, DP97,
MN98]. This learner treats each input instance as a bag of tokens, which is generated by parsing
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and stemming the words and symbols in the instance. Let d = {wy,...,wx} be an input instance,
where the w; are tokens. Then the Naive Bayes learner assigns d to the class ¢; that maximizes
P(c;|d). This is equivalent to finding ¢; that maximizes P(d|c;)P(c;). P(c;) is estimated as the
fraction of training instances with label ¢;. Assuming that the tokens w; appear in d independently
of each other given c;, we can compute P(d|c;) as P(w1|c;)P(ws|c;) - - - P(wg|c;), where P(wj|c;) is
estimated as n(wj, ¢;)/n(c;). n(c;) is the total number of token positions of all training instances
with label ¢;, and n(wj, ¢;) is the number of times token w; appears in all training instances with
label ¢;. Even though the independence assumption is typically not valid, the Naive Bayes learner
still performs surprisingly well in many domains (see [DP97] for an explanation).

The Naive Bayes learner works best when there are tokens that are strongly indicative of the
correct label, by virtue of their frequencies (e.g., “beautiful” and “great” in house descriptions). It
also works well when there are only weakly suggestive tokens, but many of them. It does not work
well for short or numeric fields, such as color and zip code.

The County-Name Recognizer searches a database (extracted from the Web) to verify if an
XML element is a county name. LSD uses this module in conjunction with the base learners when
working on the real-estate domain. This module illustrates how recognizers with a narrow and
specific area of expertise can be incorporated into our system.

The XML Learner: As we built LSD, we realized that none of our learners can handle the
hierarchical structure of XML data very well. For example, the Naive Bayes learner frequently
confused instances of classes HOUSE, CONTACT-INFO, OFFICE-INFO, and AGENT-INFO. This is
because the learner “flattens” out all structures in each input instance and uses as tokens only the
words in the instance. Since the above classes share many words, it cannot distinguish them very
well. The content learner faces the same problems.

To address this problem we developed a novel learner that exploits the hierarchical structure
of XML data. Our XML learner is similar to the Naive Bayes learner in that it also represents
each input instance as a bag of tokens, assumes the tokens are independent of each other given the
class, and multiplies the token probabilities to obtain the class probabilities. However, it differs
from Naive Bayes in one crucial aspect: it considers not only text tokens, but also structure tokens
that take into account the hierarchical structure of the input instance. For more detail on the XML
learner, see [DDHO01].

4.2 The Meta-Learner

The meta-learner employed by LSD uses stacking [Wol92, TW99] to combine the predictions of the
base learners. For ease of exposition, we shall explain the workings of the meta-learner using only
two base learners: the Name Learner and the Naive Bayes Learner.

In the variation of stacking that we use [TW99], the goal of training the meta-learner is to
compute for each pair of base learner and label a learner weight which reflects the importance of
the learner with respect to predictions regarding that label.

For example, after training, the meta-learner may assign to the pair of Name Learner and label
ADDRESS the weight 0.1 and to the pair of Naive Bayes learner and ADDRESS the weight 0.9 (see
the lower part of Figure 7.a). This means that on the basis of training, the meta-learner trusts the
Naive Bayes learner much more than the name learner in predictions regarding ADDRESS.

11



Training Data | nstances NameLearner NaiveBayes True Predictions

<location> Miami, FL</> 05 0.8 1
<listed-price> $250K </> 04 0.3 0
<phone> (305) 729 0831</> 0.3 0.6 0
<comments> Fantastic house</> 0.6 0.1 0
<location> Boston, MA</> 05 0.9 1
<listed-price> $320K </> 0.2 0.2 0
L east-Squares
Linear Regression
v
Weight(Name-Learner, ADDRESS) = 0.1
Weight(Naive-Bayes, ADDRESS) = 0.9
Testing Data | nstances @

Name L earner — (ADDRESS,0.4)

ieat:lfl,v VXA-’—\. NaiveBayes —» (ADDRESSO.8) % Meta-Learner —» (ADDRESS, 0.4°0.1+0.8+0.9 = 0.76)
ent,

Austin, TX

(b)

Figure 7: (a) Training the meta-learner to compute the weights for label ADDRESS, and (b)
applying the meta-learner.

Once trained, the meta-learner combines the base learners’ predictions by returning the average
of the predictions, weighted by the learner weights. For example, consider column area in Figure 7.b.
This column has three data instances. Consider applying the name learner and the Naive Bayes
learner to the first instance: “Seattle, WA”. The name learner will examine the instance’s name,
which is “area”, and issue the prediction (ADDRESS,0.4). The Naive Bayes learner will examine
the instance’s value, which is “Seattle, WA”, and issue the prediction (ADDRESS,0.8). The meta-
learner then computes the weighted average of the confidence scores: 0.4*0.1 + 0.8%0.9 = 0.76 and
issues the prediction (ADDRESS,0.76).

Training the Meta-Learner: We now describe how the meta-learner computes the learner
weights, one for each pair of base learner and label.

Consider a specific label: ADDRESS. The meta-learner first creates the list of all training data
instances. Figure 7.a shows the training data instances, as extracted from source realestate.com in
Figure 4.

The meta-learner then asks each base learner to predict how well each training data instance
match ADDRESS. In Figure 7.a, the column under heading “Name Learner” lists the confidence
scores that name learner issues for the training data instances. The first score, 0.5, says the name
learner predicts that the first data instance matches ADDRESS with confidence 0.5. Similarly, the
column under heading “Naive Bayes” lists the confidence scores that the Naive Bayes learner issues
for the training data instances.

A naive approach to generate a column such as the one for the name learner is to have the
name learner trained on ¢ll training data instances, then applied to each data instance. However,
this approach biases the name learner because when applied to any instance £, it has already been
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trained on t. Cross validation is a technique commonly employed in machine learning to prevent
such bias. To apply cross validation, the training instances are randomly divided into d equal parts
T1,Ty,...,Tq (we use d = 5 in our experiments). Next, for each part T}, i € [1, d], the name learner
is trained on the remaining (d — 1) parts, then applied to the instances in T;.

Once the columns of confidence scores have been generated, the meta-learner creates a column of
“true predictions”, which contains a value 1 for each data instance that indeed matches ADDRESS,
and 0 otherwise. The meta-learner knows if a data instance matches ADDRESS or not, because it
has the manual mappings provided by the user.

Next, the meta-learner performs a least-squares linear regression over the three columns, with
“Name Learner” and “Naive Bayes Learner” as predictors and “True Predictions” as the response
variable, to compute weights for the name learner and Naive Bayes learner (with respect to AD-
DRESS). The regression process has the effect that if a base learner tends to output a high confidence
that an instance matches ADDRESS when it does and a low confidence when it does not, it will be
assigned a high weight, and vice-versa.

Formally, let the confidence scores issued by the name learner be s1, s9,..., sg, the scores issued
by the Naive Bayes learner be tq,t9,...,1{;, and the true predictions be w1, us,...,u;. Then the

regression finds the learner weights wAPPRESS 41, yADDRESS that minimize the sum of square
g g NamelLearner NaiveBayes q

ADDRESS +t; % wADDRESS’ )]2

k ) )
€rrors Zi:l[uz - (81 * WNameLearner NaiveBayes

4.3 The Constraint Handler

Consider again the predictions output by the prediction combiner in Figure 5. As we saw in
Section 3.2, multistrategy learning returns the labels with the highest confidence scores as the
matching labels, and so will report in this specific case that area matches ADDRESS, day-phone
matches AGENT-PHONE, and extra-info matches ADDRESS. This result is good but not perfect
because two source-schema elements, area and extra-info, have been mapped to ADDRESS.

We know that a house listing should have at most one address. The key motivation behind the
constraint handler is to exploit such commonsense domain constraints, as well as other constraints
specified on the database schemas (e.g., key and functional dependency constraints), in order to
improve matching accuracy.

Note that domain constraints are specified only once, at the beginning, as a part of creating
the mediated schema, and independently of any actual source schema. Thus, exploiting domain
constraints does not require any subsequent work from the user. Of course, as the user gets to
know the domain better, constraints can be added or modified as needed.

The constraint handler takes the domain constraints, together with the predictions produced by
the prediction converter, and outputs the 1-1 mappings. Conceptually, it searches through the space
of possible mapping combinations (a mapping combination assigns a label to each source-schema
element), to find the one with the lowest cost, where cost is defined based on the likelihood of the
mapping combination and the degree to which the combination satisfies the domain constraints.
For a detailed description of the constraint handler, see [DDHO01].

5 Empirical Evaluation

We have evaluated LSD on several real-world domains. Our goals were to evaluate the matching
accuracy of LSD and the contribution of different system components.
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b . Mediated Schema Sour ce Schemas
omains
Downl
o | Norleaf | Sources Oﬂ;izzdsed Tooe | Non-leat [ [ | Matchable
% Tags P i Tags P Tags
RedBsae) 20 | 4 3 5 | s02-3002 |19-21| 1-4 |1-3| %719
Time 95 -100
soorel | 23 6 4 5 704-3925 | 15-19 | 3-5 | 1-4 ”
Faculty |, 4 3 5 32-73 |13-14| 4 3 100 %
Listings
Real Esme 66 13 4 5 502-3002 |33-48 | 11-13 | 4 100 %

Table 1: Domains and data sources for our experiments.

Domains and Data Sources: We report the evaluation of LSD on four domains, whose char-
acteristics are shown in Table 1. Both Real Estate I and Real Estate II integrate sources that list
houses for sale, but the mediated schema of Real Estate II is much larger than that of Real Estate 1
(66 vs. 20 distinct tags). Time Schedule integrates course offerings across universities, and Faculty
Listing integrates faculty profiles across CS departments in the U.S.

We began by creating a mediated DTD for each domain. Then we chose five sources on the
WWW. We tried to choose sources that had fairly complex structure. Next, since sources on the
WWW are not yet accompanied by DTDs, we created a DTD for each source. In doing so, we were
careful to mirror the structure of the data in the source, and to use the terms from the source. Then
we downloaded data listings from each source. Where possible, we downloaded the entire data set;
otherwise, we downloaded a representative data sample by querying the source with random input
values. Finally, we converted each data listing into an XML document that conforms to the source
schema.

In preparing the data, we performed only trivial data cleaning operations such as removing
“unknown”, “unk”, and splitting “$70000” into “$” and “70000”. Our assumption is that the
learners LSD employs should be robust enough to handle dirty data. Next we specified integrity
constraints for each domain. This task takes approximately 30 min - 2 hours per domain. See
[DDHO1] for more detail on specifying domain constraints.

Table 1 shows the characteristics of the mediated DTDs, the sources, and source DTDs. The
table shows the number of tags (leaf and non-leaf) and maximum depth of the DTD tree for
the mediated DTDs. For the source DTDs the table shows the range of values for each of these
parameters. The rightmost column shows the percentage of source-DTD tags that have a 1-1
matching with the mediated DTD.

Experiments: For each domain we performed three sets of experiments. First, we measured
LSD’s accuracy and investigated the utility of multistrategy learning. Second, we examined the
sensitivity of accuracy with respect to the amount of data available from each source. Finally,
we conducted lesion studies to measure the contribution of each base learner and the constraint
handler to the overall performance.
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Figure 8: (a) Average matching accuracy; experiments were run with 300 data listings from each
source; for sources from which fewer than 300 listings were extracted, all listings were used. (b)-(c)
The average domain accuracy as a function of the amount of data available per source.

Experimental Methodology: To generate the data points shown in the next three sections, we
ran each experiment three times, each time taking a new sample of data from each source. In each
experiment on a domain we carried out all ten runs in each of which we chose three sources for
training and used the remaining two sources for testing. We trained LSD on the training sources,
then applied it to match the schemas of the testing sources. The matching accuracy of a source
is then defined as the percentage of matchable source-schema tags that are matched correctly by
LSD. The average matching accuracy of a source is its accuracy averaged over all settings in which
the source is tested. The average matching accuracy of a domain is the accuracy averaged over all
five sources in the domain.

5.1 Results

Matching Accuracy: Figure 8.a shows the average matching accuracy for different domains
and LSD configurations. For each domain, the four bars (from left to right) represent the average
accuracy produced respectively by the best single base learner (excluding the XML learner), the
meta-learner using the base learners, the domain constraint handler on top of the meta-learner,
and all the previous components together with the XML learner (i.e., the complete LSD system).

The results show that LSD achieves 71 - 92% accuracy across the four domains. Notice that in
contrast, the best matching results of the base learners (achieved by either the Naive Bayes or the
Name Learner, depending on the domain) are only 42 - 72%.

As expected, adding the meta-learner improves accuracy substantially, by 5 - 22%. Adding
the domain-constraint handler further improves accuracy by 7 - 13%. Adding the XML learner
improves accuracy by 0.8 - 6.0%. In all of our experiments, the XML learner outperformed the
Naive Bayes learner by 3-10%, confirming that the XML learner is able to exploit the hierarchical
structure in the data. The results also show that the gains with the XML learner depend on the
amount of structure in the domain. For the first three domains, the gains are only 0.8 - 2.8%. In
these domains, sources have relatively few tags with structure (4 - 6 non-leaf tags), most of which
have been correctly matched by the other base learners. In contrast, sources in the last domain
(Real Estate II) have many non-leaf tags (13), giving the XML learner more room to produce
improvements (6%).

In Section 6 we identify the reasons that prevent LSD from correctly matching the remaining
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Figure 9: The average matching accuracy of LSD versions with each component being left out
versus that of the complete LSD system.

10 - 30% of the tags.

Performance Sensitivity: Figures 8.b-c show the variation of the average domain accuracy as
a function of the number of data listings available from each source, for the Real Estate I and
Time Schedule domains, respectively. The results show that on these domains the performance of
LSD stabilizes fairly quickly: it climbs steeply in the range 5 - 20, minimally from 20 to 200, and
levels off after 200. Experiments with other domains show the similar behavior. LSD thus appears
to be robust, and can work well with relatively little data. One of the reasons this observation is
important is that we can reduce the running time of LSD if we run it on fewer examples.

Lesion Studies: Figure 9 shows the contribution of each base learner and the constraint handler
to the overall performance. For each domain, the first four bars (from left to right) represent the
average accuracy produced by LSD when one of the components is removed. (The contribution
of the XML learner is already shown in Figure 8.a). The fifth bar represents the accuracy of the
complete LSD system, for comparison purposes. The results show that each component contributes
to the overall performance, and there appears to be no clearly dominant component.

6 Discussion

We now address the limitations of the current LSD system, as well as issues related to system
evaluation.

Accuracy: The first issue to address is whether we can increase the accuracy of LSD beyond the
current range of 71 - 92%. There are several reasons that prevent LSD from correctly matching the
remaining 10 - 30% of the tags. First, some tags (e.g., suburb) cannot be matched because none
of the training sources has matching tags that would provide training data. This problem can be
handled by adding domain-specific recognizers or importing data from sources outside the domain.
Second, some tags simply require different types of learners. For example, course codes are
short alpha-numeric strings that consist of department code followed by course number. As such,
a format learner would presumably match them better than any of LSD’s current base learners.
Finally, some tags cannot be matched because they are simply ambiguous. For example, given
the following source data fragment “course-code: CSE142 section: 2 credits: 3”7, it is not clear if
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“credits” refers to the course- or the section credits. Here, the challenge is to provide the user with a
possible partial mapping. If our mediated DTD contains a label hierarchy, in which each label (e.g.,
credit) refers to a concept more general than those of its descendent labels (e.g., course-credit and
section-credit) then we can match a tag with the most specific unambiguous label in the hierarchy
(in this case, credit), and leave it to the user to choose the appropriate child label.

Efficiency: The training phase of LSD can be carried out offline, so training time is not an issue.
In the matching phase, LSD spends most of its time in the constraint handler (typically in the range
of seconds to 5 minutes, but sometimes up to 20 minutes in our experiments), though we should
note that we did not spend any time on optimizing the code. Since we would like the process of
match prediction and incorporation of user feedback to be interactive, we need to ensure that the
constraint handler’s performance does not become a bottleneck. The most obvious solution is to
incorporate some constraints within some early phases to substantially reduce the search space.
There are many fairly simple constraints that can be pre-processed, such as constraints on an
element being textual or numeric. Another solution is to consider more efficient search techniques
(than the A* search technique [HNR72] that we currently use), and to tailor them to our context.

Schema Overlap: In our experiments source schemas overlap substantially with the mediated
schema (84-100% of source-schema tags are matchable). This is typically the case for “aggregator”
domains, where the data-integration system provides access to sources that offer essentially the
same service. We plan to examine other types of domains, where the schema overlap is much
smaller. The performance of LSD on these domains will depend largely on its ability to recognize
that a certain source-schema tag matches none of the mediated-schema tags, even if superficial
resemblances are present.

Performance Evaluation: We have reported LSD’s performance in terms of the predictive
matching accuracy. Predictive accuracy is an important performance measure because (a) the
higher the accuracy, the more reduction in human labor the system can achieve, and (b) the mea-
sure facilitates comparison and development of schema matching techniques. The next step is to
actually quantify the reduction in human labor that the system achieves. This step is known to
be difficult, due to widely varying assumptions on how a semi-automatic tool such as LSD is used,
and has just recently been investigated [MMGR02, DMRO02].

Examining Other Meta-Learning Techniques: The meta-learning technique employed by
LSD is conceptually easy to understand and appears empirically to work well. Nevertheless, it
is important to evaluate the technique further. Moreover, a wealth of meta learning techniques
have been developed in the literature (e.g., see [MT94] and other papers in this special issue).
Examining the suitability of these meta-learning techniques for schema matching is an important
future research problem.

Computing Complex Mappings: LSD focuses on computing 1-1 semantic mappings. Map-
pings between two schemas, however, often specify non 1-1 relationships, such as name = concat(first-
name,last-name) and price = listed-price * (1 + tax-rate). Discovering such complex mappings is
therefore an essential feature of any practical schema matching tool. We have begun to extend
multistrategy learning to compute such mappings (see [DDH02] for more detail).
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Mapping Maintenance: In dynamic and autonomous environments, such as the Internet, sources
often undergo changes in their schemas and data. This poses difficult mapping validation prob-
lems: how do we know if the semantic mappings computed by LSD would still be valid in, say,
three months? We plan to examine such issues, building upon related work in wrapper mainte-
nance [Kus00b].

7 Related Work

We describe work related to LSD from several perspectives.

Schema Matching: Work on schema matching can be classified into rule- and learner-based
approaches. (For a comprehensive survey of schema matching, see [RB01].) Rule-based approach
includes [MZ98, PSU98, CA99]. The Transcm system [MZ98] performs matching based on the name
and structure of schema elements. The Artemis system [CA99] uses names, structures, as well as
domain types of schema elements to match schemas. In general, rule-based systems utilize only
schema, information in a hard-coded fashion, whereas our approach exploits both schema and data
information, and does so automatically, in an extensible fashion.

In the learner-based approach, the Semint system [LCO00] uses a neural-network learner. It
matches schema elements using properties such as field specifications (e.g., data types and scale) and
statistics of data content (e.g., maximum, minimum, and average). Unlike LSD, it does not exploit
other types of data information such as word frequencies and field formats. The ILA system [PE95]
matches schemas of two sources based on comparing objects that it knows to be the same in
both sources. Both Semint and ILA employ a single type of learner, and therefore have limited
applicability. For example, the neural net of Semint does not deal well with textual information,
and in many domains it is not possible to find overlaps in the sources, making ILA’s method
inapplicable.

Clifton et al. [CHR97] describe DELTA, which associates with each attribute a text string
that consists of all meta-data on the attribute, then matches attributes based on the similarity
of the text strings. The authors also describe a case study using DELTA and Semint and note the
complementary nature of the two methods. With LSD, both Semint and DELTA could be plugged
in as new base learners, and their predictions would be combined by the meta-learner.

The Clio system [MHHO0] introduces value correspondences, which specify functional relation-
ships among related elements (e.g., hotel-tax = room-rate * state-tax-rate). Given a set of such
correspondences, Clio produces the SQL queries that translate data from one source to the other.
A key challenge in creating the queries is to find semantically meaningful ways to relate the data
elements in a source, in order to produce data for the other source. For example, given the above
value correspondence, Clio must discover that room-rate belongs to a hotel that is located in the
state where the tax rate is state-tax-rate. To this end, Clio explores joining elements along foreign-
key relationship paths. There can be many foreign keys, thus many possible ways to join. Hence,
the problem boils down to searching for the most likely join path. Clio uses several heuristics and
user feedback to arrive at the best join path, and thus the best query candidate. Clio is therefore
complementary to the current work of ours. It can take the mappings produced by LSD as the
value correspondences.
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Ontology Matching: Many works have addressed ontology matching in the context of ontology
design and integration (e.g., [Cha00, MFRW00, NM00, MWJ98]). They use a variety of heuristics
to match ontology elements. They do not use machine learning and do not exploit information in
the data instances. However, most of them [Cha00, MFRW00, NM00] have powerful features that
allow for efficient user interaction. Such features are important components of a comprehensive
solution to matching ontologies and schemas, and hence should be added to LSD in the future.

Several recent works have attempted to further automate the ontology matching process. The
Anchor-PROMPT system [NMO01] exploits the general heuristic that paths (in the taxonomies or
ontology graphs) between matching elements tend to contain other matching elements. The HICAL
system [RHSO01] exploits the data instances in the overlap between the two taxonomies to infer
mappings. [LGO1] computes the similarity between two taxonomic nodes based on their signature
TF /IDF vectors, which are computed from the data instances.

Combining Multiple Learners: multistrategy learning has been researched extensively [MT94],
and applied to several other domains (e.g., information extraction [Fre98], solving crossword puz-
zles [KSL199], and identifying phrase structure in NLP [PR00]). In our context, our main inno-
vations are the three-level architecture (base learners, meta-learner and prediction combiner) that
allows learning from both schema and data information, the use of integrity constraints to further
refine the learner, and the XML learner that exploits the structure of XML documents.

Exploiting Domain Constraints: Incorporating domain constraints into learners has been
considered in several works (e.g., [DR96]), but most consider only certain types of learners and
constraints. In contrast, our framework allows arbitrary constraints (as long as they can be verified
using the schema and data), and works with any type of learner. This is made possible by using
the constraints during the matching phase, to restrict the learner predictions, instead of the usual
approach of using constraints during the training phase, to restrict the search space of learned
hypotheses.

8 Conclusions & Future Work

We have described an approach to schema matching that employs and extends machine learning
techniques. Our approach utilizes both schema and data from the sources. To match a source-
schema, element, the system applies a set of learners, each of which looks at the problem from
a different perspective, then combines the learners’ predictions using a meta-learner. The meta-
learner’s predictions are further improved using domain constraints and user feedback. We also
developed a novel XML learner that exploits the hierarchical structure in XML data to improve
matching accuracy. Our experiments show that we can accurately match 71-92% of the tags on
several domains.

More broadly, we believe that our approach contributes an important aspect to the development
of schema-matching solutions. Given that schema matching is a fundamental step in numerous data
management applications [RBO01], it is desirable to develop a generic solution that is robust and
applicable across domains. In order to be robust, such a solution must have several important
properties. First, it must improve over time — knowledge gleaned from previous instances of the
schema-matching problem should contribute to solving subsequent instances. Second, it must allow
knowledge to be incorporated in an incremental fashion, so that as the user gets to know the domain
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better, knowledge can be easily modified or added. Third, it must allow multiple types of knowledge
to be used to maximize the matching accuracy. Machine learning techniques, and in particular,
multistrategy learning, provide a basis for supporting these properties. Hence, while we do not
argue that our techniques provide a complete solution to the schema-matching problem, we do
believe that we provide an indispensable component of any robust solution to the problem.

We have been extending our multistrategy learning approach to compute non 1-1 mappings
[DDHO02], to match ontologies [DMDHO02], a crucial task in constructing large-scale knowledge
bases and processing information on the Semantic Web, and to develop a formal semantics for
mapping [MHDBO02]. We are continuing our work on these issues, as well as issues outlined in the
discussion section. The most up-to-date information on LSD can be found on its website [Isd]. The
site also stores a public repository of data intended to be used as benchmarks in evaluating schema
matching algorithms.
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