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Abstract

Building data integration systems today is largely done by
hand, in a very labor intensive and error prone process. In
this paper, we describe a conceptually new solution to this
problem: that of mass collaboration. The basic idea is to
think about a data integration system as having a finite set
of parameters whose values must be set. To build such a
system, the system administrators can construct and deploy
a system “shell”, then ask the users to help the system “au-
tomatically converge” to the correct parameter values. This
way, the enourmous burden of system developments is lifted
from the administrators and spread “thinly” over a multitude
of users. We discuss the challenges to this approach and pro-
pose solutions. We then describe our current effort in apply-
ing this approach to the problem of schema matching in the
context of data integration.

Introduction
The rapid growth of distributed data on the Internet and at
enterprises has generated much interests in building data in-
tegration systems. Such systems provide a uniform query
interface to a multitude of data sources, thereby freeing the
user from the tedious task of interacting and combining data
from the individual sources. Figure 1 shows a data inte-
gration system over several sources that list books for sell.
Given a user query that is formulated in the query interface
(also called the mediated schema), the system uses a set of
semantic mappings to translate the query into queries over
source schemas, then executes the queries and combines the
data returned from the sources, to produce the desired an-
swers to the user.

Numerous research activities have been conducted on
data integration, both in the AI and database communi-
ties (Garcia-Molina et al. 1997; Levy, Rajaraman, & Or-
dille 1996; Haas et al. 1997; Yerneni, Papakonstanti-
nou, & Garcia-Molina 1998; Ives et al. 1999; Kwok &
Weld 1996; Friedman & Weld 1997; Lambrecht, Kambham-
pati, & Gnanaprakasam 1999; Duschka & Genesereth 1997;
Knoblock et al. 1998; Arens, Hsu, & Knoblock 1996;
Chen et al. 2000; Avnur & Hellerstein 2000). Much
progress has been made in terms of developing conceptual
and algorithmic frameworks; query optimization; construct-
ing semi-automatic tools for schema matching, wrapper con-
struction, and object matching; and fielding data integration
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Figure 1: A data integration system in the book domain

systems on the Internet.
Despite substantial progress, however, today building data

integration systems is still largely done by hand, in an ex-
tremely labor intensive and error prone process. The ad-
vent of languages and mediums for creating and exchanging
semi-structured data, such as XML, OWL, and the Seman-
tic Web, will further accelerate the needs for data integration
systems and exacerbate the above problem. Thus, it has now
become critical to develop techniques that allow the efficient
construction and maintenance of data integration systems.

In this paper we describe the MOBS (Mass Collaboration
to Build Systems) approach to efficiently building data in-
tegration systems. The basic idea underlying our approach
is to treat a data integration system as having a finite set of
parameters whose values must be set. The system adminis-
trators can construct and deploy a system “shell”, then ask
the users to help the system “converge” to the correct pa-
rameter values. This way, the enourmous burden of system
developments is lifted from the system administrators and
spread “thinly” over a multitude of users. The following ex-
ample illustrates the idea underlying our approach:

Example 1: Consider the development of the data integra-
tion system in Figure 1. Currently we must start by build-
ing the source schemas and the mediated schema. Next,
we must create the semantic mappings among the schemas.
This would be the bare minimum that is necessary to allow
the functioning of a data integration system (with the help of
a query processing engine such as the one described in (Ives
et al. 1999)). Notice that any of these three tasks is well-
known to be difficult and time consuming. For example,



even with the help of semi-automatic schema matching tools
(Rahm & Bernstein 2001), it is still very labor intensive to
manually verify and correct all the semantic mappings that
the tools suggest, to ensure the correct functioning of the
system.

In our approach we can also start by building the source
schemas and the mediated schema. Next, we treat the se-
mantic mappings for the mediated schema elements as sys-
tem parameters. We assign “initial values” to the parame-
ters, using random assigments or a semi-automatic schema
matching tool (Rahm & Bernstein 2001). Thus, we now
have a system “shell”: a functioning, albeit likely to be in-
correct, system. Next, we deploy the system “shell” on the
Internet, and ask users to start using it and providing feed-
back. We use the user feedback to readjust the values of
system parameters, until these values converge.2

In the above example we have focused on treating only se-
mantic mappings as system paramters. However, we believe
the approach can also be extended to “learn” other system
features, such as the source schemas. Note also from the
above example that the mass collaboration approach would
not replace, but rather complement well existing techniques
to automate specific tasks in building data integration sys-
tems (e.g., schema matching and wrapper construction). In
fact, we believe it would amplify the effects of the current
techniques. Finally, the approach would be applicable to
building systems in a broad variety of settings, including en-
terprise intranets, scientific domains (e.g., bioinformatics),
and the Internet.

As described, the mass collaboration approach has the po-
tential to dramatically reduce the cost of building data inte-
gration systems. But it also raises numerous challenges. In
the next section we discuss the challenges and outline the so-
lutions. We then describe the current status of our research
in this direction, and preliminary experimental results that
show the promise of the approach.

The Mass Collaboration Approach
Our goal is to build a data integration system D. We assume
the system administrators have constructed D such that ev-
erything necessary has been done, except for a set of param-
eters P = {P1, · · · , Pn} whose values we must set. In Ex-
ample 1, for instance, everything has been done except for
the semantic mappings, which form the set of parameters P .

Our task therefore is to elicit user feedback to help us set
the values of P . As users query and interact with the sys-
tem D, they provide feedback. Periodically, the system will
combine all user feedback that has been accummulated so
far, to arrive at a new parameter configuration P ′. Our as-
sumption is that with sufficient user feedback the system will
eventually converge to the correct parameter configuration
P∗.

We now describe the challenges that arise in applying the
mass collaboration approach, and outline the solutions.

System Parameters: The first question we must decide is
what we should take to be the system parameters. As men-
tioned earlier, the parameters can be for example the seman-

tic mappings for the elements of the mediate schema. If we
have 10 mediated schema elements then this would yield 10
parameters. The correct value for each parameter is then the
correct semantic mapping for the mediated-schema element
represented by that parameter. In general, the parameters
would be application-specific, and can potentially be any-
thing that we must decide during the process of building the
data integration system.

Setting Initial Values of Parameters: The parameters
can be set randomly, or initialized using a semi-automatic
tool (e.g., any of the many schema matching tools (Rahm &
Bernstein 2001)). We believe the closer the initial values are
to the correct ones, the sooner the system will converge.

Starting with a Partially Correct System: If we begin
by setting all system parameters in the manner described
above, it is very likely that we would obtain an initial in-
correct system. But users are unlikely to want to use such a
system, because querying it would produce incorrect results.
To address this problem, we propose to start with a correct
“subsystem”, to make sure that users can immediately ob-
tain some value from interacting with the overall system.

To continue with the book example, we would begin by
decoupling the mediated schema and the query interface.
We keep the mediated schema intact, but start with a simple
query interface that has only two attributes: title and price.
Next, we manually find the correct mappings for these two
attributes (over all sources in the system). This would imme-
diately yield a correct, albeit simple, data integration system
that allows users to query for book titles and prices. We
then leverage user feedback to learn the correct mappings
for other mediated-schema attributes, such as authors, pub-
lishers, and rating.

Once we have learned the correct mapping between a
mediated-schema attribute and some sources, we immedi-
ately add that mediated-schema attribute to the query inter-
face, to allow the user the possibility of querying also over
that attribute. This way, we can gradually expand the query
interface – thus the capabilities of the data integration sys-
tem – but ensure that querying over the query interface al-
ways produces correct results.

Enticing Users to Give Feedback: This has usually been
considered one of the most difficult problems facing mass
collaboration approaches. We propose several ways to elicit
feedback:

• Forced Feedback: Every time the user asks a query, we
make him or her “jump through a hoop”. The hoop is
a diaglog box with a simple question to which the user
answers by clicking an “yes”, “no”, or “not sure” button.
(We discuss the types of questions below.) We think about
this as a “capitalist” way of building and maintaining sys-
tems. The user uses the service of the system, hence he or
she should “pay” for it, and the “payment” here is a bit
of user knowledge, in order to help build and maintain the
system.



“Hoop jumping” (i.e., forced feedback) should not be
used frequently. For example, we can elect to ask the user
to jump through the hoop once every five queries, rather
than once every single query. We should also try to make
sure that the system is so compelling to use that the user is
willing to “pay”, that is, to put up with the “harassment”.
This can happen if the system provides value-added ser-
vices as compared to alternative systems (this is analo-
gous to people’s willing to pay more at amazon.com for a
better customer service). This suggests that if possible we
should begin with a system that people already genuinely
want to use, then gradually build in mass-collaboration
feedback mechanism, in order to expand system capabili-
ties.

• Volunteer Feedback with Instant Gratification: Once the
user has asked a query, the system produces the results,
but also indicates to the user that even more details about
the results can be provided, if the user is interested. To
get to those details, however, the system needs the user
to provide some feedback. Thus, the user has a strong
incentive to supply some simple feedback, because the
feedback provides instant gratification in terms of more
details about the answers.
For example, suppose the current data integration system
in the book domain has a query interface that allows users
to query on book title and price. Suppose further that a
user has queried it to find all books whose title contain the
phrase “data integration” and whose price is under $100.
The system executes the query, and displays the listings
of desired books in terms of a table with several columns.
The first two columns are title and price, which the sys-
tem knows how to fill (because it already has the semantic
mappings from title and price in the mediated schema to
those in the source schemas).
The third column is about publishers, but the system does
not know how to fill because it does not have any semantic
mapping for publisher yet. Thus it populates this column
with question marks. Suppose now that the user wants
to find out the publisher for a certain book in the result
table. Then the user can click on the question mark that
represents the publisher for that book. The system will
ask the user a few questions, in order to find out which
attribute of the source (that contains the book) would map
to publisher. Once this has been decided, the publisher
fields of all books in that source can be filled with the
correct values, and the system has also learned a correct
semantic mapping during the process.

• Volunteer Feedback with Delayed Gratification: In cer-
tain domains, the users may be willing to provide feed-
back if they know that such feedback will bring long-term
benefits. For example, a development team (of say, 10 or
12 people) can work collaboratively to build a data inte-
gration system, without having any immediate gratifica-
tion. Within an organization intranet, the employees may
understand the long-term benefits of providing feedback
and are willing to do so, to help build systems over the
organizational data. Bioinformatists may want to collab-
oratively build a data integration system over the hundreds

of bioinformatics sources on the Internet, and thus may be
willing to provide feedback without any immediate bene-
fits.
Users may also volunteer to contribute feedback to teach
the system. We can also institute a mechanism of dis-
tributing credits (or even monetary payment) to contrib-
utors, similar to those employed by many collaborative
Web sites, such as epinions.com and amazon.com.
A principle we follow is that users who “pay” more (either

with forced or volunteer feedback) must be able to get higher
quality service from the system. Those who pay nothing
would get the plain vanilla service.

The Types of Questions That Users Are Being Asked:
These questions can be at different granularities. We can
display a simple data instance and ask the user to recognize
if it is a book title, a name, a publisher, or none of the above
(thus treating him or her as a recognizer (Doan, Domingos,
& Halevy 2001)). If the user recognizes say five data in-
stances of a source-schema attribute to be publishers, then
the system can conclude with high probability that that at-
tribute is about publishers.

We can also display the name of a source-schema at-
tribute, together with several of its data instances, and ask
the user to recognize the attribute directly. Whether this type
of question would demand more cognitive load from the user
than the previous type of question is a subject of our current
research.

In general, we believe that forced feedback (i.e., hoop
jumping) must be as cognitively simple as possible, so that
the user has to spend only a minimal amount of time on it.
Other types of feedback, because the user “volunteers” to do
them, can be more cognitively complex.

Handling Malicious and Ignorant Users: We require
that users register and log in to use the system (this is not
really a hassle because a user only has to log in for the first
time, cookies can take care of the subsequent sessions). This
allows us to monitor user activities and compute a weight
value that reflects how much we trust the feedback of a par-
ticular user. The weight is computed from user feedback
on a few “training” sources whose semantic mappings we
already know.

To prevent softbots from registering en masse and over-
whelm the system, we can use a simple Turing test at the
registering time to distinguish human users from softbots
(similar to those used by Web services such as paypal.com).

Combining User Feedback: Periodically the system will
combine user feedback to arrive at a new value configuration
for the system parameters. The combination will use the
user weights. Notice that, in essence, we can treat each user
as a learner, that is, classifiers that have been trained and are
ready to make predictions on the system data and attributes.
This immediately suggests the applicability of schemes to
combine learners’ predictions, as described in several recent
works (Doan, Domingos, & Halevy 2001; Doan et al. 2002;
Do & Rahm 2002; Madhavan et al. 2003).



Quantity of Feedback: What happens if each user uses
the system only a few times per year? In this case there will
not be enough feedback to adequately learn the weight of
each user, and thus to combine user feedback. While this is
a valid concern, we believe in practice there are many set-
tings where users frequently use the system. Furthermore,
we conjecture that user usage often follow a Zipfian dis-
tribution, with a small number of very active users and a
large number of infrequent users. For example, many of us
use services such as amazon.com and epinions.com infre-
quently, but they are still full of user feedback and contri-
bution, which suggests a substantial number of active users.
Our simulated experiments (discussed in the next section)
suggest that the system can zoom in on users with high qual-
ity feedback, and that it can converge in a reasonable amount
of time even with a small number of such users.

Impact of Feedback: Another concern is whether the im-
pact of each feedback would be too small to even make a
difference. We note that this is not the case in terms of learn-
ing many types of system parameters. Experiments such
as those in (Perkowitz et al. 1997) and our work (Doan,
Domingos, & Halevy 2001) suggest that only a small num-
ber of correct feedback on the data instances of an attribute
is necessary to learn the correct semantic mapping of that
attribute with high probability. We have also mentioned that
feedback can be solicited at different granularity level. Thus,
a single feedback can also decide the semantic mapping of
an attribute.

Enticing Users to Use the System: How can we make
sure that the user wants to use our system, and not an equiv-
alent system that is manually constructed but does not “ha-
rass” users with any feedback mechanism? Our solution is
to make sure that our system would “subsume” the manu-
ally constructed system or at least a significant portion of it.
This way, users who do not want to give feedback could still
use our system but only at the service level of the manual
version.

On the other hand, users who is willing to give feedback
will get access to the more advanced version of the system.
Since the system can leverage the feedback to continuously
improve its services, those who give feedback will get access
to ever improving services.

Current Status of Our Work
Besides developing a general framework for applying mass
collaboration to build data integration systems, we are cur-
rently testing our ideas using simulation as well as real-
system deployment.

We have simulated the interaction of a broad variety of
user populations with data integration systems. As an exam-
ple, a specific scenario of our simulation has a population
of 5000 users, with user quality randomly selected over the
interval [0,1]. A user of quality p gives the correct answer
with probability p. The data integration system has a me-
diated schema of 10 attributes, and consists of 10 sources,
each of which also has 10 attributes. In this scenario, the

system needs an average of 14 feedback answers per user to
converge to the correct semantic mappings for all mediated-
schema attributes (over all sources).

We are also currently building a real-world comparison
shopping system with a feedback mechanism. We plan to
use the system to evaluate the participation of real users. We
shall start with volunteers to evaluate if users can in fact re-
liably handle the cognitive load of answering system ques-
tions. For more details on the current status of our work, see
(McCann et al. 2003).

Related Work
Our work draws from many related areas, which we discuss
below.

Knowledge Base Construction via Mass Collaboration:
Our work was inspired by several recent works that at-
tempt to leverage the large volume of Web users to build
knowledge bases and tech support websites ((Richardson
& Domingos 2003; Richardson, Aggrawal, & Domingos
2003), quiq.com, openmind.org). The basic idea of these
works is to have users contribute facts and rules in some
specified language. Our work differs from these in several
important aspects. First, in building a knowledge base, po-
tentially any fact or rule being contributed constitutes a pa-
rameter whose validity must be checked. Thus, the number
of parameters can be very high (potentially in the millions)
and checking them poses a serious problem. In contrast, the
number of (system) parameters in our case is comparatively
much smaller and thus potentially much more manageable.
Second, such knowledge bases must provide some mecha-
nisms to allow users to immediately leverage the contributed
information (to gain some instant gratification effect). Pro-
viding such mechanisms in the context of knowledge bases
can be quite difficult, because it requires performing infer-
ence over a large number of possibly inconsistent or varying-
quality facts. Such mechanisms are considerably much sim-
pler in our case, because feedback on the system parameters
can immediately affect the query results.

Building Data Integration Systems: The manual con-
struction and maintenance of data integration systems is very
labor intensive and error prone. There have been many
works on reducing the labor costs of specific tasks during
the construction process, such as schema matching (Rahm &
Bernstein 2001) and wrapper construction (e.g., (Kushmer-
ick, Weld, & Doorenbos 1997; Ashish & Knoblock 1997)),
but few works on a systematic effort to address cost reduc-
tion for the whole process, with the exception of (Rosenthal
et al. 2001; Rosenthal & Seligman 2001). Our work on mass
collaboration can be seen as providing a systematic solution
to this problem.

Semantic Web: Our work shares several common issues
with research on the Semantic Web, such as enticing users
to provide feedback and combining information of varying
quality. The idea of instant gratification is articulated in
(McDowell et al. 2003; Etzioni et al. 2003).



Machine Learning: We have mentioned that each con-
tributor in the mass collaboration framework can be thought
of as a learner (which has been trained and is ready to make
predictions). We believe the issue of how to learn the accu-
racy of learners and combine a very large number of learners
in an efficient and accurate way raises interesting learning
issues that have not been considered before, and thus may
warrant further studies.

Schema Matching: Numerous works have been con-
ducted on schema matching, a fundamental problem in in-
tegrating data from heterogeneous sources. Some recent
works include (Milo & Zohar 1998; Palopoli, Sacca, &
Ursino 1998; Li & Clifton 2000; Madhavan, Bernstein,
& Rahm 2001; Doan, Domingos, & Halevy 2001; Yan et
al. 2001; Kang & Naughton 2003; He & Chang 2003;
Madhavan et al. 2003) (see (Rahm & Bernstein 2001) for
a survey). These works employ manually crafted rules and
machine learning techniques, with some limited human in-
teraction, to discover semantic mappings. In contrast, our
current work leverages the feedback of a multitude of users
to find the mappings. To our knowledge, this is the first work
on schema matching in this direction.

In the current work, we have focused only on finding one-
to-one mappings, such as “location maps to address”. We
note that even this problem setting is already very difficult.
The vast majority of schema-matching works have focused
only on this problem (Rahm & Bernstein 2001). We are
currently extending our framework to find more complex
mappings, such as “location maps to the concatenation of
city and state” and “price maps to listed-price * (1 + tax-
rate)”.

Autonomic Systems: Our work here is also related to au-
tonomic systems in that data integration systems in the mass
collaboration scheme can also exhibit autonomic properties
such self-healing and self-improving. The key difference is
that autonomic systems have traditionally been thought of
as achieving these properties by observing the external en-
vironment and adjusting themselves appropriately. In con-
trast, our systems are observed by the external environments
(i.e., the multitude of users) and then are adjusted by them
accordingly.

Conclusion
The current cost of ownership of data integration systems
is extremely high, due to the need to manually build (and
maintain) such systems. In this paper we have proposed a
mass collaboration approach to efficiently build data inte-
gration systems. The basic idea is to shift this enourmous
cost from the producers (of the system) to the consumers,
but spread it “thinly” over a large number of consumers. We
have discussed key challenges of this approach and outlined
the solutions. We have also described the current status of
our research in this direction, and discuss the relationship
between this work and several other areas. This research
is conducted within the context of the AIDA (Automatically

Integrating DAta) project at the University of Illinois, whose
goal is to build autonomic data integration systems.
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