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Chapter 6
RELATED WORK

In this chapter we review works that relate to our representation-matching solution and discuss
in detail how our solution advances the state of the art.

e First, we review formal semantics that have been developed for representation matching, as
well as proposed notions of similarity.

e Second, we survey the vast body of matching solutions that have been developed in both the
database and Al communities. We compare these solutions to ours from several perspectives,
ans show how our solution provides a unifying framework for most current solutions.

e Third, our work has made contributions to several learning issues, such as multi-strategy
learning, learning with structured data, and relaxation labeling. Hence, we also review works
related to such learning scenarios.

o Finally, we discuss works in other knowledge-intensive domains (e.g., information extrac-
tion and solving crossword puzzles) which bear interesting resemblances to representation
matching.

6.1 Formal Semanticsand Notions of Similarity

Several works have addressed the issue of formal semantics for representation matching. In [BC86]
the authors introduced the notion of integration assertions which relate the elements in two schemas
(and therefore are essentially semantic mappings). Given two schemas S and T, an integration
assertion has the form e = f, where e and f are expressions defined over the elements of Sand T,
respectively. The meaning of such an integration assertion is that there exist interpretations Is and
I+ (for Sand T, respectively) that map e and f into the same concept in the universe.

In [MHDBO02] the authors introduce more expressive forms of semantic mappings. In their
framework a mapping is of the form eop f, where e and f are defined as above, and the operator op
is well defined with respect to the output types of e and f. For example, if both expressions have
relations as output types, then op can be = and C. If e outputs a constant and f outputs a unary
relation, then op can be € L.

In the above work the authors also show that some times one needs a helper representation to
relate two expressions in S and T. For example if e and f refer to the students in Seattle and San
Francisco, respectively, then they are disjoint sets and hence cannot be related directly to each other.

1In [MHDBO02] the authors use the term formula to refer to a semantic mapping (as in our framework), and use
a mapping to refer to the set of semantic mappings between the two given representations (and optionally a helper
representation).
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In this case, we need to relate both of them to the concept of students in a helper model. In the same
work the authors also identify and study several important properties of mappings such as query
answerability, mapping inference, and mapping composition.

Our formal semantics framework (described in Chapter 2) builds on previous works [MHDBO02,
BC86], but extends them in several important ways.

e First, we always use a helper representation (as introduced by [MHDBO02]). This representa-
tion is the user domain representation € defined in Chapter 2. This simplifies the conceptual
framework.

e Second, we introduce the notion of similarity distance between the elements (and expressions)
in 1. We assume the user can define an arbitrary measure of similarity over concepts in the
domain representation . This is in marked contrast to previous works, which either do
not consider any similarity notion, or only very restricted forms of it (see the discussion on
notions of similarity below). In our work, we contend that a similarity notion is a fundamental
and integral part of the user’s conceptualization of the domain, and hence must be given
explicitly. The introduction of similarity notion provides a formal explanation for the working
of representation matching algorithms: they attempt to approximate true similarity values
using the syntactic clues (as discussed in Section 2.3.1 of Chapter 2).

e Finally, previous works define an expression, such as e, to be built from the elements of a
representation, such as S, and a set of operators. The operators are well defined over repre-
sentation S. This could be problematic if S and T use different representation languages. For
example, suppose S is a relational representation and T is an XML one. Now consider a map-
ping that equates a nested XML element f in T with an expression e in S. Obviously, e must
use some XML operators to construct an output type that is the same as the output type of
f. However, it would be difficult to give well-defined semantics to such XML operators over
the relational representation S. To avoid this problem, we describe all operators involved (in
both S and T) as having semantics over the user domain representation U (see Section 2.3.2
of Chapter 2 for more details).

Notions of Similarity: Several works have considered the notion of similarity between concepts.
The similarity measure in [RHSO01] is based on the k (Kappa) statistics, and can be thought of as
being defined over the joint probability distribution of the concepts involved. In [Lin98] the authors
propose an information-theoretic notion of similarity that is also based on the joint distribution.
However, these works argue for a single best universal similarity measure, whereas we argue for
the opposite. Furthermore, our solutions (e.g., GLUE) actually allow handling multiple application-
dependent similarity measures. There have been many works on notions of similarity in machine
learning, case-based reasoning, and cognitive psychology. For a survey of semantic similarity dis-
cussed in many such works, see Section 8.5 of [MS99].

6.2 Representation-Matching Algorithms

Matching solutions have been developed primarily in the database and Al communities. In this
section we review and compare these solutions to ours from several perspectives.
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6.2.1 Rule- versus Learner-based Approaches

Rule-based Solutions: The vast majority of current solutions employ hand-crafted rules to match
representations. Works in this approach include [MZ98, PSU98, CA99, MWJ, MBR01, MMGRO02]
in databases and [Cha00, MFRW00, NM00, MWJ] in Al.

In general, hand-crafted rules exploit schema information such as element names, data types,
structures, and number of subelements. A broad variety of rules have been considered. For example,
the TranScm system [MZ98] employs rules such as “two elements match if they have the same name
(allowing synonyms) and the same number of subelements”. The DIKE system [PSU98, PSTU99,
PTUO0] computes the similarity between two representation elements based on the similarity of the
characteristics of the elements and the similarity of related elements. The ARTEMIS and the related
MOMIS [CA99, BCVBO01] system compute the similarity of representation elements as a weighted
sum of the similarities of name, data type, and substructure. The CUPID system [MBRO01] employs
rules that categorize elements based on names, data types, and domains. Rules therefore tend to be
domain-independent, but can be tailored to fit a certain domain, and domain-specific rules can also
be crafted.

Learner-based Solutions:  Recently, several works have employed machine learning techniques
to perform matching. Works in this direction include [LC00, CHR97, BM01, BM02, NHT +02] in
databases and [PE95, NM01, RHSO01, LGO1] in Al.

Current learner-based solutions have considered a variety of learning techniques. However, any
specific solution typically employs only a single learning technique (e.g., neural networks or Naive
Bayes). Learning techniques considered exploit both schema and data information. For example,
the Semint system [LC94, LCLOO, LCOO0] uses a neural-network learning approach. It matches
schema elements based on field specifications (e.g, data types, scale, the existence of constraints)
and statistics of data content (e.g., maximum, minimum, average, and variance).

The DELTA system [CHR97] associates with each schema element a text string that consists
of the element name and all other meta-data on the element, then matches elements based on the
similarity of the text strings. DELTA uses information-retrieval similarity measures, like the Name
Learner in LSD. The ILA system [PE95] matches the schemas of two sources by analyzing the
description of objects that are found in both sources. The Autoplex and Automatch systems [BMO1,
BMO02] use a Naive Bayes learning approach that exploits data instances to match elements. The
HICAL system [RHSO01] exploits the data instances in the overlap between the two taxonomies to
infer mappings. The system described in [LG01] computes the similarity between two taxonomic
nodes based on their signature TF/IDF vectors, which are computed from the data instances.

Rahm and Bernstein [RB01] provide the most recent survey on matching solutions, and describe
some of the above works in detail. The survey in [BLN86] examines earlier works on matching
which used mostly rule-based techniques. Both surveys consider works that have been developed in
the database community.

Comparison of the Two Approaches. Each of the above two approaches — rule-based and learner-
based — has its advantages and disadvantages. Rule-based techniques are relatively inexpensive.
They do not require training as in learner-based techniques. Furthermore, they typically operate
only on schemas (not on data instances), and hence are fairly fast. They can work very well in
certain types of applications. For example, in ontology versioning a frequent task is to match two
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consecutive versions of an ontology [NMO02]. The consecutive versions tend to differ little from
each other, and hence are very amenable to rule-based techniques, as [NMO02] shows. Finally, rules
can provide a quick and concise method to capture valuable user knowledge about the domain. For
example, the user can write regular expressions that encode times or phone numbers, or quickly
compile a collection of county names or zip codes that help recognize those types of entities. As
another example, in the course-listing domain, the user can write the following rule: “use regular
expressions to recognize elements about times, then match the first time element with start-time and
the second element with end-time”. Notice that learning techniques would have difficulties being
applied to these scenarios. They either cannot learn the above rules, or can do so only with abundant
training data or with the right representations for training examples.

On the other hand, rule-based techniques also have major disadvantages. First, they cannot ex-
ploit data information effectively, even though the data can encode a wealth of information (e.g.,
value format, distribution, frequently occurring words, and so on) that would greatly aid the match-
ing process. Second, they cannot exploit previous matching efforts, such as the initial mappings that
the user manually created in the case of the LSD system (Chapter 3). Thus, in a sense, systems that
rely solely on rule-based techniques have difficulties learning from the past, to improve over time.
Finally, rule-based techniques have serious problems with schema elements for which no effective
hand-crafted rules can be found. For example, it is not clear how one can hand craft rules that
distinguish between movie description and user comments on the movies, both being long textual
paragraphs.

In a sense, learner-based techniques are complementary to rule-based ones. They can exploit
data information and past matching activities. They excel at matching elements for which hand-
crafted rules are difficult to obtain. However, they can be more time-consuming than rule-based
techniques, requiring an additional training phase, and taking more time processing data and schema
information. They also have difficulties learning certain types of knowledge (e.g., times, zipcodes,
county names, as mentioned above). Furthermore, current learner-based approaches employ only a
single learner, and thus have limited accuracy and applicability. For example, the neural-network
technique employed by Semint does not handle textual elements very well, and the objects-in-the-
overlap technique of ILA makes it unsuitable to the common case where sources do not share any
object.

The Combination of Both Approachesin Our Solution:  The complementary nature of rule-
and learner-based techniques suggest that an effective matching solution should employ both — each
whenever it is deemed effective. Our work in this dissertation offers a technique to do so. The
multistrategy framework — introduced in LSD and subsequently extended in COMAP and GLUE —
employs multiple base learners to make matching predictions, then combines their predictions using
a meta-learner. While the majority of base learners that we have described employ learning tech-
niques, it is clear that, in general, base learners can also employ hand-crafted rules. Our solution
employs a meta-learning technique (stacking in Chapter 3) to automatically find out the effective-
ness of each base learner in different situations. The multistategy framework therefore represents a
significant step toward an effective and unifying matching solution.
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6.2.2 Exploiting Multiple Types of Information

Many works in representation matching exploit multiple types of information, such as names, data
types, integrity constraints, attribute cardinality, and so on. However, they employ a single strategy
for this purpose. For example, the Semint system [LC94, LCLO0O0, LC00] employs neural networks,
the Autoplex system [BMO01] employs Naive Bayes classification techniques, and the DELTA system
[CHR97] lumps all information about an element into a single long piece of text, then matches the
pieces using information retrieval techniques.

Some works have considered several different matching strategies, based on the heuristic that the
combination of multiple strategies may improve matching accuracy. The hybrid system described
in [CHRI7], for example, combines the predictions of the Semint and DELTA system. However,
these works combine strategies in a hardwired fashion, thus making it extremely difficult to add
new strategies. Several recent works [CA99, BCVBO01, DR02] solve the above problem by using
schemes such as weighted sum to combine predictions coming from different matching strategies.
The weights employed in such solutions must be hand-tuned, based on the specific application
context.

This dissertation advances the state of the art on exploiting multiple types of information in
several important aspects. First, we bring this issue to the forefront of representation matching, with
our work on LSD. We clearly show that there are many different types of information available, and
that a matching solution must exploit all of them to maximize matching accuracy.

Second, we consider a much broader range of information types than the previous works.
Specifically, we advocate building a solution that can exploit both schema and data information,
domain integrity constraints, heuristic knowledge, previous matching activities, user feedback, and
other types of user knowledge about the matching application (e.g., similarity measure).

Third, we make the case that there is no one-size-fit-all technique: each type of information
should be exploited using an appropriate strategy, be it Naive Bayes, neural network, decision tree,
hand-crafted rule, or recognizer. This point has not been articulated in previous works on represen-
tation matching.

Fourth, we introduce multistrategy learning as a technique that can automatically select the
weights that are used to combine multiple strategies. Thus, we provide a solution to the problem
of manually tuning the weights (which is both tedious and inaccurate). However, multistrategy
learning is not limited to just the use of weights. It also raises the possibility of employing more
sophisticated techniques to combine strategies, such as decision trees or Bayesian networks.

Finally, we show for the first time that the same multistrategy approach can also be carried over
to complex matching (Chapter 4).

6.2.3 Incorporating Domain Constraints and Heuristics

It was recognized early on that domain integrity constraints and heuristics provide valuable infor-
mation for matching purposes. Hence, almost all the works we have mentioned exploit some forms
of this type of knowledge.

In most works, integrity constraints have been used to match representation elements locally.
For example, many works match two elements if they participate in similar constraints (among
other things). The main problem with this scheme is that it cannot exploit “global” constraints and
heuristics that relate the matching of multiple elements (e.g., “at most one element matches house-
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address™). To address this problem, in this dissertation we have advocated moving the handling of
constraints to after the matchers. This way, the constraint handling framework can exploit “global”
constraints and is highly extensible to new types of constraints.

While integrity constraints are domain-specific information (e.g., house-id is a key for house
listings), heuristic knowledge makes general statements about how the matching of elements relate
to each other. A well-known example of a heuristic is “two nodes match if their neighbors also
match”, variations of which have been exploited in many systems (e.g., [MZ98, MBR01, MMGRO02,
NMO1]). The common scheme is to iteratively change the mapping of a node based on those of its
neighbors. The iteration is carried out one or twice, or all the way until some convergence criterion
is reached.

Our GLUE work provides a solution to exploit a broad range of heuristic information, including
those heuristics that have been commonly used in the matching literature. The solution builds on a
well-founded probabilistic interpretation, and treats domain integrity constraints as well as heuristic
knowledge in a uniform fashion.

6.2.4 Handling User Feedback

Most existing works have focused on developing automatic matching algorithms. They either ignore
the issue of user interaction, or treat it as an afterthought. The typical assumption is that whenever a
system cannot decide (e.g., between multiple matching alternatives), then it asks the user [MZ98].

The exceptions are several recent works in ontology matching [Cha00, MFRWO00, NMOO].
These works have powerful features that treat user feedback as an integral part of the matching
process and allow for efficient user interaction. For example, the system in [NMOO] frequently so-
licits user feedback on its matching decisions (e.g., confirm or reject the decisions), then makes
subsequent decisions based on the feedback.

The Clio system [MHHO00, YMHF01, PVH*02] focuses on very fine-grained mappings, which
are for example SQL or XQuery expressions that can be immediately executed to translate data from
one representation to another. Clio makes two important contributions. First, it recognizes that cre-
ating such fine-grained mappings entails making decisions that require user input. Deciding if inner
join or outer join should be used is an example of such decisions. Hence, like the previous works in
ontology matching that we just described, it also brings the user to the center of the matching pro-
cess. Second, it realizes that efficient interaction with the user is crucial to the success of matching.
Hence, it develops techniques to minimize the amount of interaction required.

The key innovation we made regarding user feedback is that we treat such feedback as temporary
domain constraints and heuristics. Thus, we allow users to specify as little or as much feedback as
necessary. Our framework also allows users to iteratively interact with the matching system in an
efficient manner (e.g., by rerunning the relaxation labeler as many times as necessary).

An important issue that Clio has touched on, and that we have not considered, is finding out how
to minimize user interaction — asking them only what is absolutely necessary — and yet make the
most out of such interaction. We shall return to this topic when we discuss future directions in the
next chapter (Chapter 7).
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6.2.5 1-1 and Complex Matching

The vast majority of current works focus only on finding 1-1 semantic mappings. Several works
(e.g., [MZ98]) deal with complex matching in the sense that such matchings are hard-coded into
rules. The rules are systematically tried on the elements of given representations, and when such a
rule fires, the system returns the complex mapping encoded in the rule.

As mentioned earlier, the Clio system [MHH00, YMHF01, PVH*02] creates complex mappings
for relational and XML data. To create a complex mapping for a representation element, Clio as-
sumes that the “right” attributes and formula have been given (either by the user, by data mining
techniques, or by systems such as LSD). It then focuses on finding the “right” relationship between
the attributes (see Chapter 4 for more detail on “right” attributes, formula, and relationships).

In a sense, our work (with the COMAP system) is complementary to Clio in that we find the
“right” attributes and formula, assuming the “right” relationship is given. We show in Chapter 4 that
our current framework can be extended to address the question of finding the “right” relationship.
We believe that a complete and practical system to deal with complex mappings can be developed
by combining the multi-searcher architecture and the learning/statistical techniques of COMAP with
the powerful facilities for user interaction and for developing fine-grained mappings of Clio.

6.2.6 Generic vs. Application-Specific Solutions

A recent interesting trend covers both ends of the representation matching spectrum. At one end,
there have been several works that focus on developing very specialized, application-specific match-
ing solutions. The rationale for this is that representation matching is so difficult, that we should spe-
cialize our solution to exploit application-specific features. An example of such works is [NM02],
which focuses on matching multiple versions of the same ontology. As mentioned, since consecu-
tive versions tend to differ little from each other, solutions that utilize simple rules can be developed
that achieve very high matching accuracy.

At the other end, several works have advocated building generic matching solutions (e.g., [RB01,
DRO02] and this dissertation), mostly because representation matching is a fundamental step in nu-
merous data management applications. In the foreseeable future, it is likely that there will be a need
for, and we shall continue to see, works in both directions.

6.2.7 Further Related Work

The works [Ber03, PB02] discuss model management and schema matching in that context. The
work [RDO0Q] discusses data cleaning and schema matching. Several recent works [RRSMO1,
RMRO00, RS01, SRLS02] discuss the issue of building large-scale data integration systems in detail
and the crucial role of schema matching in this process. The work [SRO1] discusses the impact of
XML on data sharing, in particular schema matching and object matching. The work [EJX01] dis-
cusses a schema matching approach that is similar to LSD, but using a different set of base learners
and a simple averaging method to combine the base learners’ predictions.

6.3 Related Work in Learning

We now briefly survey works that are related to learning issues in this dissertation.
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Combining MultipleLearners: Multi-strategy learning has been researched extensively [MT94],
and applied to several other domains (e.g., information extraction [Fre98], solving crossword puz-
zles [KSL199], and identifying phrase structure in NLP [PROO]). In our context, our main inno-
vations are the three-level architecture (base learners, meta-learner and prediction combiner) that
allows learning from both schema and data information, and the use of integrity constraints to fur-
ther refine the learner.

Learning with Structured Data: Yi and Sundaresan [YS00] describe a classifier for XML docu-
ments. However, their method applies only to documents that share the same DTD, which is not the
case in our domain.

Relaxation Labeling for Learning to Label Interrelated Instances. This technique has been
employed successfully to similar matching problems in computer vision, natural language process-
ing, and hypertext classification [HZ83, Pad98, CDI98]. Our work on relaxation labeling is most
similar to the work on hypertext classification of [CDI98]. The key difference is that we consider
more expressive types of constraints and a broader notion of neighborhood. As a consequence, the
optimization techniques of [CDI198] do not work efficiently for our context. To solve this problem,
we develop new optimization techniques that are shown empirically to be accurate and extremely
fast (see Section 5.3.3). These techniques are general and hence should also be useful for relaxation
labeling in other contexts.

Exploiting Domain Constraints:  Incorporating domain constraints into the learners has been
considered in several works (e.g., [DR96]), but most works consider only certain types of learners
and constraints. In contrast, our framework allows arbitrary constraints (as long as they can be
verified using the schema and data), and works with any type of learner. This is made possible by
using the constraints during the matching phase, to restrict the learner predictions, instead of the
usual approach of using constraints during the training phase, to restrict the search space of learned
hypotheses.

6.4 Reated Work in Knowledge-Intensive Domains

Representation matching requires making multiple interrelated inferences, by combining a broad
variety of relatively shallow knowledge types. In recent years, several other domains that fit the
above description have also been studied. Notable domains are information extraction (e.g., [Fre98]),
solving crossword puzzles [KSL*99], and identifying phrase structure in NLP [PR00]. What is re-
markable about these studies is that they tend to develop similar solution architectures which com-
bine the prediction of multiple independent modules and optionally handle domain constraints on
top of the modules. These solution architectures have been shown empirically to work well. It
will be interesting to see if such studies converge in a definitive blueprint architecture for making
multiple inferences in knowledge-intensive domains.
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Chapter 7
CONCLUSION

Representation matching is a critical step in numerous data management applications. Manual
matching is very expensive. Hence, it is important to develop techniques to automate the match-
ing process. Given the rapid proliferation and the growing size of applications today, automatic
techniques for representation matching become ever more important.

This dissertation has contributed to both understanding the matching problem and developing
matching tools. In this chapter, we recap the key contributions of the dissertation and discuss direc-
tions for future research.

7.1 Key Contributions

This dissertation makes two major contributions. The first contribution is a framework that formally
defines a variety of representation-matching problems and explains the workings of subsequently
developed matching algorithms.

The framework introduces a small set of notions: (1) a domain representation that serves as the
user’s conceptualization of the domain, (2) a mapping function that relates concepts in the represen-
tations to be matched to those in the domain representation, (3) a similarity function that the user
employs to relate the similarity of concepts in the domain representation, (4) an assumption that re-
lates the innate semantic similarity of concepts with their syntactic similarity, and (5) operators that
are defined over concepts in the domain representation and that can be used to combine concepts to
form complex mapping expressions.

We show that most types of input and output of representation matching problems (including
output notions such as semantic mapping) can be explained in terms of the above five notions. An
important consequence of this result is that it suggests a methodology to obtain input information
about a matching problem by systematically checking what is known about each of the five notions.
The more input information we have about a matching problem, the higher matching accuracy we
can obtain.

The second major contribution of the dissertation is a solution to semi-automatically create
semantic mappings. The key innovations that we made in developing this solution are:

o \We brought the necessity of exploiting multiple types of information to the forefront of repre-
sentation matching. Then we proposed a multistrategy learning solution, which applies multi-
ple modules — each exploiting well a single type of information to make matching predictions
— and then combines the modules’ predictions. Employing multiple independent matching
modules is a key idea underlying our solution, for both 1-1 and complex matching cases. This
idea yields a solution that is highly modular and easily customized to any particular domain.

e \We developed the A* and relaxation-labeling frameworks that exploit a broad range of in-
tegrity constraints and domain heuristics. These frameworks are made possible by our deci-
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sion to layer constraint exploitation on top of the matching modules. (An alternative would
have been to incorporate constraint handling directly into the modules.) Again, this two-layer
architecture is modular and easily adapted to new domains, as we demonstrated by adapt-
ing our solution to data integration (Chapter 3), data translation (Chapter 4), and ontology
matching (Chapter 5).

e \We showed that explicit notions of similarity play an important part in practical matching
scenarios. We then demonstrated that our solution can handle a broad variety of such notions
(Chapter 5). This result is significant because virtually all previous works have not considered
the notion of similarity explicitly.

e Finally, we showed that our solution can also naturally handle complex matchings, the types of
matching that are common in practice but have not been addressed by most previous works.
The first main idea here was to find a set of candidate complex mappings, then reduce the
problem to an 1-1 matching problem. The second idea was to employ multiple search modules
to examine the space of complex mappings, to find mapping candidates. The final main idea
was to use machine learning and statistical techniques to evaluate mapping candidates.

7.2 FutureDirections

We have made significant inroads into understanding and developing solutions for representation
matching, but substantial work remains toward the goal of achieving a comprehensive matching
solution. In what follows we discuss several directions for future work.

7.2.1 Efficient User Interaction

Matching solutions must interact with the user in order to arrive at final correct mappings. (Even if
a solution is perfect, the user still has to verify the mappings.) We consider efficient user interaction
the most important open problem for representation matching. Any practical matching tool must
handle this problem, and anecdotal evidence abounds on deployed matching tools quickly being
abandoned for irritating users with too many questions. Our experience with matching large schemas
(e.g., while experimenting with the GLUE system) confirms that even just verifying a large number
of created mappings is already extremely tedious.

The building and operating of future data sharing systems will further exacerbate this problem.
Presumably many such systems will operate over hundreds or thousands of data sources. Even
if a near perfect matching solution is employed, the system builder still has to verify the tens of
thousands or millions of mappings that the solution created. Just the verification of mappings at such
scales is already bordering on practical impossibility. Hence, efficient user interaction is crucial. The
key is to discover how to minimize user interaction — asking only for absolutely necessary feedback,
but maximizing the impact of the feedback.

7.2.2 Performance Evaluation

We have reported matching performance in terms of the predictive matching accuracy. Predictive
accuracy is an important performance measure because () the higher the accuracy, the more reduc-
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tion in human labor a matching system can achieve, and (b) the measure facilitates comparison and
development of matching techniques. The next important task is to actually quantify the reduction
in human labor that a matching system achieves. This problem is related to the problem of efficient
user interaction that we mentioned above. It is known to be difficult, due to widely varying assump-
tions on how a matching tool is used, and has just recently been investigated [MMGR02, DMRO02].

7.2.3 Unified Matching Framework

A third challenge is to develop a unified framework for representation matching that combines in a
principled, seamless, and efficient way all the relevant information (e.g., user feedback, mappings
from a different application) and techniques (e.g., machine learning, heuristics). The work on the
GLUE system (Chapter 5) suggests that mappings can be given well-founded definitions based on
probabilistic interpretations, and that a unified mapping framework can be developed by leveraging
probabilistic representation and reasoning methods such as Bayesian networks.

7.2.4 Mapping Maintenance

In dynamic and autonomous environments (e.g., the Internet) sources often undergo changes in
their schemas and data. Hence, the operators of a data sharing system must constantly monitor the
component sources to detect and deal with changes in their semantic mappings. Clearly, manual
monitoring is very expensive and not scalable. It is important therefore to develop techniques to au-
tomate the monitoring and repairing of semantic mappings. Despite the importance of this problem,
it has not been addressed in the literature (though the related problem of wrapper maintenance has
received some attention [Kus00b]).

7.2.5 Matching Other Types of Entities

Besides representation elements, the problems of matching other types of entities such as objects
and Web services are also becoming increasingly crucial. The problem of deciding if two different
objects in two sources (e.g., two house listings or two car descriptions) refer to the same real-world
entity has received much attention in the database and data mining communities. This problem
typically arises when multiple databases are merged and duplicate records must be purged (hence, it
is also commonly known as the merge/purge problem). In the data integration context, the problem
arises when we merge answers from multiple sources and must purge duplicate answers. As data
integration becomes pervasive, this problem will become increasingly important.

The problem of deciding if two Web services share similar behaviors (in essence, matching
the behaviors of services) will also become crucial as Web services proliferate and the need to
mediate among them increases. It will be an interesting direction to examine how the techniques
that have been developed for representation matching can be transferred to solving these new types
of matching problems.
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