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abstract

Statistical inference has a long history of established algorithms with theoretical guarantees,

but modern machine learning applications impose new statistical and computational

constraints. These constraints include constraints on sampling such as poor quality datasets

that deviate from idealized assumptions and constraints on computational resources such

as time, memory, communication bandwidth, and privacy. These constraints can lead

to a significant decrease in the performance of classical inference techniques, calling for

new algorithmic solutions. In this thesis, we focus on fundamental statistical inference

tasks such as mean estimation, linear regression, and hypothesis testing in the presence of

aforementioned constraints.

The first part of the thesis focuses on statistical constraints on sampling and the chal-

lenges posed by real-world datasets that often do not conform to idealized assumptions.

Many such datasets contain heavy tails, arbitrary outliers, and heterogeneity as opposed

to the idealistic assumption of i.i.d. (sub-)Gaussian data. We develop practical statistical

inference algorithms for mean estimation and linear regression with provable guarantees

that are robust to these deviations. We achieve these results by developing algorithms that

work under minimal structures on the data and proving that these structures hold with

exponential probability, even under heavy-tailed data. In regimes where the existence of

efficient algorithms is unknown, we give concrete evidence that efficient algorithms might

indeed not exist by showing average-case computational lower bounds for a restricted

family of algorithms.

The second part of the thesis focuses on computational constraints and the need to

optimize algorithms for limited memory, communication bandwidth, and privacy in large-

scale, distributed machine learning pipelines (in addition to optimizing for runtime). We

begin by considering the space complexity of efficient algorithms for high-dimensional

robust statistics, where we develop the first streaming algorithms with near-optimal space

complexity. Finally, we consider simple hypothesis testing under communication band-



xii

width and local privacy constraints, where we characterize the minmax optimal sample

complexity and develop computationally-efficient algorithms.
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1 introduction

मैं जसे ओढ़ता िबछाता हँू
वो ग़ज़ल आप को सुनाता हँू

— दु ं त कुमार

Statistical inference is a well-studied field with applications spanning engineering,

operations research, and machine learning. With over a century of active research, it has

well-known classical algorithms and associated theoretical guarantees. However, modern

data science applications impose constraints, both statistical (e.g., quality and quantity of

training data) and computational (e.g., limited time, memory, communication bandwidth,

and privacy). Unfortunately, these constraints often lead to significant degradation of the

performance of classical inference techniques, highlighting the need for novel algorithmic

solutions.

This thesis aims to address this need by proposing practical statistical inference algo-

rithms that offer provable guarantees under various resource constraints. Specifically, we

will focus on two types of constraints: statistical and computational resources, which we

will describe in more detail below.

• (Constraints on Sampling) Modern datasets are often so large that it is no longer pos-

sible to curate them carefully. This lack of curation causes many real-world datasets

to be of poor quality, unlike what is assumed in theory. To elaborate on this point,

much of classical statistical theory rests on data being “i.i.d.” and “subgaussian”,

assumptions that rarely hold, if ever. Indeed, outliers, heterogeneity, and heavy tails

are all fixtures of modern real-world datasets. This vast gap in data quality between

theory and practice has dire consequences: algorithms developed for the idealized

data fail dramatically upon even a slight quality degradation. This brittleness, a con-

sequence of “model misspecification”, is systematically studied under the umbrella
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of “robust statistics”[HR09].

• (Constraints on Computational Resources) The design of inference algorithms un-

der computational constraints has traditionally focused on optimizing the runtime.

However, the emergence of large-scale, distributed machine learning pipelines has

now brought to the fore the importance of optimizing for limited memory and com-

munication bandwidth. In settings like distributed learning on mobile phones and

edge devices, constraints on memory, communication bandwidth, or privacy render

previously developed estimators completely inapplicable. Consequently, there is a

need to rethink the algorithmic design philosophy for these situations.

This thesis aims to develop practical statistical inference algorithms with provable

guarantees under these constraints. Our focus in this thesis is on fundamental statistical

inference tasks that are both widely used and capture the challenges of these constraints.

1.1 Organization

This thesis is divided in two parts. The first part, “Constraints on Sampling: Outliers,

Heavy-Tails, and Heterogeneity” (Part I), focuses on topics pertaining to constraints on

sampling. This part is structured as follows:

• Chapter 2 serves as an introduction on the challenges posed by constraints on sam-

pling. Assuming minimal background knowledge, we describe the inference tasks

that we consider and the constraints on sampling. For each of these tasks and the

constraints, we also provide a brief summary of our results.

• Chapter 3 is based on “Outlier Robust Mean Estimation with Subgaussian Rates via

Stability ” [DKP20] (published in NeurIPS 2020), joint with Ilias Diakonikolas and

Daniel M. Kane.
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• Chapter 4 is based on “ Outlier-Robust Sparse Mean Estimation for Heavy-Tailed

Distributions” [DKLP22] (published in NeurIPS 2022), joint with Ilias Diakonikolas,

Daniel M. Kane, and Jasper C. H. Lee.

• Chapter 5 is based on “Robust regression with covariate filtering: Heavy tails and

adversarial contamination” [PJL20b], joint with Varun Jog and Po-Ling Loh.

• Chapter 6 is based on “Statistical Query Lower Bounds for List-Decodable Linear

Regression” [DKPPS21] (published in NeurIPS 2021), joint with Ilias Diakonikolas,

Daniel M. Kane, Thanasis Pittas, and Alistair Stewart.

• Chapter 7 is based on “Mean estimation for entangled single-sample distribu-

tions” [PJL19b] (published in ISIT 2019) and “Estimating location parameters

in sample-heterogeneous distributions” [PJL19a] (published in Information and

Inference: a Journal of the IMA), joint with Varun Jog and Po-Ling Loh.

The second part of thesis, “Constraints on Computational Resources: Communication,

Memory, and Privacy” (Part II), focuses on topics related to constraints on computational

resources. The content in this part is structured as follows:

• Chapter 8 provides an overview of the constraints on computational constraints

that we consider. The chapter is designed to be accessible to readers with minimal

background knowledge, and we begin by introducing the inference tasks that we

consider and the constraints on sampling that are relevant to these tasks. In addition,

we provide a concise summary of the results we obtained for each task and constraint.

• Chapter 9 is based on “Streaming Algorithms for High-Dimensional Robust Statis-

tics” [DKPP22] (published in ICML 2022), joint with Ilias Diakonikolas, Daniel M.

Kane, and Thanasis Pittas.

• Chapter 10 is based on “Simple Binary Hypothesis Testing under Communication

Constraints” [PLJ22] (published in ISIT 2022) and “Communication-constrained
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hypothesis testing: Optimality, robustness, and reverse data processing inequalities

” [PJL22], joint with Varun Jog and Po-Ling Loh.

• Chapter 11 is based on “Simple Binary Hypothesis Testing under Local Differential

Privacy and Communication Constraints” [PAJL23], joint with Amir Asadi, Varun

Jog, and Po-Ling Loh.

In addition to these works, the author also worked on topics that are not part of this

thesis: generalization error of sequential noisy algorithms [PJL18], robustness to test-time

attacks [PJL20a], Bayesian approaches to multi-label learning [PPMZR19], concentration

inequalities [BP22], distribution testing [DKP23], and sum-of-squares approaches to robust

sparse estimation [DKKPP22a; DKKPP22b].
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Part I

Constraints on Sampling:

Outliers, Heavy-Tails, and Heterogeneity
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2 overview of results: constraints on sampling

All models are wrong, but some are useful.

—George E. P. Box

This chapter gives a comprehensive introduction to the difficulties that arise when the

sampling process results in low-quality data, such as outliers, heavy tails, and heterogeneity.

We explore fundamental inference tasks, such as mean estimation and linear regression,

under these sampling constraints.

To provide a thorough understanding of each inference task and the corresponding

constraints, we outline the problem statement, present a brief review of relevant literature,

and conclude with a discussion of our contributions. Through our analysis, we aim to

highlight the unique statistical and computational challenges faced in each scenario and

the research questions that motivated us.

We divide this chapter into two sections: Section 2.1, which addresses the typical

situation where outliers represent a small fraction of the data, and Section 2.2, which

focuses on cases where low-quality data constitutes the majority.

2.1 Outliers and Heavy-Tailed Distribution

Adversarial outliers and heavy-tailed distributions constitute two significant challenges

typical to real-world datasets.

Outliers Outliers are data points significantly different from the rest. Errors in measure-

ment, data entry, or data analysis can cause outliers. Let us briefly discuss outliers’ central

role in statistical inference using the following motivations.

Consider a scientific experiment where we collect measurements and fit a model to

these measurements to identify the parameters of interest. In such a setting, outliers may

correspond to measurement errors corresponding to malfunctioning pieces of equipment,
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incorrect experiment procedures, or errors in data logging. These errors are not “random”

but rather systematic. As a result, they can severely bias the estimate if not adequately

handled.

Alternatively, one may argue that the perfect dataset is unlikely to exist. A perfect dataset

is when all observations come from a particular model in our model class; this setting

is known as “well-specified” in the literature. Well-specification is a strong assumption

because the real-world dataset is often too complicated and may not exactly satisfy the

clean, simplified statistical model. As George Box famously said, “All models are wrong,

but some are useful”.

We now formally define the contamination model that places no restriction on outliers

except the fact that the number of outliers is small:

Definition 2.1.1 (Strong Contamination Model). Given a parameter 0 < ϵ < 1/2 and a family

of distributions D on Rd, the adversary operates as follows: The algorithm specifies the number of

samples n, and n samples are drawn from some unknownD ∈ D. The (computationally unbounded)

adversary can inspect the samples, remove up to ϵn of them and replace them with arbitrary points.

This modified set of n points is then given as input to the algorithm. We say that a set of samples is

ϵ-corrupted if generated by the above process.

Observe that the corrupted dataset is neither independent nor identically distributed

from D (the dataset is not independent because the outliers can depend on the inliers.)

We will be primarily interested in the regime where ϵ, the fraction of outliers, is a small

constant independent of the dimension d.

It is easy to see that many commonly used algorithms are not robust to even a single out-

lier (e.g., the sample mean to estimate the mean, ordinary least squares algorithm for linear

regression). Developing algorithms that are robust to outliers have been systematically

studied in the field of “robust statistics”, with pioneering contributions from Huber [Hub64;

Hub65]. Since then, many statistically-efficient procedures have been developed. Until

recently, these procedures were computationally prohibitive, leading to an unfortunate
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dichotomy: existing robust algorithms were either computationally-efficient or statistically

efficient, but not simultaneously.

In a series of papers, the first robust polynomial-time algorithms for several high-

dimensional estimation tasks were developed in [LRV16; DKKLMS16; DKKLMS17]. In

particular, they attained near-optimal rates for light-tailed distributions on many tasks,

but it was unclear if these algorithms were optimal for heavy-tailed distributions (defined

below).

Heavy-Tailed Distributions One of the most common assumptions in the literature on

non-asymptotic statistical inference is that the data has sub-Gaussian tails.

However, many natural distributions, for example, power-law distributions, do not

satisfy this assumption. Since sub-gaussianity is equivalent to all moments of a distribution

being controlled appropriately, a natural way to define heavy-tailed distributions is to

require only a small number of low-degree moments being controlled, motivating the

following definition:

Definition 2.1.2 (Heavy-tailed Distributions (informal)). We say a distribution D over Rd is

heavy-tailed if the low-degree moments of the distribution exist along each unit vector.

Standard estimators, which are optimal for subgaussian distributions, could be severely

suboptimal for heavy-tailed distributions. This phenomenon was highlighted in a seminal

paper by Catoni [Cat12] for the problem of univariate mean estimation. In particular,

suppose the data distribution D is a univariate distribution with mean µ and variance

σ2. If D were a Gaussian (or a subgaussian) distribution, then the sample mean of n i.i.d.

points from D, µ̂sample-mean, would have been an optimal estimator, obtaining the following

guarantee: with probability 1− τ ,

|µ̂sample-mean − µ| ≲ σ
√

log(1/τ)/n .



9

However, there is a heavy-tailed distribution D with mean µ and variance σ2, such that

with probability, 1− τ ,

|µ̂sample-mean − µ| ≲ σ
√

1/(τn) .

This sub-optimal performance of the sample mean on heavy-tailed distributions begs

whether this poor performance of µ̂sample-mean is inherent in the mean estimation of heavy-

tailed distributions. Surprisingly, the answer is no! There are multiple estimators µ̂ (see,

for example, [Cat12; LV20; BCL13; OO19]) that achieve the rate |µ̂− µ| ≲ σ
√

log(1/τ)/n

for heavy-tailed distributions.

A major thrust of this thesis is on obtaining similar performance guarantees for high-

dimensional estimation tasks. As we will see shortly, new challenges (both statistical and

computational) appear in the high-dimensional regime.

2.1.1 Inference Task 1: Multivariate Mean Estimation

Let D be an (unknown) heavy-tailed distribution over Rd with (unknown) mean µ and

(unknown) covariance Σ. Consider the problem of estimating the mean µ from the samples

of D. As discussed earlier, it is unrealistic in many settings to assume that the dataset is

i.i.d. and the distribution D is light-tailed. We are thus led to the following problem:

Inference Task 1 (Outlier-Robust Heavy-Tailed Mean Estimation (in Euclidean Norm)).

Let D be an (unknown) heavy-tailed distribution over Rd with mean µ and covariance Σ. Given a

set of ϵ-corrupted samples in Rd from D, ϵ, and τ , compute an estimate µ̂ such that with probability

1− τ , we have that ∥µ̂− µ∥2 is small.

Observe that there are no further restrictions on D beyond finite covariance, and there

could be ϵ-fraction of outliers in the data. For simplicity, and without loss of generality, we

will assume that D is supported on a bounded domain of size
√

tr(Σ)/
(
ϵ+ log(1/τ)

n

)
.
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Inference Task 1 is a fundamental problem in robust statistics with far-reaching conse-

quences. For example, robust mean estimation is a crucial sub-routine for general robust

stochastic optimization (cf. [PSBR20; DKKLSS19]).

Before discussing our contributions, let us first discuss the information-theoretic best-

possible result. It can be shown that the optimal rate is the following: given n samples,

with probability 1− τ ,

∥µ̂− µ∥2 ≍
√

tr(Σ)
n

+
√
∥Σ∥op log(1/τ)

n
+
√
∥Σ∥opϵ . (2.1)

That is, a (computationally-inefficient) algorithm achieves this rate, and all algorithms

must have at least this much error rate.

Regarding historical development, two families of computationally-efficient algorithms

tried to match Equation (2.1).

Stability-based algorithms First were the stability-based algorithms, developed in the field

of algorithmic robust statistics, to optimize the dependence on ϵ [DKKLMS17; DK19]. We

now define the notion of stability:

Definition 2.1.3 (Stability). We say a dataset T ⊂ Rd is (ϵ, δ)-stable with respect to µ ∈ Rd and

σ2 ∈ R+, if for all T ′ ⊆ T with |T ′| ≥ (1− ϵ)|T |, the following holds:

• (First moment) ∥(1/|T ′|)∑x∈T ′ x− µ∥2 ≤ σδ,

• (Second moment) ∥(1/|T ′|)∑x∈T ′(x− µ)(x− µ)⊤ − σ2I∥op ≤ σ2δ2/ϵ.

By stability-based algorithms, we mean the following:

Definition 2.1.4 (Stability-based algorithms, informal). We say an algorithm A is stability-

based if it satisfies the following guarantee: Let S be an (ϵ, δ)-stable set with respect to µ and σ2, and
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let T be an O(ϵ)-corrupted version of S. Then, given T and ϵ, the algorithm A efficiently computes2

µ̂ such that ∥µ̂− µ∥2 ≲ σδ.

Many different kinds of stability-based algorithms have been developed in literature:

convex programming, iterative filtering, gradient descent, and nearly-linear time algorithms.

These algorithms are not just polynomial-time but also practically implementable, as many

of these are spectral-based.

Going back to Inference Task 1 and Equation (2.1), we see that stability-based algorithms

can be used as follows: Let S be a set of n i.i.d. samples from a heavy-tailed distribution

and suppose that S is (ϵ′, δn,ϵ,τ,Σ)-stable with respect to µ and ∥Σ∥op with probability 1− τ .

Then, as long as ϵ′ > ϵ, stability-based algorithms on Inference Task 1 obtain the rate

of O
(√
∥Σ∥opδn,ϵ,τ,Σ

)
. Thus, a very promising way to achieve Equation (2.1) is to show

that
√
∥Σ∥opδn,ϵ,τ,Σ matches the right-hand side of Equation (2.1) up to constants. This is

a reasonable wish since it was shown in [DKKLMS17] for constant τ and given Õ(d/ϵ)

samples, the dependence on ϵ was correct, i.e.,
√
ϵ.

However, as we saw earlier, the dependence of δ on the failure probability τ was unclear.

The best-known upper-bound at that time was: with probability 1 − τ , S is (ϵ, δ)-stable

with respect to µ and ∥Σ∥op with

√
∥Σ∥opδ ≲

√
tr(Σ) log(d/τ)

n
+
√
∥Σ∥opϵ . (2.2)

Thus, the existing upper bound on the statistical error rate for the stability-based algorithms

in Equation (2.2) was far from the optimal rate in Equation (2.1). This leads to the following

question:

Question 1. Do the stability-based algorithms achieve (near)-optimal error guarantees for Inference

Task 1?
2For simplicity, we limit our discussion to deterministic algorithms, but randomized algorithms are also

applicable if their failure probability is exponentially small in ϵT .



12

In particular, does the following hold?

Question 2. Is a set of i.i.d. data from a heavy-tailed distribution stable with high probability?

We now turn to the second family of the algorithms that we will call Median-of-means

algorithms (for lack of a better word).

Median-of-means algorithms This algorithm family was initially focused on the uncon-

taminated (i.i.d.) heavy-tailed data, i.e., with ϵ = 0. First, the data is randomly divided

into k blocks of equal size (discarding the data if needed), and we take the sample mean of

each of these blocks. Let {z1, . . . , zk} be these data points. Then, the algorithm computes

an (appropriately defined) high-dimensional median of z1, . . . , zk, thus termed “median-

of-means”. The univariate median of means has been known to achieve the optimal rate in

the (uncontaminated) univariate setting for decades [NY83].

In a seminal paper, Lugosi and Mendelson [LM19d] proposed a (computationally-

inefficient) high-dimensional analog of the median that achieves the rate in Equation (2.1)

(in the uncontaminated setting). Later, Hopkins [Hop20] (see also [CFB19]) proposed a

computationally-efficient version of the estimator in [LM19d], achieving the following: For

ϵ = 0,

∥µ̂median-of-means − µ∥2 ≲

√
tr(Σ)
n

+
√
∥Σ∥op log(1/τ)

n
. (2.3)

Later, [DL22b] observed that the median-of-means algorithms naturally inherit robustness

properties from the median step (if the number of blocks, k, is sufficiently larger than

the number of outliers). Thus, combining their observation, we obtain that even in the

presence of outliers, the estimator in Equation (2.3) continues to obtain the following rate:

∥µ̂median-of-means − µ∥2 ≲

√
tr(Σ)
n

+
√
∥Σ∥op log(1/τ)

n
+
√
∥Σ∥opϵ . (2.4)
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Although this rate matches the information-theoretic rate in Equation (2.1) in polynomial-

time, these algorithms are still impractical as they rely on large semidefinite programs3

which are slow in practice (Recall that stability-based algorithms were practical). This

leads to the following question:

Question 3. Is achieving the rate in Equation (2.1) possible using practical (not just polynomial-

time) algorithms?

At a more fundamental level, the question arises whether these two families of algo-

rithms, developed disjointly, are related.

Question 4. Are stability-based algorithms related to the median-of-means family of algorithms? If

so, how?

Moreover, the stability-based algorithms are known to be adaptive to the distribution’s

tails. For example, for distributions with bounded k-th moments for k ≥ 2, the information-

theoretic dependence on ϵ is ϵ1−1/k, which is much better than
√
ϵ for k > 2. Moreover,

when the covariance is spherical, the stability-based algorithms were known to achieve this

rate (in the constant failure probability regime). However, even for Gaussian distributions,

median-of-means algorithms are inherently stuck at
√
ϵ.

Question 5. Is there a computationally-efficient algorithm (hopefully, practical as well) that adapts

to the tails of the input distribution in Inference Task 1, with better dependence on ϵ as the tails get

progressively lighter?

Our Contributions In Chapter 3, we will answer Questions 1 to 5 as follows:

1. (Question 2) Unfortunately, if S is a set of i.i.d. data points from a heavy-tailed

distribution, then with high probability, S may not be stable (with the optimal or
3We mention that a spectral algorithm within the median-of-means framework was developed in

[LLVZ20]. Still, the proposed algorithm, while spectral, is more complicated than the known stability-
based algorithms, and we are unaware of any practical implementation of this algorithm. As we will see
later, one can use more practical (stability-based) algorithms instead.
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near-optimal parameter δ). In particular, the rate in Equation (2.2) is roughly tight in

the worst-case; see Example 3.2.2. Thus, the answer to Question 2 is negative.

2. (Question 1) However, perhaps surprisingly, we will show that, with high probability,

S contains a large subset S ′ that is stable with a near-optimal parameter δ. Moreover,

the existence of a large stable subset is sufficient for stability-based algorithms to

succeed, and thus the answer to Question 1 is affirmative. Thus, stability-based

algorithms achieve near-optimal error for Inference Task 1.

3. (Question 4) Next, we study the relationship between the median-of-means and

stability. All of the existing median-of-means algorithms rely on a particular structure

on the input data, say E , which holds with high probability. We show that this

same structure E implies that the data is stable with the optimal parameters. That is,

median-of-means algorithms are also using stability in disguise.

4. (Question 3) Leveraging this freshly-established connection, we show that applying

stability-based algorithms (after a simple preprocessing) achieves the optimal error

Equation (2.1) practically.

5. (Question 5) We show that the stability parameter of the data improves as the tails of

the distribution get lighter (using the technical insights gained by proving Question 1).

Thus, stability-based algorithms strictly improve over median-of-means algorithms

as the tails of the distributions get progressively lighter (for spherical distributions).

2.1.2 Inference Task 2: Structured (Sparse) Mean Estimation

In the context of statistical inference, additional information about the unknown mean

of the distribution is often available. For example, many natural signals are sparse in

the appropriate basis, such as images in wavelet basis [EK12; HTW15]. This observation

motivates the problem of estimating the mean parameter under structured assumptions,
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where the parameter of interest, denoted as µ, satisfies some additional structure. One of

the most commonly studied structures in theory and practice is sparsity [EK12; HTW15].

Specifically, the goal is to estimate µ accurately while utilizing the prior knowledge that

only a few coordinates of µ are non-zero, defined formally below:

Definition 2.1.5 (Sparsity). We say a vector x ∈ Rd is k-sparse if at most k of the coordinates of

x are non-zero.

The benefits of sparsity in the (sub)-Gaussian i.i.d. data regime are widely recognized in

statistics. Specifically, given n samples in Rd from N (µ, I) with a k-sparse mean µ, the soft-

thresholding estimator gives an estimate µ̂ such that ∥µ̂− µ∥2 ≲
√

k log(d/k)
n

+
√

log(1/τ)/n.

This error rate is much better than the unstructured setting, where the information-theoretic

error is much higher, Θ
(√

d/n+
√

log(1/τ)/n
)
.

Despite the promising results achieved by the aforementioned estimator, it is known to

be sensitive to outliers and heavy-tailed data. This observation has motivated the problem

of outlier-robust heavy-tailed sparse mean estimation, formulated as follows:

Inference Task 2 (Outlier-Robust Heavy-Tailed Sparse Mean Estimation). Let D be an

(unknown) heavy-tailed distribution over Rd with a k-sparse mean µ and covariance Σ. Given a

set of ϵ-corrupted samples in Rd from D, sparsity parameter k, ϵ and τ , compute an estimate µ̂ such

that with probability 1− τ , we have that ∥µ̂− µ∥2 is small.

Information-theoretically, it is possible to achieve the following rate4: for n ≳ k log(d/k)+

log(1/τ), there is a (computationally-inefficient) estimator µ̂ such that

∥µ̂− µ∥2 ≤
√
k log(d/k)∥Σ∥op

n
+
√
∥Σ∥op log(1/τ)

n
+
√
∥Σ∥opϵ. (2.5)

This leads to the question of whether this rate can be achieved computationally efficiently. Ef-

ficient algorithms for robust sparse mean estimation were developed in [BDLS17; DKKPS19;
4To the best of our knowledge, the optimal statistical rate for sparse mean estimation has not been

established for heavy-tailed distributions (even without outliers).
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CDKGGS22; DKKPP22b]. However, those algorithms focused on light-tailed distributions

(As we will show later, these algorithms failed on heavy-tailed data).

The best-known computationally-efficient algorithm at the time was rather naive: apply

a robust univariate algorithm coordinate-wise and then threshold the resulting coordinate-

wise to obtain a k-sparse vector µ̂coordinate-wise. This algorithm achieved the following rate:

with probability 1− τ for n large enough,

∥µ̂coordinate-wise − µ∥2 ≲

√
k log(d)∥Σ∥op

n
+
√
k∥Σ∥op log(1/τ)

n
+
√
k∥Σ∥opϵ . (2.6)

This rate is much worse than the rate in Equation (2.5) because the dependence on both ϵ

and log(1/τ) worsens as k increases. Unfortunately, it might not be possible to achieve the

rate in Equation (2.5) in a computationally-efficient manner. For example, Equation (2.5)

implies that for ϵ = Θ(1) and τ = Θ(1), it Θ (k log(d)) samples suffice to get constant

error. However, [DKS17; BB20] have given evidence that even if D is isotropic Gaussian,

computationally-efficient algorithms need at least roughly k2 samples; this phenomenon

is known as information-computation gap in the literature. Thus, this leads to the following

question:

Question 6. What can computationally-efficient algorithms achieve for Inference Task 2? In

particular, are there computationally-efficient algorithms that uses poly(k, log d, log(1/τ), 1/ϵ)

samples and achieves error O(
√
ϵ)?

We now describe our contributions.

Our Contributions In Chapter 4, we answer Question 6 by developing the first

computationally-efficient algorithm for Inference Task 2 that improves upon Equation (2.6).

We will show that under an additional (mild) assumption of bounded fourth moments

along axis directions, there is a computationally-efficient algorithm µ̂ with the following
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guarantee: for n ≳ (k2 log d+ log(1/τ))/ϵ, then with probability 1− τ ,

∥µ̂− µ∥2 ≲
√
∥Σ∥opϵ . (2.7)

This guarantee should be compared with the error rate in Equation (2.5), which requires

(k log(d/k) + log(1/τ))/ϵ many samples to achieve the same error. Thus, the proposed

algorithm requires k2 samples instead of the statistically optimal rate of k samples. However,

as mentioned earlier, the information-computation tradeoffs established in [DKS17; BB20]

require that computationally-efficient algorithms have a quadratic dependence on k. Thus,

the proposed algorithm achieves the near-optimal error among computationally-efficient

algorithms qualitatively.

2.1.3 Inference Task 3: Linear Regression

Our focus now turns to a supervised learning problem involving heavy-tailed data and

outliers. One of the most fundamental supervised learning problems is linear regression,

which aims to learn a linear function that maps input features (covariates) to output labels

(responses). In line with the theme of this section, we consider the following variant of the

problem:

Inference Task 3 (Outlier-Robust Heavy-Tailed Linear Regression). Let (X, y) be jointly

distributed on (Rd,R) according to the distribution D as follows: X has mean zero, identity

covariance, and bounded low-degree moments, and conditioned on X = x, Y is distributed as

x⊤β∗ + Z for an unknown vector β∗ ∈ Rd and independent zero-mean unit-variance noise Z from

a heavy-tailed distribution. Given a set of ϵ-corrupted samples from D (both covariates (x) and

responses (y) can be corrupted), ϵ, failure probability τ , compute an estimate β̂ such that ∥β̂ − β∗∥2

is small.

It is worth noting that in this problem, both the covariates and the responses could

be heavy-tailed and corrupted. For simplicity of presentation, we will consider only the
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heavy-tailed setting without any contamination for the present discussion. Despite both

the covariates and responses being heavy-tailed, it is possible to achieve the following

subgaussian performance: for n ≳ d+ log(1/τ), with probability 1− τ

∥β̂ − β∗∥2 ≍
√
d

n
+
√

log(1/τ)
n

(2.8)

However, the standard ordinary least squares (OLS) estimator, ∥β̂OLS∥, has much worse

performance: there exists a heavy-tailed distribution such that under the same settings,

∥β̂OLS − β∗∥2 ≳
√

d
nτ

To bridge this performance gap, [CHKRT20] used sum-of-squares hierarchy to develop

an estimator β̂ that achieved the rate in Equation (2.8) provided n ≳ d
√

log(1/τ). While

this represents a substantial improvement, the dependence on the failure probability

on the sample complexity is still multiplicative, raising the question of whether further

improvements can be made.

Question 7. Are there computationally-efficient algorithms that attain the (near)-optimal rate in

Equation (2.8)?

We note that the main challenge in answering Question 7 is handling the lax assump-

tions on the covariates [HR09]. Indeed, consider the weaker corruption model, which

we call the label corruption model, where only the responses (Y ) are allowed to be cor-

rupted and/or heavy-tailed, but the covariates (X) are required to be uncontaminated

and subgaussian. Label corruption model is a much easier corruption model, and in fact,

several classic estimators are known to be robust to this model, for example, Huber loss

regression [Hub73], least trimmed squares [Rou84], et cetera.

Given the recent advances in algorithmic robust statistics for high-dimensional data

(for example, Inference Task 1), a natural question is whether we can combine the insights

from these recent advances and the classical literature on the label corruption model to

solve the strong contamination model. We arrive at the following conceptual question:



19

Question 8. Can we reduce the strong contamination model to the label corruption model for robust

regression using recent advances in algorithmic robust statistics?

In addition to being a conceptual question, answering Question 8 in the affirmative

is likely to have practical implications: it would offer modularity and simplicity in the

algorithms addressing the strong contamination model.

We now describe our contributions:

Our Contributions In Chapter 5, we answer Question 7 by developing a computation-

ally efficient algorithm with near-optimal error guarantees. Our proposed algorithm is

surprisingly simple and also addresses Question 8. Specifically, our approach involves

running stability-based algorithms on the covariates to remove a certain fraction of points

deemed outliers. We then apply classical estimators that are robust to label corruption,

such as Huber regression, to the remaining data points. This modular approach allows us

to leverage existing algorithmic tools for robust statistics and reduce the problem of strong

contamination to the simpler label corruption model.

2.2 Inference when Good Quality Data is in Minority

In the previous section, we discussed the challenges posed by outliers and heavy-tailed

distributions in designing inference algorithms for poor-quality statistical resources. How-

ever, our discussion was limited to the setting where the fraction of outliers, ϵ, is smaller

than 1/2, and the fraction of "good data" was larger than 1/2. However, there are scenarios

where the fraction of "good data" is less than 1/2, for example, in crowdsourcing, where

most participants could be unreliable.

In such scenarios, without further assumptions or modifications of the problem, it is

impossible to output a reasonable estimate because the model is not even identifiable:

The input distribution might be a mixture of k-many multiple components, with each
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component being far from all other components. There is no way to identify the "true"

component of the mixture. Thus, one must modify the problem statement to handle the

scenarios where the fraction of "good data" is less than 1/2. The following two subsections

will consider two separate modifications that make the problem well-posed.

2.2.1 Inference Task 4: List-decodable Linear Regression

As mentioned earlier, the inference task is not identifiable when the inliers are in the

minority because if there are only α-fraction of inliers for α ≤ 1/2, then there can be

multiple hypotheses, ⌊1/α⌋-many in fact, such that each hypothesis is consistent with some

α-fraction of the data. To address the identifiability issue, the concept of list-decodable

learning was proposed and studied in [BBV08; CSV17]. In this setting, the algorithm to

allowed to output a small list of hypotheses such that at least one is close to the correct one.

Formally, the list-decodable learning model is defined as follows:

Definition 2.2.1 (List-Decodable Learning). Given a parameter 0 < α < 1/2 and a distribution

family D on Rd, the algorithm specifies n ∈ Z+ and observes n i.i.d. samples from a distribution

E = αD + (1−α)N , where D is an unknown distribution in D and N is arbitrary. We say D is

the distribution of inliers, N is the distribution of outliers, and E is an (1−α)-corrupted version of

D. Given sample access to an (1−α)-corrupted version of D, the goal is to output a “small” list of

hypotheses L at least one of which is (with high probability) close to the target parameter of D.

Many inference tasks have been studied in this model, for example, mean estimation, lin-

ear regression, and covariance estimation. Our focus in this section is on the list-decodable

linear regression, defined below:

Inference Task 4 (List-Decodable Linear Regression). Fix σ > 0. For β ∈ Rd, let Dβ be

the distribution over (X, y), X ∈ Rd, y ∈ R, such that X ∼ N (0, Id) and y = β⊤X + η, where

η ∼ N (0, σ2) independently of X . Given sample access to an (1−α)-corrupted version of Dβ∗ (for
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an unknown β∗ with norm less than 1), the goal is to output a “small” list of vectors L at least one

of which is (with high probability) close to the β∗, i.e., minw∈L ∥w − β∗∥2 is small.

List-decodable linear regression was first studied in [KKK19; RY20a]. It can be shown

that the information-theoretic error rate for this problem is Θ̃ (σ/α), which can be achieved

with an (1− α)-corrupted set of size poly(d/α) [DKPPS21; KKK19]. However, the known

algorithms for this task, developed in [KKK19; RY20a] required dpoly(1/α) many samples

to succeed, which is much larger than poly(d/α). This gap in the sample complexity of

the existing computationally-efficient algorithms and the information-theoretic sample

naturally leads to the question of whether there are better algorithms:

Question 9. Are there computationally-efficient algorithms for Inference Task 4 that use poly(d/α)

samples?

As we show below, the answer is likely to be no.

Our Contributions In Chapter 6, we show that the answer to Question 9 is negative (in a

restricted family of algorithms) and Inference Task 4 exhibits information-computation

tradeoff. That is, any computationally-efficient statistical query algorithm for Inference

Task 4 must use dpoly(1/α) samples (even to get accuracy less than a small enough constant).

Thus, our results imply that the algorithms in [KKK19; RY20a] are qualitatively the best

possible.

2.2.2 Inference Task 5: Mean Estimation under Sample-Heterogeneity

We now consider a different learning model that focuses on the regime when the quality

data is in the minority, known as sample-heterogeneity. We will focus on the problem

of mean estimation. In this model, the algorithm outputs a single estimate (as opposed

to a list of hypotheses in list-decodable learning). As highlighted earlier, one needs to

restrict the outliers to make the problem well-posed. To this end, we will assume that (i)
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the i-th data point xi is sampled independently from a distribution Di, and (ii) and each

distribution has the same mean µ, but the variances could be different. Here, the variance

of the distribution determines its quality: the lower the variance, the higher the quality. We

will focus on the regime when a vanishing fraction of points, on(1), are good quality (low

variance), but the remaining data points could have infinite variance. Primary attention

will be given to the case when each Di is a Gaussian distribution, but the results hold more

generally for symmetric unimodal distributions.

Inference Task 5 (Location Estimation under Sample-Heterogeneity). Let µ ∈ R and

σ1, . . . , σn ∈ R+ be arbitrary and unknown. Let S be a set of n samples where each Xi ∼ N (µ, σ2
i )

independently. Given S as input, compute an estimate µ̂ such that |µ̂ − µ| is small with high

probability.

Inference Task 5 has long history in statistics dating back to the 1960s [Wei69; HM97].

Recently, it was studied in the theoretical computer science literature by [CDKL14] mo-

tivated by crowdsourcing applications. However, optimal rates were unknown in many

important settings.

It is easy to see that even if a single data point has a large variance, the sample mean

performs poorly (since the variance of the sample mean depends on the largest variance).

Even sample median requires at least Ω (
√
n) variances to be small. The central regime of

interest is when o(
√
n)-many samples have small variances.

Question 10. Are there efficient algorithms for Inference Task 5 that work when the fraction of

high-quality samples is o(1/
√
n)?

As it might be challenging to know a priori the level of heterogeneity in the data, we like

an estimator that is adaptive to the heterogeneity in the data. In particular, we would like

our algorithm to recover the O(1/
√
n)-convergence in the i.i.d. regime (without knowing

beforehand that the data is i.i.d.).
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Question 11. Are there efficient algorithms for Inference Task 5 that adapt to the level of heterogeneity

in the data?

Our Contributions In Chapter 7, we make progress on Questions 10 and 11 by developing

the first estimator that attains near-optimal error guarantees for Inference Task 5 in levels

of heterogeneity. The proposed estimator adapts to the heterogeneity of the data in many

settings, achieving near-optimal performance in the i.i.d. regime and in the regime where

only O(log n) points are of high quality. Our proposed estimator combines several classical

estimators, median, shorth, and modal interval, to obtain the near-optimal algorithms; as a

result, the proposed estimator is also computationally-efficient and practical.



24

3 robust mean estimation

A common mistake that people make when trying to design

something completely foolproof is to underestimate the ingenuity

of complete fools.
—Douglas Adams

We study the problem of outlier robust high-dimensional mean estimation under a finite

covariance assumption, and more broadly under finite low-degree moment assumptions.

We consider a standard stability condition from the recent robust statistics literature and

prove that, except with exponentially small failure probability, there exists a large fraction

of the inliers satisfying this condition. As a corollary, it follows that a number of recently

developed algorithms for robust mean estimation, including iterative filtering and non-

convex gradient descent, give optimal error estimators with (near-)subgaussian rates.

Previous analyses of these algorithms gave significantly suboptimal rates. As a corollary of

our approach, we obtain computationally efficient spectral algorithms with subgaussian

rate for outlier-robust mean estimation in the strong contamination model under a finite

covariance assumption.

3.1 Introduction

3.1.1 Background and Motivation

Consider the following problem: For a given family F of distributions on Rd, estimate the

mean of an unknown D ∈ F , given access to i.i.d. samples from D. This is the problem of

(multivariate) mean estimation and is arguably the most fundamental statistical task. In the

most basic setting whereF is the family of high-dimensional Gaussians, the empirical mean

is well-known to be an optimal estimator — in the sense that it achieves the best possible

accuracy-confidence tradeoff and is easy to compute. Unfortunately, the empirical mean is
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known to be highly suboptimal if we relax the aforementioned modeling assumptions. In

this work, we study high-dimensional mean estimation in the high confidence regime when

the underlying family F is only assumed to satisfy bounded moment conditions (e.g., finite

covariance). Moreover, we relax the “i.i.d. assumption” and aim to obtain estimators that

are robust to a constant fraction of adversarial outliers.

Throughout this paper, we focus on the following data contamination model (see,

e.g., [DKKLMS16]) that generalizes several existing models, including Huber’s contamina-

tion model [Hub64].

Definition 3.1.1 (Strong Contamination Model). Given a parameter 0 < ϵ < 1/2 and a

distribution family F on Rd, the adversary operates as follows: The algorithm specifies the number

of samples n, and n samples are drawn from some unknown D ∈ F . The adversary is allowed to

inspect the samples, remove up to ϵn of them and replace them with arbitrary points. This modified

set of n points is then given as input to the algorithm. We say that a set of samples is ϵ-corrupted if

it is generated by the above process.

The parameter ϵ in Definition 3.1.1 is the fraction of outliers and quantifies the power

of the adversary. Intuitively, among our input samples, an unknown (1− ϵ) fraction are

generated from a distribution of interest and are called inliers, and the rest are called outliers.

We note that the strong contamination model is strictly stronger than Huber’s con-

tamination model. Recall that in Huber’s contamination model [Hub64], the adversary

generates samples from a mixture distribution P of the form P = (1− ϵ)D + ϵN , where

D ∈ F is the unknown target distribution and N is an adversarially chosen noise distribu-

tion. That is, in Huber’s model the adversary is oblivious to the inliers and is only allowed

to add outliers.

In the context of robust mean estimation, we want to design an algorithm (estimator)

with the following performance: Given any ϵ-corrupted set of n samples from an unknown

distribution D ∈ F , the algorithm outputs an estimate µ̂ ∈ Rd of the target mean µ of D

such that with high probability the ℓ2-norm ∥µ̂− µ∥2 is small. The ultimate goal is to obtain a
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computationally efficient estimator with optimal confidence-accuracy tradeoff. For concreteness, in

the proceeding discussion we focus on the case that F is the family of all distributions on

Rd with bounded covariance, i.e., any D ∈ F has covariance matrix Σ ⪯ I . (We note that

the results of this paper apply for the more general setting where Σ ⪯ σ2I , where σ > 0 is

unknown to the algorithm.)

Perhaps surprisingly, even for the special case of ϵ = 0 (i.e., without adversarial contam-

ination), designing an optimal mean estimator in the high-confidence regime is far from

trivial. In particular, it is well-known (and easy to see) that the empirical mean achieves

highly sub-optimal rate. A sequence of works in mathematical statistics (see, e.g., [Cat12;

Min15; DLLO16; LM19d]) designed novel estimators with improved rates, culminating

in an optimal estimator [LM19d]. See [LM19a] for a survey on the topic. The estimator

of [LM19d] is based on the median-of-means framework and achieves a “subgaussian”

performance guarantee:

∥µ̂− µ∥2 = O(
√
d/n+

√
log(1/τ)/n) , (3.1)

where τ > 0 is the failure probability. The error rate (3.1) is information-theoretically

optimal for any estimator and matches the error rate achieved by the empirical mean on

Gaussian data. Unfortunately, the estimator of [LM19d] is not efficiently computable. In

particular, known algorithms to compute it have running time exponential in the dimen-

sion d. Related works [Min15; PBR19] provide computationally efficient estimators alas

with suboptimal rates. The first polynomial time algorithm achieving the optimal rate

(3.1) was given in [Hop20], using a convex program derived from the Sums-of-Squares

method. Efficient algorithms with improved asymptotic runtimes were subsequently given

in [CFB19; DL22b; LLVZ20].

We now turn to the outlier-robust setting (ϵ > 0) for the constant confidence regime,

i.e., when the failure probability τ is a small universal constant. The statistical foundations
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of outlier-robust estimation were laid out in early work by the robust statistics community,

starting with the pioneering works of [Tuk60] and [Hub64]. For example, the minimax

optimal estimator satisfies:

∥µ̂− µ∥2 = O(
√
ϵ+

√
d/n) . (3.2)

Until fairly recently however, all known polynomial-time estimators attained sub-optimal

rates. Specifically, even in the limit when n → ∞, known polynomial time estimators

achieved error of O(
√
ϵd), i.e., scaling polynomially with the dimension d. Recent work in

computer science, starting with [DKKLMS16; LRV16], gave the first efficiently computable

outlier-robust estimators for high-dimensional mean estimation. For bounded covariance

distributions, [DKKLMS17; SCV18] gave efficient algorithms with the right error guarantee

of O(
√
ϵ). Specifically, the filtering algorithm of [DKKLMS17] is known to achieve a

near-optimal rate of O(
√
ϵ+

√
d log d/n) (with high constant probability).

In this paper, we aim to achieve the best of both worlds. In particular, we ask the

following question:

Can we design computationally efficient estimators with subgaussian rates

and optimal dependence on the contamination parameter ϵ?

Recent work [LM21b] gave an exponential time estimator with optimal rate in this setting.

Specifically, [LM21b] showed that a multivariate extension of the trimmed-mean achieved

the optimal error of

∥µ̂− µ∥2 = O
(√

ϵ+
√
d/n+

√
log(1/τ)/n

)
. (3.3)

We note that [LM21b] posed as an open question the existence of a computationally ef-

ficient estimator achieving the optimal rate (3.3). Two recent works [DL22b; LLVZ20]

gave efficient estimators with subgaussian rates that are outlier-robust in the additive con-
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tamination model — a weaker model than that of Definition 3.1.1. Prior to this work, no

polynomial time algorithm with optimal (or near-optimal) rate was known in the strong

contamination model of Definition 3.1.1. As a corollary of our approach, we answer the

question of [LM21b] in the affirmative (see Proposition 3.1.6). In the following subsection,

we describe our results in detail.

3.1.2 Our Contributions

At a high-level, the main conceptual contribution of this work is in showing that several

previously developed computationally efficient algorithms for high-dimensional robust

mean estimation achieve near-subgaussian rates or subgaussian rates (after a simple pre-

processing). A number of these algorithms are known to succeed under a standard stability

condition (Definition 3.1.2) – a simple deterministic condition on the empirical mean and

covariance of a finite point set. We will call such algorithms stability-based.

Our contributions are as follows:

• We show (Theorem 3.1.4) that given a set of i.i.d. samples from a finite covariance

distribution, except with exponentially small failure probability, there exists a large

fraction of the samples satisfying the stability condition. As a corollary, it follows

(Proposition 3.1.5) that any stability-based robust mean estimation algorithm achieves

optimal error with (near-)subgaussian rates.

• We show an analogous probabilistic result (Theorem 3.1.8) for known covariance dis-

tributions (or, more generally, spherical covariance distributions) with bounded k-th

moment, for some k ≥ 4. As a corollary, we obtain that any stability-based robust mean

estimator achieves optimal error with (near-)subgaussian rates (Proposition 3.1.9.)

• For the case of finite covariance distributions, we show (Proposition 3.1.6) that a simple

pre-processing step followed by any stability-based robust mean estimation algorithm

yields optimal error and subgaussian rates.
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To formally state our results, we require some terminology and background.

Basic Notation For a vector v ∈ Rd, we use ∥v∥2 to denote its ℓ2-norm. For a square

matrix M , we use tr(M) to denotes its trace, and ∥M∥op to denote its spectral norm. We

say a symmetric matrix A is PSD (positive semidefinite) if x⊤Ax ≥ 0 for all vectors x.

For a PSD matrix M , we use r(M) to denote its stable rank (or intrinsic dimension), i.e.,

r(M) := tr(M)/∥M∥op. For two symmetric matrices A and B, we use ⟨A,B⟩ to denote the

trace inner product tr(AB) and say A ⪯ B when B − A is PSD.

We use [n] to denote the set {1, . . . , n} and Sd−1 to denote the d-dimensional unit sphere.

We use ∆n to denote the probability simplex on [n], i.e., ∆n = {w ∈ Rn : wi ≥ 0,∑n
i=1 wi =

1}. For a multiset S = {x1, . . . , xn} ⊂ Rd of cardinality n and w ∈ ∆n, we use µw to denote

its weighted mean µw = ∑n
i=1 wixi. Similarly, we use Σw to denote its weighted second

moment matrix (centered with respect to µ) Σw = ∑n
i=1 wi(xi − µ)(xi − µ)⊤. For a set

S ⊂ Rd, we denote µS = (1/|S|)∑x∈S x and ΣS = (1/|S|)∑x∈S(x−µ)(x−µ)⊤ to denote the

mean and (central) second moment matrix with respect to the uniform distribution on S.

For a set E, we use I(x ∈ E) to denote the indicator function for event E. For simplicity,

we use I(x ≥ t) to denote the indicator function for the event E = {x : x ≥ t}. For a

random variable Z, we use Var(Z) to denote its variance. We use dTV(p, q) to denote the

total variation distance between distributions p and q.

Stability Condition and Robust Mean Estimation. We can now define the stability

condition:

Definition 3.1.2 (see, e.g., [DK19]). Fix 0 < ϵ < 1/2 and δ ≥ ϵ. A finite set S ⊂ Rd is

(ϵ, δ)-stable with respect to mean µ ∈ Rd and σ2 if for every S ′ ⊆ S with |S ′| ≥ (1 − ϵ)|S|, the

following conditions hold: (i) ∥µS′ − µ∥2 ≤ σδ, and (ii) ∥ΣS′ − σ2I∥op ≤ σ2δ2/ϵ.

The aforementioned condition or a variant thereof is used in every known outlier-robust

mean estimation algorithm. Definition 3.1.2 requires that after restricting to a (1−ϵ)-density
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subset S ′, the sample mean of S ′ is within σδ of the mean µ, and the sample variance of S ′

is σ2(1± δ2/ϵ) in every direction. (We note that Definition 3.1.2 is intended for distributions

with covariance Σ ⪯ σ2I). We will omit the parameters µ and σ2 when they are clear from

context. In particular, our proofs will focus on the case σ2 = 1, which can be achieved by

scaling the datapoints appropriately.

A number of known algorithmic techniques previously used for robust mean estimation,

including convex programming based methods [DKKLMS16; SCV18; CDG19], iterative

filtering [DKKLMS16; DKKLMS17; DHL19], and even first-order methods [CDGS20;

ZJS22b], are known to succeed under the stability condition. Specifically, prior work has

established the following theorem:

Theorem 3.1.3 (Robust Mean Estimation Under Stability, see, e.g., [DK19]). Let T ⊂ Rd be

an ϵ-corrupted version of a set S with the following properties: S contains a subset S ′ ⊆ S such

that |S ′| ≥ (1− ϵ)|S| and S ′ is (Cϵ, δ) stable with respect to µ ∈ Rd and σ2 ∈ R+, for a sufficiently

large constant C > 0. Then there is a polynomial-time algorithm, that on input ϵ, T , computes µ̂

such that ∥µ̂− µ∥2 = O(σδ).

We note in particular that the iterative filtering algorithm [DKKLMS17; DK19] (see also

Section 2.4.3 of [DK19]) is a very simple and practical stability-based algorithm. While

previous works made the assumption that the upper bound parameter σ2 is known to the

algorithm, we point out in Appendix A.1.2 that essentially the same algorithm and analysis

works for unknown σ2 as well.

Our Results Our first main result establishes the stability of a subset of i.i.d. points drawn

from a distribution with bounded covariance.

Theorem 3.1.4. Fix any 0 < τ < 1. Let S be a multiset of n i.i.d. samples from a distribution on Rd

with mean µ and covariance Σ . Let ϵ′ = Θ(log(1/τ)/n+ϵ) ≤ c, for a sufficiently small constant c >

0. Then, with probability at least 1−τ , there exists a subsetS ′ ⊆ S such that |S ′| ≥ (1−ϵ′)n andS ′ is

(2ϵ′, δ)-stable with respect to µ and ∥Σ∥op, where δ = O(
√

(r(Σ) log r(Σ))/n+
√
ϵ+

√
log(1/τ)/n).



31

Theorem 3.1.4 significantly improves the probabilistic guarantees in prior work on

robust mean estimation. This includes the resilience condition of [SCV18; ZJS22a] and the

goodness condition of [DHL19].

As a corollary, it follows that any stability-based algorithm for robust mean estimation

achieves near-subgaussian rates.

Proposition 3.1.5. Let T be an ϵ-corrupted set of n samples from a distribution in Rd with mean

µ and covariance Σ. Let ϵ′ = Θ(log(1/τ)/n + ϵ) ≤ c be given, for a constant c > 0. Then any

stability-based algorithm on input T and ϵ′, efficiently computes µ̂ such that with probability at least

1− τ , we have ∥µ̂− µ∥2 = O(
√

(tr (Σ) log r(Σ))/n+
√
∥Σ∥opϵ+

√
∥Σ∥op log(1/τ)/n).

We note that the above error rate is minimax optimal in both ϵ and τ , and the restriction

of log(1/τ)/n = O(1) is information-theoretically required [DLLO16]. In particular, the

term
√

log(1/τ)/n is additive as opposed to multiplicative. The first term is near-optimal, up

to the
√

log r(Σ) factor, which is at most
√

log d (recall that r(Σ) denotes the stable rank of Σ,

i.e., r(Σ) = tr(Σ)/∥Σ∥op). Prior to this work, the existence of a polynomial-time algorithm

achieving the above near-subgaussian rate in the strong contamination model was open.

Proposition 3.1.5 shows that any stability-based algorithm suffices for this purpose, and in

particular it implies that the iterative filtering algorithm [DK19] achieves this rate as is.

Given the above, a natural question is whether stability-based algorithms achieve

subgaussian rates exactly, i.e., whether they match the optimal bound (3.3) attained by

the computationally inefficient estimator of [LM21b]. While the answer to this question

remains open, we show that after a simple pre-processing of the data, stability-based

estimators are indeed subgaussian.

The pre-processing step follows the median-of-means principle [NY83; JVV86; AMS99].

Given a multiset of n points x1, . . . , xn in Rd and k ∈ [n], we proceed as follows:

1. First randomly bucket the data into k disjoint buckets of equal size (if k does not divide

n, remove some samples) and compute their empirical means z1, . . . , zk.
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2. Output an (appropriately defined) multivariate median of z1, . . . , zk.

Notably, for the case of ϵ = 0, all known efficient mean estimators with subgaussian rates

use the median-of-means framework [Hop20; DL22b; CFB19; LLVZ20].

To obtain the desired computationally efficient robust mean estimators with subgaussian

rates, we proceed as follows:

1. Given a multiset S of n ϵ-corrupted samples, randomly group the data into k = ⌊ϵ′n⌋

disjoint buckets, where ϵ′ = Θ(log(1/τ)/n+ ϵ), and let z1, . . . , zk be the corresponding

empirical means of the buckets.

2. Run any stability-based robust mean estimator on input {z1, . . . , zk}.

Specifically, we show:

Proposition 3.1.6. (informal) Consider the same setting as in Proposition 3.1.5. Let k = ⌊ϵ′n⌋

and z1, . . . , zk be the points after median-of-means pre-processing on the corrupted set T . Then

any stability-based algorithm, on input {z1, . . . , zk}, computes µ̂ such that with probability at least

1− τ , it holds ∥µ̂− µ∥2 = O(
√

tr(Σ)/n+
√
∥Σ∥opϵ+

√
∥Σ∥op log(1/τ)/n).

Proposition 3.1.6 yields the first computationally efficient algorithm with subgaussian

rates in the strong contamination model, answering the open question of [LM21b].

To prove Proposition 3.1.6, we establish a connection between the median-of-means

principle and stability. In particular, we show that the key probabilistic lemma from the

median-of-means literature [LM19d; DL22b] also implies stability.

Theorem 3.1.7. (informal) Consider the setting of Theorem 3.1.4 and set k = ⌊ϵ′n⌋. The set

{z1, . . . , zk}, with probability 1− τ , contains a subset of size at least 0.99k which is (0.1, δ)-stable

with respect to µ and k∥Σ∥op/n, where δ = O(
√

r(Σ)/k + 1).

A drawback of the median-of-means framework is that the error dependence on ϵ does

not improve if we impose stronger assumptions on the distribution. Even if the underlying
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distribution is an identity covariance Gaussian, the error rate would scale asO(
√
ϵ), whereas

the stability-based algorithms achieve error ofO(ϵ
√

log(1/ϵ)) [DKKLMS16]. Our next result

establishes tighter error bounds for distributions with identity covariance and bounded

central moments.

We say that a distribution has a bounded k-th central moment σk, if for all unit vectors

v, it holds (E(v⊤(X − µ))k)1/k ≤ σk(E(v⊤(X − µ))2)1/2. For such distributions, we establish

the following stronger stability condition.

Theorem 3.1.8. Let S be a multiset of n i.i.d. samples from a distribution on Rd with mean µ,

covariance Σ = I , and bounded central moment σk, for some k ≥ 4. Let ϵ′ = Θ(log(1/τ)/n+ϵ) ≤ c,

for a sufficiently small constant c > 0. Then, with probability at least 1− τ , there exists a subset

S ′ ⊆ S such that |S ′| ≥ (1 − ϵ′)n and |S ′| is (2ϵ′, δ)-stable with respect to µ and σ2 = 1, where

δ = O(
√
d log d/n+ σkϵ

1− 1
k + σ4

√
log(1/τ)/n).

As a corollary, we obtain the following result for robust mean estimation with high

probability in the strong contamination model:

Proposition 3.1.9. Let T be an ϵ-corrupted set of n points from a distribution on Rd with mean µ,

covariance σ2I , and k-th bounded central moment σk, for some k ≥ 4. Let ϵ′ = Θ(log(1/τ)/n+ϵ) ≤

c be given, for some c > 0. Then any stability-based algorithm, on input T and ϵ′, efficiently

computes µ̂ such that with probability at least 1 − τ , we have ∥µ̂ − µ∥2 = O(σ(
√
d log d/n +

σkϵ
1− 1

k + σ4

√
log(1/τ)/n)).

We note that the above error rate is near-optimal up to the log d factor and the depen-

dence on σ4. Prior to this work, no polynomial-time estimator achieving this rate was

known. Finally, recent computational hardness results [HL19] suggest that the assumption

on the covariance above is inherent to obtain computationally efficient estimators with

error rate better than Ω(
√
ϵ), even in the constant confidence regime.
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3.1.3 Related Work

Since the initials works [DKKLMS16; LRV16], there has been an explosion of research

activity on algorithmic aspects of outlier-robust high dimensional estimation by several

communities. See, e.g., [DK19] for a recent survey on the topic. In the context of outlier-

robust mean estimation, a number of works [DKKLMS17; SCV18; CDG19; DHL19] have

obtained efficient algorithms under various assumptions on the distribution of the inliers.

Notably, efficient high-dimensional outlier-robust mean estimators have been used as

primitives for robustly solving machine learning tasks that can be expressed as stochastic

optimization problems [PSBR20; DKKLSS19]. The above works typically focus on the

constant probability error regime and do not establish subgaussian rates for their estimators.

Two recent works [DL22b; LLVZ20] studied the problem of outlier-robust mean esti-

mation in the additive contamination model (when the adversary is only allowed to add

outliers) and gave computationally efficient algorithms with subgaussian rates. Specifically,

[DL22b] gave an SDP-based algorithm, which is very similar to the algorithm of [CDG19].

The algorithm of [LLVZ20] is a fairly sophisticated iterative spectral algorithm, building

on [CFB19]. In the strong contamination model, non-constructive outlier-robust estimators

with subgaussian rates were established very recently. Specifically, [LM21b] gave a an expo-

nential time estimator achieving the optimal rate. Our Proposition 3.1.6 implies that a very

simple and practical algorithm – pre-processing followed by iterative filtering [DKKLMS17;

DK19] – achieves this guarantee.

In an independent and concurrent work, Hopkins, Li, and Zhang [HLZ20] also studied

the relation between median-of-means and stability for the case of bounded covariance.

3.1.4 Organization

In Section 3.2, we prove Theorem 3.1.4 that establishes the stability of points sampled from

a finite covariance distribution. In Section 3.3, we establish the connection between median-

of-means principle and stability to prove Theorem 3.1.7. Finally, Section 3.4 contains our
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results for distributions with identity covariance and finite central moments.

3.2 Robust Mean Estimation for Finite Covariance

Distributions

Problem Setting Consider a distribution P in Rd with unknown mean µ and unknown

covariance Σ. We first note that it suffices to consider the distributions such that ∥Σ∥op = 1.

Note that for covariance matrices Σ with ∥Σ∥op = 1, we have r(Σ) = tr(Σ). In the remainder

of this section, we will thus establish the (ϵ, δ) stability with respect to µ and σ2 = 1, where

δ = O(
√

tr(Σ) log(r(Σ))/n+
√
ϵ+

√
log(1/τ)/n).

Let S be a multiset of n i.i.d. samples from P . For the ease of exposition, we will assume

that the support of P is bounded, i.e., for each i, ∥xi − µ∥2 = O(
√

tr(Σ)/ϵ) almost surely.

As we show in Section 3.2.3, we can simply consider the points violating this condition as

outliers.

We first relax the conditions for stability in the Definition 3.1.2 in the following

Claim 3.2.1, proved in Appendix A.4.1, at an additional cost of O(
√
ϵ).

Claim 3.2.1. (Stability for bounded covariance) Let R ⊂ Rd be a finite multiset such that ∥µR −

µ∥2 ≤ δ, and ∥ΣR − I∥op ≤ δ2/ϵ for some 0 ≤ ϵ ≤ δ. Then R is (Θ(ϵ), δ′) stable with respect to µ

(and σ2 = 1), where δ′ = O(δ +
√
ϵ).

Given Claim 3.2.1, our goal in proving Theorem 3.1.4 is to show that with probability

1−τ , there exists a set S ′ ⊆ S such that |S ′| ≥ (1−ϵ′)n, ∥µS′−µ∥2 ≤ δ and ∥ΣS−I∥op ≤ δ2/ϵ′,

for some value of δ = O(
√

tr(Σ) log r(Σ)/n+
√
ϵ+

√
log(1/τ)/n) and ϵ′ = Θ(ϵ+ log(1/τ)/n).

We first remark that the original set S of n i.i.d. data points does not satisfy either of

the conditions in Claim 3.2.1. It does not satisfy the first condition because the sample

mean is highly sub-optimal for heavy-tailed data [Cat12]. For the second condition, we

note that the known concentration results for ΣS are not sufficient. For example, consider
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the case of Σ = I in the parameter regime of ϵ, τ, and n such that ϵ = O(log(1/τ)/n) and

n = Ω(d log d/ϵ) so that δ = O(
√
ϵ). ForS to be (ϵ, δ) stable, we require that ∥ΣS−I∥op = O(1)

with probability 1− τ . However, the Matrix-Chernoff bound (see, e.g., [Tro15, Theorem

5.1.1]) only guarantees that with probability at least 1− τ , ∥ΣS − I∥op = Õ(d).

To further elaborate that the set S of n i.i.d. data points does not satisfy either of the

conditions in Claim 3.2.1, we give the following concrete example. The following example

shows that the lack of concentration outlined in the previous graph is not simply an

artifact of analysis but that it is inherent to heavy-tailed distributions, at least in some

parameter regimes. In particular, consider the special case when ϵ and log(1/τ)/n are both

small positive constants and n ≥ d log d, implying that ϵ′ is also a small absolute constant.

Then, the question is whether the set S satisfies the following: with probability at least

1− 2−Ω(n) ≥ 1− e−5d, the set S satisfies that ∥µS − µ∥2 = O(δ) and ∥ΣS − Σ∥op = O(δ2) for

δ, the stability parameter, equal to O(1). The following example will show that this is false:

in fact, the actual value of δ, the stability parameter, will be roughly
√
d times larger than

the desired value (as long as n = O(d2)).

Example 3.2.2 (Empirical covariance matrix does not concentrate fast enough). Let u ∈ Rd be

an arbitrary vector with norm
√
d. Let P be the distribution over Rd of the random vector X defined

as follows: with probability 1/2d each, X takes the values u and−u. With the remaining probability

of 1− 1
d
,X is equal to the origin. Then µ := E[X] = 0 and Σ := E[(X−µ)(X−µ)⊤] = 1

d
uu⊤, and

thus ∥Σ∥op = (1/d)∥u∥2
2 = 1. Observe that the distribution P also satisfies the bounded support

condition.

Let S be the set of n i.i.d. samples from the distribution P . Then, the probability that we observe

m1 ≥ 1 number of u, n−m1 number of origin is

( 1
2d

)m1 (
1− 1

d

)n−m1

≥ d−2m1e−2 n
d ,

where we use that for x ∈ (0, 0.5), 1 − x ≥ e−2x. Plugging in m1 = d
log d , we obtain that the
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expression above is at least e−2d−2 n
d . Let E ′ be this event, which holds with probability at least e−4d

when n ∈ [d, d2]. On the event E ′, the mean of S has norm ∥µS∥2 = m1
n
∥u∥2 =

√
d

log d and the second

moment matrix of S satisfies ∥ΣS∥op = m1
n
∥u∥2

2 = d
log d . Thus, the resulting stability parameter of

the set S on E ′ is of the order of
√
d/ log d, which is roughly

√
d times the desired value of O(1).

The rest of this section is devoted to showing that, with high probability, it is possible

to remove ϵ′n points from S such that both conditions in Claim 3.2.1 are satisfied for the

subset.

3.2.1 Controlling the Variance

As a first step, we show that it is possible to remove an ϵ-fraction of points so that the second

moment matrix concentrates. Since finding a subset is a discrete optimization problem, we

first perform a continuous relaxation: instead of finding a large subset, we find a suitable

distribution on points. Define the following set of distributions:

∆n,ϵ =
{
w ∈ Rn : 0 ≤ wi ≤ 1/((1− ϵ)n);

n∑
i=1

wi = 1
}
.

Note that ∆n,ϵ is the convex hull of all the uniform distributions on S ′ ⊆ S : |S ′| ≥ (1− ϵ)n.

In Appendix A.4.2, we show how to recover a subset S ′ from the w. Although we use the

set ∆n,ϵ for the sole purpose of theoretical analysis, the object ∆n,ϵ has also been useful in

the design of computationally efficient algorithms [DKKLMS16; DK19]. We will now show

that, with high probability, there exists a w ∈ ∆n,ϵ such that Σw has small spectral norm.

Our proof technique has three main ingredients: (i) minimax duality, (ii) truncation,

and (iii) concentration of truncated empirical processes. LetM be the set of all PSD matrices

with trace norm 1, i.e.,M = {M : M ⪰ 0, tr(M) = 1}. Using minimax duality [Sio58] and

the variational characterization of spectral norm, we obtain the following reformulation:

min
w∈∆n,ϵ

∥Σw − I∥op ≤ 1 + min
w∈∆n,ϵ

∥Σw∥op
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= 1 + min
w∈∆n,ϵ

max
M∈M

〈
n∑
i=1

wi(xi − µ)(xi − µ)⊤,M
〉

= 1 + max
M∈M

min
w∈∆n,ϵ

〈
n∑
i=1

wi(xi − µ)(xi − µ)⊤,M
〉
. (3.4)

This dual reformulation plays a fundamental role in our analysis. Lemma 3.2.3 below,

proved in Appendix A.3.2, states that, with high probability, all the terms in the dual

reformulation are bounded.

Lemma 3.2.3. Let x1, . . . , xn be n i.i.d. points from a distribution in Rd with mean µ and covariance

Σ ⪯ I . Let Q = Θ(1/
√
ϵ+ (1/ϵ)

√
tr(Σ)/n). For M ∈M, let SM = {i ∈ [n] : (xi − µ)⊤M(xi −

µ) ≤ Q2}. Let E be the event E = {∀M ∈ M, |SM | ≥ (1 − ϵ)n}. There exists a constant c > 0

such that the event E happens with probability at least 1− exp(−cϵn).

Lemma 3.2.3 draws on the results by Lugosi and Mendelson [LM21b, Proposition 1]

and Depersin and Lecué [DL22b, Proposition 1]. The proof is given in Appendix A.3.

Importantly, given n = Ω(tr(Σ)/ϵ) samples, the threshold Q is O(1/
√
ϵ). Approximating

the empirical process in Eq. (3.4) with a truncated process allows us to use the powerful

inequality for concentration of bounded empirical processes due to Talagrand [Tal96a].

Formally, we show the following lemma:

Lemma 3.2.4. Let x1, . . . , xn be n i.i.d. points from a distribution in Rd with mean µ and covariance

Σ ⪯ I . Further assume that for each i, ∥xi − µ∥2 = O(
√

tr(Σ)/ϵ). There exists c, c′ > 0 such

that for ϵ ∈ (0, c′), with probability 1− 2 exp(−cnϵ), we have that minw∈∆n,ϵ

∥∥∥Σw − I
∥∥∥

op
≤ δ2/ϵ,

where δ = O(
√

(tr(Σ) log r(Σ))/n+
√
ϵ).

Proof. Throughout the proof, assume that the event E from Lemma 3.2.3 holds. Without

loss of generality, also assume that µ = 0. Let f : R+ → R+ be the following function:

f(x) :=


x, if x ≤ Q2

Q2, otherwise.
(3.5)
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It follows directly that f is 1-Lipschitz and 0 ≤ f(x) ≤ x. Using minimax duality,

min
w∈∆n,ϵ

∥Σw − I∥op ≤ 1 + max
M∈M

min
w∈∆n,ϵ

∑
wix

⊤
i Mxi ≤ 1 + max

M∈M

n∑
i=1

f(x⊤
i Mxi)/((1− ϵ)n),

where the second inequality uses that on event E , for every M ∈M, the set SM = {[i] ∈ n :

x⊤
i Mxi ≤ Q2} has cardinality larger than (1− ϵ)n, and thus, the uniform distribution on

the set SM belongs to ∆n,ϵ. Define the following empirical processes R and R′:

R = sup
M∈M

n∑
i=1

f(x⊤
i Mxi), R′ = sup

M∈M

n∑
i=1

f(x⊤
i Mxi)− E f(x⊤

i Mxi).

As 0 ≤ f(x) ≤ x, we have that 0 ≤ E f(x⊤
i Mx) ≤ Ex⊤

i Mx ≤ 1, which gives that |R−R′| ≤ n.

Overall, we obtain the following bound:

min
w∈∆n,ϵ

∥Σw − I∥op ≤ 1 +R/((1− ϵ)n) ≤ 1 + 2(R′ + nϵ)/n ≤ (2R′)/n+ 3.

Note that 3 ≤ δ2/ϵ when δ ≥
√

3ϵ. We now apply Talagrand’s concentration inequality on

R′, as each term is bounded by Q2. We defer the details to Lemma 3.2.5 below, showing

that R′/n = O(δ2/ϵ) with probability 1− exp(−cnϵ). By taking a union bound, we get that

both R′/n = O(δ2/ϵ) and E hold with high probability.

We provide the details of concentration of the empirical process, related to the variance

in Lemma 3.2.4, which was omitted above.

Lemma 3.2.5. Consider the setting in the proof of Lemma 3.2.4. Then, with probability 1−exp(−nϵ),

R′/n ≤ δ2/ϵ, where δ = O(
√

(tr(Σ) log r(Σ))/n+
√
ϵ).

Proof. We will apply Talagrand’s concentration inequality for the bounded empirical pro-

cess, see Theorem A.2.1. We first calculate the quantity σ2, the wimpy variance, required in
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Theorem A.2.1 below

σ2 = sup
M∈M

n∑
i=1

Var(f(x⊤
i Mxi)) ≤ sup

M∈M

n∑
i=1

E(f(x⊤
i Mxi))2 ≤ sup

M∈M

n∑
i=1

Q2 E f(x⊤
i Mxi)

≤ nQ2,

where we use that f(x) ≤ Q2, f(x) ≤ x, and Ex⊤Mx ≤ 1. We now focus our attention to

ER′. Let ξi be n i.i.d. Rademacher random variables, independent of x1, . . . , xn. We use

contraction and symmetrization properties for Rademacher averages [LT91; BLM13] to get

ER′ = E sup
M∈M

n∑
i=1

f(x⊤
i Mxi)− E f(x⊤

i Mxi) ≤ 2E sup
M∈M

n∑
i=1

ξif(x⊤
i Mxi)

≤ 2E sup
M∈M

n∑
i=1

ξix
⊤
i Mxi = 2E

∥∥∥∥∥
n∑
i=1

ξixix
⊤
i

∥∥∥∥∥
op

(3.6)

= O

√n tr(Σ) log r(Σ)
ϵ

+ tr(Σ) log r(Σ)
ϵ

 ,
where the last step uses the refined version of matrix-Bernstein inequality [Min17], stated

in Theorem A.2.2, with L = O(tr(Σ)/ϵ).

Note that the empirical process R′ is bounded by Q2. By applying Talagrand’s concen-

tration inequality for bounded empirical processes (Theorem A.2.1), with probability at

least 1− exp(−nϵ), we have

R′ = O
(
ER′ +

√
nQ2
√
nϵ+Q2nϵ

)

=⇒ R′

n
= O

tr(Σ) log r(Σ)
nϵ

+
√

tr(Σ) log r(Σ)
nϵ

+Q
√
ϵ+ ϵQ2


= 1
ϵ
O

tr(Σ) log r(Σ)
n

+
√

tr(Σ) log r(Σ)
n

√
ϵ+Qϵ

√
ϵ+ (ϵQ)2


= 1
ϵ

O
√tr(Σ) log r(Σ)

n
+
√
ϵ+ ϵQ

2

= δ2

ϵ
,
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where δ = O(
√

tr(Σ) log r(Σ)/n+
√
ϵ+ ϵQ) = O(

√
tr(Σ) log r(Σ)/n+

√
ϵ), where we use the

fact that ϵQ = O(
√
ϵ+

√
tr(Σ)/n).

3.2.2 Controlling the Mean

Suppose u∗ ∈ ∆n,ϵ achieves the minimum in Lemma 3.2.4, i.e., ∥Σu∗ − I∥op ≤ δ2/ϵ. It

is not necessary that ∥µu∗ − µ∥2 ≤ δ. Recall that our aim is to find a w ∈ ∆n,ϵ that

satisfies the conditions: (i) ∥µw − µ∥2 ≤ δ, and (ii) ∥Σw − I∥op ≤ δ2/ϵ. Given u∗, we will

remove additional O(ϵ)-fraction of probability mass from u∗ to obtain a w ∈ ∆n such that

∥µw − µ∥2 ≤ δ. For u ∈ ∆n, consider the following set of distributions:

∆n,ϵ,u :=
{
w :

n∑
i=1

wi = 1, wi ≤ ui/(1− ϵ)
}
.

For any w ∈ ∆n,ϵ,u∗ , we directly obtain that Σw ⪯ Σu∗/(1 − ϵ). Our main result in this

subsection is that, with high probability, there exists a w∗ ∈ ∆n,4ϵ,u∗ such that ∥µw∗ − µ∥2 ≤

δ. We first prove an intermediate result, Lemma 3.2.6 below, that uses the truncation

(Lemma 3.2.3) and simplifies the constraint ∆n,4ϵ,u∗ . Let g : R → R be the following

thresholding function:

g(x) =



x, if x ∈ [−Q,Q],

Q, if x > Q,

−Q, if x < −Q.

(3.7)

Lemma 3.2.6. Let w ∈ ∆n,ϵ for some ϵ ≤ 1/2. Suppose that the following event E holds:

E :=
{

sup
M∈M

|{i : (xi − µ)⊤M(xi − µ) ≥ Q2}| ≤ ϵn

}
.

For a unit vector v, let Sv ∈ [n] be the following multiset: Sv = {xi : xi ∈ S, |x⊤
i v| ≤ Q}. For a
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unit vector v, let w(v) be the following distribution:

w̃
(v)
i := min

(
wi,

I{xi ∈ Sv}
|Sv|

)
, w(v) := w̃(v)

∥w̃(v)∥1
. (3.8)

Let g(·) be defined as in Eq. (3.7). Then, for all unit vectors v, w(v) ∈ ∆n,4ϵ,w. Moreover, the

following inequalities hold:

∣∣∣∣∣
n∑
i=1

w
(v)
i v⊤(xi − µ)

∣∣∣∣∣ ≤ 4ϵQ+
∣∣∣∣∣
∑
i∈Sv

v⊤(xi − µ)
|Sv|

∣∣∣∣∣ ≤ 5ϵQ+
∣∣∣∣∣
∑
i∈S g(v⊤(xi − µ))

(1− ϵ)n

∣∣∣∣∣ .

Proof. On the event E , we have that |Sv| ≥ (1− ϵ)n for all v ∈ Sd−1. In order to show that

w(v) ∈ ∆n,4ϵ,w, it suffices to show that for all v, w(v)
i ≤ wi/(1−4ϵ). By the definition of w(v)

i , it

is sufficient to show that ∥w̃(v)∥1 ≥ 1− 4ϵ. Let uS and uSv denote the uniform distributions

on the multi-sets S and Sv respectively. Let dTV(p, q) denote the total variation distance

between the distributions p and q. First note that

dTV(w, uSv) ≤ dTV(w, uS) + dTV(uS, uSv) ≤ ϵ

1− ϵ + ϵ

1− ϵ ≤
2ϵ

1− ϵ ≤ 4ϵ. (3.9)

We now use the alternative characterization of total variation distance (see, e.g., [Tsy09,

Lemma 2.1]):

dTV(p, q) = (1/2)
n∑
i=1
|pi − qi| = 1−

n∑
i=1

min(pi, qi).

Observe that w̃(v) = min(w, uSv); combining this observation with Eq. (3.9), we get the

following lower bound on ∥w̃(v)∥1:

∥w̃(v)∥1 = 1− dTV(w, uSv) ≥ 1− 4ϵ.

This concludes that w(v) ∈ ∆n,4ϵ,w. We now focus our attention on the second result in the
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theorem statement. The first inequality follows from the fact that both distributions w(v)

and uSv have total variation distance less than 4ϵ, and supported on [−Q,Q]. The second

inequality follows from the fact that (i) |Sv| ≥ (1 − ϵ)n, (ii) g(·) is identity on Sv, and

bounded byQ outside [−Q,Q], and (iii) at most ϵ-fraction of the points are outside Sv. This

completes the proof.

Using Lemma 3.2.6, we prove the following:

Lemma 3.2.7. Let x1, . . . , xn be n i.i.d. points from a distribution in Rd with mean µ and covariance

Σ ⪯ I . Let 0 < ϵ < 1/2 and u ∈ ∆n,ϵ. Then, for a constant c > 0, the following holds with

probability 1− exp(−cnϵ): minw∈∆n,4ϵ,u ∥µw − µ∥2 ≤ δ, where δ = O
(√

ϵ+
√

tr(Σ)/n
)
.

At a high-level, the proof of Lemma 3.2.7 proceeds as follows: We use duality and the

variational characterization of the ℓ2 norm to reduce our problem to an empirical process

over projections. We then use Lemma 3.2.6 to simplify the domain constraint ∆n,4ϵ,u∗ and

obtain a bounded empirical process, with an overhead of O(ϵQ) = O(δ).

Proof. (Proof of Lemma 3.2.7) Let ∆ be the set ∆n,4ϵ,u and assume that µ = 0 without

loss of generality. On the event E (defined in Lemma 3.2.3), using minimax duality and

Claim 3.2.6, we get

min
w∈∆

max
v∈Sd−1

n∑
i=1

wix
⊤
i v = max

v∈Sd−1
min
w∈∆

n∑
i=1

wix
⊤
i v ≤ 5ϵQ+ max

v∈Sd−1
| ∑
i∈[n]

2g(v⊤xi)/n|. (3.10)

We define the following empirical processes:

N = sup
v∈Sd−1

n∑
i=1

g(v⊤xi), N ′ = sup
v∈Sd−1

n∑
i=1

g(v⊤xi)− E[g(v⊤xi)].

As g(·) is an odd function and Sd−1 is an even set, we get that both N and N ′ are non-

negative. For any v ∈ Sd−1, note that v⊤x has variance at most 1 and P(|v⊤x| ≥ Q) = O(ϵ).

We can thus bound E g(v⊤x) as O(
√
ϵ) = O(ϵQ) (see Proposition A.2.3). This gives us that
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|N −N ′| = O(nϵQ). Using the variational form of the ℓ2 norm with Eq. (3.10) leads to the

following inequality in terms of N ′:

min
w∈∆
∥µw∥2 = max

v∈Sd−1
min
w∈∆

n∑
i=1

wix
⊤
i v ≤ 5ϵQ+N/((1− ϵ)n) = O(ϵQ) + (2N ′)/n .

Note that the term ϵQ is small as ϵQ = O(δ). As N ′ is a bounded empirical process, with

the bound Q, we can apply Talagrand’s concentration inequality. We defer the details

to Lemma 3.2.8 below, showing that N ′/n = O(
√

tr(Σ)/n +
√
ϵ) = O(δ). Taking a union

bound over concentration of N ′ and the event E , we get that the desired result holds with

high probability.

Lemma 3.2.8. Consider the setting in Lemma 3.2.7. Then, with probability, 1 − exp(−nϵ),

R′/n = O(
√

tr(Σ)/n+
√
ϵ).

Proof. We will use Talagrand’s concentration inequality for bounded empirical processes,

stated in Theorem A.2.1. We first calculate the wimpy variance required for Theorem A.2.1,

σ2 = sup
v∈Sd−1

n∑
i=1

Var(g(x⊤
i v)) ≤ sup

v∈Sd−1

n∑
i=1

E g(v⊤xi)2 ≤ sup
v∈Sd−1

nE(v⊤xi)2 ≤ n. (3.11)

We also bound the quantity ER′ using symmetrization and contraction [LT91; BLM13]

properties of Rademacher averages. We have that

ER′ = E sup
v∈Sd−1

n∑
i=1

g(v⊤xi)− E g(v⊤xi) ≤ 2E sup
v∈Sd−1

n∑
i=1

ϵig(v⊤xi)

≤ 2E sup
v∈Sd−1

n∑
i=1

ϵiv
⊤xi = 2E

∥∥∥∥∥
n∑
i=1

ϵixi

∥∥∥∥∥
2
≤ 2

√
n tr(Σ),

where the last step uses that ϵixi has covariance Σ. By applying Talagrand’s concentration

inequality for bounded empirical processes (Theorem A.2.1), we get that with probability



45

at least 1− exp(−nϵ),

R′/n = O(ER′/n+
√
nϵ+Qϵ) = O(

√
tr(Σ)/n+

√
ϵ).

3.2.3 Proof of Theorem 3.1.4

We first state a result stating that deterministic rounding of weights suffice, proved in

Appendix A.4.2.

Lemma 3.2.9. For ϵ ≤ 1
3 , let w ∈ ∆n,ϵ be such that for ϵ ≤ δ, we have (i) ∥µw − µ∥2 ≤ δ and (ii)

∥Σw − I∥op ≤ δ2/ϵ. Then there exists a subset S1 ⊆ S such that

1. |S1| ≥ (1− 2ϵ)|S|.

2. S1 is (ϵ′, δ′) stable with respect to µ and σ2 = 1, where δ′ = O(δ +
√
ϵ+
√
ϵ′).

In the following, we combine the results in the previous lemmas to obtain the stability

of a subset with high probability. We first give a proof sketch.

Proof Sketch of Theorem 3.1.4 By Lemma 3.2.4, we get that there exists a u∗ ∈ ∆n,ϵ such

that ∥Σu∗ − I∥op ≤ δ2/ϵ. Applying Lemma 3.2.7 with this u∗, we get that there exists a

w∗ ∈ ∆n,4ϵ,u∗ such that ∥µu∗ − µ∥2 ≤ δ. v⊤Σw∗v ≤ (1/(1− 4ϵ))v⊤Σu∗v = O(δ2/ϵ), for small

enough ϵ. To obtain a discrete set, we show that rounding w∗ to a discrete set only leads to

slightly worse constants.

We are now ready to prove our main theorem, which we restate for completeness.

Theorem 3.2.10 (Theorem 3.1.4). Let x1, . . . , xn be n i.i.d. points in Rd from a distribution with

mean µ and covariance Σ. Let ϵ′ = O(log(1/τ)/n+ ϵ) ≤ c for a sufficiently small positive constant

c. Then, with probability at least 1− τ , there exists a subset S ′ ⊆ S s.t. |S|′ ≥ (1− ϵ′)n and |S ′| is

(Cϵ′, δ)-stable with respect to µ and ∥Σ∥op with δ = O(
√

(r(Σ) log r(Σ))/n+
√
Cϵ′).
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Proof. Note that we can assume without loss of generality that µ = 0 and ∥Σ∥op = 1, upper

bound δ by δ = O(
√

tr(Σ) log(r(Σ))/n+
√
Cϵ′); otherwise, apply the following arguments

to the random variable (xi − µ)/
√
∥Σ∥op (the result holds trivially if ∥Σ∥op = 0).

We first prove a simpler version of the theorem for distributions with bounded sup-

port. The reason we make this assumption is to apply the matrix concentration results in

Theorem A.2.2.

Base case: Bounded support Assume that ∥xi − µ∥2 = O(
√

tr(Σ)/ϵ′) almost surely.

Note that the bounded support assumption allows us to apply Lemma 3.2.4. Set ϵ̃ = ϵ′/c′

for a large constant c′ to be determined later. Let u∗ ∈ ∆n,ϵ̃ achieve the minimum in

Lemma 3.2.4. For this u∗, let w∗ ∈ ∆n,4ϵ̃,u∗ be the distribution achieving the minimum in

Lemma 3.2.7. Note that the probability of error is at most 2 exp(−Ω(nϵ̃)). We can choose ϵ′

large enough, ϵ̃ = ϵ′/c = Ω(log(1/τ)/n), so that the probability of failure is at most 1− τ .

Let δ = C
√

tr(Σ) log r(Σ)/n + C
√
ϵ̃ for a large enough constant C to be determined later.

We first look at the variance of w∗ using the guarantee of u∗ in Lemma 3.2.4:

n∑
i=1

w∗
i xix

⊤
i ⪯

n∑
i=1

1
1− ϵ′u

∗
ixix

⊤
i ⪯ 2

n∑
i=1

u∗
ixix

⊤
i ≤

1
ϵ̃
(C
√

tr(Σ) log r(Σ)/n+ C
√
ϵ̃)2. (3.12)

By choosing C to be a large enough constant, we get that ∥∑n
i=1 w

∗xix
⊤
i − I∥op ≤ δ2/ϵ̃. Now,

we look at the mean. Lemma 3.2.7 states that

∥∥∥∥∥
n∑
i=1

w∗xi

∥∥∥∥∥
2

= O

√ϵ̃+ C

√
tr(Σ)
n

 ≤ δ. (3.13)

Since w∗ ∈ ∆n,4ϵ̃,u∗ and u∗ ∈ ∆n,ϵ̃, we have that w∗ ∈ ∆n,5ϵ̃. Therefore, we have a w∗ ∈ ∆n,5ϵ̃

that satisfies the requirements of Lemma A.4.2. Applying Lemma A.4.2, we get the desired

statement for a set S ′ ⊆ S. Finally, we can choose the constant c′ in the definition of ϵ̃ large

enough, so that the set has cardinality |S ′| ≥ (1 − ϵ′)n. This completes the proof for the

case of bounded support.
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General case We first do a simple truncation. For a large enough constant C ′, let E be the

following event:

E =

X : ∥X − µ∥2 ≤ C ′

√
tr(Σ)
ϵ′

 . (3.14)

Let Q be the distribution of X conditioned on E. Note that P can be written as a convex

combination of two distributions: Q and some distribution R,

P = (1− P(E))Q+ P(Ec)R. (3.15)

Let Z ∼ Q. By Chebyshev’s inequality, we get that P(Ec) ≤ ϵ′/C ′2. Using arguments

similar to Lemma A.2.5, we get that ∥EZ − µ∥2 = O(
√
ϵ′) and Cov(Z) ⪯ (1/(1− ϵ))I . The

distribution Q satisfies the assumptions of the base case analyzed above after scaling by

(1/(1− ϵ)) = Θ(1). Let SE be the set {i : xi ∈ E} and let E1 be the following event:

E1 = {|SE| ≥ (1− ϵ′/2)n}. (3.16)

A Chernoff bound implies that given n samples from P , for a c > 0, with probability at

least 1− exp(−cnϵ′/C ′2) ≥ 1− τ/2 (by choosing C ′ large enough and ϵ′ = Ω(log(1/τ)/n)),

E1 holds.

For a fixed m ≥ (1 − ϵ′/2)n, let z1, . . . , zm be m i.i.d. draws from the distribution Q.

Applying the theorem statement of the base case for each such m, we get that, except with

probability τ/2, there exists an S ′ ⊆ [m] ⊆ [n] with |S ′| ≥ (1 − ϵ′/2)m ≥ (1 − ϵ′/2)2n ≥

(1− ϵ′)n, such that |S ′| is (Cϵ′, O(
√
d log d/n+

√
Cϵ′))-stable.

As mentioned above (event E1), m ≥ (1− ϵ′/2)n with probability at least 1− τ/2. We

can now marginalize over m to say that with probability at least 1− τ , there exists a (Cϵ′, δ)

stable set S ′ of cardinality at least (1− ϵ′)n.

However, we are still not done. We have the guarantee that S ′ is stable with respect to
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EZ. Using the triangle inequality and Cauchy-Schwarz, we get that the set is also (Cϵ′, δ′)

stable with respect to µ as well, where δ′ = δ + ∥µ− EZ∥2 = δ +O(
√
ϵ′). This completes

the proof.

3.3 Robust Mean Estimation using Median-of-Means

Principle

In this section, we again consider distributions with finite covariance matrix Σ. We now

turn our attention to the proof of Theorem 3.1.7 that removes the additional logarithmic

factor
√

log(r(Σ)). In Section 3.3.1, we show a result stating that pre-processing on i.i.d.

points yields a set that contains a large stable subset (after rescaling). Then, in Section 3.3.2,

we use a coupling argument to show a similar result in the strong contamination model.

We recall the median of means principle. Let k ∈ [n].

1. First randomly bucket the data into k disjoint buckets of equal size (if k does not

divide n, remove some samples) and compute their empirical means z1, . . . , zk.

2. Output (appropriately defined) multivariate median of z1, . . . , zk.

3.3.1 Stability of Uncorrupted Data

We first recall the result (with different constants) from Depersin and Lecué [DL22b] in a

slightly different notation.

Theorem 3.3.1 ([DL22b, Proposition 1]). Let z1, . . . , zk be k points in Rd obtained by the

median-of-means preprocessing on n i.i.d. data x1, . . . , xn from a distribution with mean µ and

covariance Σ. LetM be the set of PSD matrices with trace at most 1. Then, there exists a con-

stant c > 0, such that with probability at least 1 − exp(−ck), we have that for all M ∈ M,∣∣∣{i ∈ [k] : (zi − µ)⊤M(zi − µ) > (k∥Σ∥/n)δ2}
∣∣∣ ≤ k

100 , where δ = O(
√

r(Σ)/k + 1).
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We now state our main result in this section, proved using minimax duality, that

Theorem 3.3.1 implies stability. We first consider the case of i.i.d. data points, as it conveys

the underlying idea clearly.

Theorem 3.3.2. Let x1, . . . , xn be n i.i.d. random variables from a distribution with mean µ and

covariance Σ ⪯ I . For k ∈ [n], let z1, . . . , zk be the variables obtained by median-of-means

preprocessing. Then, with probability 1− exp(−ck), where c is a positive universal constant, there

exists a set S1 ⊆ [k] and |S1| ≥ 0.95k such that S1 is (0.1, δ)-stable with respect to µ and k∥Σ∥/n,

where δ = O(
√

r(Σ)/k + 1).

Proof. For brevity, let σ =
√
k∥Σ∥op/n. Suppose that the conclusion in Theorem 3.3.1 holds

with δ = O(
√

r(Σ)/k + 1) such that δ ≥ 1, i.e., for every M ∈ M, for at least 0.99k points

(zi − µ)⊤M(zi − µ) ≤ σ2δ2. Using minimax duality, we get that

min
w∈∆k,0.01

∥∥∥∥∥
k∑
i=1

wi(zi − µ)(zi − µ)⊤
∥∥∥∥∥

op
= min

w∈∆k,0.01
max
M∈M

〈
M,

k∑
i=1

wi(zi − µ)(zi − µ)⊤
〉

= max
M∈M

min
w∈∆k,0.01

〈
M,

k∑
i=1

wi(zi − µ)(zi − µ)⊤
〉

≤ σ2δ2,

where the last step uses the conclusion of Theorem 3.3.1. As δ2 ≥ 1, we also get that

∥∑k
i=1 w

∗
i (zi − µ)(zi − µ)⊤ − σ2I∥ ≤ σ2δ2. Let w∗ be the distribution that achieves the

minimum in the above statement. We can also upper bound the first moment of w∗ using

the bound on the second moment of w∗ as follows:

k∑
i=1

w∗
i v

⊤(zi − µ) ≤
√

k∑
i=1

w∗
i (v⊤(zi − µ))2 ≤

√∥∥∥∥∑
i=1

w∗
i (zi − µ)(zi − µ)⊤

∥∥∥∥
op
≤
√
σ2δ2 = σδ.

Given this w∗ ∈ ∆k,0.01, we will now obtain a subset of {z1, . . . , zk} that satisfies the stability

condition. In particular, Lemma A.4.2 shows that we can deterministically round w∗ such

that there exists a large stable subset of {z1, . . . , zk}which is (0.1, δ) stable with respect to µ



50

and σ2.

3.3.2 Stability Under Strong Contamination Model

We now prove Theorem 3.1.7, i.e., stability of a subset after corruption, using Theorem 3.3.2.

The following result shares the same principle as [DHL19, Lemma B.1]: we add a coupling

argument because the pre-processing step (random bucketing) introduces an additional

source of randomness.

Theorem 3.3.3. (Formal statement of Theorem 3.1.7) Let T be an ϵ-corrupted version of the set

S, where S is a set of n i.i.d. points from a distribution P with mean µ and covariance Σ. Set

ϵ′ = Θ(ϵ+log(1/τ)/n) and set k = ⌊ϵ′n⌋. Let Tk be the set of k points obtained by median-of-means

preprocessing on the set T . Then, with probability 1 − τ , Tk is 0.01-corruption of a set Sk such

that there exists a S ′
k ⊆ Sk, |S ′

k| ≥ 0.95k and S ′
k is (0.1, δ) stable with respect to µ and k∥Σ∥op/n,

where δ = O(
√

r(Σ)/k + 1).

Proof. For simplicity, assume k divides n and let m = n/k.

Let S = {x1, . . . , xn} be the multiset of n i.i.d. points in Rd from P . We can write T as

T = {x′
1, . . . , x

′
n} such that |{i : x′

i ̸= xi}| ≤ ϵn.

As the algorithm only gets a multiset, we first order them arbitrarily. Let r′
1, . . . , r

′
n be any

arbitrary labelling of points and let σ1(·) be the permutation such that r′
i = x′

σ1(i). We now

split the points randomly into buckets by randomly shuffling them. Let σ(·) be a uniformly

random permutation of [n] independent of T (and S). Define w′
i = r′

σ(i) = x′
σ1(σ(i)). For

i ∈ [k], define the bucket B′
i to be the multiset B′

i := {w′
(i−1)m+1, . . . , w

′
im}. For i ∈ [k], define

z′
i to be the mean of the set B′

i, i.e., zi = µB′
i
. That is, the input to the stable algorithm would

be the multiset Tk, where Tk = {z′
1, . . . , z

′
k}.

We now couple the corrupted points with the original points. For σ and σ1, define their

composition σ′ as σ′(i) := σ1(σ(i)). Define ri := xσ1(i) and wi := rσ(i) = xσ′(i). Importantly,

Proposition 3.3.4 below states that wi’s are i.i.d. from P . The analogous bucket for uncor-
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rupted samples is Bi := {w(i−1)m+1, . . . , wim}. For i ∈ [k], define zi := µBi
and define Sk to

be {z1, . . . , zk}. Therefore, z1, . . . , zk are obtained from the median-of-means processing

of i.i.d. data w1, . . . , wn, and thus Theorem 3.3.2 holds5. That is, there exists S ′
k ⊆ Sk that

satisfies the desired properties.

It remains to show that Tk is a corruption of Sk. It is easy to see that |Tk ∩ Sk| ≥

k − ϵn ≥ 0.99k, by choosing ϵ′ large enough. That is, for any σ1 and σ, Tk is at most

(0.01)-contamination of the set Sk.

Proposition 3.3.4. Let x1, . . . , xn be n i.i.d. points from a distributionP and σ1(·) be a permutation,

potentially depending on x1, . . . , xn. Let σ(·) be a random permutation independent of x1, . . . , xn

and σ1(·). Define the composition permutation be σ′(i) := σ1(σ(i)). Then xσ′(1), . . . , xσ′(n) are also

i.i.d. from the distribution P .

Proof. First observe that σ′(·) is a uniform random permutation independent of x1, . . . , xn.

The result follows from the following fact:

Fact 3.3.5. Let x1, . . . , xn be n i.i.d. points from a distribution P . Let σ(·) be a random permutation

independent of x1, . . . , xn, then xσ(1), . . . , xσ(n) are also i.i.d. from the distribution P .

3.4 Robust Mean Estimation Under Finite Central Moments

In this section, we consider distributions with identity covariance and bounded central

moments. Our main result in this section is the proof of Theorem 3.1.8, which obtains

a tighter dependence on ϵ. Our proof strategy closely follows the proof structure of the

bounded covariance case. We suggest the reader to read Section 3.2 before reading this

section. This section has a similar organization to Section 3.2. We start with a simplified
5If (x1, . . . , xn) are i.i.d., then choosing the buckets Bi = {x(i−1)m, . . . , xim} for i ∈ [k] preserves inde-

pendence. In particular, any partition of k sets of equal cardinality that does not depend on the values of
(x1, . . . , xn) suffices. Therefore, Theorem 3.3.1 and Theorem 3.3.2 hold for this bucketing strategy too.
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stability condition in Lemma 3.4.2. Sections 3.4.1 and 3.4.2 contain the arguments for

controlling the second moment matrix from above and below respectively. Section 3.4.3

contains the results regarding the concentration results for controlling the sample mean.

Finally, we combine the results of the previous sections in Section 3.4.4 to complete the

proof of Theorem 3.1.8.

In the bounded covariance setting, we considered δ such that δ = Ω(
√
ϵ). As such, we

only needed an upper bound on second moment matrix, ΣS′ , for a set S ′ ⊆ S (For δ ≥
√
ϵ,

the lower bound in the second condition of stability is trivial). For δ = o(
√
ϵ), we need

a sharp lower bound on the minimum eigenvalue of ΣS1 for all large subsets S1 of a set S ′.

Such a result is not possible in general, unless we impose both: (i) identity covariance and

(ii) tighter control on tails of X .

We will prove the existence of a stable set with high probability using the following

claim. This is analogous to Claim 3.2.1 in the bounded covariance setting. In particular, we

also need a lower bound on the minimum eigenvalue of ΣS′ for all large subsets S ′.

Claim 3.4.1. Let 0 ≤ ϵ ≤ δ and ϵ ≤ 0.5. A set S is (ϵ, O(δ)) stable with respect to µ and σ2 = 1,

if it satisfies the following for all unit vectors v.

1. ∥µS − µ∥2 ≤ δ.

2. v⊤ΣSv ≤ 1 + δ2/ϵ.

3. For all subsets S ′ ⊆ S : |S ′| ≥ (1− ϵ)|S|, v⊤ΣS′v ≥ (1− δ2/ϵ).

The proof of Claim 3.4.1 is provided in Appendix A.5.1.

3.4.1 Upper Bound on the Second Moment Matrix

For simplicity, we will state our probabilistic results directly in terms of d instead of tr(Σ)

and r(Σ). The proof techniques of Section 3.2 can directly be translated to obtain results in
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terms of Σ. We follow the same strategy as in Section 3.2.1. We first refine the bound on

the truncation threshold in the following result, proved in Appendix A.3.2.

Lemma 3.4.2. Consider the setting in Theorem 3.1.8. Let Qk = Θ(σkϵ−1/k + (1/ϵ)
√

tr(Σ)/n).

For each M ∈ M, let SM be the set {i : (xi − µ)⊤M(xi − µ) ≥ Q2
k}. Let E be the event

E = {supM∈M |SM | ≤ ϵn}. Then for a c > 0, with probability at least 1 − exp(−cϵn), event E

holds.

We first find a subset such that its covariance matrix is bounded. For technical reasons,

we do not assume that the covariance is exactly identity and allow some slack. The argument

is similar to Lemma 3.2.4 for the bounded covariance. We also impose some additional

constraints to simplify the expression, as those regimes would not hold anyway in the

proof.

Lemma 3.4.3. Let x1, . . . , xn be n i.i.d. points in Rd from a distribution with mean µ, covariance

Σ, and for a k ≥ 4, the k-th central moment is bounded by σk. Further assume that for ϵ < 0.5,

covariance matrix Σ satisfies that (1− 2σ2
kϵ

1− 2
k ) ⪯ Σ ⪯ I . Further assume the following conditions

hold:

1. log(1/τ)/n = O(ϵ).

2. ∥xi − µ∥2 = O(σk
√
dϵ−1/k) almost surely.

3. σkϵ
1
2 − 1

k = O(1).

Then, for a c > 0, with probability 1 − τ − exp(−cnϵ): minw∈∆n,ϵ

∥∥∥Σw

∥∥∥
op
≤ 1 + δ2/ϵ, where

δ = O(
√

(d log d)/n+ σkϵ
1− 1

k + σ4

√
log(1/τ)/n).

Proof. We will assume without loss of generality that µ = 0. We will assume that the event

E in Lemma 3.4.2 holds as it only incurs an additional probability of error of exp(−cnϵ).

We use the variational characterization of spectral norm and minimax duality to write the
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following:

min
w∈∆n,ϵ

∥∥∥∥∥∑
i

wixix
⊤
i

∥∥∥∥∥ = min
w∈∆n,ϵ

max
M∈M

∑
wi⟨xix⊤

i ,M⟩

= max
M∈M

min
w∈∆n,ϵ

∑
wix

⊤
i Mxi

≤ max
M∈M

n∑
i=1

1
(1− ϵ)n(x⊤

i Mxi) I
x⊤

i Mxi≤Q2
k

,

where the third inequality uses Lemma 3.4.2, where it chooses the uniform distribution on

the set SM = {xi : x⊤
i Mxi ≤ Q2

k}. Let f : R+ → R+ be the following function:

f(x) :=


x, if x ≤ Q2

k

Q2
k, otherwise.

Define the following random variables R and R′:

R = sup
M∈M

n∑
i=1

f(x⊤
i Mxi), R′ = sup

M∈M

n∑
i=1

f(x⊤
i Mxi)− E f(x⊤

i Mxi).

By Lemma A.2.4, we get that |E f(x⊤
i Mx)− 1| ≤ 2σ2

kϵ
1− 2

k , which gives that

|R− n−R′| ≤ 2nσ2
kϵ

1− 2
k .

We therefore get that

min
w∈∆n,ϵ

∥
∑
i

wixix
⊤
i ∥op − 1 ≤ max

M∈M

n∑
i=1

1
(1− ϵ)n(x⊤

i Mxi) I
x⊤

i Mxi≤Q2
k

−1

≤ max
M∈M

n∑
i=1

1
(1− ϵ)nf(x⊤

i Mxi)− 1

= 1
(1− ϵ)nR− 1

≤ 2R′

n
+ 4σ2

kϵ
1− 2

k + 2ϵ.
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Observe that the last two terms in the above expression are small, i.e., σ2
kϵ

1− 1
k + ϵ = O(δ2/ϵ).

We next use Lemma A.5.2 in Appendix to conclude that R′ concentrates well. Lemma A.5.2

states that with probability 1− τ , R′/n ≤ (1/ϵ)(O(
√
d log d/n+ σkϵ

1− 1
k + σ4

√
log(1/τ)/n))2.

Note that both of the remaining terms are small compared to Overall, we get that

min
w∈∆n,ϵ

∥Σw∥op ≤ 1 + δ2

ϵ
.

Taking a union bound on the event E and concentration of R′ concludes the result.

3.4.2 Minimum Eigenvalue of Large Subsets

In this section, we prove that under bounded central moments, the minimum eigenvalue

of ΣS′ , of each large enough subset S ′, has a lower bound close to 1. Our result is similar in

spirit to Koltchinskii and Mendelson [KM15, Theorem 1.3] that only bounds the eigenvalue

of ΣS . The proof of the following lemma is very similar to the proof of Lemma 3.4.3.

Lemma 3.4.4. Consider the setting in Lemma 3.4.3. Then, for a constant c > 0, with probability

1− τ − exp(−cnϵ), the following holds:

min
S′:|S′|≥(1−ϵ)n

v⊤ΣS′v ≥ 1− δ2

ϵ
,

where δ = O

(√
d log d
n

+ σkϵ
1− 1

k + σ4

√
log( 1

τ
)

n

)
.

Proof. Without loss of generality, assume that µ = 0. We will assume that event E from

Lemma 3.4.2 holds, with an additional probability of error exp(−cnϵ), that is

sup
v∈Sd−1

∣∣∣{i : x⊤
i v ≥ Qk

}∣∣∣ ≤ nϵ.

Let f be as defined in the proof of Lemma 3.4.3. For a sequence y1, . . . , yn, let y(1), . . . , y(n)
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be its rearrangement in non-decreasing order. For any unit vector v, we have that

min
S′:|S′|≥(1−ϵ)n

v⊤ΣS′v ≥ min
w∈∆n,ϵ

v⊤Σwv = min
w∈∆n,ϵ

n∑
i=1

wi(x⊤
i v)2

≥
(1−ϵ)n∑
i=1

(x⊤
i v)2

(i)/((1− ϵ)n)

≥
n∑
i=1

(f((x⊤
i v)2)−Q2

kϵn)/((1− ϵ)n),

where we use that at most ϵn points have projections larger than Q2
k. Thus we get that the

minimum eigenvalue of any large subset is lower bounded by:

min
w∈∆n,ϵ

min
v∈Sd−1

n∑
i=1

wi(x⊤
i v)2 ≥ min

v∈Sd−1

n∑
i=1

f((x⊤
i v)2)−Q2

kϵn.

Let h(·) be the negative of the function f(·). Define the following random variable Z and

its counterpart Z ′:

Z := sup
v∈Sd−1

n∑
i=1

h((x⊤
i v)2), Z ′ := sup

v∈Sd−1

n∑
i=1

h((x⊤
i v)2)− Eh((x⊤

i v)2)

From Lemma A.2.4, it follows that |Eh((x⊤
i v)2) + 1| = |E f((x⊤

i v)2)− 1| = O(σ2
kϵ

1− 2
k ). This

immediately gives us that

|Z ′ − Z − n| = O(nσ2
kϵ

1− 2
k ).

Therefore, the desired quantity satisfies the following inequalities:

(1− ϵ)n min
w∈∆n,ϵ

min
v∈Sd−1

n∑
i=1

wi(x⊤
i v)2 ≥ min

v∈Sd−1

n∑
i=1

f((x⊤
i v)2)−Q2

kϵn

= − sup
v∈Sd−1

n∑
i=1

h((x⊤
i v)2)−Q2

kϵn

= −Z −Q2
kϵn

≥ −Z ′ + n−O(nσ2
kϵ

1− 2
k )− ϵQ2

kϵn.
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We thus require a high probability upper bound on Z ′. Note that Z ′ behaves similarly to

R′, defined in the proof of Lemma 3.4.3. Similar to the proof of Lemma A.5.2, we get that,

with probability at least 1− τ ,

Z ′

n
≤ 1
ϵ

O
√d log d

n
+ σkϵ

1− 1
k + σ4

√
log(1/τ)

n

2

.

Note that the remaining terms σ2
kϵ

1− 2
k = O(δ2/ϵ) and ϵQ2

k = O
(
σ2
kϵ

− 2
k

+ d
nϵ

)
= O(δ2/ϵ).

Therefore, we get the minimum eigenvalue of any large subset is at least

min
w∈∆n,ϵ

λmin(Σw) ≥ 1− δ2

ϵ
,

where δ = O

(√
d log d
n

+ σkϵ
1− 1

k + σ4

√
log( 1

τ
)

n

)
.

3.4.3 Controlling the Mean

Lemmas 3.4.3 and 3.4.4 give a control on the second moment matrix. We will now further

remove O(ϵ) fraction of points to obtain w such that ∥µw − µ∥2 is small.

Lemma 3.4.5. Let x1, . . . , xn be n i.i.d. random variables from a distribution with mean µ and

covariance Σ ⪯ I . Further, assume that the xi’s are drawn from a distribution with k-th bounded

central moment σk for a k ≥ 4. Let u ∈ ∆n,ϵ. Assume that log(1/τ)/n = O(ϵ). Then, for a

constant c > 0, the following holds with probability 1− τ − exp(−cnϵ):

min
w∈∆n,4ϵ,u

∥
n∑
i=1

wixi − µ∥2 = O(
√
d/n+ σkϵ

1− 1
k +

√
log(1/τ)/n).

Proof. Without loss of generality, let us assume that µ = 0. Also, assume that the event E

from Lemma 3.4.2 holds, with the additional error of exp(−cnϵ). Let g(·) be the following
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function:

g(x) =



x, if x ∈ [−Qk, Qk]

Qk, if x > Qk

−Qk, if x < −Qk.

Let N be the following random variable:

N = sup
v∈Sd−1

n∑
i=1

g(v⊤xi) = sup
v∈Sd−1

∣∣∣∣∣
n∑
i=1

g(v⊤xi)
∣∣∣∣∣ ,

where we use that g(·) is an odd function. We also define the following empirical process,

where each term is centered:

N ′ = sup
v∈Sd−1

n∑
i=1

g(v⊤xi)− E[g(v⊤xi)] =
∣∣∣∣∣ sup
v∈Sd−1

n∑
i=1

g(v⊤xi)− E[g(v⊤xi)]
∣∣∣∣∣ .

As Qk = Ω(σkϵ−1/k), Lemma A.2.4 states that supv E g(v⊤x) = O(σkϵ1− 1
k ), and this gives

that

|N −N ′| = O(nσkϵ1− 1
k ).

We now use duality to write the following:

min
w∈∆n,ϵ,u

∥∥∥∥∥
n∑
i=1

wixi

∥∥∥∥∥
2

= min
w∈∆n,ϵ,u

max
v∈Sd−1

〈
n∑
i=1

wixi, v

〉

= max
v∈Sd−1

min
w∈∆n,ϵ,u

〈
n∑
i=1

wixi, v

〉

≤ 5ϵQk +
∣∣∣∣∣ 1
(1− ϵ)nN

∣∣∣∣∣ ≤ O(ϵQk) +O(σkϵ1−1/k) + 2N ′,

where the last step uses Lemma 3.2.6. We now use Lemma A.5.3 to conclude that N ′

concentrates. Recall that ϵQk = O(σkϵ1− 1
k +

√
d/n). Overall, we get that, with probability
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1 − τ − exp(−nϵ), there exists a w ∈ ∆n,ϵ,u, such that ∥∑wixi∥2 = O(
√
d/n + σkϵ

1− 1
k +√

log(1/τ)/n).

3.4.4 Proof of Theorem 3.1.8

We now combine the results in the previous lemmas to obtain the stability of a subset

with high probability. Although we prove the following result showing the existence of

(2ϵ′, δ) stable subset, this can generalized to existence of (Cϵ,O(δ)) stable subset for a large

constant C.

Theorem 3.4.6 (Theorem 3.1.8). Let S = {x1, . . . , xn} ⊂ Rd be n i.i.d. points from a distribution

with mean µ and covariance Σ such that (1 − 2σ2
kγ

1− 1
k )I ⪯ Σ ⪯ I . Further assume that for a

k ≥ 4, the kth central moment is bounded by σk. Let ϵ′ = Θ(ϵ+ log(1/τ)
n

) ≤ c for a sufficiently small

constant c.

Then, with probability at least 1− τ , there exists a subset S ′ ⊆ S s.t. |S ′| ≥ (1− ϵ′)n and |S ′|

is (2ϵ′, δ)-stable with δ = O(σkϵ1− 1
k +

√
d log d
n

+ σ4

√
log(1/τ)

n
).

Proof. First note that, for the bounded covariance condition, Theorem 3.1.4 already gives a

guarantee that, with probability at least 1− τ ,

∥µ̂− µ∥2 = O
(√

(d log d)/n+
√
ϵ+

√
log(1/τ)/n

)
. (3.17)

Therefore, the guarantee of this theorem statement is tighter only in the following regimes:

log(1/τ)/n = O(ϵ), O(σkϵ
1
2 − 1

k ) = O(1), d log d/n = O(ϵ). (3.18)

For the rest of the proof, we will assume that all three of these conditions hold. Similar to

the proof of Theorem 3.1.4, we will first prove the statement when the samples are bounded.

Without loss of generality, we will assume µ = 0.
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Base case: Bounded support In this case, we will assume that ∥xi∥2 = O(σkϵ−1/k
√
d)

almost surely. We will use Lemma A.5.1 to show that the set is stable. Set ϵ̃ = ϵ′/C ′ for a

large enough constant C ′ to be determined later.

Note that x1, . . . , xn satisfy the conditions of Lemmas 3.4.4, 3.4.3, and 3.4.5. In particular,

we will use Lemma 3.4.4 with Cϵ̃, where C is large enough. By choosing ϵ′ = Ω(log(1/τ)/n),

we get that, with probability 1− τ/3, for any S ′ : |S ′| ≥ (1− Cϵ̃)n and unit vector v,

∑
i∈S′(v⊤xi)2

|S ′|
≥ 1− δ2

Cϵ̃
. (3.19)

We first look at the variance using the guarantee in Lemma 3.4.3: Let u ∈ ∆n,ϵ̃ be the

distribution achieving the minimum in Lemma 3.4.3. By choosing ϵ′ = Ω(log(1/τ)/n), we

get that with probability 1− τ/3,

n∑
i=1

ui(x⊤
i v)2 ≤ 1 + δ2

ϵ̃
. (3.20)

We now obtain a guarantee on the mean using Lemma 3.4.5. For this u, let w ∈ ∆n,4ϵ̃,u be

the distribution achieving the minimum in Lemma 3.4.5. Then with probability 1− τ/3,

∥∥∥∥∥
n∑
i=1

wixi

∥∥∥∥∥
2
≤ δ. (3.21)

Since u ∈ ∆n,4ϵ̃,w and w ∈ ∆n,ϵ̃,u, we have that u ∈ ∆n,5ϵ̃. Moreover,

n∑
i=1

wi(x⊤
i v)2 ≤

n∑
i=1

ui
1− ϵ̃(x

⊤
i v) = 1

1− ϵ̃(1 + δ2

ϵ̃
) ≤ 1 + 1

1− ϵ̃(ϵ̃+ δ2

ϵ̃
) ≤ 1 + 4δ2

ϵ̃
. (3.22)

Therefore, we have that u ∈ ∆n,5ϵ̃ and satisfies the requirements of Lemma A.5.1, where

we note that r1 = O(1) and r2 = O(1) to get the desired statement. By a union bound, the

failure probability is τ . Finally, we choose C and C ′ large enough such that the cardinality

of the stable set is at least (1− ϵ′)n and it is (2ϵ′, δ) stable.
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General case: Unbounded support We first do a simple truncation. LetE be the following

event:

E = {X : ∥X∥2 ≤ Cσkϵ
− 1

k

√
d}. (3.23)

Let Q be the distribution of X conditioned on E. Note that P can be written as convex

combination of two distributions: Q and some distribution R,

P = (1− P(E))Q+ P(Ec)R. (3.24)

Let Z ∼ Q. Using Lemma A.2.5, we get that ∥EZ∥2 ≤ 2σkϵ1− 1
k /Ck and (1− 3σ2

kϵ
1− 2

k /Ck) ⪯

Cov(Z) ⪯ I . Thus the distribution Q satisfies the assumptions of the base case for C ≥ 2.

Let SE be the set {Xi : Xi ∈ E}. A Chernoff bound gives that given n samples from P ,

with probability at least 1− exp(−nϵ′),

E1 = {|SE| ≥ (1− ϵ′/2)n}. (3.25)

For a fixedm ≥ (1−ϵ′/2)n, let z1, . . . , zm bem i.i.d. draws from the distributionQ. Applying

the theorem statement for Q, as it satisfies the base case above, we get that, with probability

at least 1− exp(−cmϵ′), there ∃ S ′ ⊂ [m] : |S ′| ≥ (1− ϵ′/2)m ≥ (1− ϵ′/2)2n ≥ (1− ϵ′)n, such

that S ′ is (2ϵ′, δ′)-stable. This gives us a set S ′ which is stable with respect to EZ. Using

triangle inequality, we get that the set S ′ is (ϵ, δ′) stable with respect to µ as well, where

δ′ = δ + ∥µ− EZ∥2 = δ +O(σkϵ1− 1
k ).

We can now marginalize over m to get that with probability except 1− 2 exp(−cnϵ′), the

desired claim holds. Choosing ϵ′ = Ω(log(1/τ)n), we can make probability of failure less

than τ .
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3.5 Conclusions and Open Problems

In this paper, we showed that a standard stability condition from the recent high-

dimensional robust statistics literature suffices to obtain near-subgaussian rates for robust

mean estimation in the strong contamination model. With a simple pre-processing

(bucketing), this leads to efficient outlier-robust estimators with subgaussian rates under

only a bounded covariance assumption. An interesting technical question is whether the

extra log d factor in Theorem 3.1.4 is actually needed. (Our results imply that it is not

needed when ϵ = Ω(1).) If not, this would imply that stability-based algorithms achieve

subgaussian rates without the pre-processing.



63

4 robust sparse mean estimation

थोड़ा है थोड़े क ज़रुरत है
ज़ गी िफर भी यहाँ खूबसूरत है

— गुलज़ार

We study the fundamental task of outlier-robust mean estimation for heavy-tailed

distributions in the presence of sparsity. Specifically, given a small number of corrupted

samples from a high-dimensional heavy-tailed distribution whose mean µ is guaranteed

to be sparse, the goal is to efficiently compute a hypothesis that accurately approximates

µ with high probability. Prior work had obtained efficient algorithms for robust sparse

mean estimation of light-tailed distributions. In this work, we give the first sample-efficient

and polynomial-time robust sparse mean estimator for heavy-tailed distributions under

mild moment assumptions. Our algorithm achieves the optimal asymptotic error using

a number of samples scaling logarithmically with the ambient dimension. Importantly,

the sample complexity of our method is optimal as a function of the failure probability

τ , having an additive log(1/τ) dependence. Our algorithm leverages the stability-based

approach from the algorithmic robust statistics literature, with crucial (and necessary)

adaptations required in our setting. Our analysis may be of independent interest, involving

the delicate design of a (non-spectral) decomposition for positive semi-definite matrices

satisfying certain sparsity properties.

4.1 Introduction

4.1.1 Background

One of the most fundamental problem setups in statistics is as follows: given n i.i.d. samples

drawn from an unknown distribution P chosen arbitrarily from some known distribution

family P , infer some particular property of P from the data. This generic model captures a
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range of statistical problems of interest, for example, parameter estimation (such as the

mean and (co)variance of P), as well as hypothesis testing. While long lines of work

have given us a deep understanding of the statistical and computational possibilities and

limitations on these problems, these results are not always applicable in real-world settings

due to (i) modeling issues, that the underlying distribution P might not actually be in the

known familyP but only being close to it, and (ii) the fact that the n samples supplied might

be corrupted, for example by nefarious actors in high-stakes applications [ABHHRT72].

The field of robust statistics aims to design estimators and testers that can tolerate up to a

constant fraction of corrupted samples, independent of the potentially high dimensionality

of the data [Tuk60; HR09]. Classical works in the field have identified and resolved

the statistical limits of problems in this setup, both in terms of constructing estimators

and proving impossibility results [Yat85; DL88; DG92; HR09]. However, the proposed

estimators were not computationally efficient, often requiring exponential time to compute

either in the number of samples or the number of dimensions [HR09].

A recent line of work, originating in the computer science community, has developed

the subfield of algorithmic robust statistics, aiming to design estimators that not only attain

tight statistical guarantees, but are also computable in polynomial time. This line of

research has provided computationally and statistically efficient estimators in a variety

of problem settings (e.g., mean estimation, covariance estimation, and linear regression)

under different assumptions (e.g., the distribution might be assumed to be (sub-)Gaussian,

or can be heavy tailed); see [DK19] for a recent survey of results.

The focus of this paper is the robust mean estimation problem under sparsity constraints

on the mean vector. Sparsity is an important structural constraint that is both relevant in

practice, especially in the face of increasing dimensionality of modern data, and extensively

studied for statistical estimation (see, e.g., the books [HTW15; EK12; van16]). In the

specific context of robust sparse mean estimation, prior works have studied the case where

the underlying distribution has light-tails, e.g., sub-exponential tails [BDLS17; DKKPS19;
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CDKGGS22; DKKPP22b]. In particular, the case of a spherical Gaussian distribution is

now rather well-understood both in terms of the optimal information-theoretic estimation

error, as well as the conjectured computational-statistical tradeoff — namely, that there is a

gap between the statistical performance of computationally efficient and inefficient esti-

mators [DKS17; BB20]. In this work, we initiate the investigation of outlier-robust sparse

mean estimation for heavy-tailed distributions, under only mild moment assumptions. Our

main result is the first computationally efficient robust mean estimator in the heavy-tailed

setting which leverages sparsity to reduce the sample complexity from depending polyno-

mially on the dimensionality to a logarithmic dependence. Importantly, our algorithm also

achieves the optimal dependence on the failure probability τ as it tends to 0; see the next

two subsections for further discussion.

4.1.2 Problem Setup

We first define the input contamination model before formally stating the statistical problem.

Definition 4.1.1 (Strong Contamination Model). Given a corruption parameter ϵ ∈ (0, 1/2)

and a distribution P on uncorrupted samples, an algorithm takes samples from P with ϵ-

contamination as follows: (i) The algorithm specifies the number n of samples it requires. (ii) n

i.i.d. samples from P are drawn but not yet shown to the algorithm. (iii) An arbitrarily powerful

adversary then inspects the entirety of the n i.i.d. samples, before deciding to replace any subset of

⌈ϵn⌉ samples with arbitrarily corrupted points, and returning the modified set of n samples to the

algorithm.

Define the ℓ2,k-norm of a vector v, denoted by ∥v∥2,k, as the ℓ2-norm of the largest k

entries of a vector v in magnitude. The goal is to estimate the mean vector in this sparse

norm.

Problem 4.1.2. Fix a corruption parameter ϵ ∈ (0, 1/2), error parameter δ > 0, failure probability

τ ∈ (0, 1), and distribution family D over Rd. Suppose we have access to ϵ-contaminated samples
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drawn from an unknown distribution P ∈ D with mean µ. The task is to compute an estimate µ̂

such that ∥µ̂− µ∥2,k is bounded above by error δ with probability at least 1− τ over n samples. The

goal is then to give an estimator with the minimal sample complexity n(k, ϵ, δ, τ).

The above problem is slightly more general than sparse mean estimation in the following

sense. To estimate a k-sparse mean vector µ to error δ, it suffices (see, e.g., [CDKGGS22,

Lemma 3.2]) to: 1) obtain an estimate µ̃ with ∥µ̃ − µ∥2,k ≤ δ/3, and 2) round µ̃ to the k

entries with the largest magnitude, and zero out all the other entries. The main result of

this paper solves the problem of robust mean estimation in the ℓ2,k norm.

A key aspect of robust statistics is that, depending on the distribution family D we

consider, the above problem is generally not solvable for all error parameters δ > 0. This

work focuses on sparse mean estimation for heavy-tailed distributions, where a commonly

used model for heavy-tailedness is imposing only the mild assumption that the covariance

of the clean distribution is bounded by the identity I , without any further tail assumptions

(see Section 4.1.4 for more discussion). Even when d = 1 and even when there are infinitely

many samples [DK19], it is known that in the heavy-tailed setting the minimum δ achievable

is in the order of
√
ϵ. This immediately implies the same lower bound of Ω(

√
ϵ) for the

minimum achievable δ in Problem 4.1.2.

Before discussing the algorithmic results in this paper, we state known information-

theoretic bounds on the sample complexity that applies to all estimators, efficient or not,

for Problem 4.1.2 on distributions with covariance bounded by I , and for δ = Θ(
√
ϵ).

Fact 4.1.3 (Information-theoretic sample complexity: computationally-inefficient). In Prob-

lem 4.1.2, for the distribution family D2 defined as the set of distributions with covariance Σ ⪯ I ,

and for δ = Θ(
√
ϵ), we have that n(k, ϵ, δ, τ) ≍ (k log(d/k) + log(1/τ))/ϵ. That is, any estimator

requires at least these many samples and there exists a (computationally-inefficient) estimator with

this sample complexity. The upper bound is from [Dep20b; PSBR20] and the lower bound follows

from [LM19b], even in the absence of outliers (see also Footnote 2 in [DL21]) and even when
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we restrict to the distribution family DGaussian which is the set of the Gaussian distributions with

identity covariance.

An interesting aspect of robust sparse mean estimation is that there is a conjectured

statistical-computational tradeoff, namely that efficient algorithms require a qualitatively

larger sample complexity than inefficient ones. Specifically, there is evidence (in the form

of SQ lower bounds and reduction-based hardness) that all efficient algorithms have a

quadratically worse dependence on k; that is, even for constant ϵ, δ, τ , and DGaussian being

identity-covariance Gaussians in Problem 4.1.2, the sample complexity of all efficient

algorithms is at least Ω̃(k2), as opposed to Õ(k) in Fact 4.1.3. See [DKS17; BB20] for a

detailed discussion.

Both the information-theoretic bound and the conjectured information-computation

tradeoff serve as benchmarks for our algorithm to match.

The main result of this paper is the following.

Theorem 4.1.4 (Computationally Efficient Heavy-Tailed Robust Sparse Mean Estimation).

Let ϵ ∈ (0, ϵ0) for some sufficiently small universal constant ϵ0 > 0. Let P be a distribution over Rd,

where the mean and covariance of P are µ and Σ respectively. Suppose Σ ⪯ I and further suppose

that for all j ∈ [d], E[(Xj − µj)4] = O(1). Then there is an algorithm such that on input (i) the

corruption parameter ϵ, (ii) the failure probability τ , (iii) the sparsity parameter k, and (iv) T ,

an ϵ-corrupted set of n≫ (k2 log d+ log(1/τ))/ϵ) i.i.d. samples from P , the algorithm outputs µ̂

satisfying ∥µ̂− µ∥2,k = O(
√
ϵ) with probability 1− τ in poly(n, d) time.

Phrased in a slightly different language, when our estimator is given a sufficiently

large number n of ϵ-corrupted samples, it outputs an estimate µ̂ satisfying ∥µ̂ − µ∥2,k =

O
(√

k2 log d
n

+
√
ϵ+

√
log(1/τ)

n

)
with probability 1− τ .

We note that the guarantees of our algorithm remain the same under a weaker assump-

tion on Σ: we need only that ∥Σ∥Xk
≤ 1 instead of the spectral norm being bounded (the

norm ∥ · ∥Xk
is formally defined in Definition 4.1.5). Informally, the Xk norm of a square
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matrix A is a convex relaxation of finding the maximum of v⊤Av over k-sparse vectors v.

See Theorem 4.4.2 in Section 4.4 for the stronger version of the main result, which assumes

only that ∥Σ∥Xk
≤ 1.

As outlined above, the dependence of our sample complexity result on k is tight with

respect to the conjectured lower bound for efficient algorithms, and its dependence on τ

and ϵ are also tight with respect to the information-theoretic lower bounds, even in the

Gaussian case. In terms of the smallest achievable asymptotic error (even in infinite sample

regime), we show in Lemma 4.7.1 that, even after adding the mild axis-wise 4th moment

assumption in Theorem 4.1.4, the asymptotic error remains bounded below by Ω(
√
ϵ) when

k is sufficiently large. The restriction on k is fairly mild, covering most parameter regimes

of interest.

The sample complexity of our algorithm has a dependence on the failure probability

that is log 1/τ , and — importantly — this is an additive term in the complexity instead of

multiplicative. To be precise, in the i.i.d. setting with no outliers, we can artificially set

ϵ = C max(k2 log d, log(1/τ))/n for a large constant C. In this setting, when the number of

samples n is such that n≫ k2 log d+ log(1/τ), then with probability 1− τ , our algorithm

outputs an estimate µ̂ satisfying

∥µ̂− µ∥2,k = O

√k2 log d
n

+
√

log(1/τ)
n

 . (4.1)

This additive dependence is non-trivial to achieve even in the optimal rates for heavy-tailed

mean estimation in the non-robust (and non-sparse) setting. See the [LM19a] survey for a

more detailed discussion. Our work provides the first computationally efficient estimator for

heavy-tailed sparse mean estimation with such additive dependence, even in the non-robust

setting.
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4.1.3 Our Approach

Our algorithm fits into the stability-based filtering approach; see [DKKLMS16] and the

survey [DK19]. The filtering framework is a by-now-standard algorithmic technique in

robust statistics. The approach for robust mean estimation can be summarized as follows:

1) with high probability over the sampling of the n uncorrupted samples, there exists a large

subset of uncorrupted samples (say, a 1−O(ϵ) fraction) satisfying a “stability” condition

with respect to the mean of the uncorrupted distribution, and 2) a filtering algorithm taking

as input an ϵ-corrupted version of the stable set of samples will remove some of the samples,

such that the sample mean of the remaining points is guaranteed to be close to the true mean

(which can then be returned as the final mean estimate). The notion of “stability” depends

crucially on the task at hand, and is defined below for the sparse mean estimation problem.

Stability-Based Algorithms under Sparsity Informally speaking, in the context of robust

mean estimation, we say that a set S is stable when the mean and the covariance of S

do not deviate too much when we remove a small fraction of elements from S. For the

task of sparse mean estimation, we would like to measure the deviation only along the

k-sparse directions. However, it is computationally hard to calculate the maximum of

v⊤Av over k-sparse unit vectors for an arbitrary matrix A (this is known as the sparse

PCA problem [TP14]). Following [BDLS17], our definition of stability involves a convex

relaxation of the above optimization problem, using the following definition of the set Xk

and the associated matrix norm ∥ · ∥Xk
.

Definition 4.1.5 (The set Xk and the norm ∥ · ∥Xk
). The set Xk is defined as the set of positive

semidefinite matrices that have trace 1 and ℓ1-norm at most k when flattened as a vector. The matrix

norm ∥A∥Xk
is then defined as supM∈Xk

|A •M |, where A •M denotes the trace product tr(A⊤M).

Note that for any square matrix A, ∥A∥Xk
is always bounded above by its spectral norm.

Furthermore, observe that for any square matrix A, the maximum of v⊤Av over k-sparse

unit vectors is bounded above by ∥A∥Xk
, and the latter can be calculated efficiently using a
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convex program. We are now ready to define the stability condition for our sparse mean

estimation task.

Definition 4.1.6 (Stability Condition for Robust Sparse Mean Estimation). For 0 < ϵ < 1/2

and ϵ ≤ δ, a set S is (ϵ, δ, k)-stable with respect to µ ∈ Rd and σ ∈ R+ if it satisfies the following

condition: for all subsets S ′ ⊂ S with |S ′| ≥ (1− ϵ)|S|, the following holds: (i) ∥µS′ −µ∥2,k ≤ σδ,

and (ii) ∥ΣS′ − σ2I∥Xk
≤ σ2δ2/ϵ, where µS′ = (1/|S ′|)∑x∈S′ x is the sample mean of S ′ and

ΣS′ = (1/|S ′|)∑x∈S′(x− µ)(x− µ)⊤ is the second moment of S ′.

Definition 4.1.6 is intended for distributions with covariance matrices at most σ2 times

the identity. We will omit µ and σ above when they are clear from the context.

Focusing on the class of identity covariance Gaussian distributions, [BDLS17] gave

a computationally-efficient algorithm for robust sparse mean estimation using roughly

k2 log d samples.6 As we explain below, their algorithm succeeds under the stability condi-

tion of Definition 4.1.6.

By using the standard median-of-means pre-processing described in Section 4.2, we can

reduce the robust sparse mean estimation task to the case when the corruption parameter

ϵ is constant, say 0.01, and aim to achieve only a constant estimator error in the ℓ2,k norm.

For this regime, we state the guarantees of robust sparse mean estimation algorithm of

[BDLS17] (developed for the Gaussian setting) as follows7:

Fact 4.1.7. Let S be a set in Rd such that there exists a set S ′ ⊆ S such that (i) |S ′| ≥ 0.99|S|,

and (ii) S ′ is an (0.01, O(1), k)-stable with respect to (unknown) µ and (unknown) σ. There is

a poly(|S|, d)-time algorithm that takes as input T , an 0.01-corruption of S, and returns a mean

estimate µ̂ such that ∥µ̂− µ∥2,k ≤ O(σ).

Given this prior algorithmic result, the key challenge is to show that, even in the setting

of heavy-tailed data, a large subset of the uncorrupted samples satisfies the stability condition
6The additional factor of k in their sample complexity (cf. Fact 4.1.3) is because the convex relaxation

involving Xk norm can be loose. However, [DKS17; BB20] suggest that k2 samples are needed for efficient
algorithms.

7See also [ZJS22b] for a related algorithm.
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with high probability. Without sparsity constraints, [DKP20; HLZ20] showed that O(d)

samples suffice for stability (under a different definition appropriate for the dense setting),

which is too large for our purposes.

Truncation is Necessary for Stability Recall that our goal is to show that if we draw

roughly k2 log d samples from a heavy-tailed distribution, then it contains a large stable

subset. For the light-tailed data (Gaussian), this was shown in [BDLS17]. However, this

desired statement is not true for general heavy-tailed distributions. Consider the standard

setting for modeling heavy-tailed data, namely that the covariance Σ of the uncorrupted

distribution is upper bounded by the identity. For simplicity, also assume that the sparsity

parameter k, corruption parameter ϵ and failure probability τ are all constants. Thus,

our goal is to show that, with high probability, there is a large stable subset among log d

samples. Yet, as we show in Example 4.3.1 in Section 4.3, there exists a distribution where

deterministically for any set of up to o(d) many uncorrupted samples, no large subset can

be stable. This distribution is the one returning a vector of length
√
d from a randomly

chosen axis direction, which has unit covariance. Essentially, the long length of
√
d along

directions as sparse as the axis directions causes stability to fail to hold.

In order to circumvent this obstacle, we propose to “truncate” all the samples in ℓ∞

norm before using a stability-based filtering robust mean estimation algorithm. Specifically,

we start by computing an initial mean estimate, and then clip each sample coordinate-wise

to within a radius of Θ(
√
k) of the initial mean estimate. This radius is chosen carefully to

ensure that the mean of the original distribution and the clipped distribution is close in

ℓ2,k-norm. Ensuring that the clipped distribution also has small variance turns out to be

non-trivial, as we detail below.

Necessity of Bounded Higher Moments After truncation, we have the guarantee that no

point is too far from the true mean. Unfortunately, truncation can potentially also rotate a

point about the true mean, in the sense that for a sample, the direction of its difference from
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the true mean may change after such truncation. In general, this rotation effect can cause

much of the mass of the distribution to rotate and concentrate towards certain directions,

and significantly increase the variance in those directions. (See Appendix B.2.1 for more

details.) In this work, we identify the mild condition that the 4th moment is bounded

along each axis direction by some constant, on top of our assumption that Σ ⪯ I , to be

sufficient to show that truncation can only increase variance in directions that are non-

sparse — in the sense that the resulting covariance will still have bounded Xk norm (see

Lemma 4.3.2). Thus, under these mild conditions, we can safely truncate our samples

(which is necessary for stability to hold, as outlined above), and modify our goal to show

this truncated distribution contains a large stable set with high probability.

Stability of Truncated Samples with High Probability Even after truncation and after

imposing an axis-wise 4th moment bound, it remains challenging to show that, with high

probability, there exists a large subset of samples that are stable with respect to the true

mean.

As we see in Section 4.5, the analysis reduces to showing that with high probability over

the uncorrupted samples, for every matrix M ∈ Xk, there exists a large subset of samples S

whose empirical covariance ΣS has a small inner product with M , namely that M • ΣS is

bounded. In the non-sparse setting, the strategy used in [DL22a] and [DKP20] is to first

show a high probability event for all M = vv⊤ for unit vectors v, and then to show that

the event for all M = vv⊤ deterministically implies that the event holds also for all M ⪰ 0

with tr(M) = 1. This strategy is important because although the cover of PSD matrices

would roughly be exponential in d2, the cover of vv⊤ is only exponential in d. Thus, the

first step holds with roughly d samples, and the second step crucially uses the spectral

decomposition (SVD) of positive semidefinite (PSD) matrices. On the other hand, in our

sparse setting, if we applied the usual SVD to the PSD matrices M ∈ Xk, the resulting

decomposition will generally not yield sparse components, and thus not allowing us to
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leverage sparsity. Instead, inspired by certain matrix norm results derived by Li [Li18], we

carefully design a (non-spectral) decomposition that does yield k2-sparse components and

can be covered with k2 log d samples; as well as a more delicate argument to complete the

second step, namely that the event holding for all components M in the decomposition

implies the event holding for all M ∈ Xk. The intricacies of these arguments also allow us

to get a sample complexity that ultimately yields an additive (as opposed to multiplicative)

dependence on log 1/τ , which as described in the previous section is a crucial feature of our

result, and in line with the non-robust non-sparse sub-Gaussian mean estimation setting.

4.1.4 Related Work

Algorithmic Robust Statistics The goal of algorithmic robust statistics is to obtain

dimension-independent asymptotic error even in the presence of constant fraction of

outliers in high dimensions in a computationally efficient way. Since the dissemination

of [DKKLMS16; LRV16], which focused on high-dimensional robust mean estimation,

the body of work in the field has grown rapidly. For example, prior work has obtained

dimension-independent guarantees for various problems such as linear regression [KKM18;

DKS19] and convex optimization [PSBR20; DKKLSS19]. See the survey [DK19] for a more

detailed description. Most relevant to us are the works on robust mean estimation that

leverage the sparsity constraints and obtain improved sample complexity. The algorithms

developed in [BDLS17; DKKPS19; CDKGGS22; DKKPP22b] obtain optimal asymptotic

error for light-tailed distributions, such as Gaussians. However, these algorithms (and

their analyses) crucially rely on the light-tails and, as outlined in Section 4.1.3, provably do

not work for heavy-tailed distributions.

Heavy-Tailed Statistical Estimation The recent decades also saw a growing interest in

studying statistics in heavy-tailed settings. Even for the basic question of univariate mean

estimation without sample corruption, the statistical limits are only recently resolved by
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a line of work started by Catoni [Cat12] and ending with Lee and Valiant [LV20] (see

also [Min22] for an alternative estimator).

The high-dimensional heavy-tailed setting turns out to be much more challenging

and has been extensively studied in recent years, e.g., for mean estimation in the ℓ2

norm [LM19d] and in other norms [LM19b; DL21], covariance estimation [MZ20], and

stochastic convex optimization [BM22]. In absence of contamination, the goal is to obtain

sample complexity as if the distribution were Gaussian. Roughly speaking, this corresponds

to an additive dependence on the logarithm of failure probability in various estimation tasks

(as we achieve also in this work). We refer the reader to the survey for more details [LM19a].

This line of work focuses on the statistical limits, and the estimators developed are generally

computationally inefficient.

A closely-related body of research aims to obtain efficient algorithms for heavy-tailed

distributions with optimal statistical performance, ideally matching the above guarantees.

These works include high-dimensional (dense) mean estimation [Hop20; CFB19; DL22a;

LLVZ20; DKP20; HLZ20; CTBJ22; LV20], linear regression [CHKRT20; PJL20b; Dep20a],

and covariance estimation [CHKRT20]. We note that many of these works are inspired

by the algorithmic robust statistics literature and can also tolerate a constant fraction of

contaminated data.

To the best of our knowledge, none of these works studies sparse estimation under

heavy-tailed distributions (even in absence of outliers), and our work is the first result

with sample complexity that is additive in the logarithm of the failure probability.

4.1.5 Organization

The structure of this paper is as follows: After the necessary technical preliminaries in

Section 4.2, in Section 4.3 we describe and analyze our simple pre-processing truncation

scheme. In Section 4.4, we provide a detailed description of our algorithm and an outline

of its analysis, assuming the necessary stability conditions are satisfied. Sections 4.5
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and 4.6 establish that the stability condition will be satisfied with the appropriate sample

complexity, and are the main technical contributions of this work. Finally, Section 4.7 shows

that the error guarantee of our algorithm is information-theoretically optimal under a mild

assumption on the sparsity. For the sake of the presentation, some technical proofs have

been deferred to an appendix.

4.2 Preliminaries

Notations Here we define the notations we use in the rest of the paper. For a (multi-)set

S ⊂ Rd, we denote µS = (1/|S|)∑x∈S x and ΣS = (1/|S|)(∑x∈S(x− µS)(x− µS)⊤). When

the vector µ notation is clear from context, we use ΣS to denote (1/|S|)∑x∈S(x−µ)(x−µ)⊤.

Let Uk denote the set of k-sparse unit vectors in Rd. For two vectors x and y, ⟨x, y⟩

denotes the dot product x⊤y. For a vector x ∈ Rd, we use ∥x∥2,k := supv∈Uk
⟨x, v⟩ and ∥x∥∞

to denote maxj |xj|. For a matrix M , we use ∥M∥1 to denote ∑i,j |Mi,j| and ∥M∥0 to denote

the number of non-zero entries of M . For two matrices A and B, we use A •B to denote

the trace inner product tr(A⊤B). Define Xk := {M : M ≽ 0, tr(M) = 1, ∥M∥1 ≤ k}. For a

matrix A, we define ∥A∥Xk
:= supM∈Xk

|A •M |. For an n ∈ N, we use [n] to denote the set

{1, . . . , n}. For a set S ⊆ Rd and a function f , we also define the set function notation f(S)

as {f(x) |x ∈ S}.

Coordinate-wise Median-of-Means We use the coordinate-wise median-of-means algo-

rithm to robustly obtain a preliminary mean estimate, with guarantees captured by the

following fact.

Fact 4.2.1. The coordinate-wise median-of-means algorithm satisfies the following guarantee: given

the corruption parameter ϵ, failure probability τ , and a set T of n many ϵ-corrupted samples from a

distribution D with mean µ and axis-wise variance EX∼D[(Xj − µj)2] ≤ σ2 for all j ∈ [d], then
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with probability at least 1 − τ over the sample set T , the output of the algorithm µ̂ is such that

∥µ̂− µ∥∞ ≤ σO(
√
ϵ+

√
(log(d/τ))/n).

Median-of-Means Pre-Processing Another standard technique we use in this paper is

the median-of-means pre-processing, which is a distinct technique from the coordinate-

wise median-of-means algorithm mentioned right above. Recall that in Theorem 4.1.4,

the asymptotic error term is
√
ϵ, which tends to 0 as the corruption parameter ϵ→ 0. The

following pre-processing step allows us to reduce the problem from the ϵ → 0 case to a

constant ϵ case: Let T be the input ϵ-corrupted set of samples. Split the samples T randomly

into g equally-sized groups of sizem = n/g where g = 100ϵn, and replace each group by the

sample mean of the group. Let Tgrouped be this new set of points. It is easy to check that at

most 0.01-fraction of Tgrouped can be corrupted by outliers. The effects of this pre-processing

is captured by the following Fact 4.2.2, which we prove for completeness in Appendix B.1.2.

Fact 4.2.2 (Median-of-Means Pre-Processing). Suppose there is an efficient algorithm such that,

on input σ ∈ R+ and a 0.01-corrupted set of n≫ k2 log d+ log(1/τ) samples from a distribution

D with mean µ and covariance Σ with ∥Σ∥Xk
≤ σ2 and EX∼D[(Xj − µj)4] = O(σ4) for each

coordinate j ∈ [d], returns µ̂ such that ∥µ̂− µ∥2,k ≤ O(σ) with probability at least 1− τ .

Then, there is an efficient algorithm such that, on input ϵ ∈ (0, 0.01] and an ϵ-corrupted set of

n≫ (k2 log d+ log(1/τ))/ϵ samples from a distribution with mean µ and covariance Σ, satisfying

(i) ∥Σ∥Xk
≤ 1 and (ii) EX∼D[(Xj − µj)4] = O(1) for every coordinate j ∈ [d], returns a mean

estimate µ̂ such that ∥µ̂− µ∥2,k ≤ O(
√
ϵ) with probability at least 1− τ .

4.3 Truncation Pre-Processing

The general approach of using a stability-based filtering algorithm for robust mean esti-

mation is to show that, given sufficiently many samples, there exists a large (say 1−O(ϵ)

fraction) subset of the samples that are stable with respect to the true mean µ. However,
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the following simple example shows that it is not possible for i.i.d. samples drawn from

a heavy-tailed distribution to satisfy the sparse stability condition using sample size of

poly(log d).

Example 4.3.1. For any number of moments t ≥ 2, there is a distributionX satisfying the following

conditions: (i) The mean of X is 0, and for every unit vector v, the tth moment in direction v is

upper bounded by 1, that is, E[|⟨v, x⟩|t] ≤ 1 for t ≥ 2, (ii) If S is an arbitrary set of n ≤ o(d2/t)

points from the support of X , then the set S cannot be (ϵ, O(
√
ϵ), k)-stable, for any ϵ > 0, with

respect to the mean of the distribution. As a corollary, no subset of S can be stable either.

Proof. For j ∈ [d], let ej be the vector that is 1 on the j-th coordinate and 0 otherwise.

For a fixed r, consider the distribution P , supported uniformly on the 2d points S =

{±re1,±re2, . . . ,±red}.

It follows that P is a zero mean distribution. The covariance of the distribution P is∑
j(1/d)r2eie

⊤
i = (r2/d)I . Furthermore, for any unit vector v and t ≥ 2, we have that the

t-th moment in the direction v is bounded as follows:

E[|v ·X|t] =
d∑
j=1

1
d
|vj|trt = rt

d
∥v∥tt ≤

rt

d
∥v∥t2 ≤

rt

d
,

where we use that t ≥ 2 and ∥v∥t ≤ ∥v∥2 for any vector v. Thus, we choose r = d1/t for the

distribution.

Now we show the second claim, that any set of at most Ω(d2/t) samples from this

distribution cannot be stable. Let S be any (multi-)set of n points from the support of X .

Let x1 ∈ S. Since x1 is 1-sparse and has ℓ2 norm r, we have that x1x
⊤
1 /r

2 belongs to Xk.

Thus, we have the following:

∥∥∥∥∥∥ 1
n

∑
i∈S′

xix
⊤
i

∥∥∥∥∥∥
Xk

≥
〈

1
n

∑
i∈S′

xix
⊤
i ,

1
r2x1x

⊤
1

〉
≥ ∥x1∥4

r2n
= r2

n
.

Therefore, for r2/n to be upper bounded by a constant, n has to be Ω(d2/t).
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Consequently, if we want to perform robust sparse mean estimation using poly(k, log d)

samples, we need to modify the algorithm. Our approach is to perform an initial truncation

of the samples before using a stability-based robust mean estimator. A balance needs to be

struck in order to truncate sufficiently for stability to hold (with high probability over the

samples), but also to truncate mildly enough such that the mean (and covariance) of the

truncated distribution does not shift too much.

For a scalar a ∈ R+ and a vector b ∈ Rd, let ha,b : Rd → Rd be the following thresholding

function:

∀i ∈ [d], ha,b(x)i =



xi, if |xi − bi| ≤ a

bi + a if xi − bi ≥ a

bi − a if xi − bi ≤ −a

. (4.2)

Note that ha,b(x) projects the point x to the ℓ∞ ball of radius a around b.

As explained in the Introduction, truncation in general rotates a point about the true

mean, and thus can in fact cause the covariance of the distribution to grow in certain direc-

tions. The following lemma captures the fact that, if we make the further mild assumption

that the distribution has bounded 4th moment along all the axis directions, then we will at

least be able to preserve the Xk norm of the covariance matrix. The proof of Lemma 4.3.2 is

in Appendix B.2.2.

Lemma 4.3.2 (Truncation in ℓ∞). LetP be a distribution overRd with meanµP and covariance ΣP ,

with ∥Σ∥Xk
≤ σ2 for some σ2 > 0. LetX ∼ P and assume that for all j ∈ [d], E[(X−µP )4

j ] ≤ σ4ν4

for some ν ≥ 1. Let b ∈ Rd be such that ∥b − µ∥∞ ≤ a/2 and a := 2σ
√
k/ϵ for some ϵ ∈ (0, 1).

Define Q to be the distribution of Y := ha,b(X). Let the mean and covariance of Q be µQ and ΣQ

respectively. Then the following hold:

(1) ∥µP − µQ∥∞ ≤ σ
√
ϵ/k

(2) ∥µP − µQ∥2,k ≤ σ
√
ϵ
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(3) ∥ΣP − ΣQ∥Xk
≤ 3σ2ϵν4

(4) For all i ∈ [d], E[(Y − µQ)4
i ] ≤ 8ν4σ4

(5) ∥Y − µQ∥∞ ≤ 2a = 4σ
√
k/ϵ almost surely.

In Lemma 4.3.2 above, b represents the initial mean estimate, and µ̃ will be obtained by

Fact 4.2.1.

4.4 Algorithm and Analysis

The high-level algorithm we propose is stated as follows.

Algorithm 1 Robust Sparse Mean Estimation with High Probability

1. Input: An ϵ-corrupted sample set T ⊆ Rd of size n

2. Median-of-Means pre-processing: Group points in T into g groups, each of size
m = n/g, where g = 100ϵn, and take the sample mean of a group to be a new point.
Call these new points Tgrouped.

3. Define σ = 1/
√
m.

4. Compute coordinate-wise median-of-means estimate µ̃ from Fact 4.2.1 with corrup-
tion parameter 0.01 and failure probability τ/2, using the set of points Tgrouped.

5. Truncate all points in Tgrouped to within B∞(µ̃, 4σ
√
k), namely, given a point x, we

replace it with the point h4σ
√
k,µ̃(x), where ha,b is defined in Equation (4.2).

6. Run the stability-based robust sparse mean estimator from Fact 4.1.7 on the truncated
samples, i.e.

{
h4σ

√
k,µ̃(x) | x ∈ Tgrouped

}
.

We note that this algorithm is shift and scale invariant, based on the same invariance of

the median-of-means pre-processing as well as the invariance of the robust sparse mean

estimator from Fact 4.1.7.

We will now prove that Algorithm 1 satisfies the guarantees of Theorem 4.1.4 and its

stronger version, Theorem 4.4.2 stated below. Our analysis crucially uses Theorem 4.4.1,

which states that, with high probability, there exists a set consisting of most of the truncated
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samples that is stable with respect to some point close to the true mean in ℓ∞ norm. This is

the main structural result of our paper.

Theorem 4.4.1. Let S be a set of n i.i.d. data points from a distribution P over Rd, and let T be a

0.01-corruption of S. Let µ̃ be the coordinate-wise median-of-means estimate computed from set T .

Let the mean of P be µ and covariance Σ such that ∥Σ∥Xk
≤ σ2, and for all i ∈ [d], E[X4

i ] ≤ O(σ4).

Suppose that n = Ω(k2 log d+ log(1/τ)). Let a = σ
√
k. With probability 1− τ over S, for all T we

have that there exists a subset S ′ ⊆ T with |S ′| ≥ 0.95n such that ha,µ̃(S ′) is (0.01, O(1), k)-stable

with respect to some µ′ and σ with ∥µ′ − µ∥∞ ≤ O(σ/
√
k).

We show Theorem 4.4.1 in two steps. First, we show a simpler, analogous stability result

assuming that we truncate with respect to the true mean vector µ instead of the coordinate-

wise median-of-means estimate µ̃ as in Algorithm 1 and Theorem 4.4.1. This is stated as

Theorem 4.5.1 and proved in Section 4.5. Then, in Section 4.6, we show a “Lipschitzness”

argument that lets us conclude Theorem 4.4.1. The final proof of Theorem 4.4.1 is given in

Section 4.6.3.

Theorem 4.4.2 (Main Result, Strong Version). Let ϵ ∈ (0, ϵ0) for small constant ϵ0 > 0. Let P

be a multivariate distribution over Rd, where the mean and covariance of P are µ and Σ respectively.

Suppose ∥Σ∥Xk
≤ 1 and further suppose that for all j ∈ [d], E[(Xj − µj)4] = O(1). Then, there is

an algorithm such that, on input (i) the corruption parameter ϵ, (ii) the failure probability τ , (iii) the

sparsity parameter k, and (iv) T , an ϵ-corrupted set of n≫ (k2 log d+ log(1/τ))/ϵ) i.i.d. samples

from P , it outputs µ̂ satisfying ∥µ̂− µ∥2,k = O(
√
ϵ) with probability 1− τ in poly(n, d) time.

We note that, since theXk norm of a covariance matrix is upper bounded by its maximum

eigenvalue, Theorem 4.1.4 is an immediate corollary of Theorem 4.4.2.

Proof of Theorem 4.4.2. Step 2 of Algorithm 1, the median-of-means pre-processing, is ex-

actly the same as the reduction in Fact 4.2.2. Thus, by Fact 4.2.2, it suffices to show that,

for every σ > 0, Steps 4–6 in Algorithm 1 yield an O(σ) estimation error in ℓ2,k norm when
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given 0.01-corrupted samples from a distribution D with covariance bounded by σ2 in

Xk-norm and axis-wise 4th moment bounded by O(σ4).

Theorem 4.4.1 states that, with probability at least 1−τ , the samples after the processing

of Step 5 are such that there exists a 95% of the samples that form a (0.1, O(1), k)-stable

subset with respect to some vector µ′ and σ with ∥µ′ − µ∥∞ ≤ O(σ/
√
k). Fact 4.1.7 then

guarantees that, on input such a set of samples, the routine we invoke in Step 6 of Al-

gorithm 1 will return a mean estimate µ̂ such that ∥µ̂ − µ′∥2,k ≤ O(σ). Further, since

∥µ′ − µ∥∞ ≤ O(σ/
√
k), we have that ∥µ′ − µ∥2,k ≤ O(σ), and therefore we can conclude via

the triangle inequality that the mean estimate µ̂ satisfies ∥µ̂− µ∥2,k ≤ O(σ).

4.5 Stability After Removing Points: Additive dependence

on log(1/τ )

In this section, we give the core part of the argument (Theorem 4.5.1) for the main stability

result (Theorem 4.4.1) in this paper. Recall, via the median-of-means pre-processing,

that we only need to consider the constant contamination case (ϵ = Θ(1)). Thus, the

goal is to show (Theorem 4.4.1) that with high probability, after truncation according to

the coordinate-wise median-of-means preliminary estimate, there exists a large subset of

uncontaminated samples that is (Θ(1), O(1), k)-stable with respect to (a vector close in ℓ2,k

norm of) the true mean of the distribution as well as σ where σ2 = ∥Σ∥Xk
.

The key difference between Theorems 4.5.1 and 4.4.1 is that the former is a stability result

that applies only to uncontaminated i.i.d. samples truncated according to some fixed vector

close to the true mean. On the other hand, the final stability result we require concerns

samples truncated according to the coordinate-wise median-of-means estimate, which

itself depends on the samples and is not fixed. Section 4.6 shows the delicate argument

going from Theorem 4.5.1 to Theorem 4.4.1.



82

Theorem 4.5.1. Let S be a set of n i.i.d. data points from a distribution P over Rd. Let the mean of

P be µ and covariance Σ such that ∥Σ∥Xk
≤ σ2, and for all j ∈ [d], E[(Xj − µ)4] ≤ ν4. Suppose P

is supported over the set {x : ∥x− µ∥∞ ≤ σ × r ×
√
k}. If n = Ω(k2 log d+ log(1/τ)), then with

probability 1− τ there exists a set S ′ ⊆ S such that:

1. |S ′| ≥ 0.98n

2. S ′ is (0.01, δ, k)-stable with respect to µ and σ where δ = O(max(1, r2, ν2/σ2)).

Before giving the proof, we point out that the specific application of Theorem 4.5.1 will

be on the samples ha,µ(xi), where xi are the original uncontaminated i.i.d. samples, µ is the

underlying mean vector we are trying to estimate, and for a appropriately chosen to match

Algorithm 1.

Proof. In the following proof, we will use notations q, s1, s2, s3, VZ and B, all of which are

either constants or functions of σ, r and ν in the theorem statement. The functions are

explicitly chosen in Appendix B.3.

We will assume µ = 0 without loss of generality. Instead of directly showing the

existence of subset S ′ ⊆ S (with high probability over the samples S) that is stable,

Proposition B.1.1 in Appendix B.1 lets us show the following simpler condition: let ∆n,ϵ be

the set of weights/distributions w such that wi ≤ 1/(1− ϵ), then there exists a weighting

w ∈ ∆n,0.01 such that ∥Σw∥Xk
≤ B for the functionB chosen in Appendix B.3, which satisfies

B = O(σ2 max(1, r2, ν2/σ2)). That is, for the following proof, we just need to prove that

minw∈∆n,0.01 ∥Σw∥Xk
≤ B.

We proceed as follows:

min
w∈∆n,0.01

∥Σw∥Xk
= min

w∈∆n,0.01
max
M∈Xk

⟨M,Σw⟩ = max
M∈Xk

min
wM ∈∆n,0.01

⟨M,Σw⟩ ,

where the last equality is a straightforward application of the minimax theorem for a

minimax optimization problem with independent convex domains and a bilinear objective.
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It thus suffices to show the following: with probability 1− τ ,

∀M ∈ Xk : |{x ∈ S : x⊤
i Mxi > B}| ≤ 0.01|S| (4.3)

from which we can construct the weighting wM as uniform distribution over the elements

outside the above set.

Define the following sets of sparse matrices:

Ak :=
{
A ∈ Rd×d : ∥A∥0 ≤ k2, ∥A∥F ≤ 1

}
Ak,P :=

{
A ∈ Ak : P

{
x⊤Ax ≥ s1

}
≤ q

}
, (4.4)

where q and s1 are chosen in Appendix B.3. If n ≳ (k2 log d+log(1/τ))/(q2), then a standard

covering/VC-dimension bound (see Lemma B.2.2 for details) implies that the following

event holds with probability 1− τ :

∀A ∈ Ak,P : |{x ∈ S : x⊤
i Axi > s1}| ≤ 2× q · |S| . (4.5)

Our choice of q is a constant (cf. Appendix B.3) and thus the required sample complexity

for Equation (4.5) to hold is Ω(k2 log d + log(1/τ)). We will now show that the event in

Equation (4.5) implies that the event in Equation (4.3) holds.

Suppose, for the sake of contradiction, that the event in Equation (4.3) does not hold.

Then there exists an M ∈ Xk such that |{x ∈ S : x⊤
i Mxi > B}| > 0.01|S|. We will show

the existence of a matrix Q violating event Equation (4.5), via the probabilistic method, to

reach the desired contradiction.

Fixing an M that violates Equation (4.3), consider the random matrix Q where each

entry Qi,j is sampled independently from the following distribution, defined using the
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constant s2 chosen in Appendix B.3:

Qi,j :=



Mi,j, with prob. 1 if |Mi,j| ≥ s2/k,

s2
k

sign(Mi,j), with prob. |kMi,j|/s2 if |Mi,j| ≤ s2/k,

0, with remaining prob. if |Mi,j| ≤ s2/k

. (4.6)

Defining pi,j to be min(1, k|Mi,j|/s2), then Qi,j is equivalently Mi,j/pi,j with probability pi,j

and 0 otherwise.

We will show that the following events hold simultaneously with non-zero probability,

leading to a contradiction to event Equation (4.5):

(I) Q ∈ s3Ak,P ,

(II) |{x ∈ S : x⊤
i Qxi > s3 × s1}| > 2× q · |S|,

where s3 is also a constant, larger than 2, and explicitly chosen in Appendix B.3. Using

different techniques, we will show that the first condition holds with probability at least

1−2×10−6 and the second condition holds with probability at least 4×10−6, thus implying

that the events hold simultaneously with non-zero probability.

Condition (I) Showing that Q belongs to s3Ak with high constant probability is straight-

forward: by the construction of Q, it has small expected sparsity as well as small expected

Frobenius norm. An application of Markov’s inequality shows that Q ∈ s3Ak with high

constant probability (Lemma 4.5.2).

The trickier part is to show that Q is also in s3Ak,P , namely that Prx∼P (x⊤Qx > s3 × s1)

is upper bounded by the small constant. We consider the distribution of x⊤Qx over the

probability of independently drawing x ∼ P and a random Q, and show that x⊤Qx is

small with high probability over this joint distribution (Lemma 4.5.4), which requires

using the axis-wise 4th moment bounds on P as well as the fact that M ∈ Xk. Lemma 4.5.3
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implies that with high probability, we will draw a Q satisfying Prx∼P (x⊤Qx > s3 × s1)

being bounded by a small constant.

We now show Condition (I) as sketched above, beginning with the following lemma

showing that Q lies in s3Ak with high probability.

Lemma 4.5.2 (Q lies in s3Ak with high probability). Let Q be generated as described in

Equation (4.6), for an M ∈ Xk. Then with probability except (1/s2) + (s2/s
2
3), we have that

Q ∈ s3Ak.

Proof. The expected sparsity of Q is at most ∑i,j
k
s2
|Mi,j| ≤ k2

s2
since |M |1 ≤ k. Thus, by

Markov’s inequality, except with 1/s2 probability, Q and hence Q/s3 is k2-sparse. We also

have to show that with probability at least 1− 108, ∥Q∥F ≤ s3.

E ∥Q∥2
F ≤

∑
i,j

(
s2

k

)2
(
k|Mi,j|
s2

)
= s2|Mi,j|

k
= s2. (4.7)

Again, by Markov’s inequality, we get that with probability except s2/s
2
3, the Frobenius

norm of Q is at most s3. The lemma statement follows from the union bound.

Our choice of constants in Appendix B.3 would ensure that the failure probability in

Lemma 4.5.2 is at most 10−6. That is,

1
s2

+ s2

s2
3
≤ 10−6. (4.8)

It remains to show that Q belongs to s3Ak,P with high (constant) probability, i.e., with

probability 10−6 over sampling of Q, we have that Px∼P (x⊤Qx > s3 × s1|Q) ≤ q. Let

R := x⊤Qx, where both x and Q are sampled independently from P and Equation (4.6)

respectively.

To show this, we use the following the lemma for a sufficient condition involving

sampling both x and Q.
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Lemma 4.5.3. Consider a probability space over the randomness of independent variables X and

Y . Suppose the event E (over pairs (X, Y )) happens with probability at least 1 − αβ for some

α, β ∈ [0, 1]. Then, it must be the case that, with probability at least 1− α over the sampling of X ,

the conditional probability of E given X is at least 1− β.

Proof. For the sake of contradiction, suppose the lemma conclusion is false. Then

Pr
X,Y

(E) =
∫

Pr
Y

(E|X) d Pr(X) < (1− α) + α(1− β) = 1− αβ,

which contradicts the premise.

To conclude that Q ∈ s3Ak,P with high probability, it thus suffices to show that with

probability 1− 10−6 × q over both x and Q, R ≤ s3 × s1.

Lemma 4.5.4. Let R = x⊤Qx, where Q is independently drawn from the distribution in Equa-

tion (4.6) and x is drawn independently from P . Under the assumptions of Theorem 4.5.1,

P{R > s3 × s1} ≤
σ2

s1
+ 4
s3

+ s2 × ν4

s3 × s2
1
. (4.9)

Proof. We consider three exhaustive events, over x andQ, of E := {R > s3×s1}, and bound

the probability of each of them:

1. E1 := {(x,Q) : E[R|x] > s1}. Since E[R|x] = x⊤Mx, the event corresponds to

{x : x⊤Mx > s1}. We have that E[x⊤Mx] = ⟨Σ,M⟩ ≤ ∥Σ∥Xk
= σ2. By Markov’s

inequality, P(E ∩ E1) ≤ P(E1) ≤ σ2/(s1).

2. E2 := {(x,Q) : x ∈ F}, where F is the following event over x: F = {x : E[R|x] ≤

s1,Var(R|x) ≤ s3 × s2
1}. Observe that conditioned on x ∈ F , we have that R|x is a

random variable with mean at most s1 and variance at most s3 × s2
1. Thus for each

such x ∈ F , the conditional probability thatR > s3×s1 is at most s3s
2
1/((s3−1)2s2

1) by
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Chebyshev’s inequality. We thus get that P(E2 ∩ E) ≤ P(E|E2) = P(E|x ∈ F) ≤ 4/(s3),

where we use that s3 ≥ 2.

3. E3 := {(x,Q) : Var(R|x) ≥ s3 × s2
1}. We will upper bound P(E3). We first calculate

the Var(R|x) using the independence of entries of Q as follows:

Var(R|x) =
∑
i,j

x2
ix

2
j Var(Qi,j) =

∑
i,j:|Mi,j |≤s2/k

x2
ix

2
j |Mi,j|

(
s2

k
− |Mi, j|

)
.

To show that Var(R|x) is small with high probability, we will upper bound

E[Var(R|x)].

E[Var(R|x)] =
∑

i,j:|Mi,j |≤s2/k

|Mi,j|
(
s2

k
− |Mi, j|

)
E[x2

ix
2
j ]

≤
∑
i,j

s2

k
|Mi,j|E[x2

ix
2
j ]

≤ s2 × ∥M∥1 × ν4

k
(using E[x2

ix
2
j ] ≤

√
E[x4

i ]E[x4
j ] = ν4)

≤ s2 × ν4. (using ∥M∥1 ≤ k)

Thus Markov’s inequality implies that P(E ∩ E3) ≤ P(E3) ≤ (s2 × ν4)/(s3 × s2
1).

Taking the union bound, we get the desired result.

As reasoned above, we want the failure probability in Equation (4.9) to be less than

10−6 × q. That is,

σ2

s1
+ 4
s3

+ s2 × ν4

s3 × s2
1
≤ 10−6 × q. (4.10)

In Appendix B.3, we choose s1, s2, s3 and q such that the bound holds. This, by the reasoning

after Lemma 4.5.3, guarantees that Q satisfies the extra condition for s3Ak,P (on top of

being in s3Ak) with probability at least 1− 10−6.
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Taking a union bound, with failure probabilities 10−6 (for Q being in s3 ∈ Ak,

Lemma 4.5.2) and 10−6 for satisfying the additional criterion for being in s3Ak,P , we

conclude that Condition 1 happens with probability 1− 2 · 10−6.

Condition (II) Define the random variable Z to be

Z =
∑
i

I
(xix⊤

i )•Q>s3×s1

. (4.11)

The second condition is equivalent to saying that Z > 2× q×|S|, which we show to happen

with probability at least 4× 10−6.

The strategy is to lower bound E[Z], and then use Paley-Zygmund to show that Z

is large with constant probability. To lower bound the expectation, for any i such that

(xix⊤
i )•M > B, we want to lower bound PrQ((xix⊤

i )•Q > s3×s1), using either Chebyshev’s

inequality or the Berry-Esseen theorem (see Fact 4.5.5). First, note that for these i, E[(xix⊤
i )•

Q] = (xix⊤
i ) •M > B by our assumption. If Var[(xix⊤

i ) • Q] ≤ VZ , where VZ is a fixed

function of r and σ chosen in Appendix B.3, then by Chebyshev’s inequality, we have

Pr
(
(xix⊤

i ) •Q ≥ s3 × s1
)
≥ Pr

(
(xix⊤

i ) •Q ≥ B − 10×
√
VZ

)
≥ 0.99 , (4.12)

where the first inequality is true by our choice of s1, s3, VZ and B in Appendix B.3. Other-

wise, we have the case where Var[(xix⊤
i ) •Q] > VZ . In this case, we treat (xix⊤

i ) •Q as a

sum of independent variables

(xix⊤
i ) •Q =

∑
s,t

(xi)s(xi)tQs,t

and use the Berry-Esseen theorem, which requires bounding the sum of the third central

absolute moment of the summands.

Fact 4.5.5 (Berry-Esseen Theorem for Sums of Independent Variables). Consider a random
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variable ξ = ∑
i ξi, where the variables ξi are independent (but not necessarily identical) and each of

them has finite third moment. Denote µi as E[ξi], σ2
i as Var(ξi) and ρi as the third central absolute

moment, namely ρi = E[|ξi − µi|3]. Then,

dK(ξ,N (
∑
i

µi, σ
2
i )) ≤ 0.57

∑
i ρi

(∑i σ
2
i )1.5 = 0.57

∑
i ρi

(Var(ξ))1.5 ,

where dK is the Kolmogorov distance between two distributions (namely, the ℓ∞ distance between

the cumulative density functions).

Let ρs,t be the third central absolute moment of (xi)s(xi)tQs,t. For any (s, t) such that

0 < |Ms,t| ≤ s2/k, we can calculate its third moment as follows:

ρs,t = E[|(xi)s(xi)tQs,t − E[(xi)s(xi)tQs,t]|3]

= |(xi)s|3|(xi)t|3
|Ms,t|3

p3
s,t

E[|Ber(ps,t)− ps,t|3]

= |(xi)s|3|(xi)t|3
|Ms,t|3

p3
s,t

ps,t(1− ps,t)(1− 2ps,t + 2p2
s,t)

≤ |(xi)s|3|(xi)t|3
|Ms,t|3

p3
s,t

ps,t(1− ps,t) for all ps,t ∈ [0, 1]

≤ (σ2 × r2 × s2)(xi)2
s(xi)2

t

M2
s,t

p2
s,t

ps,t(1− ps,t)

(since |xi|∞ ≤ σ × r ×
√
k and |Ms,t|/ps,t = s2/k)

The same inequality holds trivially for (s, t), where |Ms,t| ≥ s2/k or Ms,t = 0 since ρs,t = 0

in both of these edge cases. Thus, the sum of the third central absolute moment of the

summands we need for Berry-Esseen is

∑
s,t

ρs,t ≤ (σ2 × r2 × s2)
∑
s,t

(xi)2
s(xi)2

t

M2
s,t

p2
s,t

ps,t(1− ps,t)

= (σ2 × r2 × s2) Var
(
(xix⊤

i ) •Q
)
,

where the last equality is a simple calculation to calculate the term-by-term variance for
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(xix⊤
i ) •Q. Thus, Fact 4.5.5 implies that the Kolmogorov distance between the distribution

of (xix⊤
i ) •Q and the Gaussian with the same mean and variance is at most

0.57
∑
s,t ρs,t

(Var((xix⊤
i ) •Q))1.5 ≤ 0.57(σ2 × r2 × s2)

Var
(
(xix⊤

i ) •Q
)

Var1.5
(
(xix⊤

i ) •Q
) ≤ 0.57(σ2 × r2 × s2)√

VZ
,

(4.13)

where the inequality comes from the assumption that the variance is at least VZ . Therefore,

(xix⊤
i ) •Q has at least probability 0.5− 0.57(σ2×r2×s2)√

VZ
of exceeding its expectation. By our

choice of quantities in Appendix B.3, this probability is at least 0.4. Furthermore, E((xix⊤
i )•

Q) = xix
⊤
i •M is bigger than B and in turn bigger than s3 × s1 (by our choice for these

quantities). Thus, with probability at least 0.4, (xix⊤
i ) •Q exceeds s3 × s1.

Combined with the guarantee that PrQ((xix⊤
i ) •Q > s3 × s1) > 0.99 in the case where

Var((xix⊤
i )•Q) ≤ VZ (cf. Equation (4.12)), we have shown that in all cases, PrQ((xix⊤

i )•Q >

s3 × s1) > 0.4 whenever xix⊤
i •M > B.

Thus, we have shown that E[Z] = ∑
i PrQ((xix⊤

i ) • Q > s3 × s1) > 0.4 × 0.01n =

0.004n, since at least 0.01 fraction of points satisfy xix
⊤
i • M > B and thus also satisfy

PrQ((xix⊤
i ) •Q > s3 × s1) > 0.4. Note also that Z ∈ [0, n] always, meaning that E[Z2] ≤ n2.

Since 0.004 ≥ 4× q by our choice of q, it then follows from the Paley-Zygmund inequality

that

Pr(Z > 2× q × |S|) ≥ 0.25(E[Z])2

n2 >
0.25× 0.0042n2

n2 = 4 · 10−6

showing the second claim above, and completing the proof of this lemma.

4.6 Smoothness of Stability Under Truncation

The goal of this section is to prove Theorem 4.4.1 (restated below), the stability result we

use in the proof of our main result, Theorem 4.4.2 and hence Theorem 4.1.4. Recall the
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function ha,b as defined in Equation (4.2).

Theorem 4.4.1. Let S be a set of n i.i.d. data points from a distribution P over Rd, and let T be a

0.01-corruption of S. Let µ̃ be the coordinate-wise median-of-means estimate computed from set T .

Let the mean of P be µ and covariance Σ such that ∥Σ∥Xk
≤ σ2, and for all i ∈ [d], E[X4

i ] ≤ O(σ4).

Suppose that n = Ω(k2 log d+ log(1/τ)). Let a = σ
√
k. With probability 1− τ over S, for all T we

have that there exists a subset S ′ ⊆ T with |S ′| ≥ 0.95n such that ha,µ̃(S ′) is (0.01, O(1), k)-stable

with respect to some µ′ and σ with ∥µ′ − µ∥∞ ≤ O(σ/
√
k).

In Section 4.5, we proved Theorem 4.5.1. While it is tempting to directly use Theo-

rem 4.5.1 to prove the main result of Theorem 4.4.2, it does not apply as-is for analyzing

Algorithm 1. If we tried to use Theorem 4.5.1 to prove Theorem 4.4.2, the intuitive way is

to apply Theorem 4.5.1 to the distribution ha,µ(X) for X ∼ P — ha,µ(X) is by construction

bounded in ℓ∞ norm, and the means and covariances of P and ha,b(X) are close in ℓ2,k norm

and Xk norm, respectively, by Lemma 4.3.2. However, in Algorithm 1, we do not truncate

samples by centering at µ, but instead use the coordinate-wise median-of-means estimate

as the truncation center, which is data-dependent and not any fixed vector. Thus, we have

to show that the stability result in Theorem 4.5.1 is insensitive to which point we center the

truncation at, and that as a corollary, an analogous result holds even if we truncate using

the coordinate-wise median-of-means estimate as the center. The final statement of this

section is captured by Theorem 4.4.1, and much of this section is dedicated to showing the

“Lipschitzness” of the stability of samples, as we truncate using different preliminary mean

estimates.

To show this “Lipschitzness” property, we make the following observation. Suppose we

start with the set of n i.i.d. samples S from P , which we know by Theorem 4.5.1 contains a

large subset S1 such that ha,µ(S1) is stable with respect to the mean vector of the truncated

distribution µ′ = EX∼P [ha,µ(X)]. Further suppose we are able to show that S contains

another large subset S2 that is “coordinate-wise regular”, meaning that for each coordinate

j ∈ [d], most samples in S2 are close to µj in coordinate j. Then the intersection S3 = S1∩S2
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enjoys both stability and coordinate-wise regularity, and furthermore the stability of ha,b(S3)

holds for any vector b that is close to both µ and µ′. This observation is shown as Lemma 4.6.1

in Section 4.6.1, and we show the existence of S2 in Lemma 4.6.3 in Section 4.6.2. The proof

of Theorem 4.4.1 combines the above two lemmas and Theorem 4.5.1, and is presented in

Section 4.6.3.

4.6.1 Lipschitzness of Truncation Under Coordinate-wise Regularity

As explained before this subsection, Lemma 4.6.1 shows that if our set of uncontaminated

samples S is such that 1) there exists a large subset S1 with ha,µ(S1) being stable, and 2)

there is another large “coordinate-wise regular” subset S2, then S3 = S1 ∩ S2 is a large

subset of S that is both “coordinate-wise regular” and ha,b(S3) is stable for any b sufficiently

close to µ. In the following statement, instead of saying that ha,µ(S1) and ha,b(S3) are stable,

we use the essentially equivalent condition (by Proposition B.1.1) that the Xk-norms of the

empirical covariance matrices are small.

Lemma 4.6.1 (Lipschitzness of Truncation under Coordinate-wise Regularity). Let µ, µ′ be

vectors in Rd and let a ∈ R+ be greater than 2. Let S = {x1, . . . , xn} ⊆ Rd be the set of n points.

Suppose there exist a set S1 ⊂ [n] satisfying the following for some r ∈ R+:

|S1| ≥ 0.98n and

∥∥∥∥∥∥ 1
|S1|

∑
i∈S1

(ha,µ(xi)− µ′)(ha,µ(xi)− µ′)⊤

∥∥∥∥∥∥
Xk

≤ r . (4.14)

Suppose also that, for some γ ∈ (0, 1), there exist a set S2 ⊂ [n] satisfying the following:

|S2| ≥ 0.99n and ∀j ∈ [d] :
∑
i∈S2

I
|xi,j−µj |≥a/2

≤ γn . (4.15)

Then, we have the following: there exists a set S3 ⊂ [n] such that for all b ∈ Rd satisfying
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∥b− µ∥∞ ≤ a/2 and ∥b− µ′∥∞ ≤ a, we have that

|S3| ≥ 0.97n and

∥∥∥∥∥∥ 1
|S3|

∑
i∈S3

(ha,b(xi)− µ′)(ha,b(xi)− µ′)⊤

∥∥∥∥∥∥
Xk

≤ 1.1r + 5aγk∥b− µ∥∞ .

(4.16)

Proof. We will take S3 = S1 ∩ S2, which directly implies that |S3| ≥ 0.97n. For any M ∈ Xk,

since xx⊤ •M ≥ 0, we have the following:

〈
M,

1
|S3|

∑
i∈S3

(ha,µ(xi)− µ′)(ha,µ(xi)− µ′)⊤
〉

≤
〈
M,

1
|S3|

∑
i∈S1

(ha,µ(xi)− µ′)(ha,µ(xi)− µ′)⊤
〉

≤ 1
0.97r .

Let F (b) be the following matrix:

F (b) = 1
|S3|

∑
i∈S3

(ha,b(xi)− µ′)(ha,b(xi)− µ′)⊤ .

We will establish that ∥F (b) − F (µ)∥χk
≤ 5aγk∥b − µ∥∞, which establishes the lemma

statement by the triangle inequality. In order to do that, we will show that ∥F (b)−F (µ)∥∞ ≤

5aγ∥b− µ∥∞ and then use Lemma 4.6.2 below (proved in Appendix B.1.3).

Lemma 4.6.2. Let A ∈ Rd×d be a symmetric matrix such that |Ai,i| ≤ η1 for each i ∈ [d], and

|Ai,j| ≤ η2 for each i ̸= j ∈ [d]× [d]. Then ∥A∥Xk
≤ η1 + kη2.

Consider an arbitrary (j, ℓ)-entry of these matrices. By abusing notation, when x and

y are scalar, we use ha,y(x) to be the function from R → R defined analogously to Equa-

tion (4.2). Let g(·, ·) be the following function that is equal to the (j, ℓ) entry of the matrix
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F (b), which is explicitly

g(bj, bℓ) = 1
|S3|

∑
i∈S3

(ha,bj
(xj)− µ′

j)(ha,bℓ
(xℓ)− µ′

ℓ) .

We will show that g(·, ·) is locally Lipschitz in its arguments. Consider a particular i ∈ S3

and define the following:

gi(bj, bℓ) = (ha,bj
(xi,j)− µ′

j)(ha,bℓ
(xi,ℓ)− µ′

ℓ).

Then, we can upper bound the difference for each sample by

|gi(bj,bℓ)− gi(µj, µℓ)|

= |(ha,bj
(xi,j)− µ′

j)(ha,bℓ
(xi,ℓ)− µ′

ℓ)− (ha,µj
(xi,j)− µ′

j)(ha,µℓ
(xi,ℓ)− µ′

ℓ)|

≤ |(ha,bj
(xi,j)− ha,µj

(xi,j))(ha,bℓ
(xi,ℓ)− µ′

ℓ)|

+ |(ha,µj
(xi,j)− µ′

j)(ha,bℓ
(xi,ℓ)− ha,µℓ

(xi,ℓ))|

≤ (a+ ∥b− µ′∥∞) · ∥b− µ∥∞

(
I

|xi,j−µj |≥a−∥b−µ∥∞
+ I

|xi,ℓ−µℓ|≥∥b−µ∥∞

)

≤ (a+ ∥b− µ′∥∞) · ∥b− µ∥∞

(
I

|xi,j−µj |≥a/2
+ I

|xi,ℓ−µℓ|≥a/2

)

≤ 2a · ∥b− µ∥∞

(
I

|xi,j−µj |≥a/2
+ I

|xi,ℓ−µℓ|≥a/2

)
,

where we use that |ha,y(x)−ha,z(x)| ≤ |y−z|, |ha,y(x)−z| ≤ |a+y−z|, and |ha,y(x)−ha,z(x)|

is non-zero only if |x− y| ≥ a− |y − z|.

Combined with assumption Equation (4.15), this implies that

|g(bj, bℓ)− g(µj, µℓ)| ≤ 2a · ∥b− µ∥∞ ·
2γ

0.97 ≤ 5aγ∥b− µ∥∞.
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By Lemma 4.6.2, we have the following:

∥F (b)− F (µ)∥Xk
≤ k∥F (b)− F (µ)∥∞ ≤ 5aγk · ∥b− µ∥∞·

4.6.2 Existence of Large Subset of “Coordinate-wise Regular” Samples

This subsection shows Lemma 4.6.3, which states that with high probability there exists

a large subset of “coordinate-wise regular” samples where in each dimension at most

a negligible fraction of the points have large magnitude. As explained earlier, we will

combine Lemmata 4.6.1 and 4.6.3 to show Theorem 4.4.1.

For a vector Xi ∈ Rd, we will use Xi,j to refer to the j-th coordinate of Xi.

Lemma 4.6.3. Let P be a distribution over Rd, and k ∈ [d]. For X ∼ P , suppose for all j ∈ [d],

E[X4
j ] ≤ ν4. Then, there exists a positive constant c1 such that, with probability at least 1− τ over

the set S of n ≥ c1(k1.5 + log(1/τ)) i.i.d. samples from P , S contains a (large) subset S ′ such that

the following hold simultaneously:

1. |S ′| ≥ 0.99|S|, and

2. For each j ∈ [d], the number of points in S ′ with their j-th coordinate at least 2ν
√
k in

magnitude is at most n/k1.5. Equivalently,

∀j ∈ [d] :
∑
i∈S

I
|Xi,j |≥2ν

√
k
≤ n

k1.5 . (4.17)

Before providing the proof of Lemma 4.6.3, we highlight why the result is not obvious.

The first approach that one may try is to show that the original set S directly satisfies

the claim, that is, (with high probability) in each coordinate, the fraction of points with

large magnitude in that coordinate is at most k−1.5. At the population level, this is indeed
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true by the fourth moment assumption: for any fixed i ∈ [n] and j ∈ [d], the probability

that |Xi,j| is large is at most O(1/k2). However, for this to hold with probability 1 −

τ , one requires roughly k1.5 log(1/τ) samples even in 1 dimension8, which would give a

multiplicative dependence on log(1/τ) instead of additive dependence.

The second approach that one may try would be the following: define S ′ to be the

set of all “good” samples, where we say a sample is “good” if all of its coordinates are

smaller than cν
√
k. However, for any fixed coordinate j ∈ [d], the probability that the j-th

coordinate of a sample being larger than cν
√
k can be as large as 1/k2. Thus, when d≫ k2,

the probability that a particular sample is “bad” may be arbitrarily close to 1 — for example,

when coordinates are independent — and the resulting set S ′ will be too small with high

probability.

We now give the proof of Lemma 4.6.3, which phrases the existence of the set S ′ as an

integer program feasibility problem. The proof considers the LP relaxation and uses LP

duality techniques to show that the integer program has to be feasible.

Proof. We will assume that k ≥ C for a large enough constant. If k is smaller than the

constant, then the result follows by applying Bernstein inequality and taking S ′ = S.

Let S = {Y1, . . . , Yn}. For i ∈ [n] and j ∈ [d], we use Zi,j to denote I|Yi,j |≥c2ν
√
k. For

simplicity, we set α = k−1.5/3. Our goal is to show that the following integer program is

feasible:

variables p1, . . . , pn

subject to ∀j ∈ [d] :
n∑
i=1

piZi,j ≤ 3αn

n∑
i=1

pi ≥ 0.99n

∀i ∈ [n] : pi ∈ {0, 1}.

(F1)

8The upper bound follows from a Chernoff bound, and the lower bound follows from the fact that
Chernoff bounds are essentially tight for sums of Bernoulli coins.
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As argued above in the prose after the statement, one needs to argue about all the samples,

and their coordinates, simultaneously to prove the statement. Since directly handling

the feasibility program (F1) seems difficult, our argument will go in the following steps:

(i) first consider the LP relaxation of (F1), (ii) using duality theory, the LP relaxation is

feasible if and only if the dual LP is infeasible, (iii) simplify the dual LP and show that,

with high probability, the resulting program is infeasible.

We begin by considering the LP relaxation.

variables p1, . . . , pn

subject to ∀j ∈ [d] :
n∑
i=1

piZi,j ≤ αn

n∑
i=1

pi ≥ 0.999n

∀i ∈ [n] : pi ∈ [0, 1].

(F2)

We first show that if the above LP relaxation, (F2), is feasible, then (F1) is also feasible.

Claim 4.6.4 (Feasibility of (F2) implies feasibility of (F1)). Suppose n > 106 and α ≥

(4 log n)/n. If (F2) is feasible, then (F1) is also feasible.

Proof. Let p1, . . . , pn be the feasible solution to (F2). Consider the following random assign-

ment, for i ∈ [n], Pi ∼ Ber(pi) independently. We will show that, with non-zero probability,

Pi’s satisfy (F1). We will use the following inequality:

Fact 4.6.5 (Chernoff Inequality). Let a1, . . . , an such that ai ∈ {0, 1}. Let W1, . . . ,Wn be

independent Bernoulli random variables and consider the random variable Z = ∑n
i=1 Wi. Then,

with probability 1− τ , Z ≤ 2(EZ + log(1/τ)).

By Fact 4.6.5, we get that each of the inequalities in (F1) holds with probability 1−1/(2n)

as long as nα ≥ 2 log(2n) and n > 1000 log(2n). The latter holds when n ≥ 106.
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Since n > 106 in our setting (as k is large and choosing c1 to be large enough) and

α = 1/(3k1.5), we have that α ≥ 4(log n)/n is equivalent to n ≥ 12k1.5 log n, which is satisfied

when n ≥ 100k1.5 log k. The latter holds when n ≥ ck1.5 log d for a large enough constant c.

Thus, in the remainder of this section, we will show that, with high probability, this LP

program is indeed feasible. We begin by considering the following dual program:

variables w1, . . . , wd, y1, . . . , yn, x

subject to
n∑
i=1

yi + αn
d∑
j=1

wj < 0.999nx

∀i ∈ [n] : yi +
d∑
j=1

Zi,jwj ≥ x

z ≥ 0, ∀i ∈ [n] : yi ≥ 0, ∀j ∈ [d] : wj ≥ 0.

(F3)

Suppose for the sake of contradiction that (F2) is infeasible. By Farkas’ lemma [GKT51], it

means that the (dual) program in (F3) is feasible. Formally, we have the following claim:

Claim 4.6.6 (LP Duality for (F2)). (F3) is infeasible if and only if (F2) is feasible.

Claim 4.6.6 follows from Farkas’ lemma. We will argue that (F3) is infeasible by showing

that the following program, which is feasible whenever (F3) is feasible, is infeasible.

variables w1, . . . , wd, A

subject to ∀i ∈ A :
d∑
j=1

Zi,jwj ≥ α(
d∑
j=1

wj)

∀j ∈ [d] : wj ≥ 0,

A ⊂ [n], |A| ≥ 10−3n

(F4)

(F4) states that for at least 10−3 fraction of i’s in n, the following inequality holds:∑d
j=1 Zi,jwj ≥ α∥w∥1. The following claim relates the two programs above.

Claim 4.6.7. If (F3) is feasible, then (F4) is feasible.
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Proof. Let y1, . . . , Yn, w1, . . . , wd, x be any feasible solution to (F3). Then the first constraint

in (F3) that the average of yi’s is less than 0.999x− α(∑d
j=1 wj). By Markov’s inequality, the

fraction of the yi’s such yi ≥ (x− α(∑d
j=1 wj)) is at most 0.999x−α(

∑d

j=1 wj)

(x−α(
∑d

j=1 wj))
≤ 0.999. Thus the

fraction of yi’s such that yi < (x− α(∑d
j=1 wj)) is at least 0.001.

Let A ⊂ [n] be the set of such indices. For any i ∈ A, the second constraint in (F3)

implies that ∑d
j=1 Zi,jwj ≥ x− yi ≥ α(∑d

j=1 wj). This implies that (F4) is feasible.

In order to argue that (F4) is infeasible, we first consider a particular w. Using calcula-

tions provided below, it can be seen that the probability that a particular w satisfies (F4) is

exponentially small in n. However, a direct approach at covering w seems difficult since w

is a dense vector in Rd and n = o(d). Using a randomized rounding mechanism, we show

that it suffices to consider only sparse w as follows:

variables w1, . . . , wd, A

subject to ∀i ∈ A :
d∑
j=1

Zi,jwj ≥ 1

∀j ∈ [d] : wj ∈ {0, 1},
d∑
j=1

wj ≤
2× 107

α

A ⊂ [n], |A| ≥ 10−4n

(F5)

The following claim shows that if (F4) is feasible then (F5) is also feasible.

Claim 4.6.8. If (F4) is feasible, then (F5) is also feasible.

Proof. Let w1, . . . , wd and A be the feasible solution to (F5). Set qj = min(1, wj/(α∥w∥1))

for j ∈ [d]. Consider the following random assignment: set Wj ∼ Ber(qj) independently

for j ∈ [d]. We will show that with non-zero probability Wj’s satisfy (F5). Consider the
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following events:

E1 :=


d∑
j=1

Wj ≤ 2× 10−7(1/α)

 , and E2 :=

|{i :
d∑
j=1

Zi,jWj ≥ 1}| ≥ 10−4n

 (4.18)

We will show that P{cE1} ≥ 1− 5× 10−8 and P{cE2} ≥ 10−7. By a union bound, we will

have that E1 ∩ E2 has non-zero probability and thus (F5) is feasible.

Let F := {j ∈ [d] : Wj = 1} be the set of coordinates where Wj is non-zero. Then

E[|F |] = E[∑d
j=1 Wj] = ∑d

j=1 qj ≤ 1/α. Thus with probability at least 1− 5× 10−8, we have

that the number of non-zero Wj’s is at most 2×107

α
. Equivalently, P{E1} ≥ 1− 5× 10−8.

We now focus on the second event E2. Let S1, . . . , Sn be the subsets of [d] such that

Si = {j ∈ [d] : Zi,j = 1}, i.e., for each sample i, Si is the set of indices where the coordinates

are large. Consider the random variables R1, . . . , Rn, where for i ∈ [n], Ri := ∑d
j=1 Zi,jWj =∑

j∈Si
Zi,jWj . (F5) requires that for at least 10−4 fraction of i’s, Ri ≥ 1. Since Zi,j’s are

binary and fixed, we have that Ri is distributed as Binomial random variable and is thus

anti-concentrated.

Fact 4.6.9 (Anti-concentration of Binomial). Let X ∼ Binomial(n, p) for some n ∈ N and

p ∈ [0, 1]. Suppose E[X] ≥ 1. Then P{X ≥ 1} ≥ (1− 1/e).

Proof. Using the fact that 1 + x ≤ ex for all x ∈ R, we get the following:

P{X ≥ 1} = 1− P{X = 0} = 1− (1− p)n ≥ 1− (e−p)n = 1− e−np ≥ (1− 1/e).

Consider a fixed i ∈ A. Then either there exists a j ∈ Si such that qj = 1, or for all j ∈ Si,

qj < 1. In the former case, we have that Ri is at least one since Wj = 1.

In the latter setting, we have that qj = wj/(α∥w∥1) for all j ∈ Si, and thus E[Ri] =∑d
j∈Si

Zi,jqj = ∑d
j=1 Zi,jwj/(α∥w∥1) ≥ 1. Applying Fact 4.6.9 to any such i ∈ A, we get that

the probability of Ri being positive is at least 1− 1/e. Let A′ be set of i’s such that Ri ≥ 1,
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i.e., A′ = {i : Ri ≥ 1}. Thus combining the two cases above, we have the following:

∀i ∈ A : P{i ∈ A′} ≥ 0.5. (4.19)

Thus E[|A′|] ≥ 0.5|A| ≥ 5×10−4. Since |A′| lies in [0, n], applying Paley-Zygmund inequality

to the random variable |A′|, we get the following:

P{|A′| ≥ 10−4n} ≥ P{|A′| ≥ 0.2E[|A′|]} ≥ 0.64(E[|A′|])2

n2 ≥ 0.64× 25× 10−8 > 10−7.

(4.20)

Equivalently, P{E2} ≥ 10−7. This completes the proof.

Thus, it suffices to show that, with high probability, (F5) is infeasible.

Lemma 4.6.10 (Infeasibility of (F5)). Under the setting of Lemma 4.6.3 and when k > 1026,

there exists a constant c1 > 0 such that if n ≥ c1(k1.5 log d+ log(1/τ)), then with probability 1− τ ,

(F5) is infeasible.

Proof. First consider any fixed w = (w1, . . . , wd) such that wi ∈ {0, 1} and ∑d
j=1 wj ≤

2× 107 · (1/α).

Consider the integer-valued random variables R1, . . . , Rn such that Ri = ∑d
j=1 Zi,jwj ,

and observe that Ri’s are i.i.d. random variables (since Xi’s are i.i.d. random variables).

Thus, (F5) requires that at least 10−4% of Ri’s are non-zero.

By the fourth moment bound on each coordinate, we have that E[Zi,j] = P{Xi,j ≥

2ν
√
k} ≤ 1/k2 for each i and j. Therefore, the expectation of each Ri is at most

d∑
j=1

wj E[Zi,j] ≤
d∑
j=1

wj(1/k2) ≤ (2× 107)/(k2α) = (2× 107)/(k2α) = (6× 107)/
√
k

, which is less than 10−5 for k large enough. By Markov’s inequality, the probability that

P{R1 ≥ 1} ≤ 10−5.
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Hence, by the Chernoff bound (since Ri’s are independent), with probability at least

1 − E(−c′n), the fraction of Ri’s that are non-zero is at most 5 × 10−5. Hence, with the

same probability, this particular choice of w does not satisfy (F5). Since there are at most

d(2×107)/α) such choices of w, applying a union bound, we get that (F5) is infeasible with

probability at least 1−E((2×107)/α) · log d− c′n). The failure probability is at most τ when

n ≳ log(1/τ) + k1.5 log d. This concludes the proof.

Since we assumed k is large enough, Lemma 4.6.10 is applicable. Lemma 4.6.10 implies

that, with high probability, the program (F5) is infeasible. Hence, with the same high

probability, the programs (F4) and (F3) are also infeasible, and the programs (F1) and

(F2) are feasible. This completes the proof.

4.6.3 Proof of Theorem 4.4.1

We now combine Lemmata 4.6.1 and 4.6.3 to show Lemma 4.6.11, stating that with high

probability over the uncontaminated and untruncated samples S, there is a large subset

S ′ such that for any truncation center b that is close to the true mean, ha,b(S ′) is stable for

a = Θ(σ
√
k) as chosen in Algorithm 1. Theorem 4.4.1 follows a corollary, by instantiating b

to be the coordinate-wise median-of-means estimate.

Lemma 4.6.11. Let S be a set of n i.i.d. data points from a distribution P over Rd. Let the mean

of P be µ, and covariance Σ such that ∥Σ∥Xk
≤ σ2, and for all i ∈ [d], E[X4

i ] ≤ O(σ4). Suppose

n = Ω(k2 log d + log(1/τ)). Let a = 4σ
√
k. With probability 1− τ over S, there exists a subset

S ′ ⊂ S with |S ′| ≥ 0.95n such that for any b satisfying ∥b − µ∥∞ = O(σ), we have ha,b(S ′) is

(0.01, O(1), k)-stable with respect to some µ′ and σ with ∥µ′ − µ∥∞ ≤ O(σ/
√
k).

Proof. Let P ′ be the distribution of ha,µ(P ) and let µ′ and Σ′ be the mean and covariance of

P ′. This will be the µ′ in the lemma statement. By Lemma 4.3.2, we get that (i) ∥µ′−µ∥∞ ≤

σ/
√
k, (ii) ∥Σ− Σ′∥Xk

≤ O(σ2), (iii) P ′ is supported on the set {x : ∥x− µ′∥∞ ≤ 2a}, and
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(iv) the axis-wise fourth moment of P ′ is upper bounded by a constant multiple of that of

P . Thus Theorem 4.5.1 can be applied to P ′.

Applying Theorem 4.5.1 to P ′ gives that, with probability at least 1− τ , there exists a

subset S1 ⊂ S (which are samples from P , before truncation) with |S1| ≥ 0.98n such that

ha,µ(S1) is (0.01, O(1), k)-stable with respect to µ′. In particular, we have

∥∥∥∥∥∥ 1
|S1|

∑
i∈S1

(ha,µ(xi)− µ′)(ha,µ(xi)− µ′)⊤

∥∥∥∥∥∥
Xk

≤ O(σ2). (4.21)

Let r := σ/(maxj∈[d] EX∼P [X4
j ])1/4. By our assumption on P in the lemma, we have

r = Θ(1). By applying Lemma 4.6.3 to P − µ, and using kr2 in place of k in Lemma 4.6.3,

with probability at least 1− τ , there exists a subset S2 ⊂ S with |S2| ≥ 0.99n such that for

all j ∈ [d],

∑
i∈S2

I
|xi,j−µj |≥a/2

=
∑
i∈S2

I
|xi,j−µj |≥2ν

√
kr2
≤ O(k−1.5r−3)n ≤ O(k−1.5)n. (4.22)

We can then apply Lemma 4.6.1 to show that, conditioned on the above two existence

events, there exists a third subset S3 ⊂ S with |S3| ≥ 0.97n such that for all b satisfying

∥b− µ∥∞ ≤ O(σ) and ∥b− µ′∥∞ ≤ O(σ) (the latter holds by the triangle inequality for all b

with ∥b− µ∥∞ ≤ O(σ)), we have that

∥∥∥∥∥∥ 1
|S3|

∑
i∈S3

(ha,b(xi)− µ′)(ha,b(xi)− µ′)⊤

∥∥∥∥∥∥
Xk

≤ O(σ2) +O(ak−1.5k∥b− µ∥∞) (4.23)

≤ O(σ2). (4.24)

By Proposition B.1.1, this implies S3 contains a set S ′ satisfying the following: (i)

|S ′| ≥ 0.95n and (ii) ha,b(S ′) is (0.1, O(1), k)-stable with respect to µ′ and σ, for any b

satisfying ∥b− µ∥∞ ≤ O(σ). Thus, we choose S ′ in the lemma statement to be this set.

Taking a union bound, all the above events fail with probability at most O(τ). Reparam-
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eterizing yields the lemma statement.

Theorem 4.4.1. Let S be a set of n i.i.d. data points from a distribution P over Rd, and let T be a

0.01-corruption of S. Let µ̃ be the coordinate-wise median-of-means estimate computed from set T .

Let the mean of P be µ and covariance Σ such that ∥Σ∥Xk
≤ σ2, and for all i ∈ [d], E[X4

i ] ≤ O(σ4).

Suppose that n = Ω(k2 log d+ log(1/τ)). Let a = σ
√
k. With probability 1− τ over S, for all T we

have that there exists a subset S ′ ⊆ T with |S ′| ≥ 0.95n such that ha,µ̃(S ′) is (0.01, O(1), k)-stable

with respect to some µ′ and σ with ∥µ′ − µ∥∞ ≤ O(σ/
√
k).

Proof. By Fact 4.2.1, we know that with probability at least 1 − τ , we have ∥µ̃ − µ∥∞ ≤

O(σ)O(1 + (log(d/τ))/n) = O(σ) by the assumption that n is sufficiently large.

Thus, we use µ̃ as “b” in Lemma 4.6.11 to yield the stability guarantee in the theorem

statement.

The total failure probability is at most 2τ , and reparameterizing yields the theorem

statement.

4.7 Information-Theoretic Lower Bound

In this section, we show that the asymptotic error of Theorem 4.1.4 is optimal under a mild

assumption on k. Let Dk be the family of all distributions over Rd that satisfy the following:

1. For every D ∈ Dk, the mean of D is k-sparse,

2. For every D in Dk the covariance of D is upper bounded by I in spectral norm, and

3. For everyD ∈ Dk we have that E[(Xi−E[Xi])4] = O(1), whereX = (X1, . . . , Xd) ∼ D.

Lemma 4.7.1. Let k ≥ 1/
√
ϵ. Then there exist two distributions in D1 and D2 in Dk such that the

following hold: (i) dTV(D1, D2) = ϵ, and (ii) The means of D1 and D2 are separated by Ω(
√
ϵ) in

ℓ2,k-norm.
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Before giving the proof of Lemma 4.7.1, we remark that the assumption of k ≥ 1/
√
ϵ

is mild. First, the assumption is independent of the ambient dimensionality d—the most

challenging parameter regime in algorithmic robust statistics is when we fix a small ϵ and

then take the dimensionality d to ∞. Second, the typical interesting sparsity regime is

when k is super-constant but grows very slowly in d, say, logarithmically. The assumption

that k ≥ 1/
√
ϵ applies readily to the above regime.

Proof. Let D1 be the distribution that places all of its mass at origin, i.e., (0, . . . , 0). Let D2

be the distribution that places (1− ϵ) probability mass at origin and places ϵ probability

mass at y, where the first k-coordinates of y are α for some α to be decided later and the

remaining d− k coordinates are 0.

It is easy to see that the total variation distance betweenD1 andD2 is ϵ, and thatD1 ∈ Dk.

We will now show that D2 ∈ Dk for a suitable value of α.

1. First the mean of D2 is ϵy, which is k-sparse by construction.

2. We have that the covariance of D2 is ϵyy⊤ − ϵ2yy⊤ = ϵ(1 − ϵ)yy⊤ ⪯ ϵyy⊤, which is

upper bounded by 1 in spectral norm if ∥y∥2 ≤ 1/
√
ϵ. Since ∥y∥2 =

√
kα, we want

that α ≤ 1/
√
kϵ.

3. Finally, let X ∼ D2. For every i > k, we have that E[(Xi − E[Xi])4] = 0. For i ∈ [k],

E[(Xi−E[Xi])4] = E[(Xi− ϵα)4] ≤ 8(E[X4
i + ϵ4α4]) = 8(ϵα4 + ϵ4α4) ≤ 16ϵα4, which is

less than 16, if α ≤ ϵ−1/4.

Thus, the above construction goes through as long as α ≤ min(1/
√
kϵ, ϵ−1/4). When k ≥

1/
√
ϵ, it suffices that α = 1/

√
kϵ. Finally, we note that the difference in means of D1 and D2

is ϵ∥y∥2 = ϵ
√
kα =

√
ϵ for the chosen value of α.



106

5 robust linear regression

िकसी को घर से िनकलते ही मल गई मं ज़ल
कोई हमारी तरह उम्र भर सफ़र में रहा

—अहमद फ़राज़

We study the problem of linear regression where both covariates and responses are

potentially (i) heavy-tailed and (ii) adversarially contaminated. Several computationally

efficient estimators have been proposed for the simpler setting where the covariates are

sub-Gaussian and uncontaminated; however, these estimators may fail when the covariates

are either heavy-tailed or contain outliers. In this work, we show how to modify the Huber

regression, least trimmed squares, and least absolute deviation estimators to obtain estima-

tors which are simultaneously computationally and statistically efficient in the stronger

contamination model. Our approach is quite simple, and consists of applying a filtering

algorithm to the covariates, and then applying the classical robust regression estimators to

the remaining data. We show that the Huber regression estimator achieves near-optimal

error rates in this setting, whereas the least trimmed squares and least absolute deviation

estimators can be made to achieve near-optimal error after applying a postprocessing step.

5.1 Introduction

Robust linear regression is a well-studied topic in statistics, both from the viewpoint

of theory and practice [HR09; HRRS11; MMYS19]. It has long been observed that the

introduction of even a handful of outliers can massively affect the quality of a regression

estimator; furthermore, high-leverage points, which are outlying in terms of their covariate

values, have the potential for even more drastic consequences. Various methods have been

proposed to alleviate the effect of outliers in the data, including diagnostic tests which

focus on identifying and removing outliers [CW82]. On the other hand, such methods are
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mostly heuristic and few theoretical results exist in this area.

Much classical work in robust linear regression focuses on developing and analyzing

estimators that are applied aggregately to an entire data set and are relatively insensitive

to certain types of perturbations in the data. These estimators include different fami-

lies of M -estimators [Hub73], GM -estimators [Mal75], S-estimators [RY84], and MM -

estimators [Yoh87]. Notably, most of the corresponding statistical theory has focused on

analyzing i.i.d. data, often assumed to be drawn from a mixture distribution involving the

parametric model and a (possibly heavy-tailed) contaminating distribution. Recent years

have seen a flurry of activity on the somewhat different topic of adversarial contamination—

spurred by advances in the theoretical computer science community and motivated by

modern machine learning applications—and several approaches have subsequently been

proposed for estimating the mean of a multivariate distribution [DK19]. An interesting

question which has remained largely unaddressed is whether simpler and seemingly more

straightforward approaches such as M -estimation can be proven to achieve similar error

guarantees as the more complicated proposals which have emerged from this line of work.

On the topic of M -estimation, Sasai and Fujisawa [SF20] recently derived bounds for

linear regression with a Huber loss when adversarial contamination may be present in the

response variables. Slightly earlier analysis from [BJK15; BJKK17] provided guarantees

for the popular least trimmed squares estimator [Rou84] with adversarially contaminated

responses. In contrast, no analogous error bounds have been furnished for the behavior

of these or other estimators when the covariates are adversarially contaminated. Rather,

a series of classical results on the low breakdown point of regression estimators [Dav93]

established the rather pessimistic message that adversarially contaminating even a single

data point in both covariates and responses may have an unbounded effect on the accuracy

of a convexM -estimators such as the Huber or least absolute deviation regression estimators

(see, e.g., the book [MMYS19] and the references cited therein). Of course, the difficulty in

using nonconvex loss functions is that nontrivial challenges arise in optimization.
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We note, however, that the failure of simple M -estimation assumes that all the points

are included in the estimation procedure, whereas a grossly outlying point might easily

be flagged before fitting a moderately robust estimator on the remaining data. In Huber’s

textbook [HR09, p. 152], we find the following comment: “Undoubtedly, a typical cause

for breakdown in regression are gross outliers in the carrier X . In the robustness literature,

the problem of leverage points and groups has therefore been tackled by so-called high

breakdown point regression…. I doubt that this is the proper approach…. In my opinion, if

there are sizable minority components, the task of the statistician is not to suppress them,

but to disentangle them.” However, the literature on how to perform outlier removal in a

theoretically rigorous manner is fairly sparse.

Regarding heavy-tailed distributions, the ordinary least squares estimator may be

shown to be highly suboptimal when the additive errors are allowed to be heavy-tailed (cf.

Proposition C.5.2 in the appendix). Concretely, in a setting with p parameters, n data points,

and noise variance σ2, the ℓ2-error of the ordinary least squares estimator may increase

as Θ
(
σ
√

p
nτ

)
with probability τ—in contrast to the error bound O

(
σ
√

p
n

+ σ
√

log(1/τ)
n

)
,

which may be achieved under sub-Gaussian distributional assumptions. Starting from the

seminal work of Catoni [Cat12], the topic of heavy-tailed estimation has been an active area

of research in theoretical statistics in recent years [Men15; MZ20; LL20; Hop20; LM19a;

DL22b; HS16], and for regression, Lugosi and Mendelson [LM19c; LM19a] introduced an

estimator based on a median-of-means algorithm which achieves the sub-Gaussian error

rate even in heavy-tailed scenarios, provided n = Ω(p). On the other hand, the proposed

estimator has runtime exponential in the dimension, hence is not computationally feasible

for large p. More recently, Cherapanamjeri et al. [CHKRT20] proposed a polynomial-time

estimator with the desired error rate when n = Ω̃
(
p
√

log(1/τ)
)
. However, the estimator

requires the covariates to satisfy a stronger condition: a sum-of-squares (SOS) certifiable

proof of degree 8. The proposed algorithm involves solving a large semidefinite program

which, although achievable in polynomial time, is not very practical.
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In this paper, we take a cue from the literature on robust mean estimation under adver-

sarial contamination, in which the proposed algorithms implicitly involve a filtration or

screening step to identify and remove outlying data points, after which a (weighted) empir-

ical mean is computed on the remaining data [LRV16; DKKLMS16] (cf. Appendix C.1.1).

The success of such algorithms stems from a useful lemma which states that when the

distribution of the uncontaminated data is isotropic, the empirical mean of a set of data

points which have an approximately isotropic empirical covariance matrix will be close to

the true mean. The filtering mechanism consequently operates by iteratively removing data

points until the remaining set is approximately isotropic—theoretically, one can show that

the proposed filters do not remove too many uncontaminated data points, while removing

any adversarially introduced outliers that move the sample mean sufficiently far from

the true mean. A key insight of this paper is that the condition of approximate isotropy

of the empirical covariance (also known as stability) is in fact a sufficient condition for

the success of classical robust regression estimators such as the Huber M -estimator, least

trimmed squares (LTS), and least absolute deviation (LAD) estimator. Thus, an adversari-

ally contaminated data set may first be preprocessed by applying a filter to the covariates,

and then the classical estimator may be applied to the remaining data to obtain an overall

estimate close to the true regression vector. A careful analysis shows that this method

can be applied to data sets which possess adversarial contamination in both the covariates

and responses. Furthermore, the same method can be used to obtain error guarantees for

heavy-tailed covariates and/or responses. Perhaps it is unsurprising that both adversarial

contamination and heavy-tailed distributions may be treated using similar estimators, since

in the latter case, “outlying" points may be seen as occurring due to randomness naturally

present in the sample rather than having been introduced adversarially.

In concurrent work, Zhu et al. [ZJS22b] and Bakshi and Prasad [BP21] studied

computationally-efficient algorithms for heavy-tailed robust regression in a more general

setting, where the covariance Σ of the covariates is unknown (but bounded) and the
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noise may not be independent, with the goal of minimal dependence on the level of

adversarial contamination ϵ. Initiated by Klivans et al. [KKM18], their algorithms

are based in a sum-of-squares framework, and impose a certifiable hypercontractivity

assumption on covariates, which is a somewhat more restrictive than our assumption of

hypercontractivity [KSS18]. As the goal in these works is slightly different, the resulting

estimators have suboptimal dependence on sample complexity and probability of error in

comparison to ours.

Recently, Cherapanamjeri et al. [CATJFB20] and Depersin [Dep20a] considered covari-

ates with bounded fourth moments, and proposed an iterative gradient based procedure for

robust regression. When Σ is unknown (but bounded) and the noise is independent, Chera-

panamjeri et al. [CATJFB20] obtained a near-linear time estimator (when ϵ is constant) with

near-optimal sample complexity, but with a constant error probability. Depersin [Dep20a]

studied the case of known Σ and possibly dependent noise, and proposed a computation-

ally efficient estimator with a sub-Gaussian error rate and O(
√
ϵ) dependence. However,

the error guarantee for the estimator does not improve when higher-order moments are

bounded.

We emphasize that the focus of our work is slightly different, in that we seek to show

that several classical estimators which are known to be robust to corruptions in the responses can

also be made robust to corruptions in the covariates after a simple outlier filtration step.

For each of the Huber, LAD, and LTS estimators, our guarantees for heavy-tailed covariates

(nearly) match their corresponding known results for sub-Gaussian covariates. In addition,

we highlight the fact that our filtered Huber estimator (cf. Theorem 5.3.6) obtains the

tightest rates and is near-optimal in multiple parameters simultaneously, among all known

polynomial-time estimators, for the case of isotropic covariates and independent noise. For

a more extensive discussion of related work, see Appendix C.3.

The rest of the paper is organized as follows: In Section 5.2, we explain the problem

setup and connection with robust mean estimation. In Section 5.3, we analyze the Huber
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regression estimator. We prove our results regarding the LTS and LAD estimators in

Sections 5.4 and 5.5, respectively. Section 5.6 contains the details regarding a postprocessing

step which can be used to improve the accuracy of the LTS and LAD estimators. Finally,

Section 5.7 contains simulation results reporting the effect of the proposed filtering step.

Section 5.8 concludes the paper with a short discussion of open questions. Pseudocode for

the algorithms mentioned in the paper is contained in Appendix C.1.

5.2 Background and Problem Setup

For a list of notation and some basic definitions, see Appendix C.2.

5.2.1 Linear Model

Suppose we have observations drawn from the linear model

yi = x⊤
i β

∗ + zi, 1 ≤ i ≤ n, (5.1)

where β∗ ∈ Rp, the xi’s are sampled i.i.d. from a distribution over Rp, and the zi’s are

i.i.d. noise. We also write equation (5.1) as y = Xβ∗ + z, where y, z ∈ Rn, β∗ ∈ Rp, and

X ∈ Rn×p. Our goal is to estimate β∗ from the data set S = {(x1, y1), . . . , (xn, yn)}. We make

the following assumption about the distribution of the covariates:

Assumption 5.2.1. The covariates satisfy Exi = 0 and Exix⊤
i = I . Moreover, the covariates

satisfy (4, 2)-hypercontractivity with parameter σx,4 ≤ C, for a known constant C.

Note that the case of a known, non-identity covariance matrix can be reduced to the

setting of identity covariance via a linear transformation. We relax the condition of an

identity covariance matrix to an unknown but bounded covariance matrix in Section 5.3.4.

We assume an identity covariance structure in Assumption 5.2.1 because of the sta-

tistical query (SQ) lower bound from Diakonikolas et al. [DKS19], stating that in the
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case of an unknown (but bounded) covariance matrix, any computationally efficient SQ

algorithm requires approximately Ω(p2) samples to achieve an error rate of o(
√
ϵ) in the

strong contamination model (cf. Theorem 5.3.6). This suggests that the knowledge of the

covariance matrix is needed to obtain improved statistical rates using computationally-

efficient algorithms. We show that the filtered Huber estimator achieves the rate O(
√
ϵ) in

the unknown covariance setting in Section 5.3.4. However, even with an identity covariance

matrix, the covariates could have a degenerate distribution such that, with high probability,

all the sampled points have norm 0 and all information about β∗ would be lost. As a

result, we also include the hypercontractivity condition in Assumption 5.2.1, which is a

standard assumption in this field. Note that under the identity covariance assumption,

the hypercontractivity condition can simply be written as (E(v⊤xi)4)1/4 ≤ C, i.e., bounded

fourth moments.

Remark 5.2.2. Note that the assumption that an upper bound C on the hypercontractivity constant

σx,4 is known is necessary for running the algorithms in this paper in practice (e.g., Algorithms 11,

13, and 14 below), since our theory requires the filtering parameter ϵ′ to be smaller than some value

which depends on C.

We also make the following assumption about the additive noise distribution:

Assumption 5.2.3. The noise {zi} is independent of the covariates {xi}, and E zi = 0.

The independence assumption on the zi’s and xi’s is somewhat restrictive. We will relax

this assumption on noise for a subset of our results: (i) Theorems 5.3.1 and 5.3.4 hold even

if the first moment of the zi’s is infinite, and (ii) Theorem 5.5.1 holds even if the zi’s are

dependent on xi’s and have nonzero mean.

In the sequel, we also study the robustness of our estimators when a fraction of data

points are adversarially contaminated.

Definition 5.2.4. (Strong Contamination Model) We say that a set T is an ϵ-corrupted version

of a set S if |T | = |S| and |T ∩ S| ≥ (1− ϵ)|S|.
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This contamination model is called the strong contamination model in the literature,

since no computational or statistical restrictions are imposed on T . In contrast, Huber’s

ϵ-contamination model requires the contamination mechanism to be oblivious and additive,

i.e., it can only add outliers to the uncontaminated i.i.d. data without looking at the inliers.

5.2.2 Stability Conditions

Our technical results will rely on appropriately defined notions of stability. Recall the

following stability condition from the robust mean estimation literature [DKKLMS16;

DKKLMS17; SCV18; DHL19; DK19; CDG19; CDGS20]:

Definition 5.2.5. (Strong stability) For ϵ < 1/2, we say that a multiset S = {x1, . . . , xn}

satisfies (ϵ, δ)-stability for ϵ ≤ δ with respect to µ and σ2 if for all S ′ ⊆ S such that |S ′| ≥ (1−ϵ)n,

we have

∥∥∥∥∥∥ 1
|S ′|

∑
i∈S′

xi − µ

∥∥∥∥∥∥
2

≤ σδ, and

∥∥∥∥∥∥ 1
|S ′|

∑
i∈S′

(xi − µ)(xi − µ)⊤ − σ2I

∥∥∥∥∥∥
2

≤ σ2δ2

ϵ
.

Definition 5.2.5 is designed for samples from a distribution with mean µ and covariance

Σ ⪯ σ2I . Note that a set which is (ϵ, δ)-stable is also (ϵ′, δ′)-stable for any ϵ′ ≤ ϵ and δ′ ≥ δ.

The (ϵ, δ)-stability condition states that for every large enough subset, (i) the ℓ2-distance

between the empirical mean and µ is at most σδ, and (ii) the spectral distance between the

(centered) second moment matrix and σ2I is at most σ2δ2

ϵ
. Since our primary focus will be

on distributions with µ = 0 and σ2 = 1, we will not explicitly state these parameters when

they are clear from context. In Appendix C.1.1, we review the iterative filtering algorithm,

guaranteed to succeed under strong stability, which is a key building block for our work.

Next, we mention a deterministic condition on the covariates that appeared in the

analysis of least trimmed squares regression in Bhatia et al. [BJK15]:
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Definition 5.2.6. (Weak stability) Let ϵ ∈ (0, 1). The set {x1, . . . , xn} satisfies (ϵ, L, U)-weak

stability if for every subset S ⊆ [n] such that |S| ≥ (1− ϵ)n, the second moment matrix of S is

approximately isotropic, i.e., L ≤ λmin
(

1
n

∑
i∈S xix

⊤
i

)
≤ λmax

(
1
n

∑
i∈S xix

⊤
i

)
≤ U .

Bhatia et al. [BJK15] established the convergence of an alternating minimization algo-

rithm under weak stability for a fixed ϵ, provided (i) L = Θ(1) and (ii) U = Θ(1). We

will show in Section 5.3 that under the same conditions, Huber regression also succeeds

with high probability. This leads to the question of whether weak stability holds with high

probability for heavy-tailed covariates; following arguments in Koltchinskii and Mendel-

son [KM15], it can be shown that condition (i) holds with high probability [DKP20].

However, known concentration results suggest that condition (ii) does not hold with

high probability for heavy-tailed covariates when S = [n]: The usual matrix Chernoff

bounds [Tro15] yield U = O(1) with probability 1− τ if n = Ω(p log(1/τ)), which may be

much larger than the ideal sub-Gaussian sample complexity which is additive rather than

multiplicative in p and log(1/τ). Bhatia et al. [BJK15] also defined the following notions in

their analysis of LTS:

Definition 5.2.7. (SSC and SSS) Let x1, . . . , xn be n points in Rp. For m ∈ [n], we say that

the xi’s satisfy the Subset Strong Convexity (SSC) property at level m with parameter λm

if λm ≤ minS⊆[n]:|S|=m λmin
(∑

i∈S xix
⊤
i

)
. The xi’s satisfy the Subset Strong Smoothness (SSS)

property at level m with parameter Λm if maxS⊆[n]:|S|=m λmax
(∑

i∈S xix
⊤
i

)
≤ Λm.

Note that if a set satisfies (ϵ, L, U)-weak stability, then it satisfies the SSC and SSS proper-

ties at level (1−ϵ)nwith parameters nL and nU , respectively. However, the results of Bhatia

et al. (cf. Lemma C.8.1 below) require finer control of the minimum and maximum eigen-

values at different levels, in addition to the assumption of weak stability. Proposition C.6.1

in Appendix C.6 shows that strong stability implies weak stability.

Our final notion of stability comes from Karmalkar and Price [KP19]:
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Definition 5.2.8. (ℓ1-stability) We say a set of data points {x1, . . . , xn} ⊆ Rp satisfies

(m,M, ϵ, ℓ1)-stability if for all subsets S ⊆ [n] with |S| ≥ (1 − ϵ)n and all unit vectors v ∈ Rp,

we have 1
n

∑
i∈S |x⊤

i v| ≥M and 1
n

∑
i∈[n]\S |x⊤

i v| ≤ m.

Note that this definition of stability controls the ℓ1-norm of projections, whereas weak

stability (or strong stability) is a statement about ℓ2-norms. This notion of stability was

used by Karmalkar and Price [KP19] in their analysis of the LAD estimator and will also be

used in our analysis of the LAD estimator to follow. As shown later (cf. Lemma C.6.5), the

upper bound in the definition of ℓ1-stability can be derived directly from strong stability.

5.3 Huber Regression

Recall that the Huber loss with parameter γ is defined as ℓγ(x) = x2

2 , if |x| ≤ γ, and

ℓγ(x) = γ|x| − γ2

2 otherwise [Hub64; HR09]. Let ψγ(x) = ∇ℓγ(x). We now define Lγ(β) :=
1
n

∑
i∈[n] ℓγ(yi − x⊤

i β) and let Huber’s M -estimator be defined as β̂H,γ = argminβ Lγ(β).

Note that the Huber objective function is convex, so it is possible to (approximately)

obtain the minimizer β̂H,γ in a computationally feasible manner. Thus, we will begin by

analyzing statistical properties of the Huber regression estimator and then comment only

briefly on optimization (cf. Section 5.3.5). We present our statistical analysis in increasing

levels of complexity: fixed design covariates satisfying weak stability and i.i.d. symmetric

noise (Section 5.3.1), random i.i.d. covariates and asymmetric noise (Section 5.3.2), and

adversarially contaminated data (Section 5.3.3).

5.3.1 Fixed Design and Symmetric Noise

Our main result in this subsection is the following:

Theorem 5.3.1. Suppose we have n i.i.d. samples from the following (fixed design) model: yi =

x⊤
i β

∗ + zi, where the covariates {xi} satisfy weak stability with some ϵ, L, and U . Suppose the

errors {zi} are sampled independently from a symmetric distribution. Let β̂H,γ ∈ arg minLγ(β).
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Let τ be such that log(1/τ)
n

= O(ϵ). Then setting γ such that P(|zi| ≥ γ/2) = O(ϵ), we have, with

probability at least 1− τ ,

∥β̂H,γ − β∗∥2 ≲
γ
√
U

L

√p

n
+
√

log(1/τ)
n

 , as long as n = Ω
(
U2(p+ log(1/τ))

L2ϵ2

)
.

Furthermore, Lγ(β) is L-strongly convex in a ball of radius Ω(ϵγ/
√
U) around β̂H,γ .

Theorem 5.3.1 provides an error bound on the Huber regression estimator under a

deterministic condition on the covariates; the probabilistic nature of the theorem comes

from the randomness in the additive errors. In Theorems 5.3.4 and 5.3.6 below, we will

show that the weak stability condition holds with high probability when the covariates are

drawn from possibly heavy-tailed, possibly contaminated distributions and then passed

through a filtering algorithm. We will also show how to relax the assumption that the

distribution of zi is symmetric via an appropriate preprocessing step.

Remark 5.3.2. When Ω(1) = L ≤ U = O(1) and ϵ = Ω(1), the sample complexity reduces to

n = Ω(p) (by assumption, n = Ω(log(1/τ))). Also, the radius of strong convexity is Ω(γ).

Remark 5.3.3. Note that Theorem 5.3.1 does not require the additive noise to have finite moments.

If the noise distribution has a finite kth moment, however, Markov’s inequality implies that we can

always set γ = Ω(ϵ−1/k(E |zi|k)1/k). In particular, if the zi’s have a finite variance σ2, we can take

γ = Ω(σ/
√
ϵ).

The assumption that P(|zi| ≥ γ/2) = O(ϵ) implies that the parameter γ used to define

the Huber loss needs to be sufficiently large in order for our theory to succeed, in a sense

being calibrated to the tail behavior of the error distribution. Indeed, the heavier the tails of

the zi’s, the larger γ would need to be, leading to a worse error bound. Since it is generally

unreasonable to assume that the scale of the additive noise distribution is known in practice,

we will discuss methods for adaptively choosing γ from the data in our results below. The

proof of Theorem 5.3.1 is provided in Appendix C.7.2.
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5.3.2 Generalization to Random Design and Asymmetric Noise

We now generalize the result of the previous section to the random design model with

asymmetric noise. We proceed by reducing the case of asymmetric noise to symmetric

noise: we will randomly subtract two points so that the additive noise in the new linear

model has symmetric noise. Next, we will show that the iterative filtering algorithm from

Diakonikolas et al. [DK19; DKKLMS16] (Theorem C.1.1) can be used to obtain a large

subset of data points for which the covariates satisfy weak stability. We will then invoke

Theorem 5.3.1.

Theorem 5.3.4. Suppose we have 2n i.i.d. samples {(xi, yi)}2n
i=1 from the following (random-

design) model: yi = x⊤
i β

∗ + zi, where the covariates satisfy Assumption 5.2.1 and the noise

distribution satisfies Assumption 5.2.3. Let τ be such that log(1/τ)
n

= O(1). Suppose γ is such that

P
(
|z1 − z2| ≥ γ√

2

)
≤ c∗ for a small enough constant c∗ > 0, and suppose ϵ′ is equal to a sufficiently

small constant. Then running Algorithm 11 with parameters γ and ϵ′ produces an estimator that,

with probability at least 1− 2τ , satisfies

∥β̂ − β∗∥2 ≲ γ

√p

n
+
√

log(1/τ)
n

 , as long as n = Ω(p log p).

On the same event, the loss function is Ω(1)-strongly convex in a radius of Ω(γ) around β̂.

The proof of Theorem 5.3.4 is contained in Appendix C.7.3. In Appendix C.7.1.1, we

provide a rigorous method for estimating an appropriate tuning parameter γ from the

data.

Remark 5.3.5. Similar to Remark 5.3.3, if the kth moment of the noise distribution is finite, we can

set γ = Ω((E |z1 − z2|k)1/k), for any positive k.
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5.3.3 Adversarial Corruption

We will now consider adversarial corruption in both covariates and responses. Let S

be the set of n i.i.d. samples and let T be an ϵ-corrupted version of S in the sense of

Definition 5.2.4. One might expect Algorithm 11 to be robust to adversarial contamination,

as Huber regression has been shown to be robust against corruption in responses [SF20]

and the filtering step can handle corruptions in covariates. In this section, we will crucially

use the strong stability condition, and not just weak stability, to obtain tighter control

on deviations. In fact, the following result shows that Huber regression also achieves

near-optimal statistical guarantees in the adversarial setting with a slightly different choice

of parameters:

Theorem 5.3.6. Let S = {(xi, yi)}2n
i=1 be a set of i.i.d. samples drawn according to the same

distributional assumptions as in Theorem 5.3.4. Further suppose that the covariates satisfy (k, 2)-

hypercontractivity with parameter σx,k = O(1), for some k ≥ 4. Let T be an ϵ-corrupted version

of S. Suppose γ is such that P
(
|z1 − z2| ≥ γ√

2

)
≤ c∗ for a small enough constant c∗ > 0. Then

running Algorithm 11 on the set T with parameters ϵ′ = Θ
(
ϵ+ log(1/τ)

n

)
produces an estimator

that, with probability at least 1− τ , satisfies

∥β̂ − β∗∥2 ≲ γ

√p log p
n

+
√

log(1/τ)
n

+ ϵ1−1/k

 ,
provided n = Ω(p log p+ log(1/τ)) and ϵ is less than a sufficiently small constant. Moreover, on

the same event, the loss function is Ω(1)-strongly convex in a radius of Ω(γ) around β̂.

The proof of Theorem 5.3.6 is provided in Appendix C.7.4. For a discussion of how to

tune the Huber parameter, see Appendix C.7.1.2.

Remark 5.3.7. In order to run Algorithm 11 with the theoretical choice of ϵ′ in Theorem 5.3.6, we

assume knowledge of the level of adversarial contamination. On the other hand, note that if T is

an ϵ1-corrupted version of S, then T is also an ϵ2-corrupted version of S, for any ϵ1 ≤ ϵ2. Thus,
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knowledge of an upper bound on the contamination level suffices. (The same remark applies to

Theorems 5.4.2 and 5.5.1, and Theorems 5.6.1 and 5.6.2 below.)

Briefly, our proof strategy is similar to the proof of Theorem 5.3.1: Although the co-

variates and noise are not necessarily independent on the filtered set, we can establish

modified versions of the structural Lemmas C.7.2 and C.7.3. In particular, we crucially use

the stability property of the filtered set, which is stronger than the assumption of weak

stability.

Remark 5.3.8. We also note that Algorithm 11 has another favorable property when only the

covariates are corrupted: Suppose {xi}ni=1 and {zi}ni=1 are generated from distributions satisfying

Assumptions 5.2.1 and 5.2.3, respectively. Instead of observing (X,Xβ∗ + z), the statistician

observes (X̃, ỹ), where ỹ = X̃β∗ + z, and X̃ matches X in all but ϵn rows and is independent of z.

Then as long as ϵ is smaller than a fixed constant, the error guarantee of Theorem 5.3.6 would be of the

form O
(√

p
n

+
√

log(1/τ)
n

)
and is independent of ϵ. Since X̃ and ỹ still follow a linear relationship

and independence is maintained between the errors and covariates, the setting is essentially reduced

to that of Theorem 5.3.1.

Remark 5.3.9. Finally, we mention a slightly stronger guarantee for Algorithm 11 for Gaus-

sian covariates, i.e., X ∼ N (0, I). As can be seen in Appendix C.7.5 in the proof of The-

orem 5.3.6, we could instead obtain the error bound O
(√

p
n

+
√

log(1/τ)
n

+ ϵ
√

log(1/ϵ)
)

. This

is because a set of n i.i.d. samples from N (0, I) is (ϵ, δ)-stable with probability 1 − τ , where

δ ≲
√

p
n

+
√

log(1/τ)
n

+ ϵ
√

log(1/ϵ) [DKKLMS16; Li18; DKKLMS17]. Sub-Gaussian distributions

with identity covariance and sub-Gaussian norm O(1) also achieve this rate.

5.3.4 Generalization to Unknown Covariance

We now discuss the case where the covariates have an unknown but bounded covariance

matrix. We replace Assumption 5.2.1 with the following assumption:
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Assumption 5.3.10. The covariates satisfy Exi = 0 and κlI ⪯ Exix⊤
i ⪯ κuI for some κl ∈ (0, 1)

and κu ≥ 1. (For simplicity, we will assume that κl = 1/2 and κu = 2 in our arguments, but similar

results hold as long as κu = Θ(κl).) Moreover, the covariates satisfy (4, 2)-hypercontractivity with

parameter σx,4 ≤ C, for a known constant C.

We are able to generalize our result from Theorem 5.3.6 to the setting under Assump-

tion 5.3.10.

Theorem 5.3.11. Suppose we have 2n i.i.d. samples {(xi, yi)}2n
i=1 from the following (random-

design) model: yi = x⊤
i β

∗ + zi, where the covariates satisfy Assumption 5.3.10 and the noise

distribution satisfies Assumption 5.2.3. Let τ be such that log(1/τ)
n

= O(1). Suppose γ is such that

P
(
|z1 − z2| ≥ γ√

2

)
≤ c∗ for a small enough constant c∗ > 0, and suppose ϵ′ is equal to a sufficiently

small constant. Let T be an ϵ-corrupted version of S. Then running Algorithm 11 on the set T with

parameters ϵ′ = Θ
(
ϵ+ log(1/τ)

n

)
and γ = Ω(σ) produces an estimator that, with probability at least

1− τ , satisfies

∥β̂ − β∗∥2 ≲ γ

√p log p
n

+
√

log(1/τ)
n

+
√
ϵ

 ,
provided n = Ω(p log p+ log(1/τ)) and ϵ is less than a sufficiently small constant. Moreover, on

the same event, the loss function is Ω(1)-strongly convex in a radius of Ω(γ) around β̂.

The proof of Theorem 5.3.11 is given in Appendix C.7.6, and follows the same strategy as

Theorem 5.3.6, by noting that Huber regression primarily relies on (ϵ, L, U)-weak stability,

where ϵ = Ω(1), L = Ω(1), and U = O(1). The first two conditions hold by the small ball

property, and the guarantee of the filter algorithm in the unknown covariance case is strong

enough to ensure the third condition [DKP20]. However, these algorithms do not adapt to

higher moments of the data in the unknown covariance setting. This drawback is reflected

in the worse dependence on ϵ, i.e., O(
√
ϵ) instead of O(ϵ3/4) under (4, 2)-hypercontractivity.

Note that the SQ lower bound of Diakonikolas et al. [DKS19] suggests that this O(
√
ϵ)
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dependence is essentially optimal for computationally-efficient algorithms when n = o(p2)

even when the covariates are Gaussian (with an unknown covariance).

Remark 5.3.12. In the absence of adversarial contamination, we can follow the same strategy as in

Theorem 5.3.4: Under Assumption 5.3.10, run the filter algorithm with ϵ′ equal to a small enough

constant (independent of τ) to obtain a sub-Gaussian tail in the error guarantee.

5.3.5 Optimization

As noted above, the Huber objective function Lγ(β) is convex in β, so optimization should

in principle be easy. Taking a closer look, we see that as established in Theorems 5.3.4 and

5.3.6, the loss function is strongly convex in a ball of sufficiently large enough radius Ω(γ)

around β̂. Therefore, running gradient descent yields linear convergence if the initialization

is inside that ball [Bub15]. Considering the case when we set the Huber parameter to be

γ = Θ(σ), our theory shows that we can guarantee such an initialization using the LAD

estimator (cf. Theorem 5.5.1) or LTS estimator (cf. Theorem 5.4.2).

Instead of using a different robust regression estimator for a warm start, we can directly

apply the ellipsoid algorithm to the Huber loss. However, running the ellipsoid algorithm

might be undesirable, as its running time, although polynomial, is practically slow [Bub15].

5.4 Least Trimmed Squares Estimator

In this section, we study the least trimmed squares (LTS) estimator [Rou84]:

β̂LS,m = argmin
β

min
S⊆n:|S|=n−m

∑
i∈S

(yi − x⊤
i β)2, (5.2)

wherem is the trimming parameter. We will establish conditions under which ∥β̂LS,m−β∗∥2

is small, with very high probability.
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Unlike the Huber regression estimator, a significant drawback of the LTS estimator is

that the objective function (5.2) is nonconvex. Nonetheless, various methods have been

developed to efficiently obtain a local optimum of the LTS objective function, which have

been shown to perform well empirically [RV06]. In recent work, Bhatia et al. [BJK15;

BJKK17] proved that under sufficiently nice assumptions on the covariates, the alternating

minimization algorithm (Algorithm 12) succeeds in finding a good candidate solution.

Here, PX = X(X⊤X)−1X⊤ denotes the hat matrix, and the function HTm is defined as

follows:

Definition 5.4.1. For any v ∈ Rn and m ∈ [n], let Sm,v ⊆ [n] be the set of cardinality of m such

that for any i ∈ Sm,v and j ∈ [n] \ Sm,v, we have |vi| ≥ |vj|. To ensure uniqueness, we choose the

smaller indices if ties occur. The m-hard thresholding operator is the function HTm : Rn → Rn

defined as follows: For any v ∈ Rn, we have (HTm(v))i = vi, if i ∈ Sm,v, and (HTm(v))i = 0

otherwise.

In other words, the set Sm,v identifies the indices of the largest m coordinates of v

in magnitude, and the HTm function returns a vector that preserves only these top m

components. Note that Algorithm 12 is derived by recasting the optimization problem (5.2)

as minβ∈Rp,∥b∥0≤m ∥Xβ − (y − b)∥2
2 and alternately minimizing over β and b, where we

explicitly solve for β on each iteration (see Bhatia et al. [BJKK17] for more details).

The proof of the following main result is contained in Appendix C.8.1:

Theorem 5.4.2. Let S = {(xi, yi)}ni=1 be a set of i.i.d. samples drawn according to the same

distributional assumptions as in Theorem 5.3.6. Let T = {(x′
i, y

′
i)}ni=1 be an ϵ-corrupted version

of S, where ϵ is less than a sufficiently small constant. Further suppose the errors satisfy (k′, 2)-

hypercontractivity with parameter σz,k′ = O(1), for some k′ ≥ 2. Let τ be such that log(1/τ)
n

=

O(1). With probability at least 1 − O(τ), running Algorithm 13 on the set T with parameters
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m = Θ
(
p log p+ ϵn+ log

(
1
τ

))
and ϵ′ = Θ

(
m
n

)
yields an estimator β̂ satisfying

∥β̂ − β∗∥2 ≲ σ

σz,k′

(
p log p
n

+ ϵ+ log(1/τ)
n

)1/2−1/k′ ,

provided n = Ω(p log p) and J ≳ log2

(
∥y′∥2+∥X′∥2∥β∗∥2

α

)
, where α is defined to be the error bound

given above. If we further suppose that the errors satisfy (4, 2)-hypercontractivity with σz,4 = O(1),

then J ≳ log2

(
∥y′∥2(1+∥X′∥2)

α

)
iterations suffice.

Remark 5.4.3. The error guarantee of the LTS estimator in Theorem 5.4.2 is weaker than that of the

Huber regression estimator in Theorem 5.3.6. It is not clear whether the suboptimality of the LTS

error bound is intrinsic to the LTS estimator or an artifact of our analysis; we leave this question for

future work. In the case of sub-Gaussian noise, it can be shown that the guarantee of Theorem 5.4.2

matches the guarantee of Bhatia et al. [BJK15; BJKK17] (up to log factors) who assume, in addition,

that the covariates are sub-Gaussian.

Remark 5.4.4. The two statements in Theorem 5.4.2 differ in the number of iterations we require

to guarantee that the output of the alternating minimization algorithm will have small ℓ2-error—

in order to obtain a data-driven upper bound on ∥β∗∥2, we impose additional hypercontractivity

assumptions on the noise distribution. As in the case of the Huber estimator (cf. Section 5.3.5),

one might choose to use the LAD estimator to warm-start the algorithm and save on computation.

Theorem 5.5.1 below guarantees that the LAD estimator satisfies ∥β̂LAD − β∗∥2 = O(κ) when

E |zi| = κ; the runtime of Algorithm 13 on the shifted data (X, y−X⊤β̂LAD) would then scale with

∥β̂LAD − β∗∥2 = O(κ) rather than ∥β∗∥2.

As shown in the proof of Lemma C.8.1, we can alternatively run Algorithm 13 until ∥bj −

bj−1∥2 = O(α
√
n) to obtain a data-dependent stopping criterion. Indeed, by inequality (C.21),

we have ∥bj+1 − b∗∥ ≤ e0 + 1
2∥b

j − b∗∥2, so by the triangle inequality, we have ∥bj − bj+1∥2 ≥

∥bj − b∗∥2 − ∥bj+1 − b∗∥2 ≥ 1
2∥b

j − b∗∥2 − e0. Thus, if the difference between successive iterates is

sufficiently small, the error must be small, as well.
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Finally, we emphasize that although the LTS objective function is nonconvex (5.2), our

theoretical guarantees are for the output of a particular iterative algorithm which can be

performed efficiently. Importantly, we need not assume that the alternating minimization

algorithm converges to a global optimum of the LTS objective.

5.5 Least Absolute Deviation

We now study the least absolute deviation estimator β̂LAD = argminβ
∑n
i=1 |yi − x⊤

i β|. Note

that the LAD estimator is parameter-free. Although the error bounds we will derive have

suboptimal error rates compared to the other estimators, the LAD estimator is useful for

initialization for tuning or optimizing the Huber estimator (cf. Sections 5.3.2 and 5.3.5), or

initializing the alternating minimization algorithm for the LTS estimator (cf. Remark 5.4.4).

Our main result in this section is to show that under our setting, the filtered covariates

satisfy the ℓ1-stability condition of Definition 5.2.8, from which we may derive an error

bound according to Lemma C.9.4. The proof is contained in Appendix C.9.2.

Theorem 5.5.1. Let S = {(xi, yi)}ni=1 be i.i.d. samples from the linear model yi = x⊤
i β

∗ + zi, where

the covariates satisfy Assumption 5.2.1 and the noise satisfies E |zi| = κ. For an ϵ < c∗, let T be

an ϵ-corrupted version of S. Let β̂ be the output of Algorithm 14 with input T and ϵ′, where ϵ′ is a

small enough constant. Let τ be such that log(1/τ)
n

= O(1). Then with probability at least 1− τ , we

have ∥β̂ − β∗∥2 = O(κ), provided n = Ω(p log p).

Remark 5.5.2. The guarantees of Theorem 5.5.1 hold under very general conditions. We do not

require the noise distribution to have zero mean or be independent of the covariates; all we require

is E |zi| <∞. Furthermore, we can generalize this result to the case of an unknown but bounded

covariance of the form 1
2I ⪯ Exx⊤ ⪯ 2I (cf. Section 5.3.4), as well.
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5.6 Postprocessing

We now outline a one-step estimator which, given an initial estimator β̂1 such that ∥β̂1 −

β∗∥2 = O(σ), returns another estimator β̂2 that has sub-Gaussian rates. In the analysis

of this section, we will assume that Assumption 5.2.3 is satisfied and the noise variance

E(z2
i ) = σ2 is finite. As shown in Sections 5.4 and 5.5, the LTS or LAD estimators will then

satisfy the error bound of O(σ) with high probability and can be used for β̂1. We note that

a similar postprocessing construction has been leveraged in earlier works [BDLS17; DKS19;

PSBR20].

We first state a version of the result when β̂1 does not depend on the data. This can always

be achieved by splitting the samples when either (i) there is no contamination, or (ii) the

contamination mechanism does not depend on the data, e.g., Huber’s contamination model.

Recall the median-of-means preprocessing algorithm [LM19a]: Given data {x1, . . . , xn}

and a parameter k ∈ [n], construct {z1, . . . , zk} by randomly dividing {x1, . . . , xn} into k

disjoint buckets of equal size (if k does not divide n, then remove some samples), and let

{z1, . . . , zk} be the empirical means of the points in the buckets. We have the following

theorem:

Theorem 5.6.1. Let S be a set of n i.i.d. samples from the linear model yi = x⊤
i β

∗ + zi,

where the covariates satisfy Assumption 5.2.1 and the noise distribution satisfies Assump-

tion 5.2.3. Suppose E(z2
i ) = σ2. Let β̂1 be an estimator independent of S, satisfying

∥β̂1 − β∗∥2 = O(σ). Let T be an ϵ-corrupted version of S, where T might depend on β̂1. Define the

set T1 :=
{
β̂1 + (y′

i − (xi)′⊤β̂1)x′
i : (x′

i, y
′
i) ∈ T

}
. Suppose ϵ′ = Θ

(
ϵ+ log(1/τ)

n

)
= O(1). Then

given ϵ, T1, and τ as inputs, the mean algorithm in Theorem C.10.2 returns an output β̂ satisfying

∥β̂ − β∗∥2 ≲ σ

√p

n
+
√
ϵ+

√
log(1/τ)

n

 ,
with probability at least 1− τ .



126

The proof of Theorem 5.6.1 is contained in Appendix C.10.1. We now consider the case

when β̂1 might depend on the data. Such a situation might arise if we were to perform

sample splitting on an adversarially contaminated data set, meaning we would estimate β̂1

from the first half of the data and use it to initialize a postprocessing step on the other half.

Since the adversary is allowed to look at the whole data set, this could lead to dependence

between the two halves. In such a case, the argument used in the proof of Theorem 5.6.1

cannot be applied because we do not necessarily have an i.i.d. data set when we condition

on β̂1. However, we may still obtain a looser error bound by taking a union bound over a

large enough cover of Sp−1. We have the following result, proved in Appendix C.10.2:

Theorem 5.6.2. Consider the setting and notation in Theorem 5.6.1, where β̂1 might depend on

S. Set ϵ′ = Θ
(
ϵ+ log(1/τ)

n
+ p log(pn)

n

)
, where ϵ′ is less than a small constant. Then running the

filtering algorithm in Theorem C.1.1 with inputs

T1 :=
{
β̂1 + (y′

i − (xi)′⊤β̂1)x′
i : (x′

i, y
′
i) ∈ T

}

and ϵ′ returns a set T ′ such that, with probability at least 1− 2τ ,

∥β̂ − β∗∥2 ≲ σ

√p log(pn)
n

+
√
ϵ+

√
log(1/τ)

n

 ,

where β̂ is the empirical mean of the vectors in T ′.

Remark 5.6.3. Compared to the error bound in Theorem 5.6.1, the error bound in Theorem 5.6.2

contains an extra factor of
√

log(pn) in the first term. This arises from a covering argument, since

we cannot simply condition on β̂1 and argue that we still have i.i.d. data.

Remark 5.6.4. Cherapanamjeri et al. [CATJFB20] show that when both the covariate and noise dis-

tributions are sub-Gaussian, running the post-processing step once more to the output achieved by the

procedure in Theorem 5.6.2 can improve the error dependence on ϵ from O(σ
√
ϵ) to O(σϵ log(1/ϵ)).

This is because when ∥β̂1 − β∗∥2 ≲ σ
√
ϵ, the covariance matrix of β̂1 + (y′

i − (xi)′⊤β̂1)x′
i is
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O(σ2ϵ)-close to the spherical matrix σ2I . When covariate and noise distributions satisfy (k, 2)-

hypercontractivity, the same argument shows that the error dependence on ϵ would improve from

O(σ
√
ϵ) to O(σϵ1−1/k). In comparison, the filtered Huber regression algorithm (cf. Theorem 5.3.6)

provably achieves an error of the form O(σϵ1−1/k) under only a kth moment assumption on the

covariate distribution.

5.7 Simulations

We now present the results of the simulations on synthetic data to validate our theoret-

ical findings. We demonstrate that covariate filtering improves estimation accuracy for

heavy-tailed i.i.d. data (Section 5.7.1) and heavy-tailed data with adversarial corruption

(Section 5.7.2). For our simulations, we take n = 200 and p = 40, which roughly corre-

sponds to the linear-data regime n = O(p). We measure the error in the usual ℓ2-norm, i.e.,

∥β̂ − β∗∥2. For each plot, we conduct our experiments T = 50, 000 times, and report how

the empirical quantiles of the ℓ2-error increase with the failure probability τ . The main goal

of the plots is to demonstrate the effect of covariate filtering on Huber regression and LTS.

All estimators were implemented using NumPy For Huber regression, we ran gradient

descent algorithm with a line-search procedure. For LTS, we ran our algorithm (Algo-

rithm 13) for a fixed number of 100 steps. We found that both of these estimators converged

with these choices of parameters. In each experiment, we sampled β∗ independently from

a sphere of unit norm. We initialized all of our estimators at the same point, which is also

sampled independently from a sphere of unit norm, and hence its ℓ2-distance from β∗ is at

most 2. We implemented the filter so that it removed a single point at every step, which

corresponds to the version in Prasad et al. [PBR19].

We used the family of (symmetrized) Pareto distributions for for both covariates and

additive noise. For α > 0, we say that a real-valued random variable X follows an α-

symmetrized-Pareto distribution if the probability density function fX(x), has polynomial
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tails, i.e., for all x ∈ R, fX(x) ∝
(

1
|x|+1

)1+α
. The kth moment of X exists if and only if

k < α. We say that a multivariate random variable X follows an α-symmetrized-Pareto

distribution if each coordinate of X is i.i.d. with an α-symmetrized-Pareto distribution.

5.7.1 Heavy-tailed Regression

We sample i.i.d. data from a heavy-tailed distribution without any corruption. As men-

tioned earlier, we set n = 200 and p = 40, and ∥β∗∥2 = 1, and ran our experiments 50, 000

times to calculate the empirical quantiles of various estimators as a function of τ . For

our experiments, we sampled covariates and additive noise from symmetrized-Pareto

distributions with parameter 2. Note that this choice of heavy-tailed distributions does not

exactly satisfy our hypercontractivity assumption (Assumption 5.2.1), because the fourth

moment is infinite.
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(a) Huber regression
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(b) LTS
Figure 5.3: Plots showing the effect of covariate filtering with heavy-tailed data (n =
200, p = 40). For Huber regression, we set γ = 0.5. In (b), m is the trimming parameter in
Algorithm 13. The error is measured in terms of ℓ2-error.

Figure 5.3 shows that covariate filtering improves the performance of Huber and LTS
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significantly, especially in the high-confidence regime when τ → 0. Figure 5.3 demonstrates

that even removing 10 points out of 200 points can boost the accuracy of both Huber

regression and LTS, where the Huber parameter is set to be 0.5. Between Huber regression

and LTS with filtering step, we find that Huber regression has better performance than

LTS. Additional plots showing the effect of filtering as γ changes in Huber regression and

as m changes in LTS are included in Appendix C.11 (cf. Figures C.1 and C.2). We find that

the same phenomenon as in Figure 5.3 is demonstrated across a wide range of γ and m.

5.7.2 Adversarial Corruption
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Figure 5.4: Plot showing the effect of covariate filtering on Huber regression and LTS
when data are sampled from a heavy-tailed distribution and contain adversarial corruption,
where n = 200, p = 40, and ϵ = 0.1. The error is measured in terms of ℓ2-error.

Once again, we set n = 200 and p = 40. We sampled covariates and responses from

symmetrized-Pareto distributions with parameters 4 and 2, respectively. We consider the

case ϵ = 0.1, so ϵn = 20 points are corrupted in the following manner:

1. We replace the covariates {xi} of 10 random points by the deterministic point 10w,

where w is the vector with each coordinate equal to 1.
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2. We replace the responses {yi} of 20 points, including the 10 points selected in the

previous step, by a deterministic value 200.

We do not corrupt the covariates of all 20 points, since such a corruption scheme gives

an advantage to the filtering step: if the filtering step perfectly removed all points with

corrupted covariates, the data would be clean in the responses, as well. We run the filter so

that it removes 1.5ϵn = 30 points. For Huber regression, we again set γ = 0.5. For LTS, we

set m = 1.5ϵn = 30 to handle ϵn corruption in responses. Figure 5.4 shows that the filtering

step can significantly improve the performance of both Huber regression and LTS.

5.8 Discussion

We have presented several estimators that are simultaneously robust to heavy-tailed distri-

butions and adversarial contamination. The main theme is that a simple preprocessing

step applied to the covariates can be used to make classical estimators such as the Huber

regression, LTS, and LAD estimators robust to contamination in both covariates and re-

sponses. Our preprocessing step leverages recent advances in algorithms for robust mean

estimation, in which a filtering procedure was introduced to remove a small fraction of

covariates to make the sample covariance matrix of the remaining points have a small

spectral norm. The modified Huber regression estimator achieves a near-optimal error

guarantee in this setting, whereas the LTS and LAD estimators can be used for initialization

and/or parameter tuning, or augmented with a preprocessing step to achieve near-optimal

error rates.

Aside from the filtering method analyzed in this paper, we note that other algorithms

have been proposed, which—instead of returning a subset T ′ of the input data set T—return

a distribution on T such that the weight at any point is at most 1
(1−O(ϵ))|T | [DKKLMS16;

SCV18; DHL19; CDGS20; ZJS22b]. Although we have not pursued such algorithms here,

one might prove analogous results for robust regression using these alternative methods
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for preprocessing via one of the following two approaches: (i) discretize the distribution

to obtain a set T ′ satisfying the conclusion in Theorem C.1.1; or (ii) study a weighted form

of regression estimators (Huber regression, LAD, or LTS), where the loss at each point is

weighted by the output of these algorithms.

Thinking more broadly, it would be interesting to see which other common regression

estimators might benefit from covariate filtering as a preprocessing step. Another important

line of future work is to extend this methodology to settings where β∗ satisfies some

structural assumptions, such as sparsity—this might involve proposing and analyzing

a filtering step which would, with high probability, produce covariates which satisfy a

restricted eigenvalue condition. Finally, we have assumed throughout the paper that the

covariates and noise variables are independent, and the covariates are approximately

isotropic; the question of whether our proposed algorithms could be analyzed under a

more general dependency structure and unknown covariance which is not approximately

isotropic remains open.
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6 statistical query lower bounds for list-decodable linear

regression

आए कुछ अब्र कुछ शराब आए
इस के बा’द आए जो अज़ाब आए

— फ़ैज़ अहमद फ़ैज़

We study the problem of list-decodable linear regression, where an adversary can

corrupt a majority of the examples. Specifically, we are given a set T of labeled examples

(x, y) ∈ Rd × R and a parameter 0 < α < 1/2 such that an α-fraction of the points in T are

i.i.d. samples from a linear regression model with Gaussian covariates, and the remaining

(1− α)-fraction of the points are drawn from an arbitrary noise distribution. The goal is to

output a small list of hypothesis vectors such that at least one of them is close to the target

regression vector. Our main result is a Statistical Query (SQ) lower bound of dpoly(1/α) for

this problem. Our SQ lower bound qualitatively matches the performance of previously

developed algorithms, providing evidence that current upper bounds for this task are

nearly best possible.

6.1 Introduction

6.1.1 Background and Motivation

Linear regression is one of the oldest and most fundamental statistical tasks with numerous

applications in the sciences [RL87; Die01; McD09]. In the standard setup, the data are

labeled examples (x(i), y(i)), where the examples (covariates) x(i) are i.i.d. samples from a

distribution Dx on Rd and the labels y(i) are noisy evaluations of a linear function. More

specifically, each label is of the form y(i) = β · x(i) + η(i), where η(i) is the observation noise,

for an unknown target regression vector β ∈ Rd. The objective is to approximately recover
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the hidden regression vector. In this basic setting, linear regression is well-understood.

For example, under Gaussian distribution, the least-squares estimator is known to be

statistically and computationally efficient.

Unfortunately, classical efficient estimators inherently fail in the presence of even a

very small fraction of adversarially corrupted data. In several applications of modern data

analysis, including machine learning security [BNJT10; BNL12; SKL17; DKKLSS19] and

exploratory data analysis, e.g., in biology [RPWCKZF02; PLJD10; LATSCR+08], typical

datasets contain arbitrary or adversarial outliers. Hence, it is important to understand the

algorithmic possibilities and fundamental limits of learning and inference in such settings.

Robust statistics focuses on designing estimators tolerant to a small amount of contamina-

tion, where the outliers are the minority of the dataset. Classical work in this field [HRRS11;

HR09] developed robust estimators for various basic tasks, alas with exponential runtime.

More recently, a line of work in computer science, starting with [DKKLMS16; LRV16],

developed the first computationally efficient robust learning algorithms for various high-

dimensional tasks. Subsequently, there has been significant progress in algorithmic robust

statistics by several communities, see [DK19] for a survey on the topic.

In this paper, we study high-dimensional robust linear regression in the presence of

a majority of adversarial outliers. As we explain below, in several applications, asking

for a minority of outliers is too strong of an assumption. It is thus natural to ask what

notion of learning can capture the regime when the clean data points (inliers) constitute

the minority of the dataset. While outputting a single accurate hypothesis in this regime is

information-theoretically impossible, one may be able to compute a small list of hypotheses

with the guarantee that at least one of them is accurate. This relaxed notion is known as

list-decodable learning [BBV08; CSV17], formally defined below.

Definition 6.1.1 (List-Decodable Learning). Given a parameter 0 < α < 1/2 and a distribution

family D on Rd, the algorithm specifies n ∈ Z+ and observes n i.i.d. samples from a distribution

E = αD + (1−α)N , where D is an unknown distribution in D and N is arbitrary. We say D is
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the distribution of inliers, N is the distribution of outliers, and E is an (1−α)-corrupted version of

D. Given sample access to an (1−α)-corrupted version of D, the goal is to output a “small” list of

hypotheses L at least one of which is (with high probability) close to the target parameter of D.

We note that a list of size O(1/α) typically suffices; an algorithm with a poly(1/α) sized

list, or even a worse function of 1/α (but independent of the dimension d) is also considered

acceptable.

Natural applications of list-decodable learning include crowdsourcing, where a majority

of participants could be unreliable [SVC16; MV18], and semi-random community detection

in stochastic block models [CSV17]. List-decoding is also useful in the context of semi-

verified learning [CSV17; MV18], where a learner can audit a very small amount of trusted

data. If the trusted dataset is too small to directly learn from, using a list-decodable

learning procedure, one can pinpoint a candidate hypothesis consistent with the verified

data. Importantly, list-decodable learning generalizes the task of learning mixture models,

see, e.g., [DeV89; JJ94; ZJD16; LL18; KC20; CLS20; DK20] for the case of linear regression

studied here. Roughly speaking, by running a list-decodable estimation procedure with the

parameter α equal to the smallest mixing weight, each true cluster of points is an equally

valid ground-truth distribution, so the output list must contain candidate parameters close

to each of the true parameters.

In list-decodable linear regression (the focus of this paper), D is a distribution on pairs

(X, y), where X is a standard Gaussian on Rd, y is approximately a linear function of x,

and the algorithm is asked to approximate the hidden regressor. The following definition

specifies the distribution family D of the inliers for the case of linear regression with

Gaussian covariates.

Definition 6.1.2 (Gaussian Linear Regression). Fix σ > 0. For β ∈ Rd, let Dβ be the distribu-

tion over (X, y), X ∈ Rd, y ∈ R, such that X ∼ N (0, Id) and y = β⊤X + η, where η ∼ N (0, σ2)

independently of X . We define D to be the set {Dβ : β ∈ S ′} for some set S ′ ⊆ Rd.
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Recent algorithmic progress [KKK19; RY20a] has been made on this problem using

the SoS hierarchy. The guarantees in [KKK19; RY20a] are very far from the information-

theoretic limit in terms of sample complexity. In particular, they require dpoly(1/α) samples

and time to obtain non-trivial error guarantees (see Table 6.1): [KKK19] obtains an error

guarantee of O(σ/α) with a list of size O(1/α), whereas [RY20a] obtains an error guarantee

of O(σ/α3/2) with a list of size (1/α)O(log(1/α)).

On the other hand, as shown in this paper (see Theorem 6.1.4), poly(d/α) samples

information-theoretically suffice to obtain near-optimal error guarantees. This raises the

following natural question:

What is the complexity of list-decodable linear regression?

Are there efficient algorithms with significantly better sample-time tradeoffs?

We study the above question in a natural and well-studied restricted model of com-

putation, known as the Statistical Query (SQ) model [Kea98]. As the main result of this

paper, we prove strong SQ lower bounds for this problem. Via a recently established

equivalence [BBHLS21], our SQ lower bound also implies low-degree testing lower bounds

for this task. Our lower bounds can be viewed as evidence that current upper bounds for

this problem may be qualitatively best possible.

Before we state our contributions in detail, we give some background on SQ algorithms.

SQ algorithms are a broad class of algorithms that are only allowed to query expectations

of bounded functions of the distribution rather than directly access samples. Formally, an

SQ algorithm has access to the following oracle.

Definition 6.1.3 (STAT Oracle). Let D be a distribution on Rd. A statistical query is a bounded

function q : Rd → [−1, 1]. For τ > 0, the STAT(τ) oracle responds to the query q with a value v

such that |v − EX∼D[q(X)]| ≤ τ . We call τ the tolerance of the statistical query.

The SQ model was introduced by Kearns [Kea98] in the context of supervised learning

as a natural restriction of the PAC model [Val84]. Subsequently, the SQ model has been
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extensively studied in a plethora of contexts (see, e.g., [Fel16] and references therein). The

class of SQ algorithms is rather broad and captures a range of known supervised learning

algorithms. More broadly, several known algorithmic techniques in machine learning

are known to be implementable using SQs. These include spectral techniques, moment

and tensor methods, local search (e.g., Expectation Maximization), and many others (see,

e.g., [FGRVX17; FGV17]).

6.1.2 Our Results

We start by showing that poly(d/α) samples are sufficient to obtain a near-optimal error

estimator, albeit with a computationally inefficient algorithm.

Theorem 6.1.4 (Information-Theoretic Bound). There is a (computationally inefficient) list-

decoding algorithm for Gaussian linear regression that uses O(d/α3) samples, returns a list of

O(1/α) many hypothesis vectors, and has ℓ2-error guarantee of O((σ/α)
√

log(1/α)). Moreover, if

the dimension d is sufficiently large, any list-decoding algorithm that outputs a list of size poly(1/α)

must have ℓ2-error at least Ω((σ/α)/
√

log(1/α)).

The proof of this result is given in Section 6.2 (see Theorems 6.2.1 and 6.2.4). Our

main result is a strong SQ lower bound for the list-decodable Gaussian linear regression

problem. We establish the following theorem (see Theorem 6.3.1 for a more detailed formal

statement).

Theorem 6.1.5 (SQ Lower Bound). Assume that the dimension d ∈ Z+ is sufficiently large and

consider the problem of list-decodable linear regression, where the fraction of inliers is α ∈ (0, 1/2),

the regression vector β ∈ Rd has norm ∥β∥2 ≤ 1, and the additive noise has standard deviation

σ ≤ α. Then any SQ algorithm that returns a list L of candidate vectors containing a β̂ such that

∥β̂ − β∥2 ≤ 1/4 does one of the following:

• it uses at least one query with tolerance at most d−Ω(1/
√
a)/σ,
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Algorithmic Result Sample Size Running Time List size

[KKK19] (d/α)O(1/α4) (d/α)O(1/α8) O(1/α)
[RY20a] dO(1/α4) dO(1/α8)(1/α)log(1/α) (1/α)O(log(1/α))

Table 6.1: The table summarizes the sample complexity, running time, and list size of
the known list-decodable linear regression algorithms in order to obtain a 1/4-additive
approximation to the hidden regression vector β in the setting of Theorem 6.1.5, i.e., when
∥β∥2 ≤ 1 and σ is sufficiently small as a function of α: [KKK19] requires σ = O(α) and
[RY20a] requires σ = O(α3/2).

• it makes 2dΩ(1) queries, or

• it returns a list of size |L| = 2dΩ(1) .

Informally speaking, Theorem 6.1.5 shows that no SQ algorithm can approximate β to

constant accuracy with a sub-exponential in dΩ(1) size list and sub-exponential in dΩ(1) many

queries, unless using queries of very small tolerance – that would require at least σdΩ(1/
√
α)

samples to simulate. For σ not too small, e.g., σ = poly(α), in view of Theorem 6.1.4, this

result can be viewed as an information-computation tradeoff for the problem, within the

class of SQ algorithms.

A conceptual implication of Theorem 6.1.5 is that list-decodable linear regression is

harder (within the class of SQ algorithms) than the related problem of learning mixtures

of linear regressions (MLR). Recent work [DK20] gave an algorithm (easily implementable

in SQ) for learning MLR with k equal weight separated components (under Gaussian

covariates) with sample complexity and running time kpolylog(k), i.e., quasi-polynomial in k.

Recalling that one can reduce k-MLR (with well-separated components) to list-decodable

linear regression for α = 1/k, Theorem 6.1.5 implies that the aforementioned algorithmic

result cannot be obtained via such a reduction.

Remark 6.1.6. While the main focus of this work is on the SQ model, our result has immediate

implications to a related popular restricted computational model — that of low-degree (polynomial)

algorithms [HS17; HKPRSS17; Hop18]. Recent work [BBHLS21] established that (under certain
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assumptions) an SQ lower bound also implies a qualitatively similar lower bound in the low-degree

model. We leverage this connection to show a similar lower bound in this model (see Section 6.6).

6.1.3 Overview of Techniques

In this section, we provide a detailed overview of our SQ lower bound construction. We

recall that there exists a general methodology for establishing SQ lower bounds via an

appropriate complexity measure, known as SQ dimension. Several related notions of SQ

dimension exist in the literature, see, e.g., [BFJKMR94; FGRVX17; Fel17]. Here we focus on

the framework introduced in [FGRVX17] for search problems over distributions, which

is more natural in our setting. A lower bound on the SQ dimension of a search problem

provides an unconditional lower bound on the SQ complexity of the problem. Roughly

speaking, for a notion of correlation between distributions in our familyD (Definition 6.1.9),

establishing an SQ lower bound amounts to constructing a large cardinality sub-family

D′ ⊆ D such that every pair of distributions in D′ are nearly uncorrelated with respect to a

given reference distribution R (see Definition 6.1.11 and Lemma 6.1.12).

A general framework for constructing SQ-hard families of distributions was introduced

in [DKS17], which showed the following: Let the reference distribution R be N (0, I) and

A be a univariate distribution whose low-degree moments match those of the standard

Gaussian (and which satisfies an additional mild technical condition). Let PA,v be the

distribution that is a copy of A in the v-direction and standard Gaussian in the orthogonal

complement (Definition 6.1.13). Then the distribution family {PA,v}v∈S , where S is a

set of nearly orthogonal unit vectors, satisfies the pairwise nearly uncorrelated property

(Lemma 6.1.14), and is therefore SQ-hard to learn.

Unfortunately, the [DKS17] framework does not suffice in the supervised setting of the

current paper for the following reason: The joint distribution over labeled examples (X, y)

in our setting does not possess the symmetry properties required for moment-matching

with the reference R = N (0, I) to be possible. Specifically, the behavior of y will necessarily
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be somewhat different than the behavior of X . To circumvent this issue, we leverage an

idea from [DKS19]. The high-level idea is to construct distributions Ev on (X, y) such that

for any fixed value y0 of y, the conditional distribution of X | y = y0 under Ev is of the form

PA,v described above, where A is replaced with some Ay0 .

We further explain this modified construction. Note that Ev should be of the form

αDv+(1−α)Nv, whereDv is the inlier distribution (corresponding to the clean samples from

the linear regression model) and Nv is the outlier (noise) distribution. To understand what

properties our distribution should satisfy, we start by looking at the inlier distributionD. By

definition, for (X, y) ∼ D, we have that y = β⊤X + η, where X ∼ N(0, I) and η ∼ N(0, σ2)

is independent of X . A good place to start here is to understand the distribution of X

conditioned on y = y0, for some y0, under D. It is not hard to show (Fact 6.3.3) that this

conditional distribution is already of the desired form PA,β: it is a product of a (d − 1)-

dimensional standard Gaussian in directions orthogonal to β, while in the β-direction it is

a much narrower Gaussian with mean proportional to y0. To establish our SQ-hardness

result, we would like to mix this conditional distribution with a carefully selected outlier

distribution N | y = y0, such that the resulting mixture E | y = y0 matches many of its

low-degree moments with the standard Gaussian in the β-direction, while being standard

Gaussian in the orthogonal directions. In the setting of minority of outliers, [DKS19] was

able to provide an explicit formula for N and match three moments to show an SQ lower

bound of Ω(d2). The main technical difficulty in our paper is that, in order to prove the

desired SQ lower bound of Ω(dpoly(1/α)), we need to match poly(1/α) many moments. We

explain how to achieve this below.

Here we take a different approach and establish the existence of the desired outlier

distribution N |y = y0 in a non-constructive manner. We note that our problem is an

instance of the moment-matching problem, where given a sequence of real numbers, the

goal is to decide whether a distribution exists having that sequence as its low-degree

moments. At a high-level, we leverage classical results that tackle this general question by
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formulating a linear program (LP) and using LP-duality to derive necessary and sufficient

feasibility conditions (see [KS53] and Theorem 6.4.1). This moment-matching via LP

duality approach is fairly general, but stumbles upon two technical obstacles in our setting.

The first technical issue is that our final distributions Ev on (X, y) need to have bounded

χ2-divergence with respect to the reference distribution, since the pairwise correlations

scale with this quantity (see Lemma 6.1.14). To guarantee this, we can ensure that the

outlier distribution in the β-direction is in fact equal to the convolution of a distribution with

bounded support with a narrow Gaussian: (i) The contraction property of this convolution

operator means that it can only reduce the χ2-divergence, and (ii) the bounded support

can be used in combination with tail-bounds on Hermite polynomials (Lemma 6.3.10) to

bound from above the contribution to the χ2-divergence of each Hermite coefficient of our

distribution (Lemma 6.3.7). These additional constraints necessitate a modification to the

moment-matching problem, but it can still be readily analyzed (Theorem 6.3.6).

The second and more complicated issue involves the fraction of outliers, i.e., the param-

eter “1−α”. Unfortunately, it is easy to see that the fraction of outliers necessary to make

the conditional distributions match the desired number of moments must necessarily go

to 1 as |y| goes to infinity: As |y| gets bigger, the conditional distribution of inliers moves

further away from N (0, I) (Fact 6.3.3) and thus needs to be mixed more heavily with

outliers to be corrected. This is a significant problem, since by definition we can only afford

to use a (1−α)-fraction of outliers overall. To handle this issue, we consider a reference

distribution R on (X, y) that has much heavier tails in y than the distribution of inliers has.

This essentially means that as |y| gets large, the conditional probability that a sample is an

outlier gets larger and larger. This is balanced by having slightly lower fraction of outliers

for smaller values of |y|, in order to ensure that the total fraction of outliers is still at most

1−α. To address this issue, we leverage the fact that the probability that a clean sample

has large value of |y| is very small. Consequently, we can afford to make the error rates for

such y quite large without increasing the overall probability of error by very much.
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6.1.4 Preliminaries

Notation We use N to denote natural numbers and Z+ to denote positive integers. For

n ∈ Z+ we denote [n] def= {1, . . . , n} and use Sd−1 for the d-dimensional unit sphere. We

denote by I(E) the indicator function of the event E . We use Id to denote the d× d identity

matrix. For a random variable X , we use E[X] for its expectation. For m ∈ Z+, the m-th

moment ofX is defined as E[Xm]. We useN (µ,Σ) to denote the Gaussian distribution with

mean µ and covariance matrix Σ. We let ϕ denote the pdf of the one-dimensional standard

Gaussian. When D is a distribution, we use X ∼ D to denote that the random variable X is

distributed according to D. For a vector x ∈ Rd, we let ∥x∥2 denote its ℓ2-norm. For y ∈ R,

we denote by δy the Dirac delta distribution at y, i.e., the distribution that assigns probability

mass 1 to the single point y ∈ R and zero elsewhere. When there is no confusion, we will

use the same letters for distributions and their probability density functions.

Hermite Analysis Hermite polynomials form a complete orthogonal basis of the vector

space L2(R,N (0, 1)) of all functions f : R→ R such that EX∼N (0,1)[f 2(X)] <∞. There are

two commonly used types of Hermite polynomials. The physicist’s Hermite polynomials,

denoted by Hk for k ∈ N satisfy the following orthogonality property with respect to

the weight function e−x2 : for all k,m ∈ N,
∫
RHk(x)Hm(x)e−x2dx =

√
π2kk! I(k = m). The

probabilist’s Hermite polynomials Hek
for k ∈ N satisfy

∫
R
Hek

(x)Hem(x)e−x2/2dx = k!
√

2π I(k = m)

and are related to the physicist’s polynomials through Hek
(x) = 2−k/2Hk(x/

√
2). We will

mostly use the normalized probabilist’s Hermite polynomials, hk(x) = Hek
(x)/
√
k!, k ∈ N for

which
∫
R hk(x)hm(x)e−x2/2dx =

√
2π I(k = m). These polynomials are the ones obtained by

Gram-Schmidt orthonormalization of the basis {1, x, x2, . . .}with respect to the inner prod-

uct ⟨f, g⟩N (0,1) = EX∼N (0,1)[f(X)g(X)]. Every function f ∈ L2(R,N (0, 1)) can be uniquely
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written as f(x) = ∑
i∈N aihi(x) and we have limn→n Ex∼N (0,1)[(f(x) − ∑n

i=0 aihi(x))2] = 0

(see, e.g., [AAR99]).

Ornstein-Uhlenbeck Operator For a ρ > 0, we define the Gaussian noise (or Ornstein-

Uhlenbeck) operator Uρ as the operator that maps a distribution F on R to the distribution

of the random variable ρX +
√

1− ρ2Z, where X ∼ F and Z ∼ N (0, 1) independently of

X . A well-known property of Ornstein–Uhlenbeck operator is that it operates diagonally

with respect to Hermite polynomials.

Fact 6.1.7 (see, e.g., [ODo14]). For any Hermite polynomial hi, any distribution F on R, and

ρ ∈ (0, 1), it holds that EX∼UρF [hi(X)] = ρi EX∼F [hi(X)].

Background on the SQ Model We provide the basic definitions and facts that we use.

Definition 6.1.8 (Search problems over distributions). Let D be a set of distributions over Rd,

F be a set called solutions, and Z : D → 2F be a map that assigns sets of solutions to distributions

of D. The distributional search problem Z over D and F is to find a valid solution f ∈ Z(D)

given statistical query oracle access to an unknown D ∈ D.

The hardness of these problems is conveniently captured by the SQ dimension. For this,

we first need to define the notion of correlation between distributions.

Definition 6.1.9 (Pairwise Correlation). The pairwise correlation of two distributions with

probability density functions D1, D2 : Rd → R+ with respect to a reference distribution with

density R : Rd → R+, where the support of R contains the supports of D1 and D2, is defined as

χR(D1, D2) def=
∫
Rd D1(x)D2(x)/R(x) dx − 1. When D1 = D2, the pairwise correlation becomes

the same as the χ2-divergence between D1 and R, i.e., χ2(D1, R) def=
∫
Rd D2

1(x)/R(x)dx − 1.

Definition 6.1.10. For γ, β > 0, the set of distributions D = {D1, . . . , Dm} is called (γ, β)-

correlated relative to the distribution R if |χR(Di, Dj)| ≤ γ, if i ̸= j, and |χR(Di, Dj)| ≤ β

otherwise.
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The statistical dimension of a search problem is based on the largest set of (γ, β)-

correlated distributions assigned to each solution.

Definition 6.1.11 (Statistical Dimension). For γ, β > 0, a search problemZ over a set of solutions

F and a class D of distributions over X , we define the statistical dimension of Z , denoted by

SD(Z, γ, β), to be the largest integer m such that there exists a reference distribution R over X and

a finite set of distributions DR ⊆ D such that for any solution f ∈ F , the set Df = DR \ Z−1(f) is

(γ, β)-correlated relative to R and |Df | ≥ m.

Lemma 6.1.12 (Corollary 3.12 in [FGRVX17]). Let Z be a search problem over a set of solutions

F and a class of distributions D over Rd. For γ, β > 0, let s = SD(Z, γ, β) be the statistical

dimension of the problem. For any γ′ > 0, any SQ algorithm for Z requires either sγ′/(β − γ)

queries or at least one query to STAT(
√
γ + γ′) oracle.

We continue by recalling the machinery from [DKS17] that will be used for our con-

struction.

Definition 6.1.13 (High-Dimensional Hidden Direction Distribution). For a unit vector

v ∈ Rd and a distribution A on the real line with probability density function A(x), define

PA,v to be a distribution over Rd, where PA,v is the product distribution whose orthogonal pro-

jection onto the direction of v is A, and onto the subspace perpendicular to v is the standard

(d−1)-dimensional normal distribution. That is, PA,v(x) := A(v⊤x)ϕ⊥v(x), where ϕ⊥v(x) =

exp
(
−∥x− (v⊤x)v∥2

2/2
)
/(2π)(d−1)/2.

The distributions {PA,v} defined above are shown to be nearly uncorrelated as long as

the directions where A is embedded are pairwise nearly orthogonal.

Lemma 6.1.14 (Lemma 3.4 in [DKS17]). Let m ∈ Z+. Let A be a distribution over R that

agrees with the first m moments of N (0, 1). For any v, let PA,v denote the distribution from

Definition 6.1.13. For all v, u ∈ Rd, we have that χN (0,Id)(PA,v, PA,u) ≤ |u⊤v|m+1χ2(A,N (0, 1)).
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The following result shows that there are exponentially many nearly-orthogonal unit

vectors.

Lemma 6.1.15 (see, e.g., Lemma 3.7 in [DKS17]). For any 0 < c < 1/2, there is a setS, of at least

2Ω(dc) unit vectors in Rd, such that for each pair of distinct v, v′ ∈ S, it holds |v⊤v′| ≤ O(dc−1/2).

6.1.5 Prior and Related Work

Early work in robust statistics, starting with the pioneering works of Huber and

Tukey [Hub64; Tuk75], pinned down the sample complexity of high-dimensional robust

estimation with a minority of outliers. In contrast, until relatively recently, even the most

basic computational questions in this field were poorly understood. Two concurrent

works [DKKLMS16; LRV16] gave the first provably robust and efficiently computable

estimators for robust mean and covariance estimation. Since the dissemination of these

works, there has been a flurry of activity on algorithmic robust estimation in a variety

of high-dimensional settings; see [DK19] for a recent survey on the topic. Notably, the

robust estimators developed in [DKKLMS16] are scalable in practice and yield a number

of applications in exploratory data analysis [DKKLMS17] and adversarial machine

learning [TLM18; DKKLSS19]

The list-decodable learning setting studied in this paper was first considered in [CSV17]

with a focus on mean estimation. [CSV17] gave a polynomial-time algorithm with near-

optimal statistical guarantees for list-decodable mean estimation under a bounded co-

variance assumption on the clean. Subsequent work has led to significantly faster algo-

rithms for the bounded covariance setting [DKK20; CMY20; DKKLT21; DKKLT22] and

polynomial-time algorithms with improved error guarantees under stronger distributional

assumptions [DKS18; KSS18]. More recently, a line of work developed list-decodable learn-

ers for more challenging tasks, including linear regression [KKK19; RY20a] and subspace

recovery [RY20b; BK21].
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6.2 Information-Theoretic Bounds

6.2.1 Upper Bound on Sample Complexity

In this section, we show that n = poly(d, 1/α) samples suffice for list-decodable linear

regression.

Theorem 6.2.1. There is a (computationally inefficient) algorithm that uses O(d/α3) samples from

a (1−α)-corrupted version of a Gaussian linear regression model of Definition 6.1.2 with S ′ = Rd,

and returns a list L of |L| = O(1/α) many hypotheses such that with high probability at least one

of them is within ℓ2-distance O((σ/α)
√

log(1/α)) from the regression vector.

The proof strategy is similar to [DKS18]. When S is a set, we use the notation X ∼u S

to denote that X is distributed according to the uniform distribution on S. We require the

following theorem:

Fact 6.2.2 (VC Inequality). Let F be a class of Boolean functions with finite VC dimension VC(F)

and let a probability distribution D over the domain of these functions. For a set S of n independent

samples from D

sup
f∈F

∣∣∣∣ P
X∼uS

[f(X)]− P
X∼D

[f(X)]
∣∣∣∣ ≲

√
VC(F)
n

+
√

log(1/τ)
n

,

with probability at least 1− τ .

Proof of Theorem 6.2.1. Recall the notation in Definitions 6.1.1 and 6.1.2. Let T be the set of

points generated by the (1−α)-corrupted version of Dβ∗ for some unknown β∗ ∈ Rd. Let S1

be the set of points that are sampled from Dβ∗ . Since inliers are sampled with probability

α, we have that |S1| ≥ α|T |/2 with high probability. For a t ≥ 0, defineHt,γ as follows:

Ht,γ :=

 β ∈ Rd : ∃T ′ ⊂ T, |T ′| = α|T |/2, (6.1)

P
(X,y)∼uT ′

[|y −X⊤β| > σt] ≤ α/20, (6.2)



146

∀v ∈ Sd−1, γ′ ≥ γ : P
(X,y)∼uT ′

[|y −X⊤β − γ′v⊤X| ≤ σt] ≤ α/20

 . (6.3)

Recall that the distribution of inliers is X ∼ N (0, Id) and y = X⊤β∗ + η, where η ∼

N (0, σ2) independent of X . If |S1| ≥ Cd/α2 for a sufficiently large constant C, then we

claim that β∗ ∈ Ht,γ with t = Θ(
√

log(1/α)) and γ = 40σt/α = Θ((σ/α)
√

log(1/α)). Let

S ′ be a set of i.i.d. points sampled from Dβ∗ with |S ′| = |T |α/2. We first argue that

conditions (6.2) and (6.3) hold under (X, y) ∼ Dβ∗ , even after replacing α/20 with α/40 in

conditions (6.2) and (6.3), with the claimed bounds on t and γ, and then the required result

on (X, y) ∼u S ′ will follow from the VC inequality. Since y −X⊤β∗ ∼ N (0, σ2) under Dβ∗ ,

we get that P[|y −X⊤β∗| > σt] ≤ α/40 because of Gaussian concentration. Let G ∼ N (0, 1)

independent of η. For condition (6.3), the expression again reduces to concentration of a

Gaussian distribution:

P
η∼N (0,σ2),G∼N (0,1)

[|η + γ′G| ≤ σt] = P
Z∼N (0,σ2+γ′2)

[|Z| ≤ σt] ≲ σt

γ′ ,

which is less than α/40 for γ′ ≥ γ = 40tσ/α. The desired conclusion now follows by

noting that conditions (6.2) and (6.3) follow by uniform concentration of linear threshold

functions on (X, y), which have VC dimension O(d) and the condition that |S ′| = Ω(d/α2).

We then show that any γ-packing of the setHt,γ has size O(1/α). Having this, it follows

that there exists a γ-cover of size O(1/α) and the output of the algorithm, L, consists of

returning any such cover. The key claim for bounding the size of any γ-packing is that the

pairwise intersections between the sets T ′ from condition (6.1) are small.

Claim 6.2.3. Let β1, . . . , βk ∈ Ht,γ such that ∥βi − βj∥2 > γ for all i, j ∈ [k] and i ̸= j. Let T ′
i be

the corresponding subsets of T satisfying the condition (6.1). Then |T ′
i ∩ T ′

j| ≤ α(|T ′
i |+ |T ′

j|)/20.

Proof. Fix an i ̸= j. Let βi − βj = vγ′, where v ∈ Sd−1 and γ′ ≥ γ. Let E be the event

{(X, y) : |y −X⊤βj| ≤ σt} and Ec be its complement. As T ′
i and T ′

j are sets of size α|T |/2,
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we have that

|T ′
i ∩ T ′

j| =
|T ′
i |+ |T ′

j|
2

(
|T ′
i ∩ T ′

j ∩ E|
|T ′
i |

+
|T ′
i ∩ T ′

j ∩ Ec|
|T ′
j|

)

≤
|T ′
i |+ |T ′

j|
2

(
|T ′
i ∩ E|
|T ′
i |

+
|T ′
j ∩ Ec|
|T ′
j|

)
=
|T ′
i |+ |T ′

j|
2

(
P

(X,y)∼uT ′
i

[E ] + P
(X,y)∼uT ′

j

[Ec]
)
.

As βj ∈ Ht,γ , we have that P(X,y)∼uT ′
j
[Ec] ≤ α/20 by condition (6.2). We now bound the first

term.

P
(X,y)∼uT ′

i

[E ] = P
(X,y)∼uT ′

i

[|y −X⊤βi − γ′v⊤X| ≤ σt],

which is less than α/20 by the condition (6.3). This completes the proof of the claim.

We use this to show that there cannot exist a γ-packing of size k ≥ 4/α. To see this,

assume that k = 4/α, then

|T | ≥
k∑
i=1
|T ′
i | −

∑
1≤i<j≤k

|T ′
i ∩ T ′

j| ≥
(

1− α

20(k − 1)
) k∑
i=1
|T ′
i | ≥

4
5kα
|T |
2 > |T | .

This yields a contradiction, completing the proof of Theorem 6.2.1.

6.2.2 Information-Theoretic Lower Bound on Error

We establish the following lower bound on the error of any list-decoding algorithm for

linear regression.

Theorem 6.2.4. Let 0 < α < 1/2, σ > 0, k > 1 such that k = O(1/(α2 log(1/α))), and d ∈ Z+

such that d > (log(1/αk))C , where C is a sufficiently large constant. Any list-decodable algorithm

that receives a (1−α)-corrupted version of Dβ (defined in Definition 6.1.2) for some unknown

β ∈ Rd, and returns a list L of size |L| = O((1/α)k) has error bound Ω
(

σ

α
√
k log(1/α)

)
with high

probability.
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Proof. Let ρ > 0 to be decided later. We will take β to be of the form ρv for some unit vector

v. By abusing notation, let Dv(x, y) be the joint distribution on (X, y) from the linear model

X ∼ N (0, Id), y = β⊤X + η, where η ∼ N (0, σ2) independently of X and β = ρv. As d is

large enough, let S ′ be a subset of the set S of nearly orthogonal unit vectors of Rd from

Lemma 6.1.15 with |S ′| = ⌊0.5(1/α)k⌋ for k > 1. Consider the set of distributions {Dv}v∈S′

and note that for every distinct pair u, v ∈ S we have that ∥ρu− ρv∥2 ≥ cρ for some c > 0.

We want to show that after adding (1− α)-fraction of outliers these distributions become

indistinguishable, i.e., there exists some distribution that is pointwise greater than αDv for

every v ∈ S ′. This will lead to a lower bound on error of the form Ω(ρ). Let P be the joint

pseudo-distribution on (X, y) such that P (x, y) = maxv∈S Dv(x, y) and denote by ∥P∥1 the

normalizing factor
∫
R
∫
Rd P (x, y)dxdy. We will show that P/∥P∥1 ≥ αDv pointwise. To this

end, it suffices to show that ∥P∥1 ≤ 1/α. Denote z := v⊤x. Noting that Dv’s marginal on x

is N (0, Id) and the conditional Dv(y|x) is N (ρz, σ2) we can write

Dv(x, y) = 1√
2πσ

exp
(
−|y − ρz|

2

2σ2

)
1

(
√

2π)d
exp

(
−∥x∥

2

2

)

= 1
(
√

2π)d+1σ
exp

(
−|y − ρz|

2

2σ2 − ∥x∥
2

2

)
.

For some σ1 to be defined later, take R to be the reference distribution where X ∼

N (0, Id) and y ∼ N (0, σ2
1) independently. We now calculate the ratio of density of R with

Dv at arbitrary (x, y):

R(x, y)
Dv(x, y) = R(y)R(x|y)

Dv(y)Dv(x|y)

=
1

(
√

2π)d+1σ1
exp (−0.5∥x∥2 − 0.5y2/σ2

1)
1

(
√

2π)d+1σ
exp

(
−0.5∥x∥2 − 0.5 ρ2

σ2

(
z − y

ρ

)2
)

= σ

σ1
exp

− y2

2σ2
1

+ ρ2

2σ2

(
z − y

ρ

)2




149

≥ σ

σ1
exp

(
− y2

2σ2
1

)
.

As we will show later, it suffices to show that this expression is greater than 2α with

high probability under Dv. As y ∼ N (0, σ2
y) under Dv, with probability 1 − αk−1, |y| ≤

10
√
kσy

√
log(1/α). Setting σ1 = 10

√
kσy

√
log(1/α), we get that with the same probability,

R(x, y)
Dv(x, y) ≥

1
100
√
k

σ

σy
√

log(1/α)
.

We can now try to maximize ρ (and thus σy) so that the expression on the right-hand side

is greater than 2α. This holds as long as ρ satisfies the following:

σ2
y = σ2 + ρ2 ≤ σ2

C ′kα2 log(1/α) ,

As k = O(1/(α2 log(1/α))), the condition above shows that ρ can be as large as σ

α
√
k log(1/α)

up to constants. Finally we show that ∥P∥1 is less than 1/α as follows:

∥P∥1 =
∫
R

∫
Rd
P (x, y)dxdy

=
∫
R

∫
Rd
P (x, y) I(|y| ≤ 10

√
kσy

√
log(1/α))dxdy

+
∫
R

∫
Rd
P (x, y) I(|y| > 10

√
kσy

√
log(1/α))dxdy

≤ 1
2α

∫
R

∫
Rd
R(x, y)dxdy +

∫
R

∫
Rd
P (x, y) I(|y| > 10

√
kσy

√
log(1/α))dxdy

≤ 1
2α +

∑
v∈S′

P
(X,y)∼Dv

[
|y| > 10

√
kσy

√
log(1/α)

]

≤ 1
2α + |S ′|αk−1 ≤ 1/α,

where the last inequality follows by noting that |S ′| ≤ 0.5(1/α)k.
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6.3 Main Result: Proof of Theorem 6.1.5

In this section, we present the main result of this paper: SQ hardness of list-decodable

linear regression (Definitions 6.1.1 and 6.1.2). We consider the setting when β has norm

less than 1, i.e., β = ρv for v ∈ Sd−1 and ρ ∈ (0, 1).9 Note that the marginal distribution of

the labels is N (0, σ2
y), where σ2

y = ρ2 + σ2. We ensure that the labels y have unit variance

by using σ2 = 1− ρ2. Specifically, the choice of parameters will be such that obtaining a

ρ/2-additive approximation of the regressor β is possible information-theoretically with

poly(d/α) samples (cf. Section 6.2.1), but the complexity of any SQ algorithm for the task

must necessarily be at least dpoly(1/α)/σ. We show the following more detailed statement of

Theorem 6.1.5.

Theorem 6.3.1 (SQ Lower Bound). Let c ∈ (0, 1/2), d ∈ Z+ with d = 2Ω(1/(1/2−c)), α ∈ (0, 1/2),

ρ ∈ (0, 1), σ2 = 1− ρ2, and m ∈ Z+ with m ≤ c1/
√
α for some sufficiently small constant c1 > 0.

Any list-decoding algorithm that, given statistical query access to a (1−α)-corrupted version of the

distribution described by the model of Definition 6.1.2 with β = ρv for v ∈ Sd−1, returns a list L of

hypotheses vectors that contains a β̂ such that ∥β̂ − β∥2 ≤ ρ/2, does one of the following:

• it uses at least one query to STAT
(
Ω(d)−(2m+1)(1/4−c/2)eO(m)/σ

)
,

• it makes 2Ω(dc)d−(2m+1)(1/2−c) many queries, or

• it returns a list L of size 2Ω(dc).

In the rest of this section, we will explain the hard-to-learn construction for our SQ

lower bound, i.e., a set of distributions with large statistical dimension. The proof would

then follow from Lemma 6.1.12. We begin by describing additional notation that we will

use.

Notation: As β = ρv for a fixed ρ, we will slightly abuse notation by usingDv(x, y) to denote

the joint distribution of the inliers and we useEv(x, y) to denote the (1−α)-corrupted version
9This is a standard assumption and considered by existing works [KKK19; RY20a] (cf. Remark 6.3.11).
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of Dv(x, y). To avoid using multiple subscripts, we use Dv(x|y) to denote the conditional

distribution ofX|y according to the distributionDv and similarly for the other distributions.

In addition, we use Dv(y) to denote the marginal distribution of y under Dv and similarly

for other distributions.

Following the general construction of [DKS17], we will specify a reference joint distribu-

tion R(x, y) where X and y are independent, and X ∼ N (0, Id). We will find a marginal

distribution R(y) and a way to add the outliers so that the following hold for each Ev

(where m = Θ(1/
√
α)):

(I) Ev is indeed a valid distribution of (X, y) in our corruption model (i.e., can be

written as a mixture αDv(x, y) + (1−α)Nv(x, y) for some noise distribution Nv).

Moreover, the marginal of Ev on the labels, Ev(y), coincides with R(y).

(II) For every y ∈ R, the conditional distribution Ev(x|y) is of the form PAy ,v of Defini-

tion 6.1.13, with Ay being a distribution that matches the first 2m moments with

N (0, 1).10

(III) For Ay defined above, Ey∼R(y)[χ2(Ay,N (0, 1))] is bounded.

We first briefly explain why a construction satisfying the above properties suffices to

prove our main theorem (postponing a formal proof for the end of this section). We start

by noting the following decomposition.

Lemma 6.3.2. For u, v ∈ Sd−1, if Eu and Ev have the same marginals R(y) on the labels, they

satisfy χR(x,y)(Ev(x, y), Eu(x, y)) = Ey∼R(y)
[
χN (0,Id) (Ev(x|y), Eu(x|y))

]
.

Proof. Let ϕ denote the density of N (0, 1). Using the fact that Ev and Eu have the same

marginal R(y) we have that

χR(x,y)(Ev(x, y), Eu(x, y)) + 1 =
∫
R

∫
Rd

Ev(x, y)Eu(x, y)
ϕ(x)R(y) dxdy

10We use even number of moments for simplicity. The analysis would slightly differ for odd number.



152

=
∫
R

∫
Rd

Ev(x|y)Eu(x|y)
ϕ(x) R(y)dxdy

=
∫
R

(
1 + χN (0,Id)(Ev(x|y)Eu(x|y))

)
R(y)dy

= 1 + E
y∼R(y)

[
χN (0,Id) (Ev(x|y), Eu(x|y))

]
.

Using the decomposition in Lemma 6.3.2 for Eu and Ev satisfying Property (II),

Lemma 6.1.14 implies that |χR(x,y)(Ev(x, y), Eu(x, y))| ≤ |u⊤v|2m+1 Ey∼R(y)[χ2(Ay, N(0, 1))].

Letting D = {Ev : v ∈ S}, where S is the set of nearly uncorrelated unit vectors from

Lemma 6.1.15, we get thatD is (γ, b)-correlated relative toR, for b = Ey∼R(y)[χ2(Ay,N (0, 1))]

and γ ≤ d−Ω(m)b. As |S| = 2Ω(dc), b is bounded by Property (III), and the list size is much

smaller than |S|, we can show that the statistical dimension of the list-decodable linear

regression is large.

Thus, in the rest of the section we focus on showing that such a construction exists. We

first note that according to our linear model of Definition 6.1.2, the conditional distribution

of X given y for the inliers is Gaussian with unit variance in all but one direction.

Fact 6.3.3. Fix ρ > 0, v ∈ Sd−1, and consider the regression model of Definition 6.1.2 with β = ρv.

Then the conditional distributionX|y of the inliers isN (yρv, Id−ρ2vv⊤), i.e., independent standard

Gaussian in all directions perpendicular to v and N (ρy, 1− ρ2) in the direction of v.

Proof. This is due to the following fact for the conditional distribution of the Gaussian

distribution.

Fact 6.3.4. If

y1

y2

 ∼ N

µ1

µ2

 ,
Σ11 Σ12

Σ21 Σ22


, then y1|y2 ∼ N (µ̄, Σ̄), with µ̄ = µ1+Σ12Σ−1

22 (y2−

µ2) and Σ11 − Σ12Σ−1
22 Σ21.

We apply this fact for the pair (X, y) by setting y1 = X, y2 = y, µ1 = µ2 = 0 and

Σ11 = Id,Σ12 = β,Σ21 = β⊤,Σ22 = σ2 + ∥β∥2
2.

Since Fact 6.3.3 states that Dv(x|y) is already of the desired form (standard normal

in all directions perpendicular to v and N (yρ, 1− ρ2) in the direction of v), the problem
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becomes one-dimensional. More specifically, for every y ∈ R, we need to find a one-

dimensional distribution Qy and appropriate values αy ∈ [0, 1] such that the mixture

Ay = αyN (yρ, 1 − ρ2) + (1−αy)Qy matches the first 2m moments with N (0, 1). Then,

multiplying by ϕ⊥v (which denotes the contribution of the space orthogonal to v to the

density of standard Gaussian, as defined in Definition 6.1.13) yields the d-dimensional

mixture distribution αyDv(x|y) + (1−αy)Qy(v⊤x)ϕ⊥v(x). We show that an appropriate

selection of αy can ensure that this is a valid distribution for our contamination model.

Lemma 6.3.5. LetR be a distribution on pairs (x, y) ∈ Rd+1 such thatαy := αDv(y)/R(y) ∈ [0, 1]

for all y ∈ R. Suppose that for every y ∈ R there exists a univariate distribution Qy such that

Ay := αyN (yρ, 1−ρ2)+(1−αy)Qy matches the first 2mmoments withN (0, 1). If the distribution

of the outliers is Nv(x, y) = ((1−αy)/(1−α))Qy(v⊤x)ϕ⊥v(x)R(y), Properties (I) and (II) hold.

Proof. First note that the noise distribution Nv is indeed a valid distribution since it is

non-negative everywhere because of the assumption αy ∈ [0, 1] and it integrates to one:

1
1− α

∫
R

∫
Rd

(1− αy)Qy(v⊤x)ϕ⊥v(x)R(y)dxdy

= 1
1− α

(∫
R

∫
Rd
R(y)Qy(v⊤x)ϕ⊥v(x)dxdy− α

∫
R

∫
Rd
Dv(y)Qy(v⊤x)ϕ⊥v(x)dxdy

)
= 1 .

The joint distribution Ev(x, y) can be written as

Ev(x, y) = αDv(x, y) + (1− α)Nv(x, y)

= αDv(x, y) + (1− α)1− αy
1− α Qy(v⊤x)ϕ⊥v(x)R(y)

=
(
αyDv(x|y) + (1− αy)Qy(v⊤x)ϕ⊥v(x)

)
R(y) .

This means that the marginal of y under Ev is R(y), which establishes Property (I), and the

conditional distribution of X|y under Ev is Ey(x|y) = αyDv(x|y) + (1− αy)Qy(v⊤x)ϕ⊥v(x).
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The moment matching part of Property (II) holds by assumption. For the other part

of Property (II), we note that Ev(x|y) is standard Gaussian in directions perpendicular

to v because of Fact 6.3.3 and the form of the term Qy(v⊤x)ϕ⊥v(x) that corresponds to the

outliers.

We will choose the reference distributionR(x, y) to haveX ∼ N (0, Id) and y ∼ N (0, 1/α)

independently, which makes the corresponding value of αy to be

αy = αDv(y)/R(y) =
√
α exp(−y2(1− α)/2) .

This satisfies the condition in Lemma 6.3.5 that αy ∈ [0, 1]. Our choice of R(y) being

N (0, 1/α) is informed by Properties (II) and (III), and will be used later on in the proofs

of Theorem 6.3.6 and Lemma 6.3.7 (also see the last paragraph of Section 6.1.3 for more

intuition). Going back to our goal, i.e., making Ay = αyN (yρ, 1−ρ2) + (1−αy)Qy match

moments with N (0, 1), we will argue that it suffices to only look for Qy of the specific

form UρFy, where Uρ is the Ornstein-Uhlenbeck operator. This suffices because Uρδy =

N (yρ, 1− ρ2) and the operator Uρ preserves the moments of a distribution if they match

withN (0, 1) (see Lemma 6.3.7 (i) below). LettingAy = Uρ(αyδy +(1−αy)Fy), the new goal

is to show that the argument of Uρ matches moments with N (0, 1). We show the following

structural result:

Theorem 6.3.6. Let y ∈ R, B ∈ R, α ∈ (0, 1/2), and define αy :=
√
α exp(−y2(1−α)/2). For

any m ∈ Z+ such that m ≤ C1/
√
α and B ≥ C2

√
m, with C1 > 0 being a sufficiently small

constant and C2 being a sufficiently large constant, there exists a distribution Fy that satisfies the

following:

1. The mixture distribution αyδy + (1− αy)Fy matches the first 2m moments with N (0, 1).

2. Fy is a discrete distribution supported on at most 2m+ 1 points, all of which lie in [−B,B].
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The proof of Theorem 6.3.6 is the bulk of the technical work of this paper and is deferred

to Section 6.4. As mentioned before, applying Uρ preserves the required moment-matching

property. More crucially, it allows us to bound the χ2-divergence: the following result

bounds χ2(Ay,N (0, 1)) using contraction properties of Uρ, tail bounds of Hermite polyno-

mials, and the discreteness of Fy.

Lemma 6.3.7. In the setting of Theorem 6.3.6, let ρ > 0 and Qy = UρFy. Then the following holds

for the mixture Ay = αyN (yρ, 1− ρ2) + (1−αy)Qy: (i) Ay matches the first 2m moments with

N (0, 1), and (ii) χ2(Ay,N (0, 1)) ≤ αO(ey2(α−1/2))/(1− ρ2) +O(eB2/2)/(1− ρ2).

Proof. The first property follows by noting thatAy = αyN (yρ, 1−ρ2)+(1−αy)Qy = Uρ(αyδy+

(1−αy)Fy) and using the eigenvalue property of Hermite polynomials (Fact 6.1.7). This

implies that for all i ≤ 2m we have that

E
X∼Uρ(αyδy+(1−αy)Fy)

[hi(X)] = ρi E
X∼αyδy+(1−αy)Fy

[hi(X)] = ρi E
X∼N (0,1)

[hi(X)] = E
X∼N (0,1)

[hi(X)],

where the last equation uses that EX∼N (0,1)[hi(X)] = 0 for i > 0 and EX∼N (0,1)[h0(X)] = 1.

Since {hi : i ∈ [2m]} form a basis of P(2m), the space of all polynomials of degree at most

2m, it follows that Ay continues to matches 2m moments with N (0, 1).

The χ2 bound is due to the bounded support in [−B,B] and the Gaussian smoothing

operation and can be shown as follows. First, we need the following fact whose proof is

included in Appendix D.1 for completeness.

Fact 6.3.8. For any one-dimensional distribution P that matches the first m moments with N (0, 1)

and has χ2(P,N (0, 1)) <∞ the following identity is true:

χ2(P,N (0, 1)) =
∞∑

i=m+1

(
E

X∼P
[hi(X)]

)2
.

Let My denote the distribution αyδy + (1− αy)Fy, i.e., the mixture before applying the

Ornstein-Uhlenbeck operator. In order to apply Fact 6.3.8 to My, we need to argue that its
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χ2-divergence is finite. As Fy is a discrete distribution, the Uρ operator will transform it

to a finite sum of Gaussians with variances strictly less than 2. We defer the proof of the

following claim to Appendix D.1.

Claim 6.3.9. If P = ∑k
i=1 λiN(µi, σ2

i ) with µi ∈ R, σi <
√

2 and λi ≥ 0 such that ∑k
i=1 λi = 1,

we have that χ2(P,N (0, 1)) <∞.

Using the formula of Fact 6.3.8 and Fact 6.1.7 for the individual terms, we get that

χ2(Ay,N (0, 1)) =
∞∑

i=2m+1
E

X∼UρMy

[hi(X)]2 =
∞∑

i=2m+1
ρ2i E

X∼My

[hi(X)]2

=
∞∑

i=2m+1
ρ2i
(
αyhi(y) + (1− αy) E

x∼Fy

[hi(X)]
)2

≤ 2α2
y

∞∑
i=2m+1

ρ2ih2
i (y) + 2(1− αy)2

∞∑
i=2m+1

ρ2i E
x∼Fy

[hi(X)]2 , (6.4)

where the inequality uses that (a+ b)2 ≤ 2(a2 + b2) for all a, b ∈ R. To bound this expression

from above we will use the following tail bound for Hermite polynomials.

Lemma 6.3.10 ([Kra04]). Let hi be the i-th normalized probabilist’s Hermite polynomial. Then

maxx∈R h
2
k(x)e−x2/2 = O(k−1/6).

More details on how Lemma 6.3.10 follows from the result of [Kra04] can be found in

Section 6.4.3. For the first term of Equation (6.4), we have that

∞∑
i=2m+1

ρ2iα2
yh

2
i (y) ≤

∞∑
i=2m+1

ρ2iαe−y2+αy2
O(ey2/2)

≤ αO(ey2(α−1/2))
∞∑

i=2m+1
ρ2i

≤ αO(ey2(α−1/2))ρ2(2m+1)/(1− ρ2) ,

where the first inequality uses Lemma 6.3.10 and the definition of αy. For the second term,

we use the bounded support of Fy in [−B,B] along with the bound of Lemma 6.3.10 to
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obtain

∞∑
i=2m+1

ρ2i E
x∼Fy

[hi(X)]2 ≤
∞∑

i=2m+1
ρ2iO(eB2/2) ≤ O(eB2/2)

∞∑
i=2m+1

ρ2i ≤ O(eB2/2)ρ
2(2m+1)

1− ρ2 .

This completes the proof of Lemma 6.3.7.

Putting everything together, we now prove our main theorem.

Proof of Theorem 6.3.1. We will show that the following search problem Z has large statisti-

cal dimension: D is the set of distributions of the formEv(x, y) = αDv(x, y)+(1−α)Nv(x, y)

for every v ∈ Sd−1 and noise distribution Nv as in Lemma 6.3.5. The reference distribution

R is R = N (0, Id)×N (0, 1/α). Let β(v) = ρv denote the regression vector corresponding

to Ev. The set of solutions F is the set of all lists of size ℓ containing vectors of norm ρ

in Rd and the solution set Z(Ev) for the distribution Ev is exactly the set of lists from F

having at least one element u at distance ∥u− β(v)∥2 ≤ ρ/2. The appropriate subset of D

that we will consider is the one corresponding to the set S of nearly orthogonal vectors of

Lemma 6.1.15, DR = {Ev}v∈S .

Note that for any u ∈ F , there exists at most one element Ev in DR that satisfies

∥u− β(v)∥2 ≤ ρ/2, since if there exists another v′ with ∥u− β(v′)∥2 ≤ ρ/2, then by tri-

angle inequality ∥β(v)− β(v′)∥2 ≤ ρ. However, this cannot happen because |v⊤(v′)| ≤

O(dc−1/2) for all v, v′ ∈ S together with d = 2Ω(1/(1/2−c)) implies that ∥β(v) − β(v′)∥2 ≥

ρ
√

2(1− v⊤(v′)) ≥ ρ. This implies that for any solution list L, |DR \Z−1(L)| ≥ |DR| − ℓ. We

choose ℓ = |DR|/2. We now calculate the pairwise correlation of the set DR. Let a pair of

u, v ∈ Sd−1.

χR(x,y)(Ev(x, y),Eu(x, y))

= E
y∼R(y)

[
χN (0,Id) (Ev(x|y), Eu(x|y))

]
≤ |u⊤v|2m+1 E

y∼R(y)

[
χ2(Ay,N (0, 1))

]



158

= |u⊤v|2m+1
(
O(eB2/2)/(1− ρ2) +

∫
R
αO(ey2(α−1/2))

√
αe−y2αdy

)
≤ |u⊤v|2m+1O(eB2/2)/(1− ρ2)

≤ Ω(d)−(2m+1)(1/2−c)O(eB2/2)/(1− ρ2) ,

where the first line is due to Lemma 6.3.2, the second line is from Lemma 6.1.14 along

with the observation that Ev(x|y) is of the form PAy ,v, the third line comes from the second

part of Lemma 6.3.7, and the last one uses Lemma 6.1.15. Thus, by recalling that we can

choose B = C2
√
m for a sufficiently large constant C2, the set DR is (γ, b)-correlated with

respect to R, where γ := Ω(d)−(2m+1)(1/2−c)eO(m)/(1− ρ2) and b := eO(m)/(1− ρ2). The proof

is concluded by applying Lemma 6.1.12 with γ′ = γ.

We conclude this section with a note on the model and existing algorithmic results

(extending the relevant discussion of Section 6.1.1).

Remark 6.3.11 (Comparison of SQ Lower Bound to Existing Upper Bounds). We remark that

the model used in Theorem 6.1.5 (i.e., having a regressor with norm at most one and additive noise

with small variance) is considered in both recent works [KKK19; RY20a] that provided list-decoding

algorithms for the problem. In particular, these works give the following upper bounds:

• [KKK19] considers the model where ∥β∥2 ≤ 1 and gives an algorithm that for every ϵ > 0,

runs in time (d/(αϵ))O( 1
α8ϵ8 ) and outputs a list of size O(1/α) containing a β̂ such that

∥β̂ − β∥2 ≤ O(σ/α) + ϵ. Note that this guarantee is better than the trivial upper bound of

1 only if σ = O(α). To achieve error 1/4, this algorithm runs in time (d/α)O( 1
α8 ). On the

other hand, our lower bound for the complexity of any SQ algorithm becomes αdΩ(1/
√
α).

• [RY20a] does not impose any constraint on ∥β∥2 and gives an algorithm that runs in time

(∥β∥2/σ)log(1/α)dO(1/α4) and outputs a list of size O((∥β∥2/σ)log(1/α)) including a β̂ with

the guarantee that ∥β̂ − β∥2 ≤ O(σ/α3/2). For the special case where ∥β∥2 ≤ 1 (and

σ = O(α3/2) in order for the error guarantee to be meaningful), this algorithm can achieve error

1/4 in time (1/α3/2)log(1/α)dO(1/α4). In comparison, our lower bound becomes α3/2dΩ(1/
√
α).
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6.4 Duality for Moment Matching: Proof of Theorem 6.3.6

We now prove the existence of a bounded distribution Fy such that the mixture αyδy +

(1−αy)Fy matches the first 2m moments withN (0, 1). The proof follows a non-constructive

argument based on the duality between the space of moments and the space of non-negative

polynomials.

Let B > 0 and m ∈ Z+. Let P(m) denote the class of all polynomials p : R → R with

degree at most m. Let P≥0(2m,B) be the class of polynomials that can be represented in

either the form p(t) = (∑m
i=0 ait

i)2 or the form p(t) = (B2− t2)(∑m−1
i=0 bit

i)2. The intuition for

P≥0(2m,B) is that every polynomial of degree at most 2m that is non-negative in [−B,B]

can be written as a finite sum of polynomials fromP≥0(2m,B). By slightly abusing notation,

for a polynomial p(t) = ∑m
i=0 pit

i, we also use p to denote the vector in Rm+1 consisting of

the coefficients (p0, . . . , pm). The following classical result characterizes when a vector is

realizable as the moment sequence of a distribution with support in [−B,B] (for simplicity,

we focus on matching an even number of moments in the rest of this section).

Theorem 6.4.1 (Theorem 16.1 of [KS53]). Let B > 0, k ∈ Z+, and x = (x0, x1, . . . , x2k) ∈

R2k+1 with x0 = 1. There exists a distribution with support in [−B,B] having as its first 2k

moments the sequence (x1, . . . , x2k) if and only if for all p ∈ P≥0(2k,B) it holds that∑2k
i=0 xipi ≥ 0.

As we require the distribution to be discrete, we prove the following result using

Theorem 6.4.1:

Proposition 6.4.2. Fix y ∈ R, αy ∈ (0, 1),B > 0, andm ∈ Z+. There exists a discrete distribution

Fy supported on at most 2m+ 1 points in [−B,B] such that αyδy + (1− αy)Fy matches the first

2m moments with N (0, 1) if and only if EX∼N (0,1)[p(X)] ≥ αyp(y) for all p ∈ P≥0(2m,B).

The proof of Proposition 6.4.2 is deferred to Section 6.4.1. To prove Theorem 6.3.6, we

need to establish the condition of Proposition 6.4.2. To this end, we first need the following

two technical lemmas, whose proofs are given in Sections 6.4.2 and 6.4.3.
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Lemma 6.4.3. Let m ∈ Z+. If B ≥ C
√
m for some sufficiently large constant C > 0, then for

every q ∈ P(m), it holds that B2 EX∼N (0,1)[q2(X)] ≥ 2EX∼N (0,1)[X2q2(X)].

Lemma 6.4.4. Let y ∈ R, α ∈ (0, 1/2), m ∈ Z+, and αy =
√
α exp(−y2(1 − α)/2). Sup-

pose m ≤ C/
√
α for some sufficiently small constant C > 0. Then for all r ∈ P(m), r ̸≡ 0:

r2(y)/(EX∼N (0,1)[r2(X)]) ≤ 1/(2αy).

Proof of Theorem 6.3.6. By Proposition 6.4.2, it remains to show that if B ≥ C2
√
m, then the

condition EX∼N (0,1)[p(X)] ≥ αyp(y) holds for all p ∈ P≥0(2m,B). Thus, it suffices to ensure

that the following two inequalities hold for X ∼ N (0, 1):

sup
r∈P(m),r ̸≡0

r2(y)
E[r2(X)] ≤

1
αy

and sup
q∈P(m−1),q ̸≡0

(B2 − y2)q2(y)
E[(B2 −X2)q2(X)] ≤

1
αy
, (6.5)

where we use Lemma 6.4.3 to show that E[(B2−X2)q2(X)] > 0 for all non-zero polynomials

q ∈ P(m− 1). The first expression can be bounded using Lemma 6.4.4 when m ≤ C1/
√
α.

We now focus on the second expression. By Lemma 6.4.3, EX∼N (0,1)[(B2 − X2)q2(X)] ≥

0.5EX∼N (0,1)[B2q2(X)]. Therefore, we have that

sup
q∈P(m−1),q ̸≡0

(B2 − y2)q2(y)
EX∼N (0,1)[(B2 −X2)q2(X)] ≤ sup

q∈P(m−1),q ̸≡0

B2q2(y)
EX∼N (0,1)[(B2 −X2)q2(X)]

≤ sup
q∈P(m−1),q ̸≡0

B2q2(y)
EX∼N (0,1)[0.5B2q2(X)] = 2 sup

q∈P(m−1),q ̸≡0

q2(y)
EX∼N (0,1)[q2(X)] ,

where the first inequality uses that the denominator is positive and y2q2(y) ≥ 0 and

the second inequality uses that EX∼N (0,1)[(B2 −X2)q2(X)] ≥ 0.5EX∼N (0,1)[B2q2(X)]. The

expression above is of the same form as the first expression in Equation (6.5), and thus

is also bounded above by 1/αy when m ≤ C1/
√
α using Lemma 6.4.4. This completes the

proof of Theorem 6.3.6.
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6.4.1 Proof of Proposition 6.4.2

We require the following result stating that for every distribution Q with bounded support,

there exists a discrete distribution P with bounded support that matches the low-degree

moments of Q.

Lemma 6.4.5. Let B > 0, k ∈ Z+, and Q be any distribution with support in [−B,B]. Then there

exists a discrete distribution P with the following properties: (i) the support of P is contained in

[−B,B], (ii) the first k moments of P agree with the first k moments of Q, and (iii) P is supported

on at most k + 1 points.

Proof. Let Q be the set of distributions on R that are supported in [−B,B] and let Q′ ⊂ Q

be the set of Dirac delta distributions supported in [−B,B], i.e., Q′ = {δy : y ∈ [−B,B]}.

Let C ⊂ Rk and C ′ ⊂ Rk be the set of all vectors (x1, . . . , xk) whose coordinates x1, . . . , xk

are the moments of a distribution in Q and Q′ respectively, i.e.,

C := {x ∈ Rk : ∃Q ∈ Q : ∀i ∈ [k], xi = E
X∼Q

[X i]},

C ′ := {x ∈ Rk : ∃Q′ ∈ Q′ : ∀i ∈ [k], xi = E
X∼Q′

[X i]}.

Note that there is a bijection between C ′ andQ′. We now recall the following classical result

stating convexity properties of C and its relation with C ′. We say a set M is a convex hull of

a set M ′ if every x ∈M can be written as x = ∑j
i=1 λiyi, where j ∈ Z+, ∑j

i=1 λi = 1, and for

all i ∈ [j]: λi ≥ 0, yi ∈M ′.

Lemma 6.4.6 (Theorem 7.2 and 7.3 of [KS53]). C is convex, closed, and bounded. Moreover, C

is a convex hull of C ′.

Let x∗ = (x∗
1, . . . , x

∗
k) be the first k moments of Q. Since x∗ ∈ C, Caratheodory theorem

and Lemma 6.4.6 implies that x∗ can be written as a convex combination of at most k + 1

elements of C ′. This implies that there is a distribution, which is a convex combination of at
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most k + 1 Dirac delta distributions in Q′, that matches the first k moments with x∗. This

completes the proof.

We can now prove the main result of this section.

Proof of Proposition 6.4.2. Let X ∼ N (0, 1). We note that Fy should have the moment se-

quence x = (x1, . . . , x2m) where xi = (EX∼N (0,1)[X i] − αyyi)/(1 − αy) for i ∈ [2m]. Theo-

rem 6.4.1 implies that this happens if and only if for all p = (p0, . . . , p2m) ∈ P≥0(2m,B),

we have that ∑2m
i=0 xipi ≥ 0. The desired expression follows by noting that ∑2m

i=0 xipi =

(∑2m
i=0 pi EX∼N (0,1)[X i]− αypiyi)/(1− αy) = (EX∼N (0,1)[p(X)]− αyp(y))/(1− αy). The result

that Fy is discrete follows from Lemma 6.4.5.

6.4.2 Proof of Lemma 6.4.3

The proof of Lemma 6.4.3 is a relatively straightforward application of Hölder’s inequality

and the Gaussian Hypercontractivity Theorem (stated below). For p ∈ (0,∞), we define

the Lp-norm of a random variable X to be ∥X∥Lp := (E[|X|p])1/p.

Fact 6.4.7 (Gaussian Hypercontractivity [Bog98; Nel73]). Let X ∼ N (0, 1). If p ∈ P(d) and

t ≥ 2, then ∥p(X)∥Lt ≤ (t− 1)d/2 ∥p(X)∥L2 .

Proof of Lemma 6.4.3. Let X ∼ N (0, 1). We can assume that q is a non-zero polynomial.

Then it suffices to bound B from above by
√

2 times the following expression:

sup
q∈P(m),q ̸≡0

√√√√E[X2q2(X)]
E[q2(X)] ≤ sup

q∈P(m),q ̸≡0

√√√√√(E[(X2)m+1])1/(m+1)
(
E[(q2(X))m+1

m ]
) m

m+1

E[q2(X)]

= sup
q∈P(m),q ̸≡0

∥X∥L2m+2∥q(X)∥
L

2m+2
m

∥q(X)∥L2
,

where the first step uses Hölder’s inequality. Using standard concentration bounds for the

standard Gaussian (or Fact 6.4.7 with p(x) = x), we get that ∥X∥L2m+2 = O(
√
m). Gaussian
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Hypercontractivity (Fact 6.4.7) implies that for any polynomial of degree at most m and

r > 2, ∥q(X)∥Lr ≤ (r − 1)m/2 ∥q(X)∥L2 . For r = (2m+ 2)/m, we get that

∥q(X)∥
L

2m+2
m

∥q(X)∥L2
≤
(2m+ 2

m
− 1

)m
2

=
(

1 + 2
m

)m
2
≤ exp(1).

Therefore, B ≥ C
√
m suffices for a sufficiently large constant C.

6.4.3 Proof of Lemma 6.4.4

We first recall the result on the tails of Hermite polynomials.

Lemma 6.4.8 ([Kra04]). Let hk be the k-th normalized probabilist’s Hermite polynomial. Then

maxx∈R h
2
k(x)e−x2/2 = O(k−1/6).

For completeness, we give an explicit calculation that translates the result of [Kra04] in

our setting.

Proof of Lemma 6.4.8. We will split the analysis in two cases. First suppose the case when

k < 6. As hk(·) is a constant degree polynomial, we get that maxx∈R h
2
k(x) exp(−x2/2) is a

constant. For the rest of the proof, we will assume that k ≥ 6.

For brevity, we will only consider the case where k is even. The case where k is odd

is similar. Let Hk(·) be the physicist’s Hermite polynomial. Recall that we can relate hk(·)

with Hk(·) with the following change of variable: Hk(x) =
√

2kk!hk(
√

2x).

[Kra04, Theorem 1] implies the following:

max
x∈R

(
(Hk(x))2e−x2) = O

(√
kk−1/6

(
k

0.5k

)
k!
)
. (6.6)

From Equation (6.6) we obtain:

max
x∈R

2kk!h2
k(
√

2x)e−x2 = max
x∈R

2kk!h2
k(x)e−x2/2 = O

(√
kk−1/6

(
k

0.5k

)
k!
)

.
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This implies the following:

max
x∈R

h2
k(x)e−x2/2 = O

(
k−1/6

√
k

(
k

0.5k

)
2−k

)
= O(k−1/6),

where we use that
(

k
0.5k

)
2−k/
√
k = O(1).

Proof of Lemma 6.4.4. Let hi be the i-th normalized probabilist’s Hermite polynomial. Since

r is a polynomial of degree at most m and {hi, i ∈ [m]} form a basis for P(m), we can

represent r(x) = ∑m
i=1 aihi(x) for some ai ∈ R. Using orthonormality of hi under the

Gaussian measure, we get that EX∼N (0,1)[r2(X)] = ∑m
i=1 a

2
i . Since r is a non-zero polynomial,

we have that ∑m
i=1 a

2
i > 0. We thus have that

sup
r∈P(m),r ̸≡0

r2(y)
EX∼N (0,1)[r2(X)] = sup

a1,...,am∈R,
∑m

i=1 a
2
i>0

∑m
i=1

∑m
j=1 aiajhi(y)hj(y)∑m

i=1 a
2
i

= sup
a1,...,am∈R,

∑m

i=1 a
2
i>0

√∑m
i=1

∑m
j=1 a

2
i a

2
j

√∑m
i=1

∑m
j=1 h

2
i (y)h2

j(y)∑m
i=1 a

2
i

=
m∑
i=1

h2
i (y).

Therefore, we need to show that, for all y ∈ R, ∑m
i=1 αyh

2
i (y) ≤ 1/2 whenever m ≤ C/

√
α

for a sufficiently small constant C > 0. We will now split the analysis in two cases:

Case 1: |y| ≤ 1/
√
α. Using Lemma 6.4.8 and the assumption that |y|2α ≤ 1, we can bound

the desired expression as follows:

max
|y|≤1/

√
α
αyh

2
i (y) = max

|y|≤1/
√
α

√
α exp(y2α/2) exp(−y2/2)h2

i (y)

≤
√
αe sup

y∈R
exp(−y2/2)h2

i (y)

= O(
√
αi−1/6).
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Therefore, we get the following bound on ∑i h
2
i (y).

m∑
i=1

αyh
2
i (y) = O

(
√
α

m∑
i=1

i−1/6
)

= O(
√
αm5/6) .

The last expression is less than 1/2 when m = O(1/α3/5).

Case 2: |y| ≥ 1/
√
α. We will use rather crude bounds here. We have the following explicit

expression of hi(·) (see, for example, [AAR99; Sze89]):

|hi(x)| =
∣∣∣∣∣Hei(x)√

i!

∣∣∣∣∣ =

∣∣∣∣∣∣
√
i!

⌊i/2⌋∑
j=0

(−1)j
j!(i− 2j)!

xi−2j

2j

∣∣∣∣∣∣ =

∣∣∣∣∣∣
√
i!xi

⌊i/2⌋∑
j=0

(−1)j
(2j)!(i− 2j)!x

−2j (2j)!
j!2j

∣∣∣∣∣∣
≤
√
i!|x|i

i∑
k=0

i!
k!(i− k)! |x|

−k ≤ (i|x|)i(1 + |x|−1)i = ii(1 + |x|)i.

Therefore, we get the following relation for all |y| > 1, α < 0.5, and i ∈ N:

αyh
2
i (y) =

√
α exp(−y2(1− α)/2)h2

i (y)

≤
√
α exp(−y2/4)(2i)i|y|i

=
√
α exp(−y2/4 + i log(2i|y|)).

The expression above is at most C ′√α for a constant C ′ > 0 for all |y| ≥ c′√i log i for a

constant c′ > 0. The latter condition holds whenever 1/
√
α ≥ c′√i log i. It suffices that

i = O(1/α0.9). Overall, we get the following bound when m = O(1/α0.9):

sup
|y|>1/

√
α

m∑
i=1

αyh
2
i (y) = O(

√
αm).

The last expression is less than 1/2 when m ≤ C/
√
α for some constant C > 0. This

completes the proof of Lemma 6.4.4.
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6.5 Hypothesis Testing Version of List-Decodable Linear

Regression

Organization We introduce Problem 6.5.2, which is a hypothesis testing problem related

to the search problem we discussed in Section 6.3. We first show the SQ-hardness of

Problem 6.5.2 in Theorem 6.5.3. In Section 6.5.2, we give an efficient reduction from

Problem 6.5.2 to list-decodable linear regression, showing that Problem 6.5.2 is indeed not

harder than list-decodable linear regression. In Section 6.6, we also show the hardness of

Problem 6.5.2 against low-degree polynomial tests.

We begin by formally defining a hypothesis problem.

Definition 6.5.1 (Hypothesis testing). Let a distribution D0 and a set S = {Du}u∈S of distribu-

tions on Rd. Let µ be a prior distribution on the indices S of that family. We are given access (via

i.i.d. samples or oracle) to an underlying distribution where one of the two is true:

• H0: The underlying distribution is D0.

• H1: First u is drawn from µ and then the underlying distribution is set to be Du.

We say that a (randomized) algorithm solves the hypothesis testing problem if it succeeds with

non-trivial probability (i.e., greater than 0.9).

We now introduce the following hypothesis testing variant of the (1−α)-contaminated

linear regression problem:

Problem 6.5.2. Let α ∈ (0, 1/2), ρ ∈ (0, 1). Let S be the set of d-dimensional nearly orthogonal

vectors from Lemma 6.1.15. We are given access (via i.i.d. samples or oracle) to an underlying

distribution where one of the two is true:

• H0: The underlying distribution is R = N (0, Id)×N (0, 1/α).
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• H1: First, a vector v is chosen uniformly at random from S. The underlying distribution is set

to be Ev, i.e., the (1− α)-additively corrupted linear model of Definition 6.1.2 with β = ρv,

σ2 = 1− ρ2, and a fixed noise distribution Nv as specified in Lemma 6.3.5.

Using the reduction outlined in Lemma 6.5.9, it follows that O(d/α3) samples suffice to

solve Problem 6.5.2 when σ ≤ O(α/
√

log(1/α)). On the other hand, the following result

shows an SQ lower bound of dpoly(1/α).

Theorem 6.5.3 (SQ Hardness of Problem 6.5.2). Let 0 < c < 1/2, m ∈ Z+ with

m ≤ c1/
√
α for some sufficiently small constant c1 > 0 and d = mΩ(1/c). Every SQ algorithm

that solves Problem 6.5.2 either performs 2Ω(dc/4) queries or performs at least one query to

STAT
(
Ω(d)−(2m+1)(1/4−c/2)eO(m)/σ

)
.

We note that the lower bound on the (appropriate) statistical dimension implies SQ

hardness of the (corresponding) hypothesis testing problem. As the Problem 6.5.2 differs

slightly from the kind of hypothesis testing problems considered in [FGRVX17], we provide

the proof of Theorem 6.5.3 in Section 6.5.1, where we introduce the relevant statistical

dimension from [BBHLS21] (Definition 6.5.4 in this paper).

6.5.1 Hardness of Problem 6.5.2 in the SQ Model

We need the following variant of the statistical dimension from [BBHLS21], which is closely

related to the hypothesis testing problems considered in this section. Since this is a slightly

different definition from the statistical dimension (SD) used so far, we will assign the

distinct notation (SDA) for it.

Notation For f : R → R, g : R → R and a distribution D, we define the inner product

⟨f, g⟩D = EX∼D[f(X)g(X)] and the norm ∥f∥D =
√
⟨f, f⟩D.
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Definition 6.5.4 (Statistical Dimension). For the hypothesis testing problem of Definition 6.5.1,

we define the statistical dimension SDA(S, µ, n) as follows:

SDA(S, µ, n) = max

q ∈ N : E
u,v∼µ

[|⟨D̄u, D̄v⟩D0 − 1| | E ] ≤ 1
n

for all events E s.t. P
u,v∼µ

[E ] ≥ 1
q2

 .

We will omit writing µ when it is clear from the context.

Theorem 6.5.5 (Theorem A.5 of [BBHLS21]). Let S = {Du}u∈S vs. D0 be a hypothesis

testing problem with prior µ on S . If SDA(S, µ, 3/t) > q, then every SQ algorithm that solves the

hypothesis testing problem either makes at least q queries, or makes at least one query to STAT(
√
t).

In order to prove Problem 6.5.2, we will prove a lower bound on the SDA of Problem 6.5.2.

As we will show later, Problem 6.5.2 is a special case of the following hypothesis testing

problem:

Problem 6.5.6 (Non-Gaussian Component Hypothesis Testing). LetR be the joint distribution

R over the pair (X, y) ∈ Rd+1 where X ∼ N (0, Id) and y ∼ R(y) independently of X . Let Ev

be the joint distribution over pairs (X, y) ∈ Rd+1 where the marginal on y is again R(y) but the

conditional distribution Ev(x|y) is of the form PAy ,v (with PAy ,v as in Definition 6.1.13). Define

S = {Ev}v∈S for S being the set of d-dimensional nearly orthogonal vectors from Lemma 6.1.15

and let the hypothesis testing problem be distinguishing between R vs. S with prior µ being the

uniform distribution on S.

The following lemma translates the (γ, β)-correlation of S to a lower bound for the

statistical dimension of the hypothesis testing problem. The proof is very similar to that of

Corollary 8.28 of [BBHLS21] but it is given below for completeness.

Lemma 6.5.7. Let 0 < c < 1/2 and d,m ∈ Z+ such that d = mΩ(1/c). Consider the hypothesis

testing problem of Problem 6.5.6 where for every y ∈ R the distribution Ay matches the first m
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moments with N (0, 1) and Ey∼R(y)[χ2(Ay,N (0, 1))] <∞. Then, for any q ≥ 1,

SDA

D, Ω(d)(m+1)(1/2−c)

Ey∼R(y)[χ2(Ay,N (0, 1))]
(

q2

2Ω(dc/2)
+ 1

)
 ≥ q .

Proof. The first part is to calculate the correlation of the set S exactly as we did in the

proof of Theorem 6.3.1. By Lemma 6.1.15, Lemma 6.1.14 and Lemma 6.3.2 we know

that the set S is (γ, β)-correlated with γ = Ω(d)−(m+1)(1/2−c) Ey∼R(y)[χ2(Ay,N (0, 1))] and

β = Ey∼R(y)[χ2(Ay,N (0, 1))].

We next calculate the SDA according to Definition 6.5.4. We denote by Ēv the ratios

of the density of Ev to the density of R. Note that the quantity ⟨Ēu, Ē,v⟩ − 1 used there

is equal to ⟨Ēu − 1, Ēv − 1⟩. Let E be an event that has Pu,v∼µ[E ] ≥ 1/q2. For d sufficiently

large we have that

E
u,v∼µ

[|⟨Ēu, Ēv⟩ − 1|E ] ≤ min
(

1, 1
|S|P[E ]

)
E

y∼R(y)
[χ2(Ay,N (0, 1))]

+ max
(

0, 1− 1
|S|P[E ]

)
Ey∼R(y)[χ2(Ay,N (0, 1))]

Ω(d)(m+1)(1/2−c)

≤ E
y∼R(y)

[χ2(Ay,N (0, 1))]
(

q2

2Ω(dc) + 1
Ω(d)(m+1)(1/2−c)

)

= E
y∼R(y)

[χ2(Ay,N (0, 1))]q
2Ω(d)(m+1)(1/2−c) + 2Ω(dc)

2Ω(dc)Ω(d)(m+1)(1/2−c)

= E
y∼R(y)

[χ2(Ay,N (0, 1))]
(

Ω(d)(m+1)(1/2−c)

q2Ω(d)(m+1)(1/2−c)/2Ω(dc) + 1

)−1

= E
y∼R(y)

[χ2(Ay,N (0, 1))]
(

Ω(d)(m+1)(1/2−c)

q2/2Ω(dc/2) + 1

)−1

,

where the first inequality uses that P[u = v|E ] = P[u = v, E ]/P[E ] and bounds the nu-

merator in two different ways: P[u = v, E ]/P[E ] ≤ P[u = v]/P[E ] = 1/(|D|P[E ]) and

P[u = v, E ]/P[E ] ≤ P[E ]/P[E ] = 1.

We note that the lemma above and Theorem 6.5.5 show SQ hardness of Problem 6.5.6.

In the remainder of this section, we will apply these results to Problem 6.5.2.
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Corollary 6.5.8. Let 0 < c < 1/2, m ∈ Z+ with m ≤ c1/
√
α for some sufficiently small constant

c1 > 0 and d = mΩ(1/c). Consider the hypothesis testing problem of Problem 6.5.2. Then, for any

k < dc/4:

SDA
(
D, Ω(d)(2m+1)(1/2−c)

eO(m)/(1− ρ2)

)
≥ 100k .

Proof. We note that Problem 6.5.2 is a special case of Problem 6.5.6 (see Fact 6.3.3 and

Lemma 6.3.5 which show that the conditional distributions are of the form PAy ,v). In

Lemma 6.5.7 we use q =
√

2Ω(dc/2)(n/n′) with n′ = n = Ω(d)(2m+1)(1/2−c)

Ey∼R(y)[χ2(Ay ,N (0,1))] to get that

SDA(D, n) > 100k for k < dc/4. The first part of Lemma 6.3.7 states that the distributions

Ay’s match the first 2m moments with N (0, 1) for m ≤ c1/
√
α and the second part implies

that Ey∼R(y)[χ2(Ay,N (0, 1))] = O(em)/(1− ρ2). This completes the proof.

We conclude by noting the hardness of Problem 6.5.6 and thus Problem 6.5.2 in the SQ

model. The proof of Theorem 6.5.3 follows from Corollary 6.5.8 and Theorem 6.5.5.

6.5.2 Reduction of Hypothesis Testing to List-Decodable Linear

Regression

We now show that any list-decoding algorithm for robust linear regression can be efficiently

used to solve Problem 6.5.2, that is, hypothesis testing efficiently reduces to list-decodable

estimation. For a list L and i ∈ [|L|], we use L(i) to denote the i-th element of L.

Lemma 6.5.9. Let d ∈ Z+ with d = 2Ω(1/(1/2−c)). Consider the (1−α)-corrupted linear regression

model of Definition 6.1.2 with β = ρv for v ∈ Sd−1, ρ ∈ (0, 1), σ2 = 1 − ρ2. There exists an

algorithm List_Regression_To_Testing that, given a list-decoding algorithmAwith the guarantee

of returning a list L of candidate vectors such that for some i ∈ {1, . . . , |L|}, ∥L(i)− β∥2 ≤ ρ/4,

solves the hypothesis testing Problem 6.5.2 with probability at least 1− |L|2e−Ω(d2c). The running

time of this reduction is quadratic in |L|.
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Proof. The reduction is described in Section 6.5.2. To see correctness, first assume that

Algorithm 2 Reduction from Hypothesis Testing to List-Decodable Linear Regression.
A(ρ, (X1, y1), . . . , (Xn, yn)): List-decoding algorithm returning a list L such that ∥L(i)−
β∥2 ≤ ρ/4 for some i ∈ {1, . . . , |L|}.

1: function List_Regression_To_Testing(ρ, (X1, y1), . . . , (X2n, y2n))
2: Split dataset into two equally sized parts {(Xi, yi)}ni=1, {(X ′

i, y
′
i)}ni=1.

3: Let A be a random rotation matrix independent of data.
4: L1 ← A(ρ, (X1, y1), . . . , (Xn, yn)).
5: L2 ← A(ρ, (AX ′

1, y
′
1), . . . , (AX ′

2n, y
′
n)).

6: for i← 1 to |L1| do
7: for j ← 1 to |L2| do
8: if ∥L1(i)∥2, ∥L2(j)∥2 ∈ [3ρ/4, 5ρ/4] and ∥L1(i)− A⊤L2(j)∥2 ≤ ρ/2 then
9: return H1

10: end if
11: end for
12: end for
13: return H0
14: end function

the alternative hypothesis holds. We note that the rotated points (AX ′
1, y

′
1), . . . , (AX ′

n, y
′
n)

come from the Gaussian linear regression model of Definition 6.1.2 having β′ = Aβ as the

regressor. Thus A finds lists L1,L2 such that there exist i∗ ∈ {1, . . . , |L1|} with ∥L1(i∗) −

β∥2 ≤ ρ/4 and j∗ ∈ {1, . . . , |L2|} with ∥A⊤L2(j∗) − β∥2 ≤ ρ/4, where we use that A⊤A =

I . Moreover, since we are considering the regression model with ∥β∥2 = ρ, L1(i∗) and

A⊤L2(j∗) must have norms belonging in [3ρ/4, 5ρ/4]. By the triangle inequality we get that

∥L1(i∗)− A⊤L2(j∗)∥2 ≤ ρ/2 and thus the algorithm correctly outputs H1.

Now assume that the null hypothesis holds, where the marginal on points is N (0, Id)

and labels are independently distributed as N (0, 1/α). Fix a pair i ∈ [|L1|], j ∈ [|L2|] for

which ∥L1(i)∥2, ∥L2(j)∥2 ∈ [3ρ/4, 5ρ/4]. Note that, by rotation invariance of the standard

Gaussian distribution and the independence between covariates and response under the

null distribution, the input {(AX ′
i, y

′
i)}ni=1 for the second execution of the list-decoding

algorithm is independent of A. Thus the list L2 is independent of A (and also independent

of L1). Thus, A⊤L2(j) is a random vector selected uniformly from the sphere of radius

∥L2(j)∥2 and independently of L1(i). Recall that two random vectors are almost orthogonal
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with high probability.

Lemma 6.5.10 (see, e.g., [CFJ13]). Let θ be the angle between two random unit vectors uniformly

distributed over Sd−1. Then we have that P[|cosθ| ≥ Ω(dc−1/2)] ≤ e−Ω(d2c) for any 0 < c < 1/2.

Taking a union bound over the |L1| · |L2| possible pairs of candidate vectors, we have

that with probability at least 1− |L1| · |L2|e−Ω(d2c), for all i ∈ [|L1|], j ∈ [|L2|] we have that

∥L1(i)− A⊤L2(j)∥2 =
√
∥L1(i)∥2

2 + ∥A⊤L2(j)∥2
2 − 2(L1(i))⊤(A⊤L2(j))

≥
√

2(3ρ/4)2(1− Ω(dc−1/2)) > ρ ,

where in the last inequality we used that d = 2Ω(1/(1/2−c)). This concludes correctness for

the case of the null hypothesis.

We note that the Section 6.5.2 can be implemented in both of the models of computation

that we consider: SQ model and low-degree polynomial test (Section 6.6). For the SQ model,

we can simulate the queries on the rotatedX by modifying the queries to explicitly perform

the rotation onX by a matrixA. For the low-degree polynomial model, Remark 6.6.5 shows

that this reduction can be implemented as a low-degree polynomial algorithm.

6.6 Hardness Against Low-Degree Polynomial Algorithms

In this section, we recall the recently established connection between the statistical query

framework and low-degree polynomials, shown in [BBHLS21], and deduce hardness

results in the latter model. Section 6.6.1 and Section 6.6.2 are dedicated to the hypothesis

problem. In Section 6.6.3, we show that the reduction of Section 6.5.2 can be expressed as a

low-degree polynomial test.
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6.6.1 Preliminaries: Low-Degree Method

We begin by recording the necessary notation, definitions, and facts. This section mostly

follows [BBHLS21].

Notation For a distribution D, we denote by D⊗n the joint distribution of n independent

samples from D. For f : R → R, g : R → R and a distribution D, we define the inner

product ⟨f, g⟩D = EX∼D[f(X)g(X)] and the norm ∥f∥D =
√
⟨f, f⟩D. We will omit the

subscripts when they are clear from the context.

Low-Degree Polynomials A function f : Ra → Rb is a polynomial of degree at most k if

it can be written in the form

f(x) = (f1(x), f2(x), . . . , fb(x)) ,

where each fi : Ra → R is a polynomial of degree at most k. We allow polynomials to have

random coefficients as long as they are independent of the input x. When considering

list-decodable estimation problems, an algorithm in this model of computation is a polynomial

f : Rd1×n → Rd2×ℓ, where d1 is the dimension of each sample, n is the number of samples,

d2 is the dimension of the output hypotheses, and ℓ is the number of hypotheses returned.

On the other hand, [BBHLS21] focuses on binary hypothesis testing problems defined in

Definition 6.5.1.

A degree-k polynomial test for Definition 6.5.1 is a degree-k polynomial f : Rd×n → R

and a threshold t ∈ R. The corresponding algorithm consists of evaluating f on the input

x1, . . . , xn and returning H0 if and only if f(x1, . . . , xn) > t.

Definition 6.6.1 (n-sample ϵ-good distinguisher). We say that the polynomial p : Rd×n → R
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is an n-sample ϵ-distinguisher for the hypothesis testing problem in Definition 6.5.1 if

∣∣∣∣∣ E
X∼D⊗n

0

[p(X)]− E
u∼µ

E
X∼D⊗n

u

[p(X)]
∣∣∣∣∣ ≥ ϵ

√
Var

X∼D⊗n
0

[p(X)] .

We call ϵ the advantage of the distinguisher.

Let C be the linear space of polynomials with degree at most k. The best possible

advantage is given by the low-degree likelihood ratio

max
p∈C

E
X∼D⊗n

0
[p2(X)]≤1

∣∣∣∣ E
u∼µ

E
X∼D⊗n

u

[p(X)]− E
X∼D⊗n

0

[p(X)]
∣∣∣∣ =

∥∥∥∥ E
u∼µ

[
(D̄⊗n

u )≤k
]
− 1

∥∥∥∥
D⊗n

0

,

where we denote D̄u = Du/D0 and the notation f≤k denotes the orthogonal projection of f

to C.

Another notation we will use regarding a finer notion of degrees is the following: We

say that the polynomial f(x1, . . . , xn) : Rd×n → R has samplewise degree (r, k) if it is a

polynomial, where each monomial uses at most k different samples from x1, . . . , xn and

uses degree at most d for each of them. In analogy to what was stated for the best degree-

k distinguisher, the best distinguisher of samplewise degree (r, k)-achieves advantage∥∥∥Eu∼µ[(D̄⊗n
u )≤r,k]− 1

∥∥∥
D⊗n

0
the notation f≤r,k now means the orthogonal projection of f to

the space of all samplewise degree-(r, k) polynomials with unit norm.

6.6.2 Hardness of Hypothesis Testing Against Low-Degree Polynomials

In this section, we show the following result:

Theorem 6.6.2. Let 0 < c < 1/2 and m ∈ Z+ with m ≤ c1/
√
α for some sufficiently small

constant c1 > 0. Consider the hypothesis testing problem of Problem 6.5.2. For d ∈ Z+ with

d = mΩ(1/c), any n ≤ Ω(d)(2m+1)(1/2−c)e−O(m)(1− ρ2) and any even integer k < dc/4, we have that

∥∥∥∥ E
u∼µ

[
(Ē⊗n

u )≤∞,Ω(k)
]
− 1

∥∥∥∥2

R⊗n
≤ 1 .
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We prove Theorem 6.6.2 by using the lower bound on SDA in Corollary 6.5.8 and the re-

lation between SDA and low-degree polynomials established in [BBHLS21]. In [BBHLS21],

the following relation between SDA and low-degree likelihood ratio is established.

Theorem 6.6.3 (Theorem 4.1 of [BBHLS21]). Let D be a hypothesis testing problem on Rd

with respect to null hypothesis D0. Let n, k ∈ N with k even. Suppose that for all 0 ≤ n′ ≤ n,

SDA(S, n′) ≥ 100k(n/n′)k. Then, for all r,
∥∥∥Eu∼µ

[
(D̄⊗n

u )≤r,Ω(k)
]
− 1

∥∥∥2

D⊗n
0
≤ 1.

We first apply Theorem 6.6.3 to the more general Problem 6.5.6. In Lemma 6.5.7 we

set n = Ω(d)(m+1)(1/2−c)

Ey∼R(y)[χ2(Ay ,N (0,1))] and q =
√

2Ω(dc/2)(n/n′). Then, SDA(S, n′) ≥
√

2Ω(dc/2)(n/n′) ≥

(100n/n′)k for k < dc/4. Thus, we have shown the following.

Corollary 6.6.4. Let 0 < c < 1/2 and the hypothesis testing problem of Problem 6.5.6 where for

every y ∈ R the distribution Ay matches the first m moments with N (0, 1). For any d ∈ Z+ with

d = mΩ(1/c), any n ≤ Ω(d)(m+1)(1/2−c)/Ey∼R(y)[χ2(Ay,N (0, 1))] and any even integer k < dc/4,

we have that

∥∥∥∥ E
u∼µ

[
(D̄⊗n

u )≤∞,Ω(k)
]
− 1

∥∥∥∥2

R⊗n
≤ 1 .

Proof of Theorem 6.6.2. We now apply the Corollary 6.6.4 to Problem 6.5.2, which is a special

case of Problem 6.5.6. The first part of Lemma 6.3.7 states that the distributions Ay’s

match the first 2m moments with N (0, 1) for m ≤ c1/
√
α and the second part implies that

Ey∼R(y)[χ2(Ay,N (0, 1))] = O(em)/(1− ρ2). An application of Corollary 6.6.4 completes the

proof.

6.6.3 Low-Degree Polynomial Reduction to List-Decodable Regression

Remark 6.6.5. We note that the reduction of Lemma 6.5.9 is an algorithm that can be expressed in

the low-degree polynomials model. The modification of the algorithm is the following: First note that

the ℓ2-norm of a vector is indeed a polynomial of degree two in each coordinate. Second, one can



176

check whether there exists a pair i ∈ [|L1|], j ∈ [|L2|] with ∥L1(i)∥2, ∥L2(j)∥2 ∈ [3ρ/4, 5ρ/4] for

which ∥L1(i)− A⊤L2(j)∥2 ≤ ρ/2 using the condition

|L1|∑
i∈1

|L2|∑
j∈1

I(∥L1(i)∥2
2 ≥ (3ρ/4)2) · I(∥A⊤L2(j)∥2

2 ≤ (5ρ/4)2) · I(∥L1(i)− A⊤L2(j)∥2
2 ≤ ρ2/4) = 0 ,

and use a polynomial approximation for the step function in order to express each term as a polynomial.

The degree needed for a uniform ϵ-approximation has been well-studied [GR08; Gan02; EY07].

Lemma 6.6.6 ([EY07]). Let f : R→ R be the step function defined as f(x) = 1 for all x ≥ 0 and

f(x) = 0 otherwise. The minimum k ∈ Z+ for which there exists a degree-k polynomial p : R→ R

such that maxx∈[−1,1] |f(x)− p(x)| ≤ ϵ is k = Θ(1/ϵ2).

For our purpose, it suffices to approximate the step function up to error ϵ = Θ(1/(|L1| · |L2|)),

thus the resulting polynomial test has degree Θ(|L1|2 · |L2|2).
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7 estimating location parameters in sample-heterogeneous

distributions

रात को जीत तो पाता नही ं लेिकन ये चराग़
कम से कम रात का नुक़सान बहुत करता है

इरफ़ान सद्दीक़

Estimating the mean of a probability distribution using i.i.d. samples is a classical

problem in statistics, wherein finite-sample optimal estimators are sought under various

distributional assumptions. In this paper, we consider the problem of mean estimation

when independent samples are drawn from d-dimensional non-identical distributions

possessing a common mean. When the distributions are radially symmetric and unimodal,

we propose a novel estimator, which is a hybrid of the modal interval, shorth, and median

estimators, and whose performance adapts to the level of heterogeneity in the data. We

show that our estimator is near-optimal when data are i.i.d. and when the fraction of

“low-noise” distributions is as small as Ω
(
d logn
n

)
, where n is the number of samples. We

also derive minimax lower bounds on the expected error of any estimator that is agnostic

to the scales of individual data points. Finally, we extend our theory to linear regression.

In both the mean estimation and regression settings, we present computationally feasible

versions of our estimators that run in time polynomial in the number of data points.

7.1 Introduction

Heterogeneity is prevalent in many modern data sets, leading to new challenges in estima-

tion and prediction. The i.i.d. assumption imposed in much of classical statistics is unlikely

to hold in practice, creating a need to develop new theory under relaxed assumptions

allowing for heterogeneous data [Liu88; DKBR07; SC09; ZXLZ15; FNS16]. In this paper,
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we consider the problem of estimating a common mean when independent data are drawn

from non-identical distributions.

A version of this problem for Gaussian distributions was recently studied in Chierichetti

et al. [CDKL14], who motivated their work using the following crowdsourcing application:

Suppose the quality of an item is obtained by soliciting ratings from several agents, who are

assumed to provide unbiased ratings. However, the rating distributions may vary across

agents depending, e.g., on their expertise. In the Gaussian setting, this translates into

data drawn from independent distributions with a common mean but possibly different

variances. Chierichetti et al. [CDKL14] proposed a mean estimator based on calculating the

“shortest gap” between samples, and derived upper bounds on the estimation error of their

algorithm. Naturally, one might ask whether the estimators proposed by Chierichetti et

al. [CDKL14] also perform provably well for non-Gaussian settings; furthermore, although

Chierichetti et al. [CDKL14] derived some lower bounds for the behavior of the best possible

estimator in the unknown variance setting, the optimality of their proposed estimator was

only partially addressed.

The work of this paper revisits the problem of common mean estimation and generalizes

the case of Gaussian mixtures considered in Chierichetti et al. [CDKL14] to settings where

the component distributions are only assumed to be symmetric and unimodal about a

common mean. Although the estimators studied in our paper resemble the estimators

proposed by Chierichetti et al. [CDKL14], our method of analysis is substantially different

and allows us to obtain bounds without assuming Gaussianity, sub-Gaussianity, or even

finite variances of individual distributions. In the multivariate mean estimation setting, this

leads to sharper estimation error rates than those obtained in Chierichetti et al. [CDKL14]

for isotropic Gaussian data. The upper bounds we derive are stated in terms of percentiles

of the overall mixture distribution and may be finite even in the case of heavy-tailed

distributions.

The aforementioned model of non-i.i.d. data has even older roots in the statistics lit-
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erature, under the name of sample heterogeneity. Initial research in sample heterogeneity

focused on understanding the asymptotic distribution of order statistics and linear func-

tions thereof [Hoe56; Wei69; Sen68; Sen70; Sti76; SW09]. More recent work has established

necessary and sufficient conditions for consistency of the sample median [HM97; MW98;

HM01]. In particular, Hallin and Mizera [HM01] established the optimality of the median

over a certain class of M -estimators (having a bounded, non-decreasing, skew-symmetric

score function). However, as explained in more detail later (cf. Section 7.3.2), certain cases

exist where the median itself is not optimal in comparison to more complicated estimators.

For example, redescending M -estimators do not lie in the class studied by Hallin and

Mizera [HM01]. We show that, under certain conditions, the modal interval estimator (Es-

timator 1)—which may be viewed as an extreme case of a redescending M -estimator—has

smaller error than the median (cf. Table 7.1). Sample heterogeneity was also studied in

the linear regression setting, where previous work focused on the least absolute deviation

estimator [EH99; Kni99]. Inspired by the modal estimator, we propose and analyze a

related estimator for linear regression (cf. Section 7.8). Note that we are chiefly interested

in estimators which have minimal assumptions and allow the fraction of low-variance

points to be as small as logn
n

, whereas the estimators studied in previous work required the

fraction to be Ω
(√

n
n

)
[HM01; HM01; EH99; Kni99; MW98].

We also briefly mention classical work on the modal interval estimator [Che64] and

shorth estimator [ABHHRT72], which are used as building blocks for our hybrid estimator.

Notably, previous analysis has focused on asymptotic results for i.i.d. data, where both the

modal interval and shorth estimators were proven to have an n− 1
3 convergence rate [KP90],

in contrast to the faster n− 1
2 convergence rate of the sample mean. The results of this

paper show the benefit of these estimators when a substantial fraction of the component

distributions have large (or even infinite) variances, underscoring the general fact that

robustness may need to be traded off for efficiency in clean-data settings.

The main contributions of our paper may be summarized as follows:
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• Provide a rigorous analysis of the modal interval (Theorems 7.3.1, 7.4.1, and 7.4.3),

shorth (Theorems 7.3.3 and 7.4.5), and hybrid (Theorems 7.3.5 and 7.4.6) estimators

for multivariate, radially symmetric distributions. We also show how to relax the

symmetry conditions further (Theorem 7.7.1). These estimation error guarantees

hold with high probability.

• Derive upper bounds on the expected error of the estimators (Theorem 7.5.3). Along

the way, we demonstrate the need for additional conditions on the tails of the mixture

components in order to derive expected error bounds of the same order as the high-

probability results.

• Derive minimax lower bounds on the error rate of any estimator (Theorem 7.5.5),

and prove that the hybrid estimator is nearly optimal in various regimes of interest

(Theorem 7.5.7).

• Extend the methodology for multivariate mean estimation to linear regression (Theo-

rem 7.8.3).

• Provide computationally efficient versions of the multivariate mean estimator (Theo-

rem 7.6.2) and linear regression estimator (Theorem 7.8.4) in high dimensions.

We also note that while our work vastly generalizes the results of Chierichetti et

al. [CDKL14] for mean estimation in Gaussian mixtures, our derivations bypass some

critical technical gaps in their proofs using a very different approach via empirical process

theory. Finally, we comment that preliminary work on this topic appeared in our earlier

conference paper [PJL19b], but was limited to the univariate case (Theorems 7.3.1, 7.3.3,

7.3.5, and 7.4.3) and did not discuss optimality, regression, or any computational aspects11.

Furthermore, all examples and counterexamples illustrating various phenomena, including

the detailed theoretical derivations (Propositions 7.3.9–7.5.2), are new to this paper.
11We also mention follow-up papers by Liang and Yuan [LY20] and Devroye et al. [DLLZ23], which

appeared after the initial posting of our conference paper.
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We end with a few remarks regarding parameter estimation in mixture models. The

setting studied in our paper is markedly different from the canonical setting [Lin95; Das99;

AK01; KSV05; AM05], since the number of components in the mixture distribution is

allowed to be as large as the number of observations. Furthermore, the parameters of the

component mixtures are “entangled" in the sense that they share a common mean, which

we wish to estimate. Notably, this allows us to obtain meaningful error guarantees without

imposing strong distributional assumptions such as Gaussianity or log-concavity, which

are prevalent in the literature on parameter estimation for mixture models.

The roadmap of the paper is as follows: In Section 7.2, we define notation and the basic

estimators we will consider in the univariate case, which are subsequently analyzed in

Section 7.3. In Section 7.4, we present results for the multivariate analog of these estimators.

In Section 7.5, we derive expected error bounds on the performance of our estimators,

and also present minimax lower bounds on the estimation error of any estimator, thus

providing settings in which our proposed estimators are provably optimal. In Section 7.6,

we present computationally feasible variants of our estimators in higher dimensions, and

prove that the error rates of these estimators are of the same order as those derived earlier.

In Section 7.7, we discuss various relaxations of the symmetry assumptions on the mixture

components. In Section 7.8, we describe our results for linear regression. Simulation results

reporting the relative performance of different estimators are contained in Section 7.9. All

proofs are contained in the supplementary appendix.

Notation: We regularly use the standard big-O notation: For two real-valued non-

negative functions f(n) and g(n), we write f = O(g), when there exists constants n0 and

C > 0 such that for all n ≥ n0, f(n) ≤ Cg(n). We say f = Ω(g) if g = O(f), and say

f = Θ(g) when f = O(g) and g = O(f). We write f = ω(g) if for every real constant c > 0,

there exists n0 ≥ 1 such that f(n) > c · g(n) for every integer n ≥ n0. We write f = o(g),

when g = ω(f). We use Õ (·), Ω̃ (·), and ω̃ (·) to hide polylogarithmic factors. We write

w.h.p., or “with high probability,” to mean with probability tending to 1 as the sample size
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increases. We use C, c, C ′, and c′ to represent absolute positive constants which may vary

from place to place, and their exact values can be found in the proofs. Similarly, we use Ct

to represent positive numbers that depend only on t. For a real-valued random variable X ,

we use VarX to denote its variance.

We will use ∥ · ∥2 to denote the Euclidean norm. We use B(x, r) to denote the Euclidean

ball of radius r centered around x, and we also write Br in place of B(0, r). We denote the

d× d identity matrix by Id. We use P (X, ϵ) to denote the ϵ-packing number of a set X with

respect to Euclidean distance, and we use N(X, ϵ) to denote the ϵ-covering number. We

write Diam(X) to denote the diameter of the set with respect to Euclidean distance, i.e.,

Diam(X) := supx,y∈X ∥x− y∥2.

7.2 Problem Setup

We begin by introducing the entangled mean estimation problem. Suppose we have

n independent samples Xi ∼ Pi, where each Pi is a distribution in Rd with a density.

Furthermore, we assume that each density pi is radially symmetric and unimodal with a

common mean (and median) µ∗. Our goal is to estimate the location parameter µ∗ from the

n samples, where the Pi’s are unknown a priori and may even come from different classes of

(non)parametric distributions. Since the estimators we consider are translation-invariant,

we can assume without loss of generality that µ∗ = 0, so the error of an estimator µ̂ is

measured by ∥µ̂∥2.

A natural estimator to use is the empirical mean, which is certainly an unbiased estimator

of µ∗. However, it is a well-known fact that the mean is not “robust,” in the sense that one

outlying observation can have a massive impact on the estimation error of the mean. In our

setting, one Pi with a very large variance can dramatically inflate the error of the mean, even

if the remaining n− 1 distributions are well-behaved. Due to the symmetry assumption

on the Pi’s, we could consider a (multivariate) median as a more robust alternative. Our



183

theory in Section 7.3 below shows that using a median estimator can somewhat improve

the estimation error so that it depends only on the spread of the
√
n log n distributions with

the smallest quantiles; however, other more cleverly constructed estimators can reduce this

dependence to Od log n) distributions, meaning that the remaining mixture components

may have arbitrarily large (or even infinite) variances, yet have a bounded effect on the

behavior of the estimator.

Another potential estimator when the mixing components come from a sufficiently

nice parametric family (e.g., Gaussians) is the maximum likelihood estimator. However,

since we do not assume knowledge of which observations are drawn from which mixture

components, the MLE calculation becomes considerably more complicated. Nonetheless,

it is sometimes informative to compare the error rate of the MLE—assuming side informa-

tion of which observations correspond to which mixture components—to the error rates

obtained using various agnostic estimators. In particular, if the former error rate diverges

with n, we know that a diverging error rate for a proposed estimator is reasonable.

We will focus on the simple setting where the overall mixture distribution is radially

symmetric, e.g., we have multivariate Gaussian observations Xi ∼ N (0d, σ2
i Id). Through-

out this paper, we focus on the setting where d = O log n); as shown in Chierichetti et

al. [CDKL14], when d = Ω(log n), the problem reduces to the case of known variances,

since these can be estimated accurately. We shall discuss how to replace the spherical sym-

metry assumption by log-concavity in Section 7.7. As the covariance matrix of a radially

symmetric distribution is of the form σ2Id, we denote the covariance matrix of Xi by σ2
i Id.

We now define the central objects in our analysis:

Definition 7.2.1 (Order statistics). Let the covariance of Xi be σ2
i Id. Define σ(i) to be the

corresponding order statistic. Let si denote the interquartile range of Xi, so that P(∥Xi − µ∗∥2 ≤

si) = 1
2 . Define s(i) to be the corresponding order statistic.

Definition 7.2.2 (Indicator functions on balls). For x ∈ Rd and r ∈ R, let fx,r(z) := ⊮∥x−z∥2≤r

denote the indicator function of the ℓ2-ball B(x, r). For s ∈ R, we will also use fs,r(z) to denote the
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indicator of the ball of radius r centered at the vector with first coordinate s and all other coordinates

equal to 0.

Note that when d = 1, the function fx,r is simply the indicator function of the interval

[x− r, x+ r].

Definition 7.2.3 (Function class). Let

Hr := {fx,r′ : x ∈ Rd, r′ ∈ R, 0 ≤ r′ ≤ r}.

Note thatHr has VC dimension d+ 1 [WD81].

As in prior analysis of sample heterogeneous models [SW09; Sen68], most of our argu-

ments will be in terms of the mixture distribution P := 1
n

∑n
i=1 Pi, which is again unimodal

and symmetric. We will write P n to denote the empirical distribution of X1, . . . , Xn.

Definition 7.2.4 (Risk). For a function f , we useRn(f) := 1
n

∑n
i=1 f(Xi) to denote the expectation

of f with respect to the empirical distribution of X1, . . . , Xn. Let

R(f) := 1
n

n∑
i=1

E f(Xi).

Thus, R(f) is the expectation of f with respect to P . Define

R∗
r := sup

f∈Hr

R(f) = R(f0,r),

where the second equality follows by symmetry and unimodality.

Note that R(f0,r) also equals the probability of the ball B(0, r) under P . The spherical

symmetry assumption readily gives R(fx,r) = R(fs,r) for all x such that ∥x∥2 = s.

We first state several useful properties of radially symmetric distributions. The proof of

the following result is contained in Appendix E.1.1.
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Lemma 7.2.5. Recall Definitions 7.2.1, 7.2.2, and 7.2.4 of σ(i), s(i), fx,r, and R∗
r . Suppose the

density of P is radially symmetric and unimodal. We have the following properties:

(i) For any r > 0 and x, x′ ∈ Rd, if ∥x∥2 < ∥x′∥2, then R(fx,r) ≥ R(fx′,r).

(ii) For any x ∈ Rd, if r < r′, then R(fx,r) ≤ R(fx,r′).

(iii) If 0 < r1 < r2, then R∗
r1
rd

1
>

R∗
r2
rd

2
.

(iv) If 0 < r1 < r2, then

R(fr2,r1) < 1
P (Br2−r1 , r1)

R∗
r2 ≤

( 2r1

r2 − r1

)d
R∗
r2 ,

where P (Br2−r1 , r1) denotes the packing number of Br2−r1 with respect to Br1 . In particular,

if r1 ≤ r2
2 , then R(fr2,r1) ≤

(
4r1
r2

)d
R∗
r2 .

(v) If 1 ≤ k ≤ n/2, then k
n
< R∗

s(2k)
and k

n
< R∗

2
√
dσ(2k)

.

7.2.1 Estimators

We now proceed to define the estimators that will be studied in our paper.

Estimator 1 (r-modal interval). The r-modal interval estimator, introduced for the (univariate)

i.i.d. setting by Chernoff [Che64], outputs the center of the most populated ball of radius r, with ties

broken arbitrarily:

µ̂M,r ∈ arg max
x

Rn(fx,r). (7.1)

Estimator 2 (k-shortest gap / shorth estimator). For k ≥ 2, the k-shortest gap (k-shorth)

estimator, µ̂S,k, outputs the center of the smallest ball containing at least k points. More precisely,
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we define

r̂k := inf
{
r : sup

x
Rn(fx,r) ≥

k

n

}
, µ̂S,k := µ̂M,r̂k

. (7.2)

The traditional (univariate) shorth estimator [ABHHRT72; KP90] corresponds to k = n
2 , whereas

choosing k = 2 outputs the midpoint of the shortest interval between any two points. As we will

see, the choice of k = C log n will be convenient for our setting, and is more suitable than k = n
2 if

data are not i.i.d.

Note that a type of “shortest interval” estimator has also been employed in the work on

mean estimation for contaminated i.i.d. data [LRV16], but was used as an outlier screening

step in that context, rather than a mean estimator. Incidentally, our hybrid estimator to

be introduced later will employ a different screening approach based on the median, and

then use the shorth estimator to return a more accurate mean estimate.

Definition 7.2.6. Recall Definitions 7.2.2 and 7.2.4 for the quantity R(fx,r). Define

rk := inf
{
r : sup

x
R(fx,r) ≥

k

n

}
= inf

{
r : R(f0,r) ≥

k

n

}
,

where the second equality follows from unimodality and radial symmetry.

The quantity rk measures the spread of P , and rn/2 is the interquartile range of P .

Furthermore, since P has a density, we have R∗
rk

= k
n

. Note that rk is problem-dependent,

since its magnitude depends on the relative dispersion of the mixing components; in

particular, we will be interested in rΘ(d logn). As the fraction of “nice” points increases,

rk becomes smaller. However, rk does not depend too strongly on the high-variance

distributions (cf. Lemma (i) and Proposition 7.3.9).

The univariate k-median outputs an element from the centermost k points of the data.

According to our definition, the k-median outputs a set rather than a point estimator, which
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will be used as a preprocessing step before applying the modal interval or shorth estimators

to obtain a hybrid estimator with superior rates.

Estimator 3 (k-median). In the univariate setting, the k-median estimator outputs an arbitrary

element µ̂med,k from the subset Sk, defined as Xi ∈ Sk if and only if θ̂med,−k ≤ Xi ≤ θ̂med,k, where

θ̂med,k := inf
{
θ : ψn(θ) ≥ k

n

}
,

θ̂med,−k := sup
{
θ : ψn(θ) ≤ −k

n

}
,

and ψn(θ) = 1
n

∑n
i=1 sign(θ −Xi). The sample median corresponds to taking k = 0.

Various multivariate extensions of the median exist, with different robustness properties and

computational complexity; for our purposes, it will suffice to consider the simplest version of the

multivariate median, which simply operates componentwise on the data points.

Definition 7.2.7 (Multivariate median). Define the set Sk,i as follows: For each dimension i,

consider the k median points in that dimension; i.e.,

Sk,i := {Xj(i) : Xj(i) belongs to the k-median of (Xj(i))nj=1},

where Xj(i) denotes the ith coordinate of the vector Xj . Define S∞
k to be the cuboid based on Sk,i,

for each dimension i:

S∞
k :=

d∏
i=1

[min(Sk,i),max(Sk,i)].

Estimator 4 (Hybrid estimator). The hybrid algorithm consists of the following steps, summarized

in Algorithm 3:

(i) Compute the cuboid S∞
k1 with k1 =

√
n log n.

(ii) Compute the k2-shorth estimator µ̂S,k2 with k2 = Cd log n.



188

(iii) If µ̂S,k2 /∈ S∞
k1 , return the projection of µ̂S,k2 on S∞

k1 . Otherwise, return µ̂S,k2 .

Algorithm 3 Hybrid mean estimator (d-dimensional)

1: function hybridMultidimensional(X1:n, k1, k2, d)
2: S∞

k1 ← kCuboid(X1:n, k1).
3: µ̂S,k2 ← Shorth(X1:n, k2).
4: if µ̂S,k2 ∈ S∞

k1 then
5: µ̂k1,k2 ← µ̂S,k2

6: else
7: µ̂k1,k2 ← arg minx∈S∞

k1
∥x− µ̂S,k2∥2

8: end if
9: return µ̂k1,k2

10: end function

Note that the projection in step (iii) is easy to accomplish, since ℓ2-projection onto the

cuboid may be done componentwise, hence computed in O(d) time. Our theoretical results

show that replacing the shorth estimator by the modal interval estimator produces similar

statistical error rates.

7.2.2 Concentration Inequality

The following concentration inequality will be a key technical ingredient for deriving

results concerning our estimators. The proof is contained in Appendix E.1.2.

Lemma 7.2.8. Recall the Definitions 7.2.3 and 7.2.4 of the terms Rn(f), R(f), R∗
r , andHr. For

any fixed t ∈ (0, 1] and n > 1, we have

P
{

sup
f∈Hr

|Rn(f)−R(f)| ≥ tR∗
r

}
≤ 2 exp

(
−cnR∗

rt
2
)
,

provided r is large enough so that nR∗
r ≥ Ct

d+1
2 log n, where Ct =

(
144
t

)2
and c = 1

200 .

This theorem is useful because the bounds rely on R∗
r ; i.e., they are adaptive to the

problem, compared to the traditional O
(

1√
n

)
distribution-independent bound. We also

note that Lemma 7.2.8 requires the mass R∗
r lying around the true mode to be sufficiently
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large, and while the theorem requires R∗
r to increase with d, we will work in settings where

d = O log n).

7.3 Univariate Mean Estimation

We now state several theoretical guarantees for the aforementioned estimators in the

univariate setting. Some of these results appeared in our preliminary work [PJL19b], but

we provide complete proofs of all statements in Appendix E.2.

In the univariate setting, we assume that we have n independent samplesXi ∼ Pi, where

each Pi is a univariate distribution with a density pi which is symmetric and decreasing

around µ∗. Let qi and σi denote the interquartile range and standard deviation of Pi,

respectively, and recall that the interquartile range satisfies P(|Xi − µ∗| ≤ qi) = 1
2 . We use

q(i) and σ(i) to denote the ith smallest interquartile range and standard deviation, respectively

(cf. Definition 7.2.1). By Lemma E.2.1(v) below, we have rk ≤ q(2k) and rk ≤ 2σ(2k), although

these bounds may be loose (for instance, rk could be finite even if σ(1) is infinite). However,

we are guaranteed that rk will be small if 2k points come from “nice” (low-variance)

distributions.

Theorem 7.3.1 (Theorem 2 of Pensia et al. [PJL19b]). Recall Definitions 7.2.2 and 7.2.4 of the

terms R∗
r , R(·), and fr′,r. Let r be a fixed number such that R∗

r = Ω
(

logn
n

)
. Then with probability

at least 1− 2 exp(−c′nR∗
r), the modal interval estimator (Estimator 1) satisfies

|µ̂M,r| ≤ r′, (7.3)

for any r′ that satisfying R(fr′,r) < R∗
r

2 . In particular, we can always choose r′ = 2r
R∗

r
to obtain the

bound

|µ̂M,r| ≤
2r
R∗
r

. (7.4)
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The proof of Theorem 7.3.1 is contained in Appendix E.2.1, and proceeds by using

Lemma 7.2.8 to bound the ratio between R(fµ̂M,r,r
) and R∗

r , and then using Lemma E.2.1 to

turn this into a deviation bound on |µ̂M,r|. Although the bound (7.4) in Theorem 7.3.1 is

simple to state, it may be looser than the bound (7.3).

Remark 7.3.2. Importantly, by Lemma E.2.1(v), we know that the choice r = σ(C logn) always

guarantees the condition R∗
r = Ω

(
logn
n

)
. Hence, inequality (7.4) implies that

|µ̂M,r| ≤
2σ(C logn)

R∗
r

≤
2nσ(C logn)

log n , (7.5)

with a similar inequality involving q(C′ logn). Note that this bound holds regardless of the magnitude

of the standard deviations of the latter n− C log n mixture components.

At the same time, one might be wary of the fact that the bound in inequality (7.5) could increase

with n if we fix σ(C logn) ; for i.i.d. data, R∗
r = Θ(1), so even the first expression in the bound is of

constant order. This is rather alarming, compared to the On−1/2) error rate of the median. However,

it should be noted that if the variances of the mixture components increase sufficiently rapidly with

n, even the error rate of the MLE in the Gaussian case (which knows the distribution of each sample)

will have a diverging error rate. Thus, although the error bounds of the modal interval estimator in

Theorem 7.3.1 may be rather unsatisfactory in the case of i.i.d. data, they can lead to more meaningful

error bounds when the mixture distribution involves a sizable portion of high-variance points. We

will explore the question of optimality in more detail in Section 7.5.2 below.

Guarantees for the shorth estimator are similar to the modal interval estimator. Further

note that as the proofs of the results in this section reveal, the technical machinery we have

developed to derive guarantees for the error of the modal interval estimator may also be

used to derive estimation error bounds for the shorth estimator.

The proof of the following result is provided in Appendix E.2.2.

Theorem 7.3.3 (Theorem 4 of Pensia et al. [PJL19b]). Recall Definitions 7.2.1 and 7.2.6 of

the terms σ(i), q(i), and rk. Suppose 2k ≥ C0.25 log n. With probability at least 1− 2 exp(−c′k), the
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shorth estimator (Estimator 2) satisfies

|µ̂S,k| ≤
2nr2k

k
<

2nmin
(
q(4k), 2σ(4k)

)
k

.

Remark 7.3.4. Lemma E.2.1(iii) shows that the upper bound is actually tighter for small k:

for k′ > k, we have kr2k′ > k′r2k. The smallest value permissible from our theory would be

k = Θ(log n). Also note that the upper bound in Theorem 7.3.3 for the shorth estimator resembles

the bound in Theorem 7.4.3, except for the fact that the bound for the modal interval estimator

involves the quantity rC0.25 logn rather than r2C0.25 logn, and the latter could be larger depending on

the spread of P . Furthermore, both upper bounds in Theorem 7.3.3 may sometimes be loose: In

particular, if the Xi’s were i.i.d., r2k would be of order Θ
(
k
n

)
for small k, so the bound nr2k

k
would be

of constant order, whereas it is known [KP90] that the shorth estimator is consistent for k = 0.5n.

We now turn to theoretical guarantees from the hybrid estimator, which combines the

shorth and k-median in order to obtain superior performance for both fast and slow decay

of P . Recall from Table 7.1 that the median has superior performance when there is less

heterogeneity in the data and P decays fast enough. However, the superior performance of

the modal interval estimator is apparent in the presence of large number of high-variance

points. It is then desirable to have an estimator that adapts to the problem and enjoys the

best of both worlds without any prior information. Indeed, as outlined in Proposition 7.3.14,

the hybrid estimator achieves this rate. The key point is that if the true mean lies inside a

convex set (defined with respect to the k-median), then projecting any other point (e.g.,

the shorth) onto the set will only move the point closer to the mean, so the hybrid estimator

can leverage the better of the two rates enjoyed by the median and shorth.

Algorithm 4 specializes the hybrid estimator of Algorithm 3 to the univariate setting.

The algorithm proceeds by separately computing the k1-shorth estimator and k2-median.

If the shorth estimator lies within the median interval, the algorithm outputs the shorth;

otherwise, it outputs the closest endpoint of the median interval. Note that this estimator
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resembles the estimator proposed by Chierichetti et al. [CDKL14] since it employs the

median as a screening step for points with very large variance. However, the shorth

estimator is computed separately and then projected onto an interval around the median.

In contrast, the estimator proposed by Chierichetti et al. [CDKL14] first computes the

k2-median and then computes the shorth on the remaining points, leading to a delicate

conditioning argument in the analysis and creating some technical gaps in the proofs.

Algorithm 4 Hybrid mean estimator

1: function hybridMeanEstimator(X1:n, k1, k2)
2: Sk1 ← kMedian(X1:n, k1).
3: µ̂S,k2 ← Shorth(X1:n, k2).
4: if µ̂S,k2 ∈ [min(Sk1),max(Sk1)] then
5: µ̂k1,k2 ← µ̂S,k2

6: else
7: µ̂k1,k2 ← closestPoint(Sk1 , µ̂S,k2)
8: end if
9: return µ̂k1,k2

10: end function

Theorem 7.3.5 (Theorem 5 of Pensia et al. [PJL19b]). Recall the Definition 7.2.6and Estimator 3

for the terms rk, Sk, and µ̂S,k. If k1 =
√
n log n and k2 ≥ C log n, the error of the hybrid estimator

(Estimator 4) in Algorithm 4 is bounded by

|µ̂k1,k2 | ≤ min (Diam(Sk1), |µ̂S,k2|) ≤
4
√
n log n
k2

r2k2 ,

with probability at least 1− 2 exp(−c′k2)− 4 exp(−c log2 n).

The proof of Theorem 7.3.5 is provided in Appendix E.2.3. Importantly, the bound in

Theorem 7.3.5 is finite even for heavy-tailed distributions with infinite variance. Finally,

note that in Algorithm 4, we could replace the shorth estimator by the modal interval

estimator with adaptively chosen interval width to obtain similar error guarantees.
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7.3.1 Examples

We illustrate this below in several cases for rlogn, assuming Gaussian distributions for

simplicity. The following examples will reappear throughout the paper to illustrate the

error of our proposed estimators in various regimes of interest:

Example 7.3.6. (i.i.d. observations). Pi = N (0, σ2), so P is again N (0, σ2).

Example 7.3.7. (quadratic variance). Pi = N (0, c2i2), for some small c > 0.

Example 7.3.8. (α-mixture distributions).

Pi =


N (0, 1), if i ≤ c⌈log n⌉,

N (0, n2α), otherwise,

for some α > 0 and some large c > 0.

Example 7.3.8 is similar to the “contamination model” in prior work [SW09; Sti76], but

with a specific scaling of variances to highlight the difference between multiple estimators

by varying α. The following proposition, proved in Appendix E.3.1, will be useful in our

development:

Proposition 7.3.9. We have the following bounds for rlogn when n = Ω(1):

1. For Example 7.3.6 (i.i.d. observations), we have rlogn = Θ
(
σ logn
n

)
.

2. For Example 7.3.7 (quadratic variance) and sufficiently small c > 0, we have rlogn = Θ(1).

3. For Example 7.3.8 (α-mixture distributions) and sufficiently large c > 0, we have

rlogn =


Θ
(

logn
n1−α

)
, if α < 1,

Θ(1), if α ≥ 1.
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Note that these bounds are tighter than the ones provided by Lemma 7.2.5(v); the latter

states that rk ≤ σ(2k). This is because Lemma 7.2.5(v) is a worst-case bound which does

not account for the contributions of high-variance points.

7.3.1.1 Guarantees for Individual Estimators

We now revisit the examples above and calculate the bounds that follow from Theorem 7.3.1

by choosing r = rC logn for a large constant C > 0. We also mention the cases where the

bound (7.4) is weaker than the bound (7.3). The proof of the following proposition is

contained in Appendix E.3.2.

Proposition 7.3.10. Recall Definition 7.2.6 of rk. Suppose r = rC logn. We have the following

bounds for the modal interval estimator |µ̂M,r| (Estimator 1):

1. For Example 7.3.6 (i.i.d. observations), we have |µ̂M,r| ≤ Θ(σ), w.h.p.

2. For Example 7.3.7 (quadratic variance), we have |µ̂M,r| ≤ Onϵ), w.h.p., for any ϵ > 0.

Inequality (7.4) results in a weaker bound of the form On), w.h.p.

3. For Example 7.3.8 (α-mixture distributions), we have

|µ̂M,r| =


Onα), if α < 1

O1), if α ≥ 1,

w.h.p. For α ≥ 1, inequality (7.4) results in a weaker bound of the form Onα).

Remark 7.3.11. As discussed in Remark 7.3.2 above, the guarantees for the modal interval estimator

are somewhat unsatisfactory for i.i.d. data, since Proposition 7.3.10(i) gives an error rate of Θ(σ),

rather than the optimal rate Θ
(
σ√
n

)
achievable by the sample mean. On the other hand, Proposi-

tion 7.3.10 shows that for other problem settings with more widely varying variances—such as the

α-mixture with α ≥ 1—the modal interval estimator results in constant error, whereas the sample
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mean would have Θ(nα−0.5) error. These differences are summarized in more detail in Table 7.1

below.

The modal interval estimator is a “local” estimator that only considers the value of

P n in small windows. As we increase the variance of noisy points, the distribution P

approaches 0 around µ∗. The modal interval estimator makes mistakes when P is flat after

normalization, meaning that the density at x+ µ∗ is within a (1− ϵ)-factor of its density at

µ∗, for ϵ = o(1). If this is the case, P n might assign higher mass at x + µ∗ than µ∗ due to

stochasticity introduced by sampling, so a local method would mistakenly choose x+ µ∗

over µ∗.

More concretely, consider the setting of Example 7.3.8. If an adversary tried to alter the

estimator by making the variance of the points very high (α≫ 1), then although P would

approach 0, the normalized density would not be flat. An extreme example of this can be

seen when variance of noisy points is “∞”: Near µ∗, the distribution P would behave like

N (µ∗, 1) scaled by O
(

logn
n

)
, which is not flat after normalization although P approaches

0 very rapidly, so that the mean or median would behave poorly. As Proposition 7.3.10

shows, the modal interval estimator would only suffer O1) error in this case.

Remark 7.3.12. Examining the bound in Proposition 7.3.10 for Example 7.3.8, we see the possible

emergence of a “phase transition” phenomenon: For α < 1, the modal interval estimator has

error growing with n, whereas for α ≥ 1, the modal interval estimator only incurs constant error.

This suggests that for α < 1, high-variance points are more effectively hidden within the mixture

distribution, so the accuracy of the modal interval estimator is more severely compromised than in

the case when α ≥ 1, where the modal interval estimator can distinguish between low-variance and

high-variance points. This phase transition phenomenon is established rigorously in Section 7.3.1.2

below, where we prove a lower bound of Ω(nα) in the case when α < 1.

The performance of the Θ(log n)-shorth estimator is similar to the modal interval es-

timator with r = rΘ(logn) (cf. inequality (7.5) in Remark 7.3.2). Consequently, the error
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guarantees derived for the running examples in Proposition 7.3.10 also hold for the Θ(log n)-

shorth.

For completeness, we calculate the bounds of the (
√
n log n)-median estimator on the

recurring examples, proved in Appendix E.3.3:

Proposition 7.3.13. We have the following bounds on the (
√
n log n)-median estimator (Estima-

tor 3):

1. For Example 7.3.6 (i.i.d. observations), |µ̂med,
√
n logn| = O

(
σ logn√

n

)
, w.h.p.

2. For Example 7.3.7 (quadratic variance), |µ̂med,
√
n logn| = On0.5 log n), w.h.p.

3. For Example 7.3.8 (α-mixture distributions), |µ̂med,
√
n logn| = Onα−0.5 log n), w.h.p.

The following proposition translates the error guarantees of Theorem 7.3.5 into our

running examples. These bounds are a direct result of Theorem 7.3.5 and Propositions 7.3.10

and 7.3.13.

Proposition 7.3.14. When k1 and k2 are chosen as in Theorem 7.3.5, we have the following bounds

on the hybrid estimator (Estimator 4):

1. For Example 7.3.6 (i.i.d. observations), |µ̂k1,k2| = O
(
σ logn√

n

)
, w.h.p.

2. For Example 7.3.7 (quadratic variance), |µ̂k1,k2| = Onϵ), w.h.p., for any ϵ > 0.

3. For Example 7.3.8 (α-mixture distributions), with high probability,

|µ̂k1,k2 | =


Onα−0.5), if α < 1,

O1), if α ≥ 1.
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Mean Median Modal/Shorth Hybrid

Example 1(i.i.d. samples) n−0.5 n−0.5 n−1/3 n−0.5

Example 2 (quadratic variances)
√
n

√
n nϵ nϵ

Example 3 (α < 1-mixture distributions) nα−0.5 nα−0.5 nα nα−0.5

Example 3 (α ≥ 1-mixture distributions) nα−0.5 nα−0.5 c c

Table 7.1: The table above summarizes the performance of various estimators on our three
running examples. We have ignored poly-logarithmic factors for simplicity, and we use nϵ
to denote Onϵ) error for any ϵ > 0, and c to denote an error bounded by a constant. The
radius for the modal estimator and the k for the shorth estimator are adjusted to be optimal
for each particular example; i.e., the estimators are assumed to know which example data
are coming from. Observe that mean and median estimators outperform the modal and
shorth estimators when the outliers have relatively small variances. On the other hand, the
modal and shorth estimators are better when the outliers have large variances. Simulations
in Section 7.9 show that the rates provided above are indeed observed in practice. Our
hybrid estimator achieves the best performance in all cases without knowing which example is
under consideration.

7.3.1.2 Phase Transition Behavior

In this subsection, we focus on verifying the statement in Remark 7.3.12 above, namely

the existence of a phase transition for the modal interval estimator depending on whether

α < 1 or α ≥ 1. This phenomenon is illustrated via simulations in the plots of Figure 7.3.

For ease of analysis, we tweak the setting of Example 7.3.8 slightly: Instead of having

different distributions for high variance and low variance points, we assume that the points

are sampled i.i.d. from a mixture distribution, with weights resembling their original

fraction in Example 7.3.8. Moreover, we assume that individual distributions are uniform

rather than Gaussian.

Example 7.3.15. (Modified α-mixture distributions). Let c > 0 be a large enough constant. For

each i, Pi = Qn, where

Qn = c log n
n

U [−1, 1] + n− c log n
n

U [−nα, nα],
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Figure 7.3: Plots comparing average error of the mean, median, and modal interval esti-
mators on Example 7.3.8 (α-mixture distributions) for different values of α. As shown
in Proposition 7.3.10, the modal interval estimator undergoes a phase transition at α = 1,
where the error of modal interval estimator drops from the increasing function Ω(nα) to the
constant function Θ(1). Moreover, as shown in Proposition 7.3.13, the median has better
performance than the modal interval estimator for α < 1, motivating our hybrid estimator.
The average error, 1

T

∑T
i=1 |µ̂− µ∗|, is calculated using T = 200 runs for each n. Both of the

axes are on the log scale. More details can be found in Section 7.9.

and U [−a, a] is the uniform distribution on [−a, a].

Note that if we sample X1, . . . , Xn
i.i.d.∼ Qn, the number of points with variance Θ(1) is

Θ(log n), w.h.p. It is easy to see that the upper bounds for Example 7.3.15 are the same as

that of Example 7.3.8 in Proposition 7.3.10, i.e.,

|µ̂M,rC log n
| =


Onα), if α < 1

O1), if α ≥ 1,

w.h.p. The following proposition, proved in Appendix E.3.4, establishes a lower bound of

Ω(nα) on the error:

Proposition 7.3.16. For 1
3 ≤ α < 1 in Example 7.3.15, the 1-modal interval estimator (Estimator 1)

incurs Ω(nα) error , with a constant non-zero probability.
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Proposition 7.3.16 proves rigorously that the apparent phase transition of the modal

interval estimator is not simply an artifact of the argument used to prove Proposition 7.3.10.

Indeed, the modal interval estimator experiences a sharp phase transition depending on

the relative variance of the mixture component with the higher variance, which is governed

by the parameter α. Moreover, this phase transition is not specific to just modal interval

estimator. As stated in Theorem 7.5.5, all agnostic estimators must have error Ω(nα−0.5) for

α < 1. Thus Example 7.3.8 is indeed a difficult problem for α < 1, but a surprisingly easy

one for α > 1.

As a final remark, note that in Examples 7.3.8 and 7.3.15, the sample median and even

the mean would have an error of Õ(nα−0.5). When α < 1, this rate is much better than

the Onα) guarantee of the modal interval estimator. This motivates the hybrid estimator

proposed above, which is able to combine the “best of both worlds” for the modal interval

and median estimators.

7.3.2 Comparison to Common Estimators

We briefly mention some common univariate estimators and contrast their performance

with the performance guarantees of our proposed estimators. For simplicity, we focus

on mixtures of univariate Gaussian distributions in which Θ(log n) of the samples are

drawn from distributions with bounded variance. The primary reason why the estimators

mentioned below have suboptimal guarantees is because they are designed to guard

against a constant fraction of arbitrarily corrupted or heavy-tailed points. In such cases,

the sample median is the optimal estimator; in contrast, the sample median can be shown

to be suboptimal in our setting (see Table 7.1 or Figure 7.4).

1. Sample median: Hallin and Mizera [HM01] established necessary and sufficient con-

ditions for the consistency of the median for sample heterogeneous distributions.

Although the sample median is more robust than the sample mean, this result shows

that sample median is consistent if and only if R∗
ϵ = ω

(
1√
n

)
for every ϵ > 0. In partic-
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Figure 7.4: Plot comparing the average error of various estimators on Example 7.3.8 with
α = 1.3. Both of the axes are on the log scale to show the rate. As mentioned in Table 7.1,
both the mean and median have an nα−0.5 error rate. The error rates of the α-trimmed mean,
with α = 1

2 −
√
n
n

and α = 1
2 −

logn
n

, are similar to the median. Note that the hybrid estimator
has far superior performance. More simulations and details are available in Section 7.9.

ular, it implies that if the median is consistent, then r√
n → 0. Focusing on particular

Example 7.3.8, the error rate of the median is O(nα−0.5) (cf. Table 7.1 and Figure 7.4).

Moreover, Hallin and Mizera [HM01] established the optimality of the median among

all M -estimators with score functions ψ(·) satisfying the following conditions:

a) ψ(·) is non-decreasing and skew-symmetric.

b) ψ(∞) = 1.

c) The set of discontinuity points of ψ(·) is finite.

Therefore, one must consider broader classes of estimators beyond this family of

M -estimators in order to obtain better error guarantees than the median.

2. Huber’s M -estimator [HR09; Hub64]: For any finite truncation parameter, Huber’s M -

estimator falls in the class of M -estimators considered by Hallin and Mizera [HM01],

since normalizing the score function of a bounded score function does not change
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the final estimate. Thus, the error rate of Huber’s M -estimator cannot be any better

than the error rate of the median.

3. k-median of means: This estimator [LM19d] divides the n data points into k disjoint

blocks (B1, . . . , Bk) of equal size (assuming n/k is an integer). For each i ∈ {1, . . . , k},

we define Zi to be the mean of the samples in Bi, and then define the estimator

µ̂ := Median1≤i≤k(Zi) = Median1≤i≤k

(
X(i−1) n

k
+1 + · · ·+Xin

k

n/k

)
.

The median of means is robust to a constant fraction of outliers and sub-Gaussian

tails even for heavy tailed i.i.d. distributions [DL22a]; however, we argue that the

median of means estimator is not robust to substantial sample heterogeneity. If each

Xi ∼ N (µ, σ2
i ), then Zi ∼ N

(
µ,

∑ik

l=(i−1)k+1 σ
2
l

n2/k2

)
. Therefore, the final estimator behaves

like the median of independent Gaussian samples. Furthermore, a single “high-

variance” point in the set Bi can increase the variance of Zi arbitrarily, hiding the

signal from “low-variance” samples. The best case would thus be when each block

contains either all “low-variance” samples or all “high-variance” samples. However,

in that case, µ̂ behaves essentially like the median of a smaller set with rescaled

standard deviations. As argued above, regimes exist where the median estimator is

suboptimal.

4. α-trimmed mean: Let α ∈ [0, 0.5) be such that αn is an integer. Given samples

{X1, . . . , Xn}, the α-trimmed mean [Hub64; LM19d] discards the largest and smallest

αn samples and returns the mean of the remaining (1− 2α)n samples:

µ̂α = 1
(1− 2α)n

n−αn∑
i=αn+1

X(i).

The trimmed means estimator is robust to a constant fraction of outliers and has

sub-Gaussian tails even for heavy-tailed distributions [LM19d]. As the fraction of
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“low-variance” points can be as small as logn
n

in our sample-heterogeneous setting, the

estimator µ̂α would have a large variance for any constant α > 0. Thus, our choice of

α should depend on n, going to 0.5 as n→∞.

Recall that in the definition of the k-median (cf. Estimator 3), Sk was defined as the k

centermost points of the data. Thus, µ̂α is the mean of the set Sk with k = n(1− 2α).

In the extreme case of α = 0.5− 1
2n , the trimmed means estimator µ̂α is the same as the

median, which is not optimal. As Figure 7.4 shows, the trimmed mean behaves like the

median for large α, and decreasing α (i.e., increasing k) degrades the performance.

Note that we bound the error of the k-median by bounding the range of Sk (cf.

Lemma E.2.4). Therefore, the bounds for the k-median also imply bounds for µ̂n−k
2n

.

However, the k-median primarily allows us to define a hybrid estimator by projecting

onto the set Sk, which performs better than the k-median alone.

7.4 Multivariate Case

In the following sections, we derive the main results of our paper, which generalize the

theorems in Section 7.3 to d dimensions.

7.4.1 Modal Interval Estimator

The following result provides an error bound for the modal interval estimator. The proof

is in Appendix E.4.1.

Theorem 7.4.1. Recall Definitions 7.2.1, 7.2.4, and Estimator 1. Suppose R∗
r ≥ C0.5

(
(d+1) logn

n

)
.

The multidimensional modal interval estimator satisfies the error bounds

∥µ̂M,r∥2 ≤ 4r
(

2
R∗
r

) 1
d

, (7.6)

∥µ̂M,r∥2 ≤ 8
√
dσ(2Cd logn)

(
2
R∗
r

) 1
d

≤ 8
√
d

(
n

C ′d log n

) 1
d

σ(2Cd logn), (7.7)
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with probability at least 1− 2 exp(−c′d log n).

As the proof of Theorem 7.4.1 reveals, inequality (7.7) could also be stated using s(2k)

in place of 2
√
dσ(2k), since it is obtained from inequality (7.6) simply by substituting the

bounds of Lemma 7.2.5(v). Note that when d = 1, the bound (7.6) in Theorem 7.4.1 reduces

to the bound (7.4) in Theorem 7.3.1, up to constant factors.

Remark 7.4.2. Our bound (7.7) may be compared with Theorem 5.1 in Chierichetti et al. [CDKL14]:

note that we have removed a factor of polylog(n), although their bound depends on σ(logn) rather

than σ(d logn). Nonetheless, we emphasize the fact that our results hold for general radially symmetric

distributions, whereas the proofs in Chierichetti et al. [CDKL14] are Gaussian-specific.

Note that by Lemma 7.2.5(iii), the bound in Theorem 7.4.1 is tighter for smaller values of

r. Thus, the choice of r which optimizes the bound satisfiesR∗
r = C

(
d logn
n

)
. As discussed in

Pensia et al. [PJL19b] for the univariate setting, an estimator with near-optimal performance

may be obtained via Lepski’s method [Lep91] even without knowledge of P : Define r∗ to

be the interval radius satisfying R∗
r∗ = C0.5

(
(d+1) logn

n

)
, and suppose we have rough initial

estimates rmin and rmax such that rmin ≤ r∗ ≤ rmax. Define rj := rmin2j , and define

J := {j ≥ 1 : rmin ≤ rj < 2rmax} .

We then define the index j∗ to be

min

j ∈ J : ∀i > j s.t. i ∈ J , ∥µ̂M,ri
− µ̂M,rj

∥2 ≤ 8ri
(

2n
C0.5(d+ 1) log n

)1/d
 ,

which may be calculated using pairwise comparisons of the modal interval estimator

computed over the gridding of [rmin, rmax]. We then have the following result, proved in

Appendix E.4.2:
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Theorem 7.4.3. Recall the definition of Estimator 1. With probability at least

1− 2
(

1 + log2

(2rmax

rmin

))
exp(−c′ log n) ,

we have j∗ <∞ and

∥µ̂M,rj∗∥2 ≤ 24r∗
(

2n
C0.5(d+ 1) log n

)1/d

. (7.8)

Note that the cost of using Lepski’s method is a factor of 6 in the estimation error. Finally,

the following lemma shows that the shorth estimator can be used to obtain rough initial

bounds on r∗:

Lemma 7.4.4. Recall Definition 7.2.6 of rk. For k ≥ C0.5d log n, with probability at least 1 −

2 exp(−ck), we have rk/2 ≤ r̂k ≤ r2k.

The proof of Lemma 7.4.4 is in Appendix E.4.3, and uses Lemma 7.2.8 to control the

fluctuations of r̂k from its empirical counterpart. In particular, the lemma shows that we

may use rmin = r̂C0.5(d+1) logn/2 and rmax = r̂C0.5(d+1) logn.

7.4.2 Shorth Estimator

We now derive error bounds for the multidimensional shorth estimator. The proof is

contained in Appendix E.4.4.

Theorem 7.4.5. Recall Definition 7.2.6 of rk. Suppose k ≥ C(d+ 1) log n. The multidimensional

shorth estimator (Estimator 2) satisfies the error bound

∥µ̂S,k∥2 ≤ 4r2k

(2n
k

)1/d
,

with probability at least 1− 2 exp(−c′d log n).

As in the univariate case, the estimation error guarantees for the multidimensional

modal interval and shorth estimators are similar. In particular, for the “optimal” choice
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of r such that R∗
r = cd logn

n
, inequality (7.6) in Theorem 7.4.1 gives the bound ∥µ̂M,r∥2 =

O
(
rc′d logn

(
n

Cd logn

)1/d
)

, which is of the same form as the guarantee from Theorem 7.4.5

when k = C(d+ 1) log n.

7.4.3 Hybrid Estimator

We now prove that the hybrid estimator produces an estimator with rates of O(
√
n

1/d),

rather than the rate O(n1/d) obtained in Theorems 7.4.1 and 7.4.5. Since the overall mixture

distribution is radially symmetric, all the marginal distributions are identical and symmetric

about 0. Accordingly, we denote the common marginal distribution by P 1, and define rk,1

to be the smallest interval (centered at 0) that contains k
n

mass under P 1.

We then have the following result, proved in Appendix E.4.5:

Theorem 7.4.6. Recall Definition 7.2.7, Estimator 3, and Definition 7.2.6 of the terms S∞
k , µ̂S,k, and

rk. Suppose k1 =
√
n log n and k2 ≥ Cd log n. Then the error of the hybrid algorithm (Estimator 4)

is bounded by

∥µ̂k1,k2∥2 ≤ min
{
Diam(S∞

k1 ), ∥µ̂S,k2∥2
}
≤ C ′ min

{√
dr2k1,1,

√
n

1/d
rk2

}
,

with probability at least 1− 2 exp(−c′k2)− 4d exp(−c log2 n).

Remark 7.4.7. Similar to the univariate case, the multivariate hybrid estimator achieves good

error guarantees for both slow and fast decay of P . In particular, when data are i.i.d. Gaussian

with distribution N (0, σ2Id), as in Example 7.3.6, the error of the hybrid estimator is of the order

O
(
σ

√
d logn√
n

)
. This is within log factors of the optimal

√
dσ√
n

error rate. At the same time, the worst-case

error guarantee is of the form O
(√

d
√
n

1/d
σ(Cd logn)

)
.

We also briefly comment on the error guarantees of the hybrid estimator on the multivariate analog

of Example 7.3.8. We can show that r2k1,1 = Õ (nα−0.5) and rk2 = Õ
(√

dnα− 1
d

)
, so Lemma E.4.1

implies a bound of Õ(
√
dnα−0.5) for the median estimator. On the other hand, Theorem 7.4.5 leads to

a bound of Õ(
√
dnα) for the shorth estimator. This bound can be improved for α ≥ 1

d
: If α ≥ 1

d
, we
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have ∥µ̂S,k2∥2 = O
√
d) (cf. Theorem 7.5.7). The second expression in Theorem 7.4.6 then implies

that the error of the hybrid estimator is Õ
(√

dmin(nα−0.5, 1)
)

for α ≥ 1
d

and Õ(
√
dnα−0.5) for

α ≤ 1
d
. This improves upon the error rates of both the median and shorth estimators.

7.5 Bounds in Expectation

Thus far, we have focused on high-probability bounds. We now briefly discuss how to

convert the upper bounds into bounds on the expected error of the estimator. We then

derive lower bounds on the estimation error of any estimator, thus addressing the question

of optimality in certain regimes.

7.5.1 Imposing Additional Assumptions

We first show that unlike high-probability bounds, expected error bounds of a similar

order cannot be derived for modal interval estimator without any assumptions on the high-

variance mixture components. To illustrate this point, we provide a univariate example

in which it is possible to derive high-probability bounds of O1) for the modal interval

estimator without further assumptions, whereas bounds in expectation of a similar order

provably require additional tail assumptions, since E |µ̂M,1| → ∞ as qn →∞.

Example 7.5.1. For any n, let the densities of the Pi’s be defined as follows: For i ≤ C log n, let

pi(x) =


1
6i , |x| ≤ 3i,

0, otherwise.
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For i > C log n and α ∈ (0, 1), let

pi(x) =



n−α, |x| ≤ 1,

hn, 1 < |x| ≤ qn,

0, otherwise,

where the {hn} and {qn} are constrained such that the total area is 1, i.e., 2n−α + 2(qn − 1)hn = 1

and hn ≤ n−α

2 . In particular, for an α > 0, we can still choose qn arbitrarily large; we will take

qn = Ω(n).

The proof of the following statement is contained in Appendix E.5.1:

Proposition 7.5.2. For Example 7.5.1, we have E |µ̂M,1| → ∞ as qn → ∞. Moreover, |µ̂M,1| =

O1), w.h.p.

As seen by the example above, additional assumptions need to be imposed to prove

the bounds in expectation. Suppose the variances {σi} are all finite. We will consider two

types of assumptions: either (i) “high-noise” points do not have very large variances, or

(ii) “low-noise” points have small support.

We state a result for the modal interval estimator in d dimensions; similar proofs

hold for the shorth, median, and hybrid estimators. The following result is proved in

Appendix E.5.2.

Theorem 7.5.3. Recall Definitions 7.2.1, 7.2.4, and Estimator 1 for the terms R∗
r , σ(i), and µ̂M,r.

Let nR∗
r = Ω (d log n). The following upper bounds hold for the expected error of the modal interval

estimator:

(i) Suppose

log
(
σ(n)

r

)
= O (nR∗

r) . (7.9)
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Then the modal interval estimator satisfies the expected error bound

E ∥µ̂M,r∥2 = O

r( c

R∗
r

)1/d
 .

(ii) In the case d = 1, suppose the support of Ω(nR∗
r) points lies in [−r, r]. Then

E |µ̂M,r| = O

(
r

R∗
r

)
.

Remark 7.5.4. The condition (7.9) in Theorem 7.5.3(i) can be translated into the inequality

σ(n) ≤ r exp(CnR∗
r), and provides an upper bound on the variance of the worst mixture components.

If we choose r = σ(d logn), we obtain the requirement that σ(n) is at most a factor ofOnCd) larger than

the variance σ(d logn) of the “good” points. This can be compared to the assumption σ(n) = σ(1)poly(n)

imposed by Chierichetti et al. [CDKL14] when proving upper bounds on expected error in the

univariate case. As the proof of Theorem 7.5.3 reveals, we could also convert the tighter version of

the estimation error guarantee (cf. Theorem 7.3.1 in the univariate setting) into an expected error

bound in a similar manner: If condition (7.9) holds in Theorem 7.5.3 and we additionally assume

that r′ = Ω(r), then E |µ̂M,r| = Or′).

Note that the condition in Theorem 7.5.3(ii) imposes no constraints on the behavior

of the large-variance mixture components. The proof proceeds by integrating the tail

probability of the modal interval estimator, and showing that it must decay sufficiently

quickly by considering the mass of intervals lying far from the true mean. An extension

to the multivariate case is possible, but would require somewhat more refined technical

analysis.

7.5.2 Minimax Bounds

We are now ready to discuss the optimality of our hybrid estimator, which we will consider

in the context of expected error bounds. We state our results in the case of a general
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dimension d ≥ 1. The goal of this section is to describe a general setting in which it is

possible to show that the hybrid estimator is (nearly) minimax optimal.

We will consider the class of distributions P(σ1, σ2, p), containing symmetric, unimodal

distributions {Pi}ni=1 with common mean µ, such that at least np distributions have marginal

variance bounded by σ2
2 and the remaining distributions have marginal variance bounded

by σ2
1 . Note that σ1, σ2, and p may all be functions of n, e.g., p = logn

n
.

We call an algorithm agnostic if applying the algorithm does not require knowledge of

the variance of individual points (e.g., the sample mean or median). We have the following

minimax lower bound, proved in Appendix E.5.3:

Theorem 7.5.5. Suppose p ≤ 1
3 , σ2 ≤ σ1, and p = Ω

(
logn
n

)
.

(i) The minimax error of any agnostic algorithm is

min
µ̂

max
{Pi}⊆P(σ1,σ2,p)

E [∥µ̂− µ∥2] ≥ Cℓ
√
dmin

{
σ2√
np
,
σ1√
n

}
. (7.10)

(ii) In the case d = 1, suppose in addition we have

σ1

σ2
= O

(
1
np2

)
. (7.11)

Then the algorithm of any agnostic algorithm satisfies that

min
µ̂

max
{Pi}⊆P(σ1,σ2,p)

E [∥µ̂− µ∥2] ≥
C ′
ℓσ1√
n
. (7.12)

Remark 7.5.6. In the d = 1 case, the lower bound in Theorem 7.5.5 when condition (7.11) is

satisfied matches the lower bound derived by Chierichetti et al. [CDKL14]. On the other hand,

our proof technique is somewhat more direct and proceeds via a straightforward (albeit lengthy)

calculation.
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We now state our general upper bound, achieved by the hybrid estimator. Under the

specific regimes, we impose mild regularity conditions on the distributions to obtain cleaner

expressions:

(i) Let qi(x) denote the marginal distribution of Pi, where qi : R→ R (since Pi is radially

symmetric, all marginals are equal). Let ν2
i denote the marginal variance of Pi. Then

qi(νi) ≥
c

νi
. (7.13)

(ii) Let each density be written as pi(x) = fi(∥x∥2), where fi : R → R is a decreasing

function on the positive reals. Then

fi(0) ≤
(
c′

νi

)d
, and

∫
B(K

√
dνi,2

√
dνi)

pi(y)dy ≤ C1 exp
(
−C2K

2
)
, ∀K ≥ C3 > 1.

(7.14)

Condition (7.13) assumes that the marginal densities do not decrease too rapidly around

the mean, and implies the accuracy of the median filtering step. Condition (7.14) assumes

that the joint densities do not have too much mass concentrated around any single point

(e.g., the mean), from which we may derive tighter error bounds on the shorth estimator

when we have sufficiently separated variances, i.e., σ1
σ2

= Ω
(
n1/d

)
. Note that conditions (i)

and (ii) hold for Gaussian distributions; furthermore, condition (ii) holds more broadly

when the norm of pi(·) has right c′νi
√
d-sub-Gaussian tails around

√
dνi. Then this ex-

pression can be upper bounded by P{∥X∥ −
√
dνi ≥ cK

√
dνi} ≤ exp(−c′K2) using the

sub-Gaussian assumption.

We also define Q(σ1, σ2, p) to be the class of symmetric, unimodal distributions with

{Pi}ni=1 with common mean µ, such that at least np distributions have marginal variances

bounded by σ2
2 and remaining distributions have marginal variance at least Ω(σ2

1) and at

most σ2
1 . Thus,Q(σ1, σ2, p) is the class of distributions with sufficient division between high-
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variance and low-variance points, and we clearly have Q(σ1, σ2, p) ⊆ P(σ1, σ2, p). Finally,

in order to derive bounds in expectation, we impose the additional growth condition (7.9)

on the variance of the mixture components.

The following result is proved in Appendix E.5.4.

Theorem 7.5.7. If p = Ω
(
d logn
n

)
and condition (7.13) holds, then the hybrid estimator satisfies

the upper bound

max
{Pi}⊆P(σ1,σ2,p)

E [∥µ̂− µ∥2] ≤ Cu
√
dmin

{
√
n

1/d
σ2,

log n√
n
σ1

}
. (7.15)

We also have the following special cases if we impose additional assumptions:

(a) If p = Ω
(√

n logn
n

)
, we have the tighter bound

max
{Pi}⊆P(σ1,σ2,p)

E [∥µ̂− µ∥2] ≤ C ′
u

√
dmin

{
log n
p
√
n
σ2,

log n√
n
σ1

}
. (7.16)

(b) If σ1
σ2

= Ω
(
n

1
d

)
and condition (7.14) holds, then

max
{Pi}⊆Q(σ1,σ2,p)

E [∥µ̂− µ∥2] ≤ C ′′
u

√
dmin

{
σ2

√
log n, log n√

n
σ1

}
. (7.17)

It is instructive to compare the upper bounds for the hybrid estimator in Theorem 7.5.7

with the lower bounds derived in Theorem 7.5.5. (Note that the same class of distributions

used to obtain the minimax lower bounds over P falls into the classQ, so the upper bounds

in Theorem 7.5.7 may be directly compared with the lower bounds in inequality (7.17), as

well.) In particular, we can see that the hybrid estimator is nearly minimax optimal in three

somewhat different regimes of interest, which can be derived directly from the bounds in

the theorems. The results are summarized in Table 7.2:

1. Large heterogeneity: When σ1 is very large compared to σ2 and p is very small (still

satisfying p = Ω(d logn
n

)), a direct application of the median would lead to large error.
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However, the shorth estimator is able to focus on the low-variance points due to the

sufficiently large separation in variances. As p becomes smaller, the gap between the

upper and lower bounds reduces, reaching within log n factors when p = Θ
(
d logn
n

)
.

2. Mild heterogeneity: Since σ1 is relatively small, the median and even mean are

minimax optimal. The hybrid estimator is able to achieve these rates (including the

i.i.d. case).

3. Large p: As p increases, the number of good points increase and we expect to obtain

vanishing error for reasonable values of σ1 (e.g., under condition (7.9)). Indeed, the

hybrid estimator achieves vanishing error for large p = Ω
(√

n logn
n

)
irrespective of

the magnitude of σ1. Also, the gap between the upper bound and the lower bound

decreases as either p→ 1 or σ1 → σ2.

Large heterogeneity
Q(Ω(p−0.5 + n1/d), 1, o(n−0.5))

Mild heterogeneity
P(O(p−0.5), 1, p)

Large p
P(σ1, 1,Ω(n−0.5 log n))

Hybrid

estimator
√
d σ1

√
d√
n

min
{ √

d
p
√
n
, σ1

√
d√
n

}
Lower

bound
√
d√
np

σ1
√
d√
n

min
{ √

d√
pn
, σ1

√
d√
n

}
Table 7.2: Comparison of upper and lower bounds for estimation error, given by The-
orems 7.5.5 and 7.5.7, in three regimes of interest. In all of these cases, we assume
p = Ω

(
d logn
n

)
. For simplicity, we set σ2 = 1 and ignore multiplicative factors which are

logarithmic in n. We provide more details regarding these calculations in Appendix E.5.5.

Remark 7.5.8. Although we have shown that the hybrid estimator is indeed optimal in several

diverse regimes, the preceding discussion leaves open the question of optimality in other settings.

In particular, although our general upper bounds (e.g., inequality (7.15)) suggests the presence

of a
√
n

1/d factor when using the hybrid estimator, our lower bound techniques do not show that
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such a factor is unavoidable for d ≥ 2. As argued by Chierichetti et al. [CDKL14], a factor of
√
n is

unavoidable in d = 1 (cf. Theorem 7.5.5).

7.6 Computation in High Dimensions

We now discuss how to make our estimators computationally feasible when d is large. The

main idea is that both the modal interval and shorth estimators involve finding optimal balls

in Rd. To save on computation, we will show that restricting the search to balls centered at

one of the n data points leads to estimators with similar performance guarantees. This is an

idea previously introduced in the literature on mode estimation in i.i.d. scenarios [ABC04;

DK14; Jia17].

Concretely, the modal interval and shorth estimators are replaced by:

Estimator 5. The computationally efficient modal interval estimator is defined by

µ̃M,r := arg max
x∈{x1,...,xn}

Rn(fx,r). (7.18)

Estimator 6. The computationally efficient shorth estimator is defined by

r̃k := inf
r

sup
x∈{x1,...,xn}

{
Rn(fx,r) ≥

k

n

}
, µ̃S,k := µ̃M,r̃k

. (7.19)

In other words, we select the data point such that the smallest ball centered around that point

containing at least k points has the minimum radius.

Note that both estimators (7.18) and (7.19) may be computed inO(n2d) time. In contrast,

computing the modal interval or shorth estimators directly would correspond to solving

the circle placement problem or smallest enclosing ball problem, for which the best-known

exact algorithms are Ω(nd) [LP84; EE94; AS98].

Using a peeling argument [Van00], we can obtain a more refined concentration result

than Theorem 7.2.8. The proof of the following result is contained in Appendix E.1.3.
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Note that the proof critically leverages radial symmetry of R, whereas the concentration

inequality in Lemma 7.2.8 does not require R to be radially symmetric.

Lemma 7.6.1. Recall Definitions 7.2.2, 7.2.4 for the terms fx,r, Rn(·), and R(·). For any t ∈ (0, 1],

radii r̄, r > 0, and n > 1, we have the following inequalities:

P
(
|Rn(fx,r)−R(fx,r)| ≤ 2tR(fx,r), ∀x s.t. ∥x∥2 ≤ r̄

)
≥ 1− 2 exp(−cnt2R(fr̄,r))

1− exp(−cnt2R(fr̄,r))
,

(7.20)

P
(

sup
∥x∥2≥r̄

|Rn(fx,r)−R(fx,r)| ≥ tR(fr̄,r)
)
≤ 2 exp(−cnt2R(fr̄,r)), (7.21)

provided r̄ and r are such that R(fr̄,r) ≥ Ctd logn
n

.

Using Lemma 7.6.1, we can derive the following results for the computationally efficient

modal interval and shorth estimators. The proof is contained in Appendix E.4.6.

Theorem 7.6.2. Recall Definition 7.2.6 of the term rk. For the computationally efficient estimators,

we have the following error guarantees:

(i) Suppose r ≥ 2r6Cd logn. Then the modal interval estimator satisfies the bound ∥µ̃M,r∥2 ≤

4r
(

n
Cd logn

)1/d
, with probability at least 1− 6 exp(−c3d log n).

(ii) Suppose k ≥ 2C0.5(d + 1) log n. Then the shorth estimator satisfies the bound ∥µ̃S,k∥2 ≤

4r2k
(

2n
k

)1/d
, with probability at least 1− 2 exp(−c′k).

Remark 7.6.3. Comparing Theorem 7.6.2(i) with Theorem 7.4.1, we see that the the computationally

efficient modal interval essentially incurs an additional factor of 2 in the error bound, since we

require r ≥ 2rC′d logn. If we take k = Cd log n, the error bound in Theorem 7.6.2(ii) is very similar

to the error guarantee for the modal interval estimator (7.7) derived in Theorem 7.4.5, except for an

extra factor of 2.

Of course, the quality of the guarantee in Theorem 7.6.2(i) worsens as r increases. As

discussed in Section 7.4.1, we can use Lepski’s method to calibrate the modal interval radius.
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Note that we can again use the shorth estimator to obtain rough upper and lower bounds.

Using a similar argument as in the proof of Lemma 7.4.4, we are guaranteed that 1
2 r̃3Cd logn ≤

r6Cd logn ≤ r̃6Cd logn, w.h.p. Essentially the same argument as in Theorem 7.4.3 then shows

that the error of the modal interval estimator with Lepski calibration is guaranteed to be

upper-bounded by 12r6Cd logn
(

n
Cd logn

)1/d
.

As discussed in Section 7.4.3, the projection step for the hybrid screening procedure can

be computed inO(d) time. The construction of the cuboid S∞
k itself can clearly be computed

in O(nd) time. Thus, one can also easily obtain the O(
√
n

1/d) rates using a computationally

efficient hybrid estimator, as well.

7.7 Relaxing Radial Symmetry

We now consider the case when the population-level distribution P = 1
n

∑n
i=1 Pi is not

symmetric. In the case d = 1, we can obtain the same estimation error rates only assuming

that density pi is log-concave with a unique mode at 0. In the case d > 1, we can obtain

weaker estimation error guarantees of the order O(
√
n) rather than O(

√
n

1/d) if we only

assume that the mixture components are centrally symmetric. Furthermore, it is possible

to obtain O(n1/d) rates if we assume that a certain fraction of the components are radially

symmetric.

Although radial symmetry is a strict assumption, it provides us an O
√
n

1
d ) error.

Whereas if we just assume central asymmetry, a union bound argument gives O
√
dn) error.

This factor of O
√
dn) can not be improved in general. To see this, note that there exists a

problem instance in single dimension where the lower bound is a factor of Ω̃(
√
n). Central

symmetry allows for having the same “hard” problem on each dimension separately,

forcing an Ω̃(
√
n) error in each dimension.

We can relax the radial symmetry assumptions slightly. In particular, Theorem 7.2.8

only relies on the fact that R∗
r , the mass of the interval centered around the true mode 0, is
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Ω
(

logn
n

)
(with no additional symmetry assumptions). We do need R(fx,r) to satisfy some

additional monotonicity assumptions along rays as x moves away from 0.

7.7.1 General Theory

In place of radial symmetry, we impose the following condition (stated with respect to a

fixed radius r):

(C1) The population-level quantity R(fx,r) is maximized at x = 0, and otherwise mono-

tonically decreasing along rays from the origin.

Note that condition (C1) is satisfied if the same property holds for all components pi in the

mixture. We now define the function

g(a, r) := sup
∥x∥2=a

R(fx,r), (7.22)

for a, r > 0. By Lemma 7.2.5, we can argue that under radial symmetry of R, we have

g(a, r) ≤ 1
N(Ba,r) ≤

(
r
a

)d
, which can then be plugged into the argument of Theorem 7.4.1.

The proof of the following statement is contained in Appendix E.6.1.

Theorem 7.7.1. Suppose condition (C1) holds.

(i) Recall Definition 7.2.4 of R∗
r . Suppose r is such that R∗

r = Ω
(
d logn
n

)
, and r′ is chosen suffi-

ciently large such that g(r′, r) < R∗
r

2 . Then the modal interval estimator satisfies ∥µ̂M,r∥2 ≤ r′,

w.h.p.

(ii) Recall Definition 7.2.6 of rk. Suppose r′ is chosen such that g(r′, r8d logn) ≤ 8d logn
4n . With

high probability, the error of the shorth estimator satisfies ∥µ̂S,k∥2 ≤ r′, and the error of the

hybrid algorithm with k2 = r8d logn is bounded by min(r′,
√
dr4

√
n logn,1).

Remark 7.7.2. For radially symmetric distributions, note that g(r′, r) ≤
(
r
r′

)d
, so we can take

r′ = r
(

2
R∗

r

)1/d
and r′ = r2k

(
4
R∗

2k

)1/d
to obtain the results of Theorems 7.4.1 and 7.4.5 for the
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modal interval and shorth estimators, respectively. Furthermore, by Lemma 7.2.5(iii), we have

r√
n logn ≤

(√
n

8d

)1/d
r8d logn. Thus, we also recover the analog of Theorem 7.4.6 for the hybrid

estimator.

Finally, note that an analog of Theorem 7.7.1 holds when we use the computationally

efficient modal interval and shorth estimators described in Section 7.6, with minor proof

modifications.

7.7.2 Sufficient Conditions

Condition (C1) may be a bit difficult to interpret. We define two related conditions:

(C2) Each component density pi is log-concave with a unique mode at 0. Recall that

a distribution with density p is log-concave if p(x) ∝ e−ϕ(x) for a convex function

ϕ : Rd → R.

(C3) For all x ∈ Rd and all 1 ≤ i ≤ n, we have pi(x) = pi(−x).

Note that condition (C3) only requires symmetry of the density around 0, rather than

radial symmetry; in particular, it holds for Gaussian distributions that are not necessarily

isotropic.

We have the following result, proved in Appendix E.6.2:

Proposition 7.7.3. Suppose conditions (C2) and (C3) hold. Then condition (C1) also holds.

Furthermore, g(a, r) ≤ 1
⌊a/2r⌋ .

In fact, we can even derive a result only assuming condition (C2) in the case d = 1. As

argued in the proof of Theorem 7.7.1, we may establish that R(fµ̂M,r
, r) ≥ R∗

r

2 , w.h.p. Thus,

there exists some i such thatRi(fµ̂M,r
, r) ≥ R∗

r

2 . By properties of log-concave convolutions (cf.

proof of Proposition 7.7.3), we know that Ri(fx,r) is decreasing along rays originating from

some point x∗
i , and also ∥µ̂M,r−x∗

i ∥2 ≤ 4r
R∗

r
, since we could otherwise pack too many intervals

into the ray between x∗
i and µ̂M,r, thus contradicting the inequalityRi(fµ̂M,r

, r) ≥ R∗
r

2 . Finally,
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note that due to the unimodality of pi at 0, we clearly have ∥x∗
i ∥2 ≤ r. Altogether, we obtain

the error bound

∥µ̂M,r∥2 ≤
4r
R∗
r

+ r,

which is of the same order as the guarantees in Theorem 7.3.1. A similar conclusion could

be reached if we replaced condition (C2) by the condition that each pi has a unique median

and mode at 0, sinceRi(fx,r) is decreasing along rays originating from r (−r) in the positive

(negative) direction.

7.7.3 Examples

We now describe two examples to illustrate concrete use cases of our more general theory.

Example 7.7.4 (Elliptically symmetric distributions). We now consider the case where the

components of the mixture are not spherical, but have the same axes of symmetry. Concretely, suppose

that for a fixed matrix Σ ≻ 0, the density of each Xi is of the form fi
(
(x− µ)⊤Σ−1(x− µ)

)
, where

fi : R→ R is a decreasing function defined on the positive reals. The goal is to estimate the common

parameter µ ∈ Rd. As a specific example, we might have a mixture of nonisotropic Gaussian

distributions where the covariance matrices are all scalar multiples of Σ. This strictly generalizes

the case of radially symmetric distributions, which corresponds to the case Σ = I .

Suppose we employ the modal interval, shorth, or hybrid estimators described above. Note that

these estimators do not require knowledge of the matrix Σ. We wish to analyze the behavior of the

quantity g(a, r) defined in equation (7.22), which is relevant for Theorem 7.7.1. Indeed, we can

derive an analog of Lemma 7.2.5 that applies in this setting. The main step is to understand bound

the quantity g(r2, r1) when r1 < r2. We have the following result, proved in Appendix E.6.3:

Proposition 7.7.5. Let r1 < r2. For an elliptically symmetric distribution, we have

g(r2, r1) ≤ C

(
r1λmax(Σ)
r2λmin(Σ)

)d
.
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Clearly, taking C = 1 and Σ = I in Proposition 7.7.5 recovers the result for radially symmetric

distributions.

Remark 7.7.6. Similar arguments as in Example 7.7.4 could be applied in the case when the

probability density functions of the distributions are proportional to exp(−∥x − µ∥/σ), for a

different norm ∥ · ∥ besides the squared ℓ2-norm or the Mahalanobis norm. Also note that if the

matrix Σ (accordingly, the norm ∥ · ∥) were known a priori, it might be possible to obtain better

rates by using a modal interval/shorth estimator based on the level sets of the norm rather than

spheres of varying radii.

Example 7.7.7 (Mixture of radially and centrally symmetric distributions). For another

interesting special case, suppose we have s points drawn from radially symmetric distributions, and

n− s points drawn from centrally symmetric distributions. Suppose we have f(n) points which are

well-behaved in the sense that the interquartile range of the corresponding distributions is small.

(These distributions need not coincide with the radially symmetric distributions.) We have the

following result, proved in Appendix E.6.4:

Proposition 7.7.8. For r = q(f(n)) and r′ = 2rn1/d, we have

g(r′, r) ≤ R∗
r

2 ,

provided s ≥ n− 2n1/d(f(n)− 4).

Thus, as the proportion of well-behaved points increases, the required proportion of radially

symmetric distributions required to obtain a specific error guarantee becomes smaller. In particular,

if f(n) = Ω(n1−1/d), we do not need any radially symmetric distributions; recall, however, that the

coordinatewise median already performs well on a mixture of centrally symmetric distributions if

f(n) = Ω(
√
n log n).
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7.8 Linear Regression

We now shift our focus to the problem of linear regression, and demonstrate how the

methodology developed thus far may be adapted to parameter estimation in multivariate

regression. Suppose we have observations {(xi, yi)}ni=1 from the linear model

yi = x⊤
i β

∗ + ϵi, ∀1 ≤ i ≤ n, (7.23)

where the pairs {(xi, ϵi)}ni=1 are independent but not necessarily identically distributed,

and xi and ϵi are independent for each i.

Following the theme of our paper, we assume that the probability density function of

ϵi’s are symmetric and unimodal. We want to study the behavior of the modal interval

regression estimator

β̂ ∈ argmax
β∈Rd

1
n

n∑
i=1

1
{
|yi − x⊤

i β| ≤ r
}
, (7.24)

for an appropriate choice of r > 0.

A natural question is whether the true parameter β∗ is the unique population-level

maximizer in the regression setting. As the following proposition shows, this is indeed

the case when the densities of the xi’s are absolutely continuous with respect to Lebesgue

measure. The proof is contained in Appendix E.7.1.

Proposition 7.8.1. Consider the linear model in equation (7.23), where the distributions of xi’s

and ϵi’s have Lebesgue density. Then the population-level maximizer is given by

β∗ = arg max
β

n∑
i=1

E
[
1
{
|yi − x⊤

i β| ≤ r
}]
, ∀r > 0. (7.25)

Importantly, Proposition 7.8.1, and the ensuing theory, does not require specific as-

sumptions on the form of the distribution of the xi’s. However, in order to derive easily

interpretable error bounds on the modal interval regression estimator, we will assume

further distributional assumptions (cf. the statement of Theorem 7.8.3 below).
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7.8.1 Estimation Error

In order to obtain error bounds on ∥β̂ − β∗∥2, we need to analyze the behavior of the

quantities

Rβ := 1
n

n∑
i=1

P
(
|yi − x⊤

i β| ≤ r
)
,

for a fixed value of r, chosen sufficiently large that Rβ∗ ≥ Cd logn
n

. In particular, we want to

show that for ∥β−β∗∥2 larger than a certain value, we will haveRβ <
Rβ∗

2 = 1
2n
∑n
i=1 P(|ϵi| ≤

r).

As before, the key ingredient for deriving error bounds is a uniform concentration

result. This is proved in the following lemma:

Lemma 7.8.2. Let t ∈ (0, 1], and suppose r is large enough so that Rβ∗ ≥ Cd logn
n

. Then

P
(

sup
β∈Rd,r′≤r

∣∣∣∣∣ 1n
n∑
i=1

1
{
|yi − x⊤

i β| ≤ r′
}
− 1
n

n∑
i=1

E
[
1
{
|yi − x⊤

i β| ≤ r′
}]∣∣∣∣∣ ≥ tRβ∗

)

≤ 2 exp(−cnRβ∗t2). (7.26)

Since the proof is directly analogous to the proof of Theorem 7.2.8, we only provide a

sketch: The key point is to consider the VC dimension of the class of functions f(x, y) =

1{|y−x⊤β| ≤ r}, indexed by the pair (β, r). Note that the subset of points in Rd+1 associated

with the indicator function f(x, y) is an intersection of two halfspaces. Using results on the

VC dimension of an intersection of concept classes [VW09], we see that the VC dimension

of the desired hypothesis class is bounded by C ′d. The concentration result then follows by

the same arguments used to derive Theorem 7.2.8.

It is generally difficult to state general bounds on estimation error that depend only on

order statistics of quantiles, since as in the case of mean regression, the error bounds one

can derive will be largely problem-dependent. In order to simplify our presentation, we will

only discuss the case where the ϵi’s and xi’s are Gaussian: ϵi ∼ N(0, σ2
i ) and xi ∼ N(µ′

i,Σ′
i).

We have the following result, proved in Appendix E.7.2:
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Theorem 7.8.3. Let λmin := mini λmin(Σ′
i), and suppose λmin > 0. Suppose r > 0 is chosen such

that Rβ∗ ≥ Cd logn
n

. Then the regression estimator (7.24) satisfies

∥β̂ − β∗∥2 ≤
c′nσ(cd logn)√

λmin
,

w.h.p.

We conjecture that it is possible to decrease this upper bound to O
√
nσ(c logn)) by an

appropriate hybrid screening procedure, but we leave this to future work. Also note that

in order for the bound in Theorem 7.8.3 to be useful, the quantity λmin must either be a

constant, or else not decrease too rapidly with n.

7.8.2 Computation

A natural question is whether the modal interval regression estimator (7.24) is actually

computationally feasible. We claim that an estimator may be obtained in O(nd) time, using

Algorithm 5. The proof is in Appendix E.7.3.

Algorithm 5 Modal interval regression estimator

1: function modalIntervalRegression(X1:n, Y1:n, r, d)
2: Construct the set of hyperplanes

Sr = {yi = x⊤
i β + r}

⋃
{yi = x⊤

i β − r}.

3: Let {S1, . . . , SN} denote the set of subsets of Sr of cardinality d.
4: for j = 1, . . . , N do
5: Solve the system of linear equations given by Sj . Let βj be a solution (if one

exists).
6: end for
7: j∗ ← arg max1≤j≤N

1
n

∑n
i=1 1

{
|yi − x⊤

i βj| ≤ r
}

.
8: return βj∗

9: end function

Theorem 7.8.4. The output of Algorithm 5 is a maximizer of equation (7.24).
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Remark 7.8.5. Correct application of Algorithm 5 would assume that r is chosen appropriately. It

is less clear how this parameter might be calibrated based on the data, perhaps using an appropriate

variant of Lepski’s method. We leave this important open question to future work.

7.9 Simulations

We now present the results of simulations on the recurring examples to validate our

theoretical predictions (cf. Table 7.1). Although our theorem statements involve large

constants, we empirically observe that smaller constants suffice to elicit the same behavior

predicted by our theory. We run the k-shorth estimator with k = 5d log n and k-median with

k =
√
n log n. We use these estimators for the hybrid estimator, i.e., the (

√
n log n, 5d log n)-

hybrid estimator. The mean estimator corresponds to the simple average, whereas the

median estimator refers to the (coordinatewise) sample median.

For each n, we run T = 200 simulations for univariate data and T = 20 simulation for

multivariate data and report the average error 1
T

∑T
i=1 |µ̂− µ∗| of various estimators. Both

axes in all of the plots are in a log-scale. In particular, the slope of the curves indicates the

power of n in the estimation error, and vertical shifts correspond to constant prefactors.

7.9.1 Univariate Data

We first present simulation results when d = 1. We use r = 1 for the simulations involving r-

modal interval estimators, since R∗
1 = Ω

(
logn
n

)
in each of the recurring examples, although

the constant prefactors do not exactly align with our theory.

In the case of Example 7.3.6 (i.i.d. observations), we generate xi i.i.d.∼ N (0, 1). As seen in

Figure 7.7(a), the mean and median estimator perform optimally in this setting, giving an

error rate of On−0.5). In contrast, the shorth estimator (with k = 5 log n) has a flat trend

line indicative of constant error, as suggested by Remark 7.3.4 and the phase transition

arguments in Section 7.3.1.2. On the other hand, the error of the hybrid estimator decays at
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a rate more comparable to the mean and median. As discussed in Remark 7.4.7, the hybrid

estimator is indeed optimal up to log factors. We see that the performance of the modal

interval estimator is better than the shorth but worse than the hybrid estimator, and exhibits

the cube-root asymptotic decay encountered in classical statistics [KP90]. Furthermore,

the estimation error of the hybrid estimator behaves more like the error of the median

estimator as n increases. Note that although our bounds for the shorth and modal interval

estimators are tighter for smaller values of k and r, choosing larger values results in better

performance when the data are homogeneous, which is not a valid assumption in our

general use case.

For Example 7.3.7 (quadratic variance), we generate xi ∼ N (0, i2). In Figure 7.10(a),

we see that the both the median and mean have similar slopes: Proposition 7.3.13 predicts

that the median would have Õ(
√
n) error, compared to the Θ

(√
1
n2
∑n
i=1 i

2
)

= Θ (
√
n)

error of the mean; indeed, the curves are roughly parallel. However, the error rate of

the modal interval, shorth, and hybrid estimators is significantly smaller. As stated in

Propositions 7.3.10 and 7.3.14, the error of these estimators is upper-bounded by Onϵ), for

ϵ > 0.

For Example 7.3.8 (α-mixture distributions), we generate ⌈10 log n⌉ samples from a

N (0, 4× 10−4) distribution and the remaining samples from a N (0, nα) distribution, with

α = 0.9 and 1.3. The plots in Figure 7.15 add additional curves to the phase transition

plots in Figure 7.3. As suggested by Propositions 7.3.10 and 7.3.14, the modal, shorth, and

hybrid estimators have constant error for α > 1, whereas the error increases with n when

α < 1. Furthermore, the hybrid estimator performs better than the shorth estimator when

α < 1, with an error rate of Onα−0.5) rather than Onα), while the modal interval estimator

seems to perform comparably to the hybrid. Finally, note that the behavior of the hybrid

estimator is similar to the behavior of the median estimator when α < 1 and to the modal

interval/shorth estimator when α > 1, showing that it indeed enjoys the better of the two

rates in different regimes.
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(b) d = 3
Figure 7.7: Plot comparing average error of various estimators on Example 7.3.6. Both the
mean and median exhibit the familiar On−0.5) error rate. The modal interval has errors of
order n−1/3. As suggested by our theoretical bounds, the (log n)-shorth has constant error.
The hybrid estimator improves the rate of the shorth estimator, with a similar error decay
as the median estimator as n increases.
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(a) d = 1
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(b) d = 3
Figure 7.10: Plot comparing average error of various estimators on Example 7.3.7. As
mentioned in Table 7.1, both the mean and median have

√
n error rate. The error rates of

the modal interval, shorth (with k = 5d log n), and hybrid estimators are superior to the
median in the univariate case, and the hybrid estimator is clearly superior when d = 3.

7.9.2 Multivariate

We now present simulation results for multivariate data, using d = 3. The data for all

three recurring examples are generated with the same parameters as in the univariate
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(b) d = 1, α = 1.3
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(c) d = 3, α = 1
2d

104 105

102

103

104

n

A
ve
ra
ge

er
ro
r

Figure 7.14: *

(d) d = 3, α = 1.3
Figure 7.15: Plots comparing average error of various estimators on Example 7.3.8 for
different values of α. As suggested by Proposition 7.3.13, the median and mean have
superior performance to the modal interval and shorth estimators for α < 1. Moreover,
the hybrid estimator exhibits similar behavior to the median when α < 1 and to the shorth
when α > 1.

case, except with isotropic distributions. We run the computationally efficient versions of

the shorth and modal interval estimators described in Section 7.6, with k = 5d log n and

r =
√
d.

The trends for i.i.d. data, shown in Figure 7.7(b), are analogous to the univariate case.

Similarly, the plots in Figure 7.10(b) for the quadratic variance example resemble the

plots in Figure 7.10(a), with the hybrid, shorth, and modal interval estimators performing

noticeably better than the mean or median. Note that for these experiments, the modal
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interval estimator appears to behave better than either the shorth or hybrid estimators

by a constant factor. For the multivariate version of the α-mixture distribution, we run

simulations with α = 1
2d < 1 and α = 1.3, where we have chosen the first value of α so

that the upper bound in Theorem 7.5.7 gives O
(
nα− 1

2
)

= On
1

2d
− 1

2 ) error for the hybrid

estimator, whereas the derived bounds for the modal interval and shorth are Onα) = On
1

2d )

(cf. Remark 7.4.7). Indeed, we see in Figure 7.15(c) that the estimation error of the hybrid

estimator decreases with n, like the mean and median estimators, whereas the shorth

estimator has an increasing trend line. The curve for the modal interval estimator appears

to be roughly constant (or possibly slightly increasing). The curves in Figure 7.15(d) are

very similar to the curves in Figure 7.15(b), suggesting the existence of a phase transition

for α ∈
(

1
2d , 1

]
in the multivariate case, as well.

7.10 Conclusion

We have studied the problem of mean estimation of a heterogeneous mixture when the

fraction of clean points tends to 0. We have shown that the modal interval and shorth

estimator, which perform suboptimally in i.i.d. settings, are superior to the sample mean

in such settings. We have also shown that these estimators and the k-median have com-

plementary strengths that may be combined into a single hybrid estimator, which adapts

to the given problem and is nearly optimal in certain settings. An important question for

further study is whether the proposed hybrid estimator is always near-optimal, or optimal,

for more general collections of variances.

Our discussion of linear regression estimators has been fairly brief. Some issues that we

have not addressed include derivations for non-Gaussian error distributions and regression

estimators in the case of a fixed design matrix. We leave these questions, and a derivation

of optimal error rates in the linear regression setting, for future work.
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Constraints on Computational Resources:

Communication, Memory, and Privacy
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8 overview of results: constraints on computational

resources

और भी दखु हैं ज़माने में मोह त के सवा
राहतें और भी हैं व क राहत के सवा

— फ़ैज़ अहमद फ़ैज़

In the previous part, we presented polynomial-time algorithms that could handle

sampling constraints resulting in low-quality training data. In this part, we shift our

attention to the constraints on computational resources.

While runtime has historically been the primary computational resource of concern,

other factors such as communication and memory have become significant bottlenecks in

many applications. Our focus in this part is on designing statistical inference algorithms

that meet these computational constraints. As in the previous part, our goal will be to

understand fundamental inference tasks in presence of these computational constraints.

For each inference task, we will describe the problem statement technically, give a brief

history of the problem, and conclude with our contributions.

We divide this chapter into two sections: Section 8.1 focuses on memory constraints

and Section 8.2 focuses on communication and privacy constraints.

8.1 Memory Constraints

The first constraint that we will consider is that of memory. In many applications, data is

generated at such a large volume and velocity that storing the dataset is impossible. In

such applications, the algorithms are required to process the dataset one example at a time

while using limited memory (in addition to having small runtime). Algorithms satisfying

these desiderata are called streaming algorithms and have a long history in theoretical

computer science and statistics.
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Given the importance of robust algorithms outlined earlier, it is an important question

whether there are efficient streaming algorithms for high-dimensional robust statistics.

We will focus on parameter estimation problems (mean, covariance, linear regression).

We want robust algorithms that use memory nearly-linear in the dimensionality of the

parameter of interest.

Inference Task 6 (Streaming Algorithms for High-Dimensional Robust Statistics). Let D be

a set of distributions over Rd. Let D ∈ D be unknown with the (unknown) parameter θD ∈ Rd′

(for example, mean, covariance). Let P be an unknown arbitrary distribution satisfying that

dTV(P,D) ≤ ϵ. Given a set of i.i.d. samples from P in the streaming model, compute an estimate

θ̂ ∈ Rd′ using small memory (and runtime) such that with high probability, ∥θ̂ − θD∥ is small for

an an appropriate norm ∥ · ∥.

Existing robust algorithms, mentioned in the previous section, required memory

quadratic in the dimensionality of the parameter (even though the runtime was polyno-

mial). For example, robust algorithms for mean estimation required memory Ω(d2) despite

being a parameter of size d; Similarly, robust covariance estimation algorithm required

memory Ω(d4) despite being a parameter of size d2. This excessive use of memory has

also been highlighted as one of the key challenges in the existing experiments of these

algorithms [DKKLMS17]. This leads to the following question:

Question 12. Is there an efficient streaming algorithm for high-dimensional robust statistics that

uses nearly-linear memory?

This is a challenging question since all the existing computationally-efficient robust

algorithms rely on higher moments of the training data to curb the effect of outliers (for

example, using the covariance for robust mean estimation). As these higher moments have

a much larger memory footprint, a naive implementation of this recipe requires a much

larger memory. Although more efficient ways exist to extract information about the higher

moments (for example, power iteration), existing algorithms still require super-linear
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memory (in the dimension) even after implementing these techniques. In fact, no algorithm

with sub-quadratic memory was known (that used sub-exponential runtime/samples).

Our Contributions In Chapter 9, we answer Question 12 in the affirmative by developing

the first streaming algorithms for high-dimensional robust statistics with nearly-linear

memory. Our main result is a streaming algorithm for robust mean estimation with nearly-

linearly memory, which we combine with existing approaches in the literature to develop

streaming algorithms for a host of other tasks. Our critical technical insight is to transform

a large family of nearly-linear time filter-based algorithms so that they additionally satisfy

low-memory requirements.

8.2 Communication and Privacy Constraints

In recent years, machine learning has experienced a paradigm shift towards more dis-

tributed and edge-based implementations. This shift is primarily driven by the need to

process the ever-growing volume of data generated by a vast array of small devices (such

as mobile phones and remote sensors). Thus, the training data is distributed across these

devices while a central server communicates with them to learn the underlying model. As

the number of devices and the volume of data increase, it becomes increasingly important

to minimize the communication overhead while maintaining the accuracy and efficiency of

the learning process. In addition, privacy concerns and data protection regulations often

limit the sharing of raw data, necessitating the development of techniques to learn from

locally stored data without violating privacy constraints.

Hypothesis testing is one of the most fundamental problems in statistics. Recall that hy-

pothesis testing is defined as follows: given a list of disjoint sets of distributions P1, . . . ,PM

and access to samples from an (unknown) distribution P ∈ ∪Mi=1Pi, identify (with high

probability) the set Pi∗ such that P ∈ Pi∗ . Our focus will primarily be on the variant of the

problem where each Pi is a singleton set, termed “simple” hypothesis testing in the litera-



233

ture. We will study hypothesis testing in the decentralized setup, known as decentralized

detection in the literature[Tsi93]. Recall that in the decentralized/distributed setup, it is

expensive (or prohibitive) to send the original observations to the central server, and the

observations need to be modified before being sent to the central server. These constraints

will be captured by T below:

Inference Task 7 (Decentralized Detection). Let p1, . . . , pM be M distributions supported on

the domain X . Let T be a set of stochastic maps on X representing the constraints (for example,

communication and privacy). There are n users U1, . . . , Un, where each user Ui chooses (indepen-

dently of each other) a stochastic map fi ∈ T . Each user then observes Xi and transmits fi(Xi) to

the central server U . The goal of the central server is to identify the underlying measure based on

Y1, . . . , Yn, i.e., generate ϕ̂ := ϕ(Y1, . . . , Yn) such that

M∑
i=1

P
X1,...,Xn∼p⊗n

i

(ϕ̂ ̸= pi) ≤ 0.1 . (8.1)

The smallest n where such fi’s and ϕ exist is called the sample complexity of the problem.

The set of maps, T , decides the amount of “information” that the server can get from

the original samples X1, . . . , Xn. The choice of the functions fi is crucial here, as it must be

chosen to convey as much information about the original sample that might be useful for

estimating the true distribution.

Let n∗ be the original sample complexity sans constraints (when the server directly

observes X1, . . . , Xn).

Our primary focus in this section will be on the binary case of M = 2, called “simple

binary hypothesis testing”. We defer the discussion of M > 2 to Chapter 10.

8.2.1 Communication Constraints

We begin by considering the communication constraints, i.e., when T is the set of stochastic

maps from X → [ℓ] for some ℓ ∈ N much smaller than |X |. On the first reading, we suggest
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the reader thinks of ℓ = 2, which corresponds to the binary quantization of observations.

Thus, we arrive at the following problem

Inference Task 8 (Simple Binary Hypothesis Testing: Communication Constraints). In

Inference Task 7, consider M = 2 and let T be the set of stochastic maps from X → [ℓ] for some

ℓ ∈ N. Let n∗
comm(ℓ) be the corresponding sample complexity.

We refer to the blow-up in the sample complexity due to communication constraints as

the statistical cost of communication, i.e., n∗
comm(ℓ)/n∗. Prior literature on the characterization of

n∗
comm(ℓ) was scarce. Existing results (by applying Scheffe’s Test) implied that n∗

comm(ℓ)/n∗ ≲

n∗, thus, requiring quadratically many more samples (In fact, this upper bound is tight for

Scheffe’s test in certain cases). It was unclear if this blow-up was inherent, leading to the

following question:

Question 13. What is the statistical cost of communication for simple binary hypothesis testing?

Moving ahead from the statistical cost, we now focus on the algorithm’s runtime. Recall

that an algorithm needs to take as input p1 and p2 (since we are in the binary case ofM = 2)

and T , and the algorithm must return the map fis for each user. We refer to the runtime of

finding a good fis as the computational cost of communication. Prior algorithms for computing

the optimal fi’s were exponential in the quantization size, |X |ℓ.

Question 14. What is the computational cost of communication for simple binary hypothesis

testing? Are their polynomial time algorithms for near-optimal performance?

We briefly discuss the setting of M > 2 and defer the remaining discussion to Chap-

ter 10. Sans any constraints, it is known that the dependence on M in the sample com-

plexity is logarithmic, log(M) [DL01]. However, the algorithm mentioned above is not

communication-efficient. One approach to meet the communication constraints is to reduce

the M -ary hypothesis testing into M -many binary hypothesis testing problems. However,
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the sample complexity then blows up and depends linearly on M instead of logarithmic in

M . This leads to the question of whether this is inherent:

Question 15. What is the statistical cost of communication for simple M -ary hypothesis testing?

Are their algorithms with sample complexity o(M)?

Our Contributions We summarize our main contributions here:

• (Question 13) We characterize the minimax-optimal statistical cost of privacy, showing

that for any ℓ, n∗
comm(ℓ) ≍ n∗

(
1 + log(n∗)

ℓ

)
. Thus, the existing upper bound was loose;

the statistical cost of communication for simple binary hypothesis testing is at most

logarithmic (and is at least a logarithmic factor in some cases).

• (Question 14) We then show that the aforementioned minimax-optimal sample com-

plexity can be attained by polynomial-time algorithms, running in time poly(ℓ, k).

• (Question 15) For simple M -ary hypothesis testing, we show that the effect of com-

munication on the statistical cost is drastic: there is an exponential increase in the

sample complexity.

8.2.2 Privacy Constraints

Differential privacy has emerged as the standard way of ensuring privacy in data science

applications. As our primary focus is on the decentralized setup, we will consider the local

model of privacy, known as local differential privacy (LDP). In the local model, each user

perturbs their own data before sending it to a central server for analysis. By setting T in

Inference Task 7 to be the set of all ϵ-locally private channels and M = 2, we obtain the

problem of simple binary hypothesis testing under local privacy constraints.

Inference Task 9 (Simple Binary Hypothesis Testing: Local Differential Privacy Constraints

(LDP)). In Inference Task 7, let T be the set of all stochastic maps from X that satisfy ϵ-LDP. Let

n∗
priv(ϵ) be the corresponding sample complexity.
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When ϵ =∞, we may set Yi equal to Xi with probability 1, and we recover the vanilla

version of the problem with no privacy constraints.

A practically important regime of LDP is when ϵ is moderately large (say ϵ > 1).

Initially, the moderate ϵ regime was ignored mainly because of the lax privacy protection

(recall that the smaller the ϵ, the larger the privacy protection). This regime has become

practically relevant in the last five years because of the development of privacy amplification

methods [CSUZZ19; BEMMRLRKTS17; FMT21]. Despite practical relevance, several

fundamental questions, both statistical and computational, remain open in this regime.

Following the previous subsection, we are interested in understanding the statistical cost

(blow-up in the sample complexity, n∗
priv(ϵ) vs. n∗ ) and the computational cost (runtime to

find a good ϵ-LDP stochastic map) of privacy for Inference Task 9.

Statistical Cost of LDP For the sample complexity, existing results have focused on the

high-privacy regime of ϵ ∈ (0, 1) and have shown that the sample complexity is Θ
(

1
ϵ2d2

TV

)
,

where dTV is the total variation distance between the two distributions p1 and p2. When ϵ =

∞, we obtain the vanilla version of the problem, and it is known that n∗ = n∗(ϵ) = Θ
(

1
d2

h

)
,

where d2
h is the Hellinger divergence between the two distributions p1 and p2.

Thus, when ϵ is a constant, the sample complexity is Θ
(

1
d2

TV

)
, and when ϵ = ∞ (no

privacy), the sample complexity is Θ
(

1
d2

h

)
. Although these two divergences satisfy d2

TV ≲

d2
h ≲ dTV, the bounds are tight in the worst case; i.e., the two sample complexities can be

quadratically far apart. Existing results, therefore, do not inform sample complexity when

1≪ ϵ <∞. This is not an artifact of analysis: the optimal tests in the low and high privacy

regimes are fundamentally different.

Question 16. What is the statistical cost of local differential privacy for simple binary hypothesis

testing?
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Computational Cost of LDP As with statistical rates, prior literature on finding optimal

channels for ϵ ≫ 1 is scarce. Either the existing algorithms take time exponential in the

domain size [KOV16], or their sample complexity is suboptimal by polynomial factors

(depending on 1
d2

TV
, as opposed to 1

d2
h
). This raises the following natural question:

Question 17. Is there a polynomial-time algorithm that finds the private stochastic maps f ’s whose

sample complexity is (near)-optimal?

The problem is computationally challenging because answering this question requires

optimizing a convex function (Hellinger divergence between the distributions after trans-

formed by ϵ-LDP map) over a convex set (the set of all ϵ-LDP maps). Recall that optimizing

a convex function over a convex set, in general, could be computationally prohibitive.

Our Contributions We describe our contributions below:

• (Question 16) We show that the sample complexity for ϵ≫ 1 is rather involved and

no longer characterized by their total variation and Hellinger divergence.

• (Question 17) We give the first polynomial-time algorithms whose sample complexity

is near-optimal (for all values of ϵ and all choices of distributions). Moreover, the

proposed algorithm is also communication-efficient and uses only a single bit.
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9 streaming algorithms for high-dimensional robust

statistics

जो मल गया उसी को मुक़द्दर समझ लया
जो खो गया मैं उस को भुलाता चला गया
बबार्िदयो ं का सोग मनाना फ़ुज़ूल था
बबार्िदयो ं का ज मनाता चला गया
ग़म और ख़शुी में फ़क़र् न महसूस हो जहाँ
मैं िदल को उस मक़ाम पे लाता चला गया

— सािहर लु धयानवी

We study high-dimensional robust statistics tasks in the streaming model. A recent

line of work obtained computationally efficient algorithms for a range of high-dimensional

robust estimation tasks. Unfortunately, all previous algorithms require storing the entire

dataset, incurring memory at least quadratic in the dimension. In this work, we develop

the first efficient streaming algorithms for high-dimensional robust statistics with near-

optimal memory requirements (up to logarithmic factors). Our main result is for the task

of high-dimensional robust mean estimation in (a strengthening of) Huber’s contamination

model. We give an efficient single-pass streaming algorithm for this task with near-optimal

error guarantees and space complexity nearly-linear in the dimension. As a corollary, we

obtain streaming algorithms with near-optimal space complexity for several more complex

tasks, including robust covariance estimation, robust regression, and more generally robust

stochastic optimization.

9.1 Introduction

This work studies high-dimensional learning in the presence of a constant fraction of

arbitrary outliers. Outlier-robust learning in high dimensions is motivated by pressing ma-

chine learning (ML) applications, including ML security [BNJT10; BNL12; SKL17; TLM18;
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DKKLSS19] and exploratory analysis of datasets with natural outliers [RPWCKZF02;

PLJD10; LATSCR+08]. This field has its roots in robust statistics, a branch of statistics

initiated in the 60s with the pioneering works of Tukey and Huber [Tuk60; Hub64]. Early

work developed minimax optimal estimators for various robust estimation tasks, albeit

with runtimes exponential in the dimension. A recent line of work in computer science,

starting with [DKKLMS16; LRV16], developed polynomial time robust estimators for a

range of high-dimensional statistical tasks. Algorithmic high-dimensional robust statistics

is by now a relatively mature field, see, e.g., [DK19; DKKLMS21] for surveys.

This recent progress notwithstanding, even for the basic task of mean estimation, previ-

ous robust estimators require the entire dataset in main memory. This space requirement

can be a major bottleneck in large-scale applications, where an algorithm has access to a

very large stream of data. Indeed, practical machine learning methods are typically simple

iterative algorithms that make a single pass over the data and require a small amount of

storage — with stochastic gradient descent being the prototypical example [Bot10; BCN18].

Concretely, in prior applications of robust statistics in data analysis [DKKLMS17] and data

poisoning defenses [DKKLSS19], the storage requirements of the underlying algorithms

were observed to significantly hinder scalability. This discussion motivates the following

natural question:

Can we develop efficient robust estimators in the streaming model

with (near-) optimal space complexity?

We emphasize that this broad question is meaningful and interesting even ignoring compu-

tational considerations. While any method requires space complexity Ω(d), where d is the

dimension of the problem (to store a single sample), it is not obvious that a matching upper

bound exists. We note that it is relatively simple to design O(d)-memory streaming algo-

rithms with sample complexity exponential in d. But it is by no means clear whether there

exists an estimator with near-linear space requirements and poly(d) sample complexity

(independent of its runtime).
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9.1.1 Our Results

In this work, we initiate a systematic investigation of high-dimensional robust statistics

in the streaming model. We start by focusing on the most basic task — that of robust

mean estimation. Our main result is the first space-efficient streaming algorithm for robust

mean estimation under natural distributional assumptions. Our computationally efficient

algorithm makes a single pass over the data, uses near-optimal space, and matches the

error guarantees of previous polynomial-time algorithms for the problem.

Given this result, we leverage the fact that several robust statistics tasks can be reduced

to robust mean estimation to obtain near-optimal space, single-pass streaming algorithms

for more complex statistical tasks.

To formally state our contributions, we require some basic definitions. We start with

the standard streaming model.

Definition 9.1.1 (Single-Pass Streaming Model). LetS be a fixed set. In the one-pass streaming

model, the elements of S are revealed one at a time to the algorithm, and the algorithm is allowed a

single pass over these points.

Our robust estimators work in the following contamination model, where the adversary

can corrupt the true distribution in total variation distance (for distributions P and Q, we

use dTV(P,Q) to denote their total variation distance).

Definition 9.1.2 (TV-contamination). Given a parameter ϵ < 1/2 and a distribution class D, the

adversary specifies a distribution D′ such that there exists D ∈ D with dTV(D,D′) ≤ ϵ. Then the

algorithm draws i.i.d. samples from D′. We say that the distribution D′ is an ϵ-corrupted version of

the distribution D in total variation distance.

The distribution D′ in Definition 9.1.2 can be adversarially selected (and can even

depend on our learning algorithm). Since Huber’s contamination model [Hub64] only

allows additive errors, TV-contamination is a stronger model.
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Streaming Algorithm for Robust Mean Estimation

The main result of this paper is the following (see Theorem 9.4.2 for a more general

statement):

Theorem 9.1.3 (Streaming Robust Mean Estimation). Let D be a distribution family on Rd

and 0 < ϵ < ϵ0 for a sufficiently small constant ϵ0 > 0. Let P be an ϵ-corrupted version of D in

total variation distance for some D ∈ D with unknown mean µD. There is a single-pass streaming

algorithm that, given ϵ and D, reads a stream of n i.i.d. samples from P , runs in sample near-linear

time, uses memory d polylog(d/ϵ), and outputs an estimate µ̂ that, with probability at least 9/10,

satisfies the following:

1. If D is the family of distributions with identity-bounded covariance, then n = Õ (d2/ϵ) and

∥µ̂− µD∥2 = O(
√
ϵ).

2. If D is the family of identity-covariance subgaussian distributions, then n = Õ (d2/ϵ2) and

∥µ̂− µD∥2 = O(ϵ
√

log(1/ϵ)).

We note that the above error guarantees are information-theoretically optimal, even

in absence of resource constraints. While prior work had obtained efficient robust mean

estimators matching these error guarantees [DKKLMS16; DKKLMS17; SCV18], all previous

algorithms with dimension-independent error incurred space complexity Ω(d2).

Beyond Robust Mean Estimation

Using the algorithm of Theorem 9.1.3 as a black-box, we obtain the first efficient single-pass

streaming algorithms with near-optimal space complexity for a range of more complex

statistical tasks. These contributions are presented in detail in Section 9.5. Here we highlight

some of these results.

Our first application is a streaming algorithm for robust covariance estimation.
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Theorem 9.1.4 (Robust Gaussian Covariance Estimation). Let Q be a distribution on Rd with

dTV(Q,N (0,Σ)) ≤ ϵ and assume 1
κ
Id ⪯ Σ ⪯ Id. There is a single-pass streaming algorithm that

uses n = (d4/ϵ2)polylog(d, κ, 1/ϵ) samples fromQ, runs in time nd2polylog (d, κ, 1/ϵ), uses mem-

ory d2polylog (d, κ, 1/ϵ), and outputs a matrix Σ̂ such that ∥Σ−1/2Σ̂Σ−1/2−Id∥F = O(ϵ log(1/ϵ))

with probability at least 9/10.

See Theorem 9.5.3 for a more detailed statement.

Our second application is for the general problem of robust stochastic optimization.

Here we state two concrete results for robust linear and logistic regression (see Theo-

rem 9.5.9 and Theorem 9.5.12 for more detailed statements). Both of these statements

are special cases of a streaming algorithm for robust stochastic convex optimization (see

Corollary 9.5.6).

Theorem 9.1.5 (Streaming Robust Linear Regression). Let D be the distribution of (X, Y )

defined by Y = X⊤θ∗ + Z, where X ∼ N (0, Id), Z ∼ N (0, 1) independent of X , and ∥θ∗∥2 ≤ r.

Let P be an ϵ-corruption of D in total variation distance. There is a single-pass streaming algorithm

that uses n = (d2/ϵ) polylog (d(1 + r)/ϵ) samples from P , runs in time nd polylog(d(1 + r)/ϵ),

uses memory d polylog(dr/ϵ), and outputs an estimate θ̂ ∈ Rd such ∥θ̂− θ∗∥2 = O(
√
ϵ) with high

probability.

Theorem 9.1.6 (Streaming Robust Logistic Regression). Consider the following model: Let

(X, Y ) ∼ D, where X ∼ N (0, Id), Y | X ∼ Bern(p), for p = 1/(1 + e−X⊤θ∗), and ∥θ∗∥2 = O(1).

Let P be an ϵ-corruption of D in total variation distance. There is a single-pass streaming algorithm

that uses n = (d2/ϵ) polylog (d/ϵ) samples from P , runs in time nd polylog(d/ϵ), uses memory

d polylog(d/ϵ), and outputs an estimate θ̂ ∈ Rd such ∥θ̂ − θ∗∥2 = O(
√
ϵ) with high probability.

Finally, in Section 9.5, we include an additional application to distributed non-convex

optimization in the streaming setting.

Remark 9.1.7 (Bit complexity). For simplicity of presentation, in the main body of the paper, we

consider the model of computation where the algorithms can store and manipulate real numbers
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exactly. We show in Appendix F.6 that our algorithms can tolerate errors due to finite precision. In

particular, all our algorithms (including Algorithm 8) can be implemented in the word RAM model

with d polylog(d/ϵ) bits.

9.1.2 Overview of Techniques

In this section, we provide a brief overview of our approach to establish Theorem 9.1.3. We

start by recalling how robust mean estimation algorithms typically work without space

constraints. A standard tool in the literature is the filtering technique of [DKKLMS16;

DKKLMS17; DK19]. The idea of the filtering method is the following: Given a set S of

corrupted samples, by analyzing spectral properties of the covariance of S, we can either

certify that the sample mean of S is close to the true mean of the distribution, or can

construct a filter. The filter is a method for selecting some elements of S to remove, with the

guarantee that it will remove more outliers than inliers. If we can efficiently construct a filter,

our algorithm can then remove the selected samples from S, obtaining a cleaner dataset

and repeat the process. Eventually, this procedure must terminate, giving an accurate

estimate of the true mean.

We proceed to explain how to implement the filtering method in a streaming model.

We start with the easier case where the dataset is stored in read-only-memory, or more

generally in a multi-pass streaming setting. At each round of the algorithm, one has a subset

S ′ of the original dataset S that needs to be maintained (in particular, the set of samples

that has survived the filters applied thus far). To do this naïvely would require n = |S|

many bits of memory, which is too much for us. A more inventive strategy would be the

following: instead of storing these subsets S ′ explicitly, store them implicitly by instead

storing enough information to reconstruct the filters used to obtain S ′. This seems like

a productive idea, as most filters are relatively simple. For example, a commonly used

filter is to remove all points x ∈ S for which v⊤x > t, for some vector v and scalar t. One

could store enough information to apply this filter by merely storing (v, t), which would
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take O(d) bits of information. Unfortunately, most filtering algorithms may require Ω(d)

many iterations before attaining their final answer. Consequently, the sets S ′ one needs to

store are not just the result of applying a single filter, but instead the result of iteratively

applying Ω(d) of them. In order to store all of these extra filters, one would need Ω(d2) bits.

(For the sake of this intuitive description, we focused on “hard-thresholding” filters. Our

algorithm will actually use a soft-thresholding filter, assigning weights to each point.)

To circumvent this first obstacle, one requires as a starting point a filtering algorithm

that is guaranteed to terminate after a small (namely, at most poly-logarithmic) number

of iterations. Recent work [DHL19; DKKLT22] has obtained such algorithms. Here we

generalize and simplify the filtering method of [DKKLT22]. This allows us to obtain an

algorithm with space complexity d polylog(d/ϵ) that works in the multi-pass streaming model,

where polylog(d/ϵ) passes over the same dataset are allowed.

To obtain a single-pass streaming algorithm, new ideas are required. In the single-pass

setting, we cannot implicitly store a subset of the full dataset S; once we access some points

from S, we will never be able to see them again. To deal with this issue, we will need

to slightly alter our way of thinking about the algorithm. Instead of being given a set

S of samples, an ϵ-fraction of which have been corrupted, we instead adopt the view of

having sample access to a distribution P , which is ϵ-close in total variation distance to the

inlier distribution G. Given this point of view, instead of a filter defining a procedure for

removing samples from S and outputting a subset S ′, we think of it as a rejection sampling

procedure that replaces P with a cleaner distribution P ′.

This shift in perspective comes with new technical challenges. In particular, when

constructing the next round of filters, we will need to compute quantities pertaining to the

current distribution P of the data points. In the setting of the multiple-pass model, this

imposed no problem; these quantities could be calculated exactly. This is no longer possible

when we merely have sample access to P . The best one can hope for is to approximate

these quantities to sufficient precision for the rest of our analysis to carry over. However,



245

the natural estimators for some required quantities (e.g., powers of the covariance matrix)

would need to access the data multiple times. Circumventing this issue requires non-trivial

technical work. Roughly speaking, instead of iterating over the same dataset to approximate

the desired quantities, we show that it suffices to iterate over statistically identical datasets.

9.1.3 Prior and Related Work

Since the dissemination of [DKKLMS16; LRV16], there has been an explosion of research in

algorithmic aspects of robust statistics. We now have efficient robust estimators for a range of

more complex problems, including covariance estimation [DKKLMS16; CDGW19], sparse

estimation tasks [BDLS17; DKKPS19; CDKGGS22], learning graphical models [CDKS18;

DKSS21], linear regression [KKM18; DKS19; PJL20b], stochastic optimization [PSBR20;

DKKLSS19], and robust clustering/learning various mixture models [HL18; KSS18; DKS18;

DKKLT22; DKKLT22; BDHKKK20; LM21a; BDJKKV22]. The reader is referred to [DK19]

for a detailed overview. We reiterate that all previously developed algorithms work in the

batch setting, i.e., require the entire dataset in memory.

For the problem of robust mean estimation, [DHL19; DKKLT22] gave filtering-based

algorithms with a poly-logarithmic number of iterations. The former algorithm relies on

the matrix multiplicative weights framework, while the latter is based on first principles.

Our starting point in Section 9.3 can be viewed as a generalization and further simplification

of the ideas in [DKKLT22]. Specifically, our algorithm works under the stability condition

(Definition 9.2.8), which broadly generalizes the bounded covariance assumption used

in [DKKLT22].

In the context of robust supervised learning (including, e.g., our robust linear regression

application), low-space streaming algorithms are known in weaker contamination models

that only allow label corruptions, see, e.g., [PF20; SWS20; DKTZ20]. We emphasize that the

contamination model of Definition 9.1.2 is significantly more challenging, and no low-space

streaming algorithms were previously known in this model.
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Finally, we note that recent work [TPBR21] studies streaming algorithms for heavy-tailed

stochastic optimization. While the goal of developing low-space streaming algorithms is

qualitatively similar to the goal of our work, the algorithmic results in [TPBR21] have no

implications in the corrupted setting studied in this work.

9.1.4 Organization

The structure of this paper is as follows: In Section 9.2, we record the notation and technical

background that will be used throughout the paper. In Section 9.3, we design a filter-based

algorithm for robust mean estimation under the stability condition with a poly-logarithmic

number of iterations. In Section 9.4, we build on the algorithm from Section 9.3, to obtain

our single-pass streaming algorithm for robust mean estimation under the stability condi-

tion. Finally, in Section 9.5, we obtain our streaming algorithms for more complex robust

estimation tasks. To facilitate the flow of the presentation, some proofs of intermediate

lemmas are deferred to the Appendix.

9.2 Preliminaries

9.2.1 Notation and Basic Facts

Basic Notation We use Z+ to denote the set of positive integers. For n ∈ Z+, we denote

[n] := {1, . . . , n} and use Sd−1 for the d-dimensional unit sphere. For a vector v, we let

∥v∥2 denote its ℓ2-norm. We use boldface letters for matrices. We use Id to denote the

d × d identity matrix. For a matrix A, we use ∥A∥F and ∥A∥2 to denote the Frobenius

and spectral norms respectively. For A ∈ Rm×n, we use A♭ to denote the nm-dimensional

vector obtained by concatenating the rows of A. We say that a symmetric d × d matrix

A is PSD (positive semidefinite), and write A ⪰ 0, if for all vectors x ∈ Rd we have that

x⊤Ax ≥ 0. We denote λmax(A) := maxu∈Sd−1 x⊤Ax. We write A ⪯ B when B − A is

PSD. For a matrix A ∈ Rd×d, tr(A) denotes the trace of the matrix A. We use ⊗ to denote
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the Kronecker product. For the sake of conciseness, we sometimes use x = a ± b as a

shorthand for a − b ≤ x ≤ a + b. We use a ≲ b, to denote that there exists an absolute

universal constant C > 0 (independent of the variables or parameters on which a and

b depend) such that a ≤ Cb. Similarly, we use the notation a ≳ b to denote that b ≲ a.

We use c, c′, C, C ′ to denote absolute constants that may change from line to line, whereas

we use constants C1, C2, C3, . . . to denote fixed absolute constants that are important for

our algorithms. We use Õ(·) to ignore poly-logarithmic factors in all variables appearing

inside the parentheses. For the sake of simplicity, we sometimes omit rounding non-integer

quantities to integer ones. For example, we treat logarithmic factors as integers when they

appear in the sample complexity or number of iterations of an algorithm. We use poly(·)

to indicate a quantity that is polynomial in its arguments. Similarly, polylog(·) denotes a

quantity that is polynomial in the logarithm of its arguments.

Probability Notation For a random variable X , we use E[X] for its expectation. For a

set S, we use U(S) to denote the uniform distribution on S. We use N (µ,Σ) to denote

the Gaussian distribution with mean µ and covariance matrix Σ. For a distribution D on

Rd, we denote µD = EX∼D[X] and ΣD = EX∼D[(X − µD)(X − µD)⊤]. Moreover, given a

weight function w : Rd → [0, 1], we define the re-weighted distribution Dw to be Dw(x) :=

D(x)w(x)/
∫
Rd w(x)D(x)dx. We use µw,D = EX∼Dw [X] for its mean and Σµ

w,D = EX∼Dw [(X−

µ)(X − µ)⊤] for the second moment that is centered with respect to µ (we will often drop

µ from the notation when it is clear from the context). We use I{x ∈ E} to denote the

indicator function of the set E.

Basic Facts We will use the following two basic facts.

Fact 9.2.1. Let x ∈ Rd and p ≥ 1. Then ∥x∥p+1 ≤ ∥x∥p ≤ ∥x∥p+1d
1

p(p+1) .

Fact 9.2.2. The following results hold:
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1. If A,B,C are symmetric d × d matrices satisfying A ⪰ 0 and B ⪯ C, we have that

tr(AB) ≤ tr(AC).

2. ([JLT20]) Let A and B be PSD matrices satisfying 0 ⪯ B ⪯ A. Then for any positive

integer p, we have that tr(Bp) ≤ tr(Ap−1B).

Proof. We provide the proof of the first claim below; The second claim is proved in [JLT20,

Lemma 7]. Since A is PSD, we can consider its spectral decomposition A = ∑d
i=1 λiviv

⊤
i ,

where λi ≥ 0. Using the linearity of trace operator, we have that

tr(AB) =
d∑
i=1

λitr(viv⊤
i B) =

d∑
i=1

λitr(v⊤
i Bvi) ≤

d∑
i=1

λitr(v⊤
i Cvi) =

d∑
i=1

λitr(viv⊤
i C) = tr(AC) ,

where the inequality uses that B ⪯ C and λi ≥ 0.

We will use the notion of total variation distance, defined below.

Definition 9.2.3. Let P,Q be two probability distributions on Rd. The total variation distance

between P and Q, denoted by dTV(P,Q), is defined as dTV(P,Q) = supA⊆Rd |P (A)−Q(A)|. For

continuous distributions P,Q with densities p, q, we have that dTV(P,Q) = 1
2
∫
Rd |p(x)− q(x)|dx.

Whenever dTV(P,Q) = ϵ, it is sometimes helpful to consider the decomposition below.

Fact 9.2.4. Let a domain X . For any ϵ ∈ [0, 1] and for any two distributions D1, D2 on X

with dTV(D1, D2) = ϵ, there exist distributions D,Q1, Q2 such that D1 = (1 − ϵ)D + ϵQ1 and

D2 = (1− ϵ)D + ϵQ2.

This decomposition can be achieved by the following choice of Q1, Q2, and D:

Q1(x) =


D1(x)−D2(x)

ϵ
, if D1(x) > D2(x)

0 , otherwise
, Q2(x) =


D2(x)−D1(x)

ϵ
, if D2(x) > D1(x)

0 , otherwise
,
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and D(x) = min{D1(x), D2(x)}/(1− ϵ). In light of Fact 9.2.4, the adversary that performs

corruption in total variation distance can be thought of as “both additive and subtractive”

adversary.

Concentration Inequalities We will also require following standard results regarding

concentration of random variables:

Fact 9.2.5 ([Ver12]). Consider a distribution D on Rd that has zero mean and is supported in

an ℓ2-ball of radius R from the origin. Denote by Σ its covariance matrix and denote by ΣN =

(1/n)∑N
i=1 XiX

⊤
i the empirical covariance matrix using N samples Xi ∼ D. There is a constant

C such that for any 0 < ϵ′ < 1 and 0 < τ < 1, if N > Cϵ′−2∥Σ∥−1
2 R2 log(d/τ), we have that

∥Σ−ΣN∥2 ≤ ϵ′∥Σ∥2, with probability at least 1− τ .

Fact 9.2.6 (Quadratic Polynomials of a Gaussian). The Gaussian random variable satisfies the

following properties:

1. For every β > 0, PX∼N (0,Id)[|∥X∥2−d| > β] ≤ 2e−cβ2/d, where c > 0 is a universal constant.

2. If A is a PSD matrix, then for any β > 0, it holds Pz∼N (0,I)[z⊤Az ≥ βtr(A)] ≥ 1−
√
eβ.

Fact 9.2.7 ([Ach03]). Let 0 < γ < 1 and u1, . . . , uN ∈ Rd. Let zj for j ∈ [L] drawn from the

uniform distribution on {±1}d. There exists a constant C > 0 such that, if L > C log(N/γ), then,

with probability at least 1− γ, we have that 0.8∥ui∥2 ≤ 1
L

∑L
j=1(z⊤

j ui)2 ≤ 1.2∥ui∥2 for all i ∈ [N ].

9.2.2 Stability Condition and Its Properties

Our results will hold for every distribution satisfying the following key property [DK19].

Definition 9.2.8 ((ϵ, δ)-stable distribution). Fix 0 < ϵ < 1/2 and δ ≥ ϵ. A distribution G

on Rd is (ϵ, δ)-stable with respect to µ ∈ Rd if for any weight function w : Rd → [0, 1] with

EX∼G[w(X)] ≥ 1− ϵ we have that

∥µw,G − µ∥2 ≤ δ and
∥∥∥Σw,G − Id

∥∥∥
2
≤ δ2/ϵ .
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We call a set of points S (ϵ, δ)-stable when the uniform distribution on S is stable :

Definition 9.2.9 ((ϵ, δ)-stable set). Fix 0 < ϵ < 1/2 and δ ≥ ϵ. A finite set S0 ⊂ Rd is

(ϵ, δ)-stable with respect to µ ∈ Rd if the empirical distribution U(S0) is (ϵ, δ)-stable with respect to

µ.

We begin by stating some examples of stable distributions (see [DK19] for more details).

If G is a subgaussian distribution with identity covariance, then G is (ϵ, δ)-stable with

δ = O(ϵ
√

log(1/ϵ)). If G is a distribution with covariance at most identity, i.e., ΣG ⪯ Id,

then G is (ϵ, δ)-stable with δ = O(
√
ϵ). Interpolating these two results, we have that if

G is a distribution with identity covariance and bounded k-th moment for k ≥ 4, i.e.,

(EX∼G[|v⊤(X − µ)|k])1/k = O(1), then G is (ϵ, δ)-stable with δ = O(ϵ1−1/k). Furthermore, it

is known that poly(d/ϵ) i.i.d. samples from these distributions also yields a set that contains

a large stable subset (see, for example, [DK19; DKP20; DHL19; DKKLMS16]):

Fact 9.2.10 ([DK19]). A set of O(d/(ϵ2 log(1/ϵ))) i.i.d. samples from an identity covariance sub-

gaussian distribution is (ϵ, O(ϵ
√

log(1/ϵ)))-stable with respect to µ with high probability. Similarly,

a set of Õ(d/ϵ) i.i.d. samples from a distribution X with Cov[X] ⪯ Id contains a large subset S,

which is O(ϵ, O(
√
ϵ))-stable with respect to its mean E[X] with high probability.

The basic fact regarding stability, which is the starting point of many robust estimation

algorithms, is that any slight modification of a stable distribution can not perturb the

mean by a large amount, unless it significantly changes its covariance (see, for example,

[DKKLMS16; LRV16; DK19]). Here we require a slightly different statement than that of

[DK19], and hence provide a proof in Appendix F.1 for completeness.

Lemma 9.2.11 (Certificate Lemma). Let G be an (ϵ, δ)-stable distribution with respect to µ ∈ Rd,

for some 0 < ϵ < 1/3 and δ ≥ ϵ. Let P be a distribution with dTV(P,G) ≤ ϵ. Denoting by µP ,ΣP

the mean and covariance of P , if λmax(ΣP ) ≤ 1+λ, for some λ ≥ 0, then ∥µP −µ∥2 = O(δ+
√
ϵλ).
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Given Fact 9.2.4, we can essentially think of an ϵ-corrupted version of a stable distribu-

tion as a mixture of a stable distribution with a noise distribution, as shown below (see

Appendix F.1 for a proof).

Lemma 9.2.12. For any 0 < ϵ < 1/2 and δ ≥ ϵ, if a distribution G is (2ϵ, δ)-stable with respect to

µ ∈ Rd, and P is an ϵ-corrupted version of G in total variation distance, there exist distributions

G0 and B such that P = (1− ϵ)G0 + ϵB and G0 is (ϵ, δ)-stable with respect to µ.

We continue with some technical claims related to stability that we prove in Ap-

pendix F.1. Let G be an (ϵ, δ)-stable distribution with respect to µ and w a weight func-

tion with EX∼G[w(X)] ≥ 1 − ϵ. Denoting by Gw the re-weighted distribution Gw(x) :=

G(x)w(x)/
∫
Rd w(x)G(x)dx, the stability ofG directly implies that 1−δ2/ϵ ≤ EX∼Gw [(v⊤(X−

µ))2] ≤ 1 + δ2/ϵ. We require a generalization of this fact for a matrix U in place of v and an

arbitrary vector b in place of µ:

Lemma 9.2.13. Fix 0 < ϵ < 1/2 and δ ≥ ϵ. Let w : Rd → [0, 1] such that EX∼G[w(X)] ≥ 1− ϵ

and let G be an (ϵ, δ)-stable distribution with respect to µ ∈ Rd. For any matrix U ∈ Rd×d and any

vector b ∈ Rd, we have that

E
X∼Gw

[
∥U(X − b)∥2

2

]
= ∥U∥2

F (1± δ2/ϵ) + ∥U(µ− b)∥2
2 ± 2δ ∥U∥2

F∥µ− b∥2 .

We use this to show Corollary 9.2.14, which will be required when proving correctness

of our algorithm. Although its exact role will become clearer later on, the corollary will

be relevant to our analysis because we will filter out outliers using scores of the form

∥U(x− b)∥2
2 for each point x.

Corollary 9.2.14. Fix 0 < ϵ < 1/2 and δ ≥ ϵ. Let G be an (ϵ, δ)-stable distribution with respect to

µ ∈ Rd. Let a matrix U ∈ Rd×d and a function w : Rd → [0, 1] with EX∼G[w(X)] ≥ 1− ϵ. For
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the function g̃(x) = ∥U(x− b)∥2
2, we have that

(1− ϵ)∥U∥2
F (1− δ2/ϵ− 2δ∥b− µ∥2) ≤ E

X∼G
[w(X)g̃(X)]

≤ ∥U∥2
F

(
1 + δ2/ϵ+ ∥b− µ∥2

2 + 2δ∥b− µ∥2
)
.

9.3 Filtering Algorithm with Small Number of Iterations

In this section, we develop a filtering algorithm (in the batch setting) that terminates in

polylog(d/ϵ) iterations for any stable set. This leads to an algorithm that runs in near-linear

time, i.e., nd polylog(nd/ϵ), generalizing the results of [DHL19; DKKLT22]. Crucially, this

algorithm will form the building block of our streaming algorithm in Section 9.4. We

remark that the algorithm of this section works even against the strong-contamination model

(Definition 9.3.1 below), where the outliers may not be i.i.d. samples from any distribution,

but are allowed to be completely arbitrary.

Definition 9.3.1 (Strong Contamination Model). Given a parameter 0 < ϵ < 1/2 and a class

of distributions D, the strong adversary operates as follows: The algorithm specifies a number of

samples n, then the adversary draws a set of n i.i.d. samples from some D ∈ D and after inspecting

them, removes up to ϵn of them and replaces them with arbitrary points. The resulting set is given

as input to the learning algorithm. We call a set ϵ-corrupted if it has been generated by the above

process.

The main result of this section is the following.

Theorem 9.3.2. Let d ∈ Z+, 0 < τ < 1, 0 < ϵ < ϵ0 for a sufficiently small constant ϵ0, and δ ≥ ϵ.

Let S0 be a set of n points that is (Cϵ, δ)-stable with respect to the (unknown) vector µ ∈ Rd, for a

sufficiently large constant C > 0. Let S be an ϵ-corrupted version of S0 in the strong contamination

model. There exists an algorithm that given ϵ, δ, τ , and S, runs in time nd polylog (d, n, 1/ϵ, 1/τ),

and outputs a vector µ̂ such that, with probability at least 1− τ , it holds ∥µ− µ̂∥2 = O(δ).
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We note that Theorem 9.3.2 applies to any stable set. By Fact 9.2.10, we directly obtain (i)

an O(ϵ
√

log(1/ϵ))-accurate estimator given O(d/(ϵ2/ log(1/ϵ))) many ϵ-corrupted samples

from an identity covariance subgaussian distribution; and (ii) an O(
√
ϵ)-accurate estimator

for any distribution X ∼ D with Cov[X] ⪯ Id, given Õ(d/ϵ) many ϵ-corrupted samples.

9.3.1 Setup and Algorithm Description

The pseudocode of the algorithm establishing Theorem 9.3.2 is presented in Algorithm 6.

We will define the necessary notation as needed (see the pseudocode for details). First, we

assume that the distribution over the input samples is of the form P = (1− ϵ)G+ ϵB, where

G is the uniform distribution over the stable set of inliers and B is the uniform distribution

on the outliers. Although this mixture may seem to suggest that the adversary only adds

points, it is without loss of generality. Indeed, in the case that the adversary also removes

points, we can think of G as the distribution of the remaining inliers (which continues to

be stable with slightly worse parameters; see Lemma 9.2.12).

We begin with a high-level explanation of Algorithm 6. At each iteration t, we assign a

weight wt(x) ∈ [0, 1] to each point x. Let Pt be the distribution on S, weighted according to

wt. Let µt and Σt be the mean and covariance of Pt, respectively. We want to assign scores

to each point, using spectral properties of Σt and the stability of inliers, so that the scores

over outliers are more than those of inliers. Essentially, if a direction v has variance larger

than 1 + Ω(δ2/ϵ), then the stability of inliers implies that this must be due to outliers. Thus,

we can assign scores based on the values (v⊤(x− µt))2 that have provably more mass on

outliers than inliers. The filters proposed in [DKKLMS16; DKKLMS17] assigned scores

based on a single direction, the leading eigenvector of Σt, and can take as many as Ω(d)

iterations (see Section 9.1.2).

To reduce the number of iterations, we need to filter in all directions of large variance

simultaneously. Letting Bt ≈ Σt− (1−C1δ
2/ϵ)Id, we would like to filter along all directions

where the eigenvalue of Bt is within a constant factor from λt := ∥Bt∥2, not necessarily the
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leading eigenvector of Bt. As we show in Section 9.3.4, this can be approximately achieved

by assigning scores for each point x based on gt(x) := ∥Mt(x− µt)∥2
2, where Mt = Blog d

t .

At a high level, this happens because the spectrum of Mt is distributed across along all

large eigenvectors of Bt.

Algorithm 6 Robust Mean Estimation in polylog iterations
1: Input: S = {xi}i∈[n], δ, ϵ
2: Let C1 ≥ 22, C be a sufficiently large constant, C2 = 100C and C3 = 0.1.
3: Let R =

√
(d/ϵ)(1 + δ2/ϵ).

4: Let P = (1− ϵ)G+ ϵB be the empirical distribution on the points from S. 12

5: Let K = C log d log (dR/ϵ), L = C log((n+ d)K/τ).
6: Obtain a naïve estimate µ̂ of µ with ∥µ̂− µ∥2 ≤ 4R.
7: Initialize w1(x)← I{∥x− µ̂∥2 ≤ 5R} for all x ∈ S.
8: for t ∈ [K] do
9: Let Pt be the distribution of P weighted by wt.

10: Let µt,Σt be the mean and covariance of Pt.
11: Let Bt = (EX∼P [wt(X)])2Σt −

(
1− C1

δ2

ϵ

)
Id

12: Let Mt = Blog d
t . ▷ Mt does not need to be explicitly calculated.

13: Let λt = ∥Bt∥2
14: Find λ̂t ∈ [0.8λt, 1.2λt] by power iteration. ▷ See Remark 9.3.3 for efficient

implementation.
15: if λ̂t > C2δ

2/ϵ then
16: for j ∈ [L] do
17: zt,j ∼ U({±1}d),
18: vt,j ←Mtzt,j . ▷ See Remark 9.3.3 for efficient implementation.
19: end for
20: Denote by Ut the matrix having the vectors 1√

L
vt,j for j ∈ [L] as rows.

21: Let g̃t(x) = ∥Ut(x− µt)∥2
2 and τ̃t(x) = g̃t(x) I{g̃t(x) > C3∥Ut∥2

F λ̂t/ϵ} ,
22: ℓmax ← (dR/ϵ)C log d, T ← 0.01λ̂t∥Ut∥2

F .
23: wt+1 ← DownweightingFilter(P,wt, τ̃t, R, T, ℓmax) ▷ Algorithm 7
24: end if
25: end for
26: return µt.

Even though assigning scores based on Mt, i.e., gt(x), reduces the number of iterations,

computing gt(x) for all x ∈ S is slow. We thus use a Johnson-Lindenstrauss (JL) sketch of

Mt, denoted by Ut. We denote by g̃t(x) := ∥Ut(x−µt)∥2 the resulting scores. We claim that
12Without loss of generality, outliers are within O(R) from µ in ℓ2-norm. This is ensured in Line 7, which

removes only ϵ-fraction of inliers (Claim 9.3.12).
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Algorithm 7 Downweighting Filter
1: Input: P,w, τ̃ , R, T, ℓmax
2: r ← CdR2+4 log d.
3: Let wℓ(x) = w(x)(1− τ̃(x)/r)ℓ.
4: Find the smallest ℓ ∈ {1, . . . , ℓmax} satisfying EX∼P [wℓ(X)τ̃(X)] ≤ 2T using binary

search.
5: return wℓ.

the set {g̃t(x)}x∈S can be calculated in time Õ(nd) such that for each x ∈ S, g̃t(x) ≈ gt(x).

First, we will show (see Lemma 9.3.5) that Ut can be as small as L× d, where L is some

polylog(nd/(ϵτ)), which follows from the classical JL lemma (stating that n points can be

linearly embedded into a log n-dimensional space). Also, each row of Ut can be computed

by repeatedly multiplying a vector log d times by Bt (Line 18). By the following remark, all

rows of Ut can be computed in time Õ(nd) and thus, each iteration of Algorithm 6 runs in

near-linear time.

Remark 9.3.3. (Efficient Implementation) Note that for any v ∈ Rd, the vector Btv can be calculated

inO(nd) time. This is because Σtv = ∑
x∈S wt(x)(v⊤(x−µt))(x−µt)/(

∑
x∈S wt(x)) which means

that the result can be computed in O(nd) time by calculating µt and v⊤(x− µt) first. Regarding

Line 14, an approximate large eigenvector can be computed via power iteration, i.e., starting from

a random Gaussian vector and multiplying by Bt iteratively log d many times (see, for example,

[BHK20]). As mentioned above, each of these multiplications can be done in O(nd) time.

For the proof of correctness, we require that the JL and spectral approximations used

by the algorithm are sufficiently accurate. We prove that the following event occurs with

high probability.

Condition 9.3.4 (Deterministic Conditions For Algorithm 6). For all t ∈ [K], the following

hold:

1. Spectral norm of Bt: λ̂t ∈ [0.1λt, 20λt].

2. Frobenius norm: ∥Ut∥2
F ∈ [0.8∥Mt∥2

F , 1.2∥Mt∥2
F ].
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3. Scores: For all x ∈ S, g̃t(x) ∈ [0.8gt(x), 1.2gt(x)].

9.3.2 Establishing the Deterministic Conditions

In this section, we establish that Condition 9.3.4 holds with high probability. Regard-

ing Item 1 of this condition, an approximate large eigenvector can be computed via

power iteration as described in Remark 9.3.3. This gives us an algorithm that runs in time

O(nd log d log(K/τ)) and satisfies Item 1 with probability 1− τ .

We now move to the other two conditions. The claim is that instead of using the matrix

Mt to calculate the scores, it suffices to store and use only a small set of random projections

{Mtzt,j}j∈[L]. This is exactly the Johnson-Lindenstrauss sketch that is computed in Line 16

of Algorithm 6. Using Fact 9.2.7, we get the following guarantees (see Appendix F.2.1 for

the proof).

Lemma 9.3.5. Fix a set of n points x1, . . . , xn ∈ Rd. For t ∈ [K], define gt(x) := ∥Mt(x− µt)∥2
2

and let g̃t(x), vt,j as in Algorithm 6. IfC is a sufficiently large constant and L = C log((n+d)K/τ),

with probability at least 1− τ , for every t ∈ [K] we have the following:

1. 0.8gt(xi) ≤ g̃t(xi) ≤ 1.2gt(xi) for every i ∈ [n],

2. 0.8∥Mt∥2
F ≤

(
1
L

∑L
j=1 ∥vt,j∥2

2

)
≤ 1.2∥Mt∥2

F .

This concludes the proof that Condition 9.3.4 is satisfied with high probability.

9.3.3 Downweighting Filter

We use the following re-weighting procedure also used in [DHL19]. Recall that P denotes

the empirical distribution on the samples, which we write as P = (1− ϵ)G+ ϵB, where G

andB are the contributions from the good and bad samples respectively. Roughly speaking,

our filter guarantees two things when going from the weights w(x) to w′(x):

1. The weight removed from the outliers is greater than the weight removed from the inliers.
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2. EX∼P [w′(X)τ̃(X)] ≤ 2EX∼G[w(X)τ̃(X)], i.e., the weighted mean of scores after filtering

over both inliers and outliers is at most twice the weighted mean of scores of inliers before

filtering.

Regarding the first guarantee, since the fraction of outliers is at most ϵ, this ensures that

the filtered distribution Pt will never be more than O(ϵ)-far in total variation distance from

the initial (corrupted) distribution, and thus the condition of the certificate lemma that

dTV(P, Pt) ≤ O(ϵ) will always be satisfied. The second guarantee ensures that the filtering

step reduces the average score significantly. We prove the following in Appendix F.2.2.

Lemma 9.3.6. Let P = (1−ϵ)G+ϵB be the empirical distribution on n samples, as in Algorithm 6.

If (1 − ϵ)EX∼G[w(X)τ̃(X)] ≤ T , ∥τ̃∥∞ ≤ r, and ℓmax > r/T , then Algorithm 7 modifies the

weight function w to w′ such that

1. (1− ϵ)EX∼G[w(X)− w′(X)] < ϵEX∼B[w(X)− w′(X)],

2. EX∼P [w′(X)τ̃(X)] ≤ 2T ,

and the algorithm terminates after O(log(ℓmax)) iterations, each of which takes O(n) time.

We note that the two conditions ∥τ̃∥∞ ≤ r, ℓmax > r/T of Lemma 9.3.6 hold by our

choice of ℓmax and r inside Algorithm 6 and Algorithm 7 as follows. For ∥τ̃∥∞, we have the

following upper bound

τ̃t(x) ≤ g̃t(x) ≤ ∥Ut(x− µt)∥2
2 ≲ R2∥Ut∥2

2 ≲ R2∥Mt∥2
F ≲ R2∥Σt∥2 log d

2 = O(dR2+4 log d) ,

(9.1)

where we used the guarantee of our JL sketch that ∥Ut∥2
2 ≤ 1.2∥Mt∥2

F (Lemma 9.3.5). A

crude upper bound on r/T follows from the following inequalities:

r

T
≲
dR2+4 log d

λ̂t∥Mt∥2
F

≲
dR2+4 log d

λt∥Mt∥2
F

≲

(
dR

δ2/ϵ

)O(log d)

,
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where the first inequality uses the values of r and T as set in the algorithm, the sec-

ond inequality uses Items 1 and 2 of the deterministic conditions of Condition 9.3.4, and

the last inequality uses the fact that ∥Mt∥2
F ≥ ∥Mt∥2

2 and ∥Mt∥2
2 cannot be smaller than

(C2δ
2/ϵ)O(log d) (otherwise Line 22 terminates the algorithm).

We now use the guarantees of Algorithm 7 as follows. We first show that the weighted

mean of the inliers’ scores is small.

Lemma 9.3.7. Under the setting of Algorithm 6 and the deterministic Condition 9.3.4, we have

that EX∼G[wt(X)τt(X)] and EX∼G[wt(X)τ̃t(X)] are bounded from above by cλt∥Mt∥2
F for some

constant c of the form c = C/C2, where C2 is the constant used in Line 15 and C is some absolute

constant.

The proof is based on stability arguments from Section 9.2.2 and can be found in

Appendix F.2.3.

Remark 9.3.8. In our analysis, it will be important that the constant c in Lemma 9.3.7 can be made

sufficiently smaller than 1, for example, c < 0.01. This can be achieved by choosing C2 to be a large

enough constant.

Using Algorithm 7, we get that the weighted sum of scores after filtering is also small.

Lemma 9.3.9. Under the setting of Algorithm 6 and the deterministic Condition 9.3.4, we have

that ϵEX∼B[wt+1(X)τ̃t(X)] < cλt∥Mt∥2
F , with c being of the form c = C/C2, where C2 is the

constant used in Line 15 and C is some absolute constant. Furthermore, ϵEX∼B[wt+1(X)τt(X)] <

cλt∥Mt∥2
F .

Proof. The first claim follows by the stopping condition of the algorithm, Lemma 9.3.7, and

the fact that wt+1 ≤ wt. We now prove the second conclusion by relating τ to τ̃ : Recall

that we denote by S the ϵ-corrupted version of the original set of samples S0. Since g̃t(x) is

within a constant factor of gt(x) (Condition 9.3.4) for all x ∈ S, the scores τ̃t(x) and τt(x)

are comparable (up to an additive term) as shown below.
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Claim 9.3.10. In the setting of Algorithm 6 and under the Condition 9.3.4, if x ∈ S, we have that

τt(x) ≤ 1.25τ̃t(x) + 3C3(λt/ϵ)tr(M2
t ), where C3 is the constant used in Algorithm 6.

We prove Claim 9.3.10 in Appendix F.2.5. Using Claim 9.3.10, we have the following set

of inequalities:

ϵ · E
X∼B

[wt+1(X)τt(X)] = 1
n

∑
xi∈S\S0

wt+1(xi)τt(xi)

≤ 3C3λt ∥Mt∥2
F + 1

n
1.25

∑
i∈S\S0

wt+1(xi)τ̃t(xi) (using Claim 9.3.10)

= 3C3λt∥Mt∥2
F + 1.25ϵ E

X∼B
[wt+1(X)τ̃t(X)]

≤ 3C3λt∥Mt∥2
F + 1.25cλt∥Mt∥2

F

(using the first part of Lemma 9.3.9)

< 10(C/C2)λt∥Mt∥2
F . (using the value of C3)

The last inequality above uses the fact that the constant C3 is chosen to be C3 = C/C2 in

Algorithm 6, where C is a sufficiently large constant.

9.3.4 Correctness of Algorithm 6: Proof of Theorem 9.3.2

The rest of this section is dedicated to proving Theorem 9.3.2. We first state the correctness

of the naïve approximation step of Line 6, then record the invariants of the algorithm in

Section 9.3.4.1, and finally show in Section 9.3.4.2 that it suffices for the number of iterations

K to be bounded by some polylog(d,R, 1/ϵ).

The naïve approximation step of Line 6 is based on the following folklore fact (see

Appendix F.2.4 for more details).

Claim 9.3.11. Let the fraction of outliers be ϵ < 1/10 and a parameter 0 < τ < 1. Let the

distribution P = (1− ϵ)G+ ϵB. LetR > 0, µ ∈ Rd be such that PX∼G[∥X−µ∥2 > R] ≤ ϵ. There
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is an estimator µ̂ on k = O(log(1/τ)) samples from P such that ∥µ̂− µ∥2 ≤ 4R with probability

at least 1− τ . Furthermore, µ̂ can be computed in time O(k2d) and memory O(kd).

Claim 9.3.12 below gives a valid upper bound on R using the (ϵ, δ)-stability of the good

distribution.

Claim 9.3.12. If R =
√

d
ϵ
(1 + δ2/ϵ), then PX∼G[∥X − µ∥2 > R] ≤ ϵ.

Proof. By Markov’s inequality, we have that

P
X∼G

[
∥X − µ∥2

2 ≥
d

ϵ

(
1 + δ2/ϵ

)]
≤ ϵ

EX∼G[∥X − µ∥2
2]

d(1 + δ2/ϵ) ≤ ϵ .

9.3.4.1 Invariants of Algorithm 6

Recall that the end goal is to obtain a filtered version, Pt, of P that is not too far from P in

total variation distance dTV(P, Pt) = O(ϵ), and satisfies that ∥Bt∥2 = O(δ2/ϵ). For the first

condition to be satisfied, we ensure that the Downweighting filter removes more weight

from G than B (Lemma 9.3.6). Using this, we show that EX∼G[wt(X)] ≥ 1−O(ϵ), which

implies the bound on the total variation distance (Claim 9.3.13). The proofs are deferred to

Appendix F.2.5.

Claim 9.3.13. Under Condition 9.3.4, Algorithm 6 maintains the following invariant:

EX∼G[wt(X)] ≥ 1− 3ϵ. In particular, if ϵ ≤ 1/8, then dTV(Pt, P ) ≤ 9ϵ.

The following properties of Bt as PSD operator will also be useful later on.

Claim 9.3.14. Under Condition 9.3.4, if C1 ≥ 22, Bt ⪰ (0.5C1δ
2/ϵ)Id for every t ∈ [K].

The proof of Claim 9.3.14 is provided in Appendix F.2.5. Although just showing that

Bt ⪰ 0 would suffice for this section, the slightly stronger bound of the above claim will

be useful in Section 9.4. Claim 9.3.14 follows from Claim 9.3.13 and the stability of G. In



261

particular, the stability of G implies that ΣG ⪰ (1− δ2/ϵ)Id. We now prove the following

claim, which is the reason for having the multiplicative factor of EX∼P [wt(X)]2 in the

definition of Bt.

Claim 9.3.15. We have that Bt+1 ⪯ Bt for every t ∈ [K].

Proof. We use the alternative definition of the covariance matrix: Let X, Y be i.i.d. from P ,

then

Σt = 1
2(EX∼P [wt(X)])2 E

X,Y∼P
[wt(X)wt(Y )(X − Y )(X − Y )⊤] .

Since wt+1(x) ≤ wt(x) for all x, this completes the proof.

9.3.4.2 Reducing the Potential Function

Recall that each iteration of Algorithm 6 can be implemented in near-linear time. Thus, it

remains to show that the choice K = C log d log(dR/ϵ) suffices to guarantee correctness

of our algorithm. We now sketch the proof using a potential function argument. Let Λt

be the vector in Rd containing the eigenvalues of Bt. Recall that our goal is to show that

∥Bt∥2 = ∥Λt∥∞ = O(δ2/ϵ) in polylog many iterations. Let p := 2 log d. Since ∥x∥p = Θ(∥x∥∞)

for any x ∈ Rd, we are motivated to use the potential function ϕt := ∥Λt∥pp. We now focus

on showing that ϕt decreases rapidly. Observe that for any i ∈ Z+, tr(Bi
t) = ∥Λt∥ii. We start

with the following inequalities (and explain them directly below):

ϕt+1 = ∥Λt+1∥pp ≤
(
d

1
p(p+1)∥Λt+1∥p+1

)p
= d

1
p+1

(
∥Λt+1∥p+1

p+1

) p
p+1

= d
1

p+1 (tr(Bp+1
t+1 ))

p
p+1

≤ d
1
p (tr(MtBt+1Mt))

p
p+1 , (9.2)
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where the first line uses Fact 9.2.1, the third one uses tr(Bi
t+1) = ∥Λt+1∥ii, and the last line

uses Fact 9.2.2 along with the fact Bt+1 ⪯ Bt, which holds because removing points can

only make their covariance smaller; see Section 9.3.4 for more details.

Then the goal becomes to bound from above the term tr(MtBt+1Mt). The claim is that

tr(MtBt+1Mt) is related to EX∼P [wt+1(X)τt(X)], and thus can be bounded by cλt∥Mt∥2
F .

Using the guarantees of the Downweighting filter (Lemma 9.3.9), we prove the following

result:

Lemma 9.3.16. Consider the setting of Algorithm 6 and assume that Condition 9.3.4 holds. Then

tr(MtBt+1Mt) ≤ cλt∥Mt∥2
F for some c of the form C/C2, where C2 is the constant used in Line 15

and C is some absolute constant.

Before giving the details regarding Lemma 9.3.16, we first show that it suffices to prove

that the potential function decreases by a multiplicative factor. In the rest of the proof, we

will assume that c < 0.1, which can be guaranteed by taking C2 to be a sufficiently large

constant (cf. Remark 9.3.8). We continue with Equation (9.2) as follows:

ϕt+1 ≤ d
1
p (tr(MtBt+1Mt))

p
p+1

≤ d
1
p

(
c∥Λt∥∞∥Λt∥pp

) p
p+1 (using Lemma 9.3.16)

≤ d
1
p c

p
p+1

(
∥Λt∥p∥Λt∥pp

) p
p+1 (using ∥Λt∥∞ ≤ ∥Λt∥i for i ≥ 1)

= d
1
p c

p
p+1∥Λt∥pp

≤ 3
√
c∥Λt∥pp ≤ 0.9999ϕt ,

where the last line uses that d1/p = exp( log d
2 log d) ≤ 3, p/(p+ 1) ≥ 0.5, and c < 1. We thus get

the desired convergence.

The final step is to bound the number of iterations needed for Lemma 9.2.11 to ensure

that ∥µt − µ∥2 = O(δ). Concretely, due to our naïve pruning, at the beginning of the

algorithm we have the upper bound ϕ1 ≤ dRO(log d). After K iterations, we have that
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ϕK ≤ 0.99KdRO(log d). Setting K as

K = C log d log
(
dR

δ2/ϵ

)
(9.3)

suffices to have that ∥BK∥2 ≤ (dO(δ2/ϵ)2 log d)
1

2 log d = O(δ2/ϵ). This implies that

∥ΣK∥2 ≤
1

EX∼P [wK(X)]2 (∥BK∥2 + 1) ≤ 1 +
(

1
(1− 3ϵ)2 − 1

)
+O

(
δ2

ϵ

)
≤ 1 +O

(
δ2

ϵ

)
,

(9.4)

where we used that EX∼P [wK(X)])2 ≥ 1 − 3ϵ, δ ≥ ϵ, and ϵ ≤ ϵ0. An application of

Lemma 9.2.11 shows that the estimate has error at most ∥µt − µ∥2 = O(δ). This completes

the proof of Theorem 9.3.2. The rest of the section focuses on proving Lemma 9.3.16.

Proof Sketch of Lemma 9.3.16 Before giving the full proof of Lemma 9.3.16, we provide

a brief proof sketch. By the definition of Bt+1, we have the following (the full proof is

deferred to the end of this section)

tr(MtBt+1Mt) ≤ E
X∼P

[wt+1(X)] E
X∼P

[wt+1(X)gt(X)]−
(

1− C1
δ2

ϵ

)
∥Mt∥2

F .

In order to bound from above EX∼P [wt+1(X)gt(X)], one can consider the contribution due

to inliers (distribution G) and contribution due to outliers (distribution B). Using the

stability of inliers and Corollary 9.2.14, we have that EX∼G[w(X)gt(X)] ≤ (1 + cλt)∥Mt∥2
F ,

for any weight function w satisfying the conditions of Corollary 9.2.14. We know that

wt+1 satisfies them because of our invariant in Claim 9.3.13. Turning to the contribution

of outliers, we want to bound ϵ · EX∼B[wt+1(X)gt(X)]. By definition, we have that gt(x) ≤

τt(x) + C3λt∥Mt∥2
F/ϵ, and thus we get that the desired expression is bounded from above

by ϵEX∼B[wt+1(X)τt(X)] + C3λt∥Mt∥2
F . The first expression was bounded from above in

Lemma 9.3.9 by using the downweighting filter, and the second is small because of how C3
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is set in our algorithm.

This completes the proof sketch of Lemma 9.3.16. We now provide the complete proof.

Proof of Lemma 9.3.16. We will bound the contribution of inliers and outliers to the quantity

EX∼P [wt+1(X)gt(X)] from above. Recall from our notation that the decomposition into

inliers and outliers is P = (1 − ϵ)G + ϵB. For the inliers, we use Corollary 9.2.14 with

U = Mt and b = µt to obtain the following:

E
X∼G

[wt+1(X)gt(X)] ≤ ∥Mt∥2
F

(
1 + δ2

ϵ
+ ∥µt − µ∥2

2 + 2δ∥µt − µ∥2

)
≤ ∥Mt∥2

F (1 + cλt) ,

(9.5)

where the last inequality uses that, by the certificate lemma (Lemma 9.2.11), every term

except the first in the previous expression is less than a sufficiently small fraction of λt.

Regarding the outliers, we decompose their contribution to EX∼P [wt+1(X)gt(X)] into

two sets: (i) the set of points with projection greater than the threshold C3∥Mt∥2
Fλt/ϵ used

in Line 21 of the algorithm, and (ii) the set of points with smaller projection. Concretely,

letting Lt := {x ∈ Rd : gt(x) > C3∥Mt∥2
Fλt/ϵ}, we have that

ϵ E
X∼B

[wt+1(X)gt(X)] = ϵ E
X∼B

[wt+1(X)τt(X)] + ϵ E
X∼B

[wt+1(X)gt(X) I{x ̸∈ Lt}]

≤ cλt∥Mt∥2
F + ϵC3∥Mt∥2

Fλt/ϵ ≤ c′∥Mt∥2
Fλt , (9.6)

where the first inequality follows from Lemma 9.3.9 and the second inequality follows

from the choice of C3 in Algorithm 6.

We also use the following relation on Σt+1:

Σt+1 = E
X∼Pt+1

[
(X − µt+1)(X − µt+1)⊤

]
⪯ E

X∼Pt+1

[
(X − µt)(X − µt)⊤

]
= 1

EX∼P [wt+1(X)] E
X∼P

[wt+1(X)(X − µt)(X − µt)⊤] . (9.7)
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Recalling the definition Bt+1 = (EX∼P [wt+1(X)])2Σt+1 −
(
1− C1

δ2

ϵ

)
Id, Equation (9.7) im-

plies that Bt+1 ⪯ Ft+1, where Ft+1 := (EX∼P [wt+1(X)])EX∼P [wt+1(X)(X −µt)(X −µt)⊤]−(
1− C1

δ2

ϵ

)
Id. Using Fact 9.2.2 along with the fact that Bt+1 ⪰ 0 (Claim 9.3.14), we get the

following:

tr(MtBt+1Mt) = tr(M2
tBt+1) ≤ tr(M2

tFt+1) (using tr(ABC) = tr(CAB))

= tr
(

Mt

(
E

X∼P
[wt+1(X)] E

X∼P
[wt+1(X)(X − µt)(X − µt)⊤]

−
(

1− C1
δ2

ϵ

)
Id
)

Mt

)

= E
X∼P

[wt+1(X)] E
X∼P

[wt+1(X)tr((X − µt)⊤M2
t (X − µt))]

−
(

1− C1
δ2

ϵ

)
∥Mt∥2

F

= E
X∼P

[wt+1(X)] E
X∼P

[wt+1(X)gt(X)]−
(

1− C1
δ2

ϵ

)
∥Mt∥2

F

≤
(
1 + cλt + c′λt − (1− C1δ

2/ϵ)
)
∥Mt∥2

F

(using Equations (9.5) and (9.6))

≤ c′′λt∥Mt∥2
F .

This concludes the proof.

9.4 Efficient Streaming Algorithm for Robust Mean

Estimation

We now turn to the main focus of this paper and present a low-memory algorithm for robust

mean estimation. Our algorithm works in two setups: (i) the single-pass streaming setting,

where a set of i.i.d. samples from an ϵ-corrupted distribution in total variation distance

(Definition 9.1.2) arrive one at a time (Definition 9.1.1), and (ii) the strong-contamination

model (Definition 9.3.1), where the algorithm is allowed poly-logarithmically many passes
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over the input stream (defined below).

Definition 9.4.1 (Streaming Model in k Passes). For a fixed set S, the elements of S are revealed

to the algorithm one at a time. This process is repeated k times. The sequence of elements in S within

each pass can be arbitrary.

Our main result is the following theorem for the single-pass streaming model, which is

a generalized version of Theorem 9.1.3:

Theorem 9.4.2 (Robust Mean Estimation in Single-Pass Streaming Model). Let d ∈ Z+,

0 < τ < 1, 0 < ϵ < ϵ0 for a sufficiently small constant ϵ0, and δ ≥ ϵ. Let D be a distribution

which is (Cϵ, δ)-stable with respect to the (unknown) vector µ ∈ Rd, for a sufficiently large constant

C > 0. Let R be any radius such that PX∼D[∥X − µ∥2 > R] ≤ ϵ. Let P be a distribution with

dTV(P,D) ≤ ϵ. There exists an algorithm that given ϵ, δ, τ and

n = O

(
R2 max

(
d,

ϵ

δ2 ,
(1 + δ2/ϵ)d

δ2R2 ,
ϵ2d

δ4 ,
R2ϵ2

δ2 ,
R2ϵ4

δ6

)
polylog

(
d,

1
ϵ
,

1
τ
, R
))

(9.8)

i.i.d. samples from P in a stream according to the model of Definition 9.1.1, runs in time

nd polylog (d, 1/ϵ, 1/τ, R), uses memory d polylog (d, 1/ϵ, 1/τ, R), and returns a vector µ̂ such

that, with probability at least 1− τ , it holds that ∥µ− µ̂∥2 = O(δ).

Note that Theorem 9.1.3 in Section 9.1.1 is a special case of Theorem 9.4.2 for the two

important families of distributions: (i) subgaussian distributions with identity covariance,

and (ii) distributions with bounded covariance.

1. For subgaussian distributions with identity covariance, we have that R =

Θ(
√
d log(1/ϵ)), δ = O(ϵ

√
log(1/ϵ)), and thus n = Õ (d2/ϵ2).

2. For distributions with covariance at most identity, we have that R = Θ(
√
d/ϵ), δ =

O(
√
ϵ), and thus n = Õ (d2/ϵ).
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In order to obtain a low-memory algorithm for the robust mean estimation problem, we

start with an obstacle that one faces when trying to modify the existing Algorithm 6 to that

setting. The issue is that, since n can be much larger than d, we cannot even store the weight

function wt. Fortunately, this can be handled by freshly computing the scores wt(x) for any

given x, whenever we need them. This requires us to store only {(Ut, ℓt) : t ∈ [K]}, where

Ut is the Johnson-Lindenstrauss sketch at the iteration t, and ℓt is the corresponding count

from the downweighting filter. This can be achieved with additional poly-logarithmic

memory. Thus, Algorithm 6 can be readily extended to setting (ii), giving us Corollary 9.4.3.

Corollary 9.4.3 (Robust Mean Estimation in Multiple Passes Streaming Model). Let d ∈ Z+,

0 < τ < 1 and 0 < ϵ < ϵ0 for a sufficiently small constant ϵ0, and δ ≥ ϵ. Let S be an ϵ-corrupted

version of a set that is (Cϵ, δ)-stable with respect to the (unknown) vector µ ∈ Rd, for a sufficiently

large constant C. Denote by n the cardinality of S. There exists an algorithm that operates in the

streaming model of Definition 9.4.1 with k = polylog (d, 1/ϵ, 1/τ) and, given ϵ, δ, τ and T , runs

in time nd polylog (d, 1/ϵ, 1/τ), uses additional memory d polylog (d, 1/ϵ, 1/τ), and finds a vector

µ̂ such that, with probability at least 1− τ , it holds ∥µ− µ̂∥2 = O(δ).

In the main body of this section, we prove Theorem 9.4.2.

9.4.1 Setup and Algorithm Description

Moving to the single-pass streaming model and Theorem 9.4.2 requires a change in perspec-

tive: instead of having a corrupted dataset, we now have sample access to a distribution P

such that dTV(P,D) ≤ ϵ, where D is a stable distribution. We will reweight this distribution

using weights, wt(·), that are now functions on the whole Rd instead of a fixed dataset. Thus,

Pt now denotes the reweighting of the (corrupted) distribution P with the weights wt.

Similarly µt,Σt,Bt,Mt denote the quantities that pertain to the distribution Pt. The goal

of our algorithm remains essentially the same: obtain Pt such that dTV(Pt, P ) = O(ϵ) and

∥Σt∥2 ≤ 1 + O(δ2/ϵ); Lemma 9.2.11 would then imply that ∥µt − µ∥2 = O(δ). Before pre-
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senting the pseudocode of Algorithm 8, we identify two problems that arise in generalizing

our results from Section 9.3 and provide an overview of their solutions:

Calculating Scores Recall that the only place where Mt is used in Algorithm 6 is Line 18,

where Mt is multiplied with the vectors zt,j . Let z be an arbitrary vector. Since Mt = Blog d,

in the previous section we were able to compute Mtz by iteratively multiplying z by Bt.

Since we now do not have access to Bt, but only sample access to Pt, we need a sufficiently

fine approximation B̂t of Bt (obtained using i.i.d. samples). The natural approach would

then be to multiply B̂t with z iteratively log dmany times. Even though B̂tz can be computed

in a streaming fashion (as outlined in the previous section), it is not possible to compute

(B̂t)log dz without accessing the data log d times. To circumvent this issue, we use a fresh

sample approximation of Bt in every multiplication step. That is, we approximate Mtz by

M̂tz, where M̂t := ∏p
j=1 B̂t,j and each B̂t,j is computed on a different set of samples. This

approach crucially leverages the fact that in the contamination model of Definition 9.1.2,

outliers are added in a way that is oblivious to the inliers, and therefore these datasets

are statistically identical and independent of each other. We show in Section 9.4.3 that the

resulting M̂t is a sufficiently accurate approximation of Mt. Similarly, we need to modify

the Downweighting filter, since its implementation using binary search requires performing

checks of the form EX∼P [w(X)τ̃(x)] > 2T and calculating the weighted mean exactly is no

longer possible. We propose a sample-efficient estimator to approximate that expectation

(see Lemma 9.4.16 in Section 9.4.3.3) and run an “approximate” variant of binary search

(see Section 9.4.2).

Cover Argument We now turn to the more technical issue of controlling the size of the JL-

sketch, i.e., the number of rows,L, of the matrix Ut ∈ RL×d. For simplicity, assume M̂t = Mt,

and recall that τ̃(x) is the thresholded version of ∥Ut(x− µt)∥2
2, as defined in Line 21 and

τ(x) is the same score but using Mt. The potential-based analysis in Section 9.3 requires

that EX∼P [wt+1(X)τt(X)] is small. However, the stopping condition of the Downweighting
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filter implies only that EX∼P [wt+1(X)τ̃t(X)] is small. In Section 9.3, the bound on the former

was obtained from the bound on the latter by using that ∥Ut(x − µt)∥2 ≈ ∥Mt(x − µt)∥2

pointwise in the support of P (Claim 9.3.10).

By the classical JL lemma, the size of the JL sketch, L, needs to be at most logarithmic

in the size of the set S where we require the pointwise approximation to hold. Thus, in

the previous section, L scaled as log |S| = log n. However, in the streaming model where

there is no such dataset, it is far from obvious how the analysis should proceed. A näive

approach would be to require the approximation to hold on a cover S̃ of the support of

Pt. Since |S̃| scales exponentially with d, the required bound on L would be log |S̃| = Ω(d),

which is too large for our purposes. Luckily, we can still find a fixed set Scover such that

the following holds: (i) log |Scover| = polylog(d/ϵ), and (ii) the expectation of scores over

U(Scover) approximates the expectation of scores over P . That is, as far as the expectations

of the scores are concerned, P can be approximated by the uniform distribution over

Scover. Arguing as before, if ∥Ut(x − µt)∥ ≈ ∥Mt(x − µt)∥ for each x ∈ Scover, then the

downweighting filter also ensures that EX∼P [wt+1(X)τ̃t(X)] is small. Thus, Scover can serve

as a proxy dataset (used only in the analysis) to ensure that the size of the JL sketch is

sufficiently bounded, i.e., that log |Scover| ≤ Cpolylog(d/ϵ).

Establishing the desired upper bound on the cardinality of Scover requires a somewhat

more sophisticated argument that relies on the VC-dimension of a family of functions

corresponding to the weight update rule. This result is stated in Section 9.4.2.1.

We now present the algorithm more formally. We start by clarifying the notation used.

Notation regarding Algorithm 8: The quantities involved in the algorithm and its analysis

now are based on the underlying data distribution P as well as its approximations. We note

that Pt, µt,Σt,Bt,Mt, λt are functionals of the distribution P and are primarily used in the

analysis. The parameters λ̂t, M̂t are approximations for ∥Bt∥2 and Mt respectively that the

algorithm forms using samples from Pt. Regarding score functions, gt(x) = ∥Mt(x− µt)∥2
2
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is as before. The computations however use only the Johnson-Lindenstrauss versions

g̃t(x) := 1
L

∑L
i=1(v⊤

t,i(x − µ̂t))2, which can also be written as ∥Ut(x − µ̂t)∥2
2 in matrix form,

by defining Ut to have the vectors 1√
L
vt,i as its rows. Note that g̃t(x) is defined using µ̂t

instead of µt. Finally, we denote by τt(x) = gt(x) I{gt(x) > C3∥Mt∥2
Fλt/ϵ} and τ̃t(x) =

g̃t(x) I{g̃t(x) > C3∥Ut∥2
F λ̂t/ϵ}.

Remark 9.4.4. Recalling Lemma 9.2.12, we may again treat the input distribution as a mixture

P = (1− ϵ)G+ ϵB, where G is a distribution that is (C ′ϵ, δ)-stable with respect to µ.

As already mentioned, Algorithm 8 uses two levels of approximation: the first level

is approximating the true distributional quantities by taking samples, and the second is

preserving the latter quantities using the JL sketch. If both of these approximations are

sufficiently accurate, the correctness of Algorithm 8 would follow similarly to Algorithm 6.

Of course, the challenge is to ensure that these approximations hold over the entire distribu-

tion, while controlling the sample and memory complexity of the algorithm. As we show

in Section 9.4.2.1, this can be achieved by restricting our attention to a finite set (cover) of

sufficiently large cardinality. Thus, the deterministic conditions that we require now also

involve the cover set, which we denote by Scover. The reader may think of Scover as a fixed

set, which will be specified later on (Lemma 9.4.9).
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Algorithm 8 Robust Mean Estimation In Single-Pass Streaming Model
1: function RobustMeanStreaming(δ, ϵ, τ and sample access to P)
2: Let R be such that PX∼G[∥X − µ∥2 > R] ≤ ϵ.
3: Let P = (1− ϵ)G+ ϵB. Without loss of generality, we assume that the points added

by the adversary are within O(R) from µ in Euclidean norm (see Section 9.3.1).
4: Let C be a sufficiently large constant.
5: Let K = C log d log(dR/ϵ).
6: Let L = C log3(dR/ϵ) log2(1/(τϵ)).
7: Let r = CdR2+4 log d.
8: Obtain a naïve estimation µ̂ of µ such that ∥µ̂− µ∥2 ≤ 4R.
9: Let w : Rd → [0, 1] be the weight function.

10: Initialize w0(x)← I{∥x− µ̂∥2 ≤ 5R} for all x ∈ T and ℓ1 ← 0.
11: for t ∈ [K] do
12: Define wt(x) = wt−1(x)(1− τ̃t(x)/r)ℓt .
13: Let Pt be the distribution of P weighted by wt, i.e., Pt(x) =

P (x)wt(x)/EX∼P [wt(X)].
14: Let µt be the mean of Pt.
15: Let Σt be the covariance matrix of Pt.
16: Let Bt = (EX∼P [wt(X)])2Σt −

(
1− C1

δ2

ϵ

)
Id and Mt = Blog d

t .
17: Compute an O(δ)-accurate estimator µ̂t of µt (see Lemma 9.4.11).
18: Let ñ = C ′′R2(log d)2 max

(
d, ϵ

2d
δ4 ,

R2ϵ2

δ2 , R
2ϵ4

δ6

)
log

(
dK log d

τ

)
.

19: For k ∈ [log d], denote by B̂t,k the empirical version of Bt over ñ fresh i.i.d.
samples (see Section 9.4.3 for more details).

20: Define M̂t := ∏log d
k=1 B̂t,k ▷ M̂t is not stored in memory.

21: Let λt = ∥Bt∥2 and an approximation λ̂t such that λ̂t/λt ∈ [0.8, 1.2].
22: if λ̂t > C2δ

2/ϵ then
23: for j ∈ [L] do
24: zt,j ∼ U({±1}d).
25: vt,j ← M̂tzt,j . ▷ See Remark 9.4.12 for efficient implementation.
26: Store vt,j in memory.
27: end for
28: Denote by Ut the matrix with rows 1√

L
vt,j for j ∈ [L].

29: Let g̃t(x) = ∥Ut(x− µ̂t)∥2
2 and τ̃t(x) = g̃t(x) I{g̃t(x) > C3∥Ut∥2

F λ̂t/ϵ}.
30: ℓmax ←

(
dR
δ2/ϵ

)C log d
.

31: ℓt ← DownweightingFilter(P,wt, τ̃t, R, cλ̂t∥Ut∥2
F , ℓmax). ▷ Algorithm 9

32: Store ℓt in memory.
33: end if
34: end for
35: return an O(δ) approximation µ̂t of the mean µt of the distribution Pt (see

Lemma 9.4.11).
36: end function
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Condition 9.4.5 (Deterministic Conditions for Algorithm 8). Let Scover denote the cover of

Lemma 9.4.9 for ϵ′ = poly(d,R, 1/ϵ)log d. Our condition consists of the following event:

1. Estimator µ̂t: For all t ∈ [K], we have that ∥µ̂t − µt∥2 ≤ δ/100.

2. For every t ∈ [K], if ∥Bt∥2 ≥ (C1/2)δ2/ϵ and EX∼P [wt(X)] ≥ 1−O(ϵ), we have that:

a) Spectral norm of Bt: λ̂t ∈ [0.1λt, 20λt].

b) Frobenius norm: ∥Ut∥2
F ∈ [0.8∥Mt∥2

F , 1.2∥Mt∥2
F ].

c) Scores: g̃t(x) ≥ 0.2gt(x)− 0.8(δ2/ϵ2)∥Mt∥2
F , for all x ∈ Scover.

3. Stopping condition: Let Tt := cλ̂t∥Ut∥2
F . For every w : Rd → [0, 1], the algorithm has

access to an estimator f(w) for the quantityEX∼P [w(X)τ̃t(X)], such that F̂ (P ) > Tt/2 when-

ever EX∼P [w(X)τ̃t(X)] > Tt. This estimator is accurate when called O(log(d) log(dR/ϵ))

times in every iteration t ∈ [K].

We note that the Item 3 above is needed to evaluate the stopping condition in the down-

weighting filter. For every t ∈ [K], the stopping condition is evaluated at most O(log(ℓmax))

times, with ℓmax = O(dR2+log d/(λ̂t∥Ut∥2) (using Lemma 9.3.6 with r = C4dR
2+4 log d and

T := O(λ̂t∥Ut∥2
F )). This means that we require the estimator in Item 3 to be accurate on

O(K log(d) log(dR/ϵ)) calls.

9.4.2 Correctness of Algorithm 8

The analysis in this section is along the same lines as that of Section 9.3.4. The naïve

estimation step of Line 8 is the same as that used in Algorithm 6 (see Appendix F.2.4).

Given Condition 9.4.5, we first show the correctness of Algorithm 8 and leave the task of

establishing Condition 9.4.5 for Section 9.4.3. The proof of correctness would largely follow

by our work done in Section 9.3.4. There are two adjustments needed in these arguments.

The first concerns Lemma 9.3.6, since the algorithm cannot perform exact binary search.

Instead, it can use the approximate oracle of Item 3 of Condition 9.4.5, resulting in a
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multiplicative constant in the final guarantee. For completeness, we prove correctness for

this case in Appendix F.3.1.

Lemma 9.4.6. In the context of Algorithm 8, if (1 − ϵ)EX∼G[w(X)τ̃(X)] ≤ T , ∥τ̃∥∞ ≤ r,

and ℓmax > r/T , then Algorithm 9 modifies the weight function w to w′ such that (i)

(1 − ϵ)EX∼G[w(X) − w′(X)] < ϵEX∼B[w(X) − w′(X)], and (ii) upon termination we have

EX∼P [w′(X)τ̃(X)] ≤ 54T . Furthermore, if the estimator of Line 3 is set to be that of Lemma 9.4.16,

the algorithm terminates after O(log(ℓmax)) iterations, each of which uses O((R2ϵ/δ2) log(1/τ))

samples, takes O(nd) time and memory O(log(1/τ)).

Algorithm 9 Downweighting Filter using Approximate Oracle
1: function DownweightingFilter(P,w, τ̃ , R, T, ℓmax)
2: r ← CdR2+4 log d.
3: Denote by f(ℓ) an estimator close to EX∼P [w(X)(1 − τ̃(X)/r)ℓτ̃(X)] (see

Lemma 9.4.16 for details).
4: L← {1, 2 . . . , ℓmax}
5: while |L| > 2 do
6: Let ℓ be the element in the middle of L.
7: if f(ℓ) > 9T then
8: Discard all elements smaller than ℓ from L.
9: else

10: Discard all elements greater than ℓ from L.
11: end if
12: end while
13: return any ℓ of L satisfying 4T ≤ f(ℓ) ≤ 36T .
14: end function

The second adjustment is regarding the analog of Lemma 9.3.9, i.e., ϵEX∼B[wt+1τt(X)]

is small (the bound on ϵEX∼B[wt+1τ̃t(X)] follows from the stopping condition as before).

Since the support is unbounded, we use an argument based on a fixed cover to show that

the downweighting filter succeeds with the JL-sketch of size L. The statement is given

below.

Lemma 9.4.7. Under the deterministic Condition 9.4.5 and the context of Algorithm 8, we have that

EX∼B[wt+1(X)τt(X)] ≤ 5EX∼B[wt+1(X)τ̃t(X)] + c(λt/ϵ)∥Mt∥2
F , where c is of the form C/C2

with C being a sufficiently large constant and C2 being the constant used in Algorithm 8.
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The next section is dedicated to proving Lemma 9.4.7. Here we just show that

Lemma 9.4.7 suffices to prove the analog of Lemma 9.3.9 below.

Lemma 9.4.8. Consider the context of Algorithm 8 and assume that Condition 9.4.5 holds. Then

ϵ · EX∼B[wt+1(X)τt(X)] ≤ c′λt∥Mt∥2
F , for some constant c′′ of the form C ′′/C2, where C2 is the

constant used in Line 22 and C ′ is some absolute constant.

Proof. Denoting by c, c′, c′′ > 0 constants that are all multiples of 1/C2, we have the follow-

ing:

ϵ E
X∼B

[wt+1(X)τt(x)] ≤ 5ϵ E
X∼B

[wt+1(X)τ̃t(x)] + cλt∥Mt∥2
F

≤ 5c′λt∥Mt∥2
F + cλt∥Mt∥2

F ≤ c′′λt∥Mt∥2
F ,

where the first inequality uses Lemma 9.4.7 and the second inequality uses Lemma 9.4.6.

Letting ϕt := tr(M2
t ) denote the potential function, the above result allows us to follow

the same steps as in Section 9.3.4.2 to prove that ϕt+1 ≤ 0.9999ϕt exactly as in Section 9.3.4.2.

Thus, we get that after K iterations, we have that ∥Σt∥2 ≲ δ2/ϵ. Under Item 1 of Condi-

tion 9.4.5, we have that the final estimate µ̂t satisfies that ∥µ̂t − µ∥2 = O(δ). This completes

the proof of correctness of Algorithm 8.

9.4.2.1 Proof of Lemma 9.4.7 via a Cover Argument

To outline the idea of proving Lemma 9.4.7, recall the proof in the setting of Section 9.3.

There, we just required that g̃t(x)/gt(x) ∈ [0.8, 1.2] for all samples x in our dataset, which

can be translated to some relation between τ̃(x) and τ(x). Then, since B was the empirical

distribution on ϵn of these points, the desired condition followed. However, in our case we

cannot use pointwise relationships, since the distribution B may be continuous and the

Johnson-Lindenstrauss argument might not work for the entire Rd with polylog(d) vectors.

The idea is first to relate EX∼B[wt+1(X)τt(X)] to a discrete expectation over N (not too
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many) points from a fixed set, then use the relationship between τ̃ and τ for these points,

and finally relate that discrete expectation back to EX∼B[wt+1(X)τ̃t(X)]. The existence of a

cover of a small size is stated in the following.

Lemma 9.4.9. Consider the setting of Algorithm 8, whereB is the distribution of outliers supported

in a ball of radius R around µ. Let r′ := (CdR2 + 1 + C1δ
2/ϵ)C log d for sufficiently large constant

C. Denote by ϵ the contamination rate and let an arbitrary ϵ′ ∈ (0, 1). There exists a set Scover of

N = 1
ϵ′3
d4K2L2(dRϵ/δ2)O(log d) points x1, . . . , xN lying in the ball of radius R around µ, such that

for all t ∈ [K], for all choices of the vectors zt,j of Line 24 of Algorithm 8 it holds

∣∣∣∣ E
X∼B

[ 1
r′wt+1(X)τ̃t(X)

]
− 1
N

N∑
i=1

1
r′wt+1(xi)τ̃t(xi)

∣∣∣∣ ≤ ϵ′

and
∣∣∣∣ E
X∼B

[ 1
r′wt+1(X)τt(X)

]
− 1
N

N∑
i=1

1
r′wt+1(xi)τt(xi)

∣∣∣∣ ≤ ϵ′ .

We prove this result in Appendix F.3.2. Here we show how it implies the desired

condition, following the proof sketch from the start of this section.

Proof of Lemma 9.4.7. Let r′ := (CdR2 + 1 + C1δ
2/ϵ)C log d and ϵ′ ∈ (0, 1). Applying

Lemma 9.4.9, let Scover be the corresponding cover of cardinality N . From the guarantee of

approximation of g̃t for every x ∈ Scover, we get the following approximation for τ̃t(x) for

x ∈ Scover (proved in Appendix F.3.2).

Claim 9.4.10. Let S be the cover of Lemma 9.4.9 with r′ and ϵ′ as defined above. Suppose that

the deterministic condition Condition 9.4.5 holds. If x ∈ Scover, then τt(x) ≤ 5τ̃t(x) + (18C3 +

12/C2)(λt/ϵ)∥Mt∥2
F , where C3 and C2 are the constants used in Algorithm 8.

Using Claim 9.4.10 and Lemma 9.4.9, we obtain the following series of inequalities:

E
X∼B

[wt+1(X)τt(X)] = r′ E
X∼B

[ 1
r′wt+1(X)τt(X)

]

≤ ϵ′r′ + r′ 1
N

N∑
i=1

1
r′wt+1(xi)τt(xi) (using Lemma 9.4.9 for τt)
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= ϵ′r′ + 1
N

N∑
i=1

wt+1(xi)τt(xi)

≤ ϵ′r′ + (18C3 + 12/C2)(λt/ϵ)∥Mt∥2
F + 5 1

N

N∑
i=1

wt+1(xi)τ̃t(xi)

(using Claim 9.4.10 and wt ≤ 1)

≤ 6ϵ′r′ + (18C3 + 12/C2)(λt/ϵ)∥Mt∥2
F + 5 E

X∼B
[wt+1(X)τ̃t(X)] (using Lemma 9.4.9 for τ̃t)

= 5 E
X∼B

[wt+1(X)τ̃t(X)] + (19C3 + 12/C2)(λt/ϵ)∥Mt∥2
F . (using the definition of ϵ′)

For the last line above, we want to choose ϵ′ such that ϵ′ ≤ C3λt

ϵr′ ∥Mt∥2
F . Since ∥Mt∥2

F ≥

(C2δ
2/ϵ)2 log d (otherwise the algorithm has already terminated), it suffices to choose an ϵ′

that satisfies ϵ′ ≳ (C2δ2/ϵ)2 log d

ϵ(CdR2+1+C1δ2/ϵ)C log d . This gives an upper bound on the cardinality of the

set Scover, which gives the upper bound on the size of the JL-sketch, i.e., L. We provide

explicit calculations in Remark F.3.3.

9.4.3 Establishing Condition 9.4.5

Throughout this section, we assume sample access to the distribution Pt. As mentioned

earlier, Algorithm 7 can simulate this by drawing a sample x from P , calculatingwt(x) (with

poly-logarithmic cost in terms of running time and memory), and rejecting the sample with

probability 1− wt(x). With high probability, rejection sampling can increase the sample

complexity by at most a constant factor because E[wt(X)] ≥ 1−O(ϵ) (cf. Claim 9.3.13).

9.4.3.1 Item 1

We establish Item 1 in the following, which is proved in Appendix F.3.4.

Lemma 9.4.11. In the setting of Algorithm 8, there exist estimators µ̂t such that, with probability at

least 1− τ , for all t ∈ [K] we have that ∥µ̂t − µt∥2 ≤ δ/100. Furthermore, each µ̂t can be computed

on a stream of n = O
(
R2

δ2/ϵ
log(K/τ) + d(1+δ2/ϵ)

δ2 log(K/τ)
)

independent samples from Pt, in time

O(nd log(K/τ)) and using memory O(d log(K/τ)).
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9.4.3.2 Items 2a to 2c

Given that Item 1 holds, in this section, we show that Items 2a to 2c of Condition 9.4.5

hold with high probability if sufficiently many samples from the underlying corrupted

distribution P are drawn. Let the scores ĝt(x) := ∥M̂t(x− µt)∥2
2, where M̂t is the following

sample-based estimator of Mt:

1. Draw a batch S0 of ñ samples from P and let the estimate Ŵt = EX∼U(S0)[wt(X)].

2. Let P ′
t be the distribution of the differences (X−X ′)/

√
2 for two independentX,X ′ ∼

Pt.

3. Draw log d batches S1, . . . , Slog d of ñ samples, each from P ′
t .

4. For k ∈ [log d],

a) Let Σ̂t,k = 1
ñ

∑
x∈Sk

xx⊤.

b) Let B̂t,k = Ŵ 2
t Σ̂t,k − (1− C1δ

2/ϵ)Id.

5. Return M̂t = ∏log d
k=1 B̂t,k.

Remark 9.4.12. Algorithm 8 does not need to calculate or store M̂t because it requires only that

we can calculate products of M̂t with vectors z as in Line 25. This operation can be implemented

in linear runtime and memory. Given the description of the estimator above, it suffices to show

how to multiply Σ̂t,k by a vector z in linear time and memory. To this end, we observe that

Σ̂t,kz = 1
ñ

∑
x∈Sk

x(x⊤z), thus by calculating the inner product (x⊤z) first, the result can be found

in O(nd) time in a streaming fashion.

We will show that Items 2a to 2c of Condition 9.4.5 follow if ∥M̂t − Mt∥2 ≤

0.01 min
(
δ/ϵ
R
, 1√

d

)
∥Mt∥F (cf. Lemma 9.4.15) and ∥µ̂t − µt∥2 = O(δ) (cf. Lemma 9.4.11).

Lemma 9.4.13. Suppose that the estimators M̂t in Algorithm 8 are defined by the procedure as in

Lines 1 to 5 above. LetC be a sufficiently large constant and assume that the dimension is d = Ω(1)13.
13This is without loss of generality as we could avoid the JL-sketch when d = O(1).
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Further assume that ∥µ̂t − µ∥ ≤ 0.01δ. If ñ ≥ CR2(log d)2 max
(
d, ϵ

2d
δ4 ,

R2ϵ2

δ2 , R
2ϵ4

δ6

)
log

(
Kd log d

τ

)
,

then Items 2a to 2c hold with probability at least 1− τ .

Proof. For now, we will assume that for all t ∈ [K], ∥M̂t−Mt∥2 ≤ 0.01 min
(
δ/ϵ
R
, 1√

d

)
∥Mt∥F

with the claimed sample complexity. This follows from Lemma 9.4.15 and a union bound.

We will prove each of these conditions separately.

Proof of Item 2c: Denote T := 0.1δ/ϵ. Fix an iteration t ∈ [K]. We will prove that the

conditions hold in the t-th iteration with probability at least 1 − τ/K and then a union

bound will conclude the proof.

Define ĝt(x) := ∥Mt(x− µ̂t)∥2
2. Since ∥µ̂t − µt∥2 ≤ 0.01δ, we have the following relation

between ĝt and gt:∥Mt(x − µ̂t)∥2
2 ≥ 0.5∥Mt(x − µt)∥2

2 − T 2∥Mt∥2
F , i.e., ĝt(x) ≥ 0.5gt(x) −

T 2∥Mt∥2
F . We have that ∥M̂t −Mt∥2 ≤ 0.1(T/R)∥Mt∥F with probability at least 1− τ/K

(see Lemma 9.4.15). This means that for any point x with ∥x − µ̂t∥2 ≤ 2R, we have

∥Mt(x− µ̂t)∥2 ≤ ∥M̂t(x− µ̂t)∥2 +0.2T∥Mt∥F , which implies that ∥Mt(x− µ̂t)∥2
2 ≤ 2∥M̂t(x−

µ̂t)∥2
2 + 0.08T 2∥Mt∥2

F , or equivalently

∥M̂t(x− µ̂t)∥2
2 ≥ 0.5ĝt(x)− 0.04T 2tr(M2

t ) . (9.9)

The final step is taking the Johnson-Lindenstrauss sketch of M̂t, which gives the matrix Ut

used in the definition of g̃t. By repeating the proof of Lemma 9.3.5 with M̂t in place of Mt,

we get that if L = C log((|Scover|+ d)K/τ), then g̃t(x) ≥ 0.8∥M̂t(x− µ̂t)∥2 for all the points

in the set Scover (the cover from Lemma 9.4.9). The value used for L in Algorithm 8 satisfies

this condition (c.f. Remark F.3.3). Combining this with Equation (9.9) and the relation

between ĝt and gt, we get that g̃t(x) ≥ 0.4ĝt(x)− 0.04T 2∥Mt∥2
F ≥ 0.2gt(x)− 0.44T 2∥Mt∥2

F .

Proof of Item 2b: Again, fix a t ∈ [K]. We have that ∥M̂t −Mt∥2 ≤ 0.01√
d
∥Mt∥F with

probability 1−τ/K using Lemma 9.4.15. We thus have that ∥Mt−M̂t∥F ≤
√
d∥Mt−M̂t∥2 ≤
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0.01∥Mt∥F , which implies

∣∣∣∣∥Mt∥F − ∥M̂t∥F
∣∣∣∣ ≤ 0.01∥Mt∥F . (9.10)

It is easy to check that this is stronger than what we initially wanted. Indeed, squaring

Equation (9.10) and using ∥M̂t∥F ≤ 1.01∥Mt∥F gives

∥M̂t∥2
F ≤ 2∥Mt∥F∥M̂t∥F − ∥Mt∥2

F + (0.01)2∥Mt∥2
F < 1.1∥Mt∥2

F ,

which means that ∥M̂t∥2
F − ∥Mt∥2

F ≤ 0.1∥Mt∥2
F . For the other bound, Equation (9.10)

implies

∥Mt∥2
F ≤ 2∥Mt∥F∥M̂t∥F − ∥M̂t∥2

F + (0.01)2∥Mt∥2
F

≤ 2∥M̂t∥2
F + 2(0.01)∥Mt∥F∥M̂t∥F − ∥M̂t∥2

F + (0.01)2∥Mt∥2
F

< 1.1∥Mt∥2
F ,

which means that ∥Mt∥2
F − ∥M̂t∥2

F ≤ 0.1∥Mt∥2
F . Therefore we obtain the following

∣∣∣∣∥Mt∥2
F − ∥M̂t∥2

F

∣∣∣∣ ≤ 0.1∥Mt∥2
F . (9.11)

Finally, the Johnson-Lindenstrauss step is exactly as described in the proof of Item 2c.

Proof of Item 2a: Since we cannot access the same samples twice, the power-iteration

algorithm now uses a different dataset in every step. Let the matrix M̂t as in the beginning

of Section 9.4.3. We have already shown in the previous paragraph that, with probability

1 − τ , for all t ∈ [K], M̂t has Frobenius norm close to that of Mt (Equation (9.11)). For

the rest of the proof, we condition on this event. Consider the algorithm that calculates

v = M̂tw, where w ∼ N (0, Id) (this can be done in the streaming model by multiplying

with B̂t,k iteratively; moreover this multiplication can be implemented in time O(ñd)). We
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claim that the value λ̂t = ∥v∥1/ log d
2 satisfies the desired relation. First, we note that with

non-zero constant probability, we have that

0.2tr(M̂2
t ) ≤ ∥v∥2

2 ≤ 10tr(M̂2
t ) . (9.12)

where one direction follows by Markov’s inequality and the other by Fact 9.2.6.

Equations (9.11) and (9.12) imply that 0.1tr(M2
t ) ≤ ∥v∥2

2 ≤ 11tr(M2
t ). Furthermore, we

have that

∥v∥
1

log d

2 ≤ (11tr(M2
t ))

1
2 log d ≤

(
11d∥Bt∥2 log d

2

) 1
2 log d ≤ 20∥Bt∥2 . (9.13)

Similarly, for the lower bound, we have that

∥v∥
1

log d

2 ≥ (0.1tr(M2
t ))

1
2 log d ≥ (0.1)

1
2 log d∥Bt∥2 ≥ (0.1)∥Bt∥2 , (9.14)

where in the last inequality we assumed that the dimension is sufficiently large. Putting

Equations (9.11) to (9.13) together, with at least constant non-zero probability, we have

that 0.1∥Bt∥2 ≤ ∥v∥1/ log d
2 ≤ 20∥Bt∥2. By repeating the procedure O(log(1/τ ′)) times and

taking the median, we boost the probability of failure to τ ′. By union bound, choosing

τ ′ = τ/K makes the event hold for all iterations t ∈ [K] simultaneously with probability

1− τ .

The remainder of this section is dedicated to showing that ∥M̂t − Mt∥2 ≤

min
(
δ/ϵ
R
, 0.01√

d

)
∥Mt∥F . We require the following lemma, which we prove in Appendix F.3.3.

We use ∏p
i=1 Bi is to denote the matrix product B1B2 · · ·Bp.

Lemma 9.4.14. Let A,B,B1, . . . ,Bp be symmetric d × d matrices and define M = Bp,MS =∏p
i=1 Bi. If ∥Bi −B∥2 ≤ δ∥B∥2, then ∥MS −Bp∥2 ≤ pδ(1 + δ)p∥B∥p2.

We are now ready to prove our main technical result.
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Lemma 9.4.15. Assume that ∥Bt∥2 ≥ (C1/2)δ2/ϵ and EX∼P [wt(X)] ≥ 1−O(ϵ) hold in the t-th

iteration of Algorithm 8. If Ŵ and every B̂t,k in the product M̂t = ∏log d
k=1 B̂t,k is calculated using

ñ ≥ CR2(log d)2 max
(
d,
ϵ2d

δ4 ,
R2ϵ2

δ2 ,
R2ϵ4

δ6

)
log

(
d log d
τ

)

samples, where C is a sufficiently large constant, we have that

∥M̂t −Mt∥2 ≤ 0.01 min
(
δ/ϵ

R
,

1√
d

)
∥Mt∥F ,

with probability at least 1− τ .

Proof. Let T := δ/ϵ and p := log d for brevity. Using Lemma 9.4.14 we have that ∥M̂t −

Mt∥2 ≤ pγeγp∥Mt∥2, where γ > 0 is such that

∥B̂t,k −Bt∥2 ≤ γ∥Bt∥2 (9.15)

for all k ∈ [p]. Therefore, for the lemma to hold, it suffices that pγeγp ≤ 0.01 min
(
T∥Mt∥F

R∥Mt∥2
, 1√

d

)
.

For that, it suffices to choose γ = 0.01
3p min

(
1√
d
, T∥Mt∥F

R∥Mt∥2

)
. At this point, we also assume two

things: First, that the estimate Σ̂t,k (defined in step 4a) is such that ∥Σ̂t,k −Σt∥2 ≤ ϵ′∥Σt∥2

for some ϵ′ to be specified later on. Second, that we have an estimate Ŵt for EX∼P [wt(X)]

such that

Ŵt = E
X∼P

[wt(X)] + η , (9.16)

with |η| ≤ ξ for some ξ ≤ 1 to be decided later. By Hoeffding’s inequality, if we compute

Ŵ as shown in Step 1, then log(2/τ)/ξ2 samples suffice to guarantee that Equation (9.16)

holds with probability 1− τ/2. We now focus on Equation (9.15). We note that

∥B̂t,k −Bt∥2 =
∥∥∥∥∥
(

E
X∼Pt

[wt(X)] + η
)2

Σ̂t,k − E
X∼Pt

[wt(X)]2Σt

∥∥∥∥∥
2
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≤ E
X∼Pt

[wt(X)]2∥Σ̂t,k −Σt∥2 + (η2 + 2η E
X∼Pt

[wt(X)])∥Σ̂t,k∥2

≤ ∥Σ̂t,k −Σt∥2 + 3ξ(∥Σ̂t,k −Σ∥2 + ∥Σt∥2)

= (1 + 3ξ)∥Σ̂t,k −Σt∥2 + 3ξ∥Σt∥2 .

By choosing ξ = min(1, ϵ′/3) and ϵ′ = 1
5γ∥Bt∥2/∥Σt∥2, the above implies that Equation (9.15)

holds. Thus, it suffices to show that ∥Σ̂t,k −Σt∥2 ≤ ϵ′∥Σt∥2 for our choice of ϵ′. Note that

Fact 9.2.5 is not directly applicable to the distribution Pt since it does not have zero mean.

This is why we are working with samples of the form (X −X ′)/
√

2. By Fact 9.2.5 with ϵ′

set as above and τ = τ/(2p), we have the following upper bound on the sufficient number

of samples:

ñ = C
R2

ϵ′2∥Σt∥2
log

(
2pd
τ

)

≲
R2

γ2
∥Σt∥2

∥Bt∥2
2

log
(
pd

τ

)

≲
R2ϵ

δ2γ2
∥Σt∥2

∥Bt∥2
log

(
pd

τ

)
(using ∥Bt∥2 ≥ (C1/2)δ2/ϵ)

≲
R2ϵ

δ2γ2 max
(

1, ϵ
δ2

)
log

(
pd

τ

)
(9.17)

≲
R2p2ϵ

δ2 max
(
d,
R2ϵ2

δ2
∥Mt∥2

2
∥Mt∥2

F

)
max

(
1, ϵ
δ2

)
log

(
pd

τ

)

≤ R2p2ϵ

δ2 max
(
d,
R2ϵ2

δ2

)
max

(
1, ϵ
δ2

)
log

(
pd

τ

)
(using ∥Mt∥2 ≤ ∥Mt∥F )

≤ R2p2ϵ

δ2 max
(
d,
ϵd

δ2 ,
R2ϵ2

δ2 ,
R2ϵ3

δ4

)
log

(
pd

τ

)
, (9.18)

Equation (9.17) is derived as follows: First we note that ∥Σt∥2 ≤ ∥Bt∥2+1
EX∼P [wt(X)]2 ≲ ∥Bt∥2+1,

where the last inequality uses our assumption that EX∼P [wt(X)] ≥ 1−O(ϵ). We combine

this with ∥Bt∥2 ≳ δ2/ϵ as follows:

∥Σt∥2
2

∥Bt∥2
2
≲

(∥Bt∥2 + 1)2

∥Bt∥2
2

≤ 2 + 2
∥Bt∥2

2
≲ 1 + 1

(δ2/ϵ)2 .
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Regarding the samples required to achieve Equation (9.16), a sufficient number is

ñ = C log
(2
τ

) 1
ξ2

≲ log
(1
τ

)
max

(
1, 1
ϵ′2

)
≲ log

(1
τ

)
max

(
1, 1
γ2
∥Σt∥2

2
∥Bt∥2

2

)

≲ log
(1
τ

)
max

(
1, 1
γ2 max

(
1, ϵ

2

δ4

))

≲ log
(1
τ

)
max

(
1, p2 max

(
d,
R2ϵ2

δ2

)
max

(
1, ϵ

2

δ4

))

≲ log
(1
τ

)
max

(
p2d,

p2R2ϵ2

δ2 ,
p2dϵ2

δ4 ,
p2R2ϵ4

δ6

)
,

which is smaller compared to the right-hand side of Equation (9.18).

9.4.3.3 Item 3

The following lemma establishes that the estimator of Item 3 is accurate when called once.

By using a union bound on the maximum number of times that it can be called, we get the

sample complexity requirement of n = O
(
(R2/(δ2/ϵ))polylog

(
d,R, 1

ϵ
, 1
τ

))
.

Lemma 9.4.16. Consider the context of Algorithm 8 and denote Tt := cλ̂t∥Ut∥2
F . Given a weight

function w : Rd → [0, 1], there exists an estimator f(w) on n = O( R2

δ2/ϵ
log(1/τ)) samples such

that, if EX∼P [w(X)τ̃t(X)] > Tt, then with probability at least 1 − τ , f > Tt/2. Similarly,

EX∼P [w(X)τ̃t(X)] < Tt implies f < (3/2)Tt. Moreover, the estimator uses O(log(1/τ)) memory

and runs in O(nd) time.

Proof. We show the first direction; the other one has a symmetric proof. Suppose

EX∼P [w(X)τ̃t(X)] > cλ̂t∥Ut∥2
F . It suffices to show that with probability at least 0.9 we have

that

1
n

N∑
i=1

w(Xi)τ̃t(Xi) >
3
4 E
X∼P

[w(X)τ̃t(X)]− 1
4cλ̂t∥Ut∥2

F , (9.19)
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as we can repeat the procedure O(log(1/τ)) times and take the majority vote to boost the

probability to 1− τ . By Chebyshev’s inequality, we have that with probability 0.9 it holds

that

1
n

n∑
i=1

w(Xi)τ̃t(Xi) > E
X∼P

[w(X)τ̃t(X)]−
√

10 VarX∼P (w(X)τ̃(X))
n

.

Therefore, it suffices to have
√

10 VarX∼P (w(X)τ̃(X))
n

≤ 1
4 EX∼P [w(X)τ̃t(X)] + 1

4cλ̂t∥Ut∥2
F , and

thus we needn to be a sufficiently large multiple of VarX∼P (w(X)τ̃t(X))/(EX∼P [w(X)τ̃t(X)]+

cλ̂t∥Ut∥2
F )2. For that, it suffices to choose

n = Θ
(

VarX∼P (w(X)τ̃t(X))
EX∼P [w(X)τ̃t(X)]cλ̂t∥Ut∥2

F

)
.

We now focus on bounding by above the right-hand side. Let T ′
t := C3λ̂t∥Ut∥2

F be the

threshold used in the definition of τ̃t(x) = g̃t(x) I{g̃t(x) ≥ T ′
t}. For the variance we have

that

Var(w(X)τ̃t(X)) ≤ E
X∼P

[((w(X)τ̃t(X))2]

≤ E
X∼P

[w(X)τ̃ 2
t (X)]

≲ R2∥Ut∥2
F E
X∼P

[w(X)τ̃t(X)] , (9.20)

where the last inequality uses that EX∼Pt [τ̃ 2
t (X)] = EX∼Pt [g̃2

t (X) I{g̃t(X) ≥ T ′
t}] and bounds

from above the one of the two factors of g̃t as follows:

g̃t(x) = ∥Ut(x− µt)∥2
2 ≤ ∥Ut∥2

FR
2 , (9.21)

where Ut is the matrix used in Line 29 of the algorithm. Using Equation (9.20), the number
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of samples that suffice can now be bounded as follows:

VarX∼P (τ̃t(X))
λ̂t EX∼P [w(X)τ̃t(X)]∥Ut∥2

F

≲
R2∥Ut∥2

F

λ̂t∥Ut∥2
F

≲
R2

δ2/ϵ
,

where we used that λ̂t > C2δ
2/ϵ from Line 22 of our algorithm.

9.5 Applications: Beyond Robust Mean Estimation

In this section, we develop robust streaming algorithms with near-optimal space complexity

for more complex statistical tasks, specifically for robust covariance estimation and robust

stochastic optimization. The main idea enabling these applications is that these tasks can

be effectively reduced to robust mean estimation.

9.5.1 Robust Covariance Estimation

In this subsection, we study the problem of estimating the covariance matrix Σ of a dis-

tribution D, having access to ϵ-corrupted samples from D in the sense of Definition 9.1.2.

Let X ∼ D and the Kronecker product Y = X ⊗X . Note that E[Y ] = Σ♭, where ♭ denotes

the flattening operation. Then, using any robust mean estimation algorithm on this d2-

dimensional distribution, one efficiently compute a vector close to Σ♭ in ℓ2-norm, which

translates to a Frobenius-norm guarantee for Σ. Of course, our mean estimator works

as long as the distribution of Y is stable. If Cov[Y ] is bounded from above by a multiple

of the identity matrix, then Y is (ϵ, O(
√
ϵ))-stable with respect to Σ♭, and thus we get the

following as a corollary of Theorem 9.4.2:

Theorem 9.5.1 (Robust Covariance Estimation for Distributions with Bounded Moments).

Let a distribution D with CovX∼D[X ⊗ X] ⪯ Id2 and denote by Σ its covariance matrix. Let

d ∈ Z+, 0 < τ < 1 and 0 < ϵ < ϵ0 for a sufficiently small constant ϵ0. There exists an algorithm that

given ϵ, τ and a set of n = (d4/ϵ)polylog(d, 1/ϵ, 1/τ) samples in the single-pass streaming model of
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Definition 9.1.1 from a distribution Q with dTV(D,Q) ≤ ϵ, runs in time nd2polylog (d, 1/ϵ, 1/τ),

uses memory d2polylog (d, 1/ϵ, 1/τ), and outputs a matrix Σ̂ such that ∥Σ̂−Σ∥F = O(
√
ϵ), with

probability at least 1− τ .

For the special case when D is Gaussian we have that the fourth moment tensor of D is

bounded:

Fact 9.5.2 (see, e.g., [CDGW19]). Let X ∼ N (0,Σ) with Σ ⪯ Id and Y = X ⊗ X . Then,

Cov[Y ] ⪯ 2Id2 .

Using the above fact, we have that the guarantees of Theorem 9.5.1 hold in the Gaussian

case, giving an algorithm for O(
√
ϵ)-approximation in Frobenius norm. However, the

information-theoretic lower bound for covariance estimation of the Gaussian distribution

is of the order of ϵ. We can plug-in our streaming robust mean estimation algorithm to

the covariance estimator given in [CDGW19], and achieve the nearly-optimal error of

O(ϵ log(1/ϵ)). This algorithm creates a series of estimates Σ̂i. At the (i + 1)-th step, all

samples are multiplied by Σ̂−1/2
i thus, given that Σ̂i is a good approximation for Σ, this

makes the distribution of the transformed samples closer to N (0, Id), which in turn allows

us to produce a better approximation Σ̂i+1 of Σ. The resulting guarantees are summarized

in the following theorem.

Theorem 9.5.3 (Robust Gaussian Covariance Estimation). Let Q be a distribution on Rd with

dTV(Q,N (0,Σ)) ≤ ϵ and assume that 1
κ
Id ⪯ Σ ⪯ Id, for some κ > 0. There is a single-pass

streaming algorithm that uses n = (d4/ϵ2)polylog(d, κ, 1/ϵ, 1/τ) samples from Q, runs in time

nd2polylog (d, κ, 1/ϵ, 1/τ), uses memory d2polylog (d, κ, 1/ϵ, 1/τ), and outputs a matrix Σ̂ such

that ∥Σ−1/2Σ̂Σ−1/2 − Id∥F = O(ϵ log(1/ϵ)), with probability at least 1− τ .

The reader is referred to Appendix F.5 for more details on using Algorithm 8 to obtain

Theorem 9.5.3.
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9.5.2 Stochastic Convex Optimization

Here we explore the implications of Algorithm 8 in outlier-robust stochastic convex opti-

mization. This subsection crucially leverages the prior works [PSBR20; DKKLSS19], which

apply robust mean estimation algorithms to perform robust stochastic optimization. In

particular, we follow the framework of [PSBR20].

Concretely, we study the following generic optimization problem: Let a parameter

space Θ, sample space Z , and a loss function f(θ; z) : Θ × Z → R+. For an unknown

distributionD overZ , the goal is to minimize the associated risk f̄(θ) = Ez∼D[f(θ; z)], given

sample access to the distribution D. We will occasionally just write f(θ) instead of f(θ; z)

when no confusion arises. This setup is central in machine learning, since it captures a

plethora of learning tasks. For example, f can be a negative log-likelihood function for

the learning problem of interest, e.g., square loss for linear regression and logistic loss for

logistic regression. In the robust version of the problem, the algorithm has access only to

an ϵ-corrupted version of D in the sense of Definition 9.1.2.

We start by recalling a generic optimization algorithm that works whenever f̄ is τℓ-

strongly convex and τu-smooth, i.e., for all θ1, θ2 ∈ Θ, we have that

τℓ
2 ∥θ1 − θ2∥2

2 ≤ f̄(θ1)− f̄(θ2)− (∇f̄(θ2))⊤(θ1 − θ2) ≤
τu
2 ∥θ1 − θ2∥2

2 .

We then give specific applications for robust linear regression and logistic regression.

The work of [PSBR20] provides an analysis of projected gradient descent assuming

oracle access to approximations of the gradient:

Definition 9.5.4 ((α, β)-gradient estimator). A function g(θ) is an (α, β)-gradient estimator

for f̄ if ∥g(θ)−∇f̄(θ)∥2 ≤ α∥θ − θ∗∥2 + β, for every θ ∈ Θ.

Denoting by η the step size of gradient descent, define the following parameter:

κ :=
√

1− 2ητℓτu
τℓ + τu

+ ηα . (9.22)
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Algorithm 10 Robust Gradient Descent
1: Input: g(·), τ
2: for t = 0 to T − 1 do
3: θt+1 = arg minθ∈Θ ∥θt − ηg(θ)∥2

2
4: end for

Theorem 9.5.5 ([PSBR20]). Let the domains Θ,Z ⊂ Rd, a distribution D over Z , and a loss

function f : Θ×Z → R+ such that f̄(θ) := Ez∼D[f(θ; z)] is τℓ-strongly convex and τu-smooth. Let

g be an (α, β)-gradient estimator with α < τℓ. Let κ from Equation (9.22) and θ∗ be the minimizer

of f̄ . Then Algorithm 10, initialized at θ0 with step size η = 2/(τℓ + τu), after

T = log 1
κ

(
(1− κ)∥θ0 − θ∗∥2

β

)
(9.23)

iterations, returns a vector θ̂ such that

∥θ̂ − θ∗∥2 ≤
2

1− κβ . (9.24)

If the distribution of the gradients has bounded covariance, then one can use the low-

memory estimator of the previous sections in place of g(·). This bound on the covariance

will not necessarily be known to the algorithm, thus we first need to strengthen the robust

mean estimator so that it is adaptive to that unknown scale. This can be done using Lepski’s

method [Lep91; Bir01a] (the details are deferred to Appendix F.4). Having that version of

the estimator at hand, we then obtain the following statement (see Appendix F.5 for the

proof):

Corollary 9.5.6. In the setting of Theorem 9.5.5, suppose that the distribution of gradients satisfies

Cov[∇f(θ)] ⪯ σ2Id with σ2 = α2∥θ − θ∗∥2
2 + β2 for all θ ∈ Θ, where α

√
ϵ < τℓ. Assume

that the radius of the domain Θ, r := maxθ∈Θ ∥θ∥2 is finite. There exists a single-pass streaming

algorithm that given O(T (d2/ϵ) log(1 + αr/β)polylog(d, 1/ϵ, T/τ, 1 + αr/β)) samples, runs in

time Tnd polylog(d, 1/ϵ, T/τ, 1 + αr/β), uses memory d polylog(d, 1/ϵ, T/τ, 1 + αr/β), and
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returns a vector θ̂ ∈ Rd such that ∥θ̂ − θ∗∥2 = O(
√
ϵβ/(1− κ)) with probability at least 1− τ .

We now proceed to more specific applications, where we work out the parameters α, β

for some distributions of interest.

9.5.2.1 Linear Regression

For linear regression, we assume the following generative model:

Y = X⊤θ∗ + Z , (9.25)

where θ∗ ∈ Rd belongs in the ball ∥θ∗∥2 ≤ r, X ∼ Dx, Z ∼ DZ independently, and DZ has

zero mean. The loss function that we use in this case is f(θ) = 1
2(Y − θ⊤X)2, and the risk

function is

f̄(θ) = E
(X,Y )

[f(θ)] = 1
2(θ − θ∗)⊤ E

X∼Dx

[XX⊤](θ − θ∗) + 1
2 Var(Z) .

Letting λmax(E[XX⊤]) and λmin(E[XX⊤]) denote the largest and smallest eigenvalue

of E[XX⊤] respectively, it can be checked that for any τℓ ≤ λmin(E[XX⊤]) and

τu ≥ λmax(E[XX⊤]), f̄ is τℓ-strongly convex and τℓ-smooth.

Since we want the distribution of gradients to be stable, we impose the following

sufficient conditions on the distributions Dx and DZ .

Assumption 9.5.7. The random variablesX,Z are independent and satisfy the following conditions:

1. EZ∼DZ
[Z] = 0

2. VarZ∼DZ
[Z] ≤ ξ2

3. γId ⪯ EX∼Dx [XX⊤] ⪯ σ2Id.

4. For some constant C > 0, for every v ∈ Sd−1, EX∼Dx [(X⊤v)4] ≤ Cσ4.
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As shown below, these assumptions imply that the resulting distribution of the gradients

has bounded covariance (and thus is stable with respect to its mean).

Lemma 9.5.8 (see, e.g., [DKKLSS19]). ForDx, DZ satisfying Assumption 9.5.7, for every θ ∈ Θ,

we have that Cov[∇f(θ)] ⪯ (4σ2ξ2 + 4Cσ4∥θ − θ∗∥2
2)Id.

Having Lemma 9.5.8 in hand, Corollary 9.5.6 gives the following.

Theorem 9.5.9 (Robust Linear Regression; full version of Theorem 9.1.5). Consider the linear

regression model of Equation (9.25) and suppose that Assumption 9.5.7 holds. Let 0 < ϵ < ϵ0

for a sufficiently small constant ϵ0. Assume that Cσ2√ϵ < γ/2. Let κ, T as in Equations (9.22)

and (9.23) with τℓ = γ, τu = σ2. There is an algorithm that uses n = T · (d2/ϵ) log(1 +

rσ/ξ) polylog (d, 1/ϵ, T/τ, 1 + rσ/ξ) samples, runs in time Tnd polylog(d, 1/ϵ, T/τ, 1 + rσ/ξ),

uses memory d polylog(d, 1/ϵ, T/τ, 1 + rσ/ξ), and returns a vector θ̂ ∈ Rd such that ∥θ̂ − θ∗∥2 =

O(σξ
√
ϵ/(1− κ)) with probability at least 1− τ .

Proof. In our case, we have that τℓ = γ and τu = σ2. Given the bound of Lemma 9.5.8, we

use Corollary 9.5.6 with α = 2Cσ2 and β = 2σξ. The requirement from that corollary that

α
√
ϵ ≤ τℓ becomes Cσ2√ϵ < γ/2. Moreover, αr/β = O(rσ/ξ).

9.5.2.2 Logistic Regression

We consider the joint distribution of X ∈ Rd, Y ∈ {0, 1}, where X ∼ Dx and Y given X is

Bernoulli random variable:

Y |X ∼ Bernoulli(p), with p = 1
1 + e−x⊤θ∗ . (9.26)

The loss function we are minimizing in this case is the negative log-likelihood, which

eventually can be written as f(θ) = −(θ⊤x)y+Φ(θ⊤x), where Φ(t) := log(1+et). Regarding
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the strong convexity parameters, the Hessian of f̄ can be shown to be

∇2f̄(θ) = E
X∼Dx

[
eθ

⊤X

(1 + eθ⊤X)2XX
⊤
]
. (9.27)

The parameter space Θ needs to be bounded in order for the eigenvalues of the Hessian to

remain away from zero; we thus use Θ = {θ ∈ Rd : ∥θ∥2
2 ≤ r}with r > 0 being a universal

constant. We also impose the following assumptions on the covariates.

Assumption 9.5.10. We assume the following for the distribution of X :

1. E[X] = 0.

2. (concentration) For some constant C > 0, E[XX⊤] ⪯ C2Id.

3. (anti-concentration) There exists constant c1 > 0 and c2 ∈ (0, 1/2) such that for every unit

vector v, PX∼Dx [(v⊤X)2 > c1∥v∥2
2] ≥ c2.

Under these assumptions, we have the following:

Lemma 9.5.11 (Lemma 4 in [PSBR20]). Supposing that Assumption 9.5.10 holds, for every

θ ∈ Θ, we have that Cov[∇f(θ)] ⪯ O(1)Id.

The above lemma shows that the distribution of ∇f(θ) is (ϵ, O(
√
ϵ))-stable, and thus

using our robust mean estimation algorithm one can get an (α, β)-gradient estimator with

α = 0 and β = O(
√
ϵ). This proves the following (see Appendix F.5 for a detailed proof):

Theorem 9.5.12 (Robust Logistic Regression; full version of Theorem 9.1.6). Consider the

logistic regression model of Equation (9.26) with the domain Θ of the unknown regressor being

the ball of radius r, for some universal constant r > 0, and suppose that Assumption 9.5.10 holds.

Assume that 0 < ϵ < ϵ0 for a sufficiently small constant ϵ0. There is a single-pass streaming

algorithm that uses n = (d2/ϵ) polylog (d, 1/ϵ, 1/τ) samples, runs in time nd polylog(d, 1/ϵ, 1/τ),

uses memory d polylog(d, 1/ϵ, 1/τ), and returns a vector θ̂ ∈ Rd such that ∥θ̂ − θ∗∥2 = O(
√
ϵ)

with probability at least 1− τ .
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9.5.3 Byzantine Adversary and Second-order Optimal Point

We now describe the application of our algorithm to the setting of robust distributed non-

convex optimization. As before, for a parameter space Θ ⊂ Rd, a loss function f : Θ×Z →

R+, and a distributionD overZ , the goal is to approximately minimize f̄(θ) = Ez∼D[f(θ; z)].

In this section, we consider the case when D is a uniform distribution over mn points

{zi,j : i ∈ [m], j ∈ [n]} that are distributed over m machines (workers), with each machine

having access to n samples. Furthermore, we do not impose convexity constraints on f , and

thus would restrict ourselves to finding a second-order stationary point, i.e., a stationary

point θ̂ such that the Hessian on θ̂ is not too negative in any direction.

We now explain the distributed setup in more detail. There are m workers who have

their own private samples, and a single master machine which is responsible for collecting

gradient estimates from the workers and updating the candidate vector iteratively. Con-

cretely, the i-th worker has n samples {zij}nj=1. The master machine queries all workers with

a parameter θ ∈ Θ, and each i-th worker responds with gi(θ), where gi : Rd → Rd is defined

as follows: (i) if the i-th worker is honest, then gi(θ) is the average of the gradients of f at θ

of their samples, i.e., gi(θ) := (1/n)∑n
j=1∇f(θ; zij), and (ii) if the i-th worker is dishonest,

then gi(·) is an arbitrary function. In our results, we require only that (1 − ϵ)-fraction of

workers are honest. Recent work of [YCRB19] provided an algorithm that uses a robust

mean estimation algorithm on the gradients as a black-box procedure. In particular, the

algorithm of [YCRB19] requires only an access to the following oracle:

Definition 9.5.13 (∆-inexact gradient). We call the vector v(θ) a ∆-inexact gradient of f̄ at the

point θ if ∥v(θ)−∇f̄(θ)∥2 ≤ ∆.

We assume that each worker machine has access to its own samples throughout the

optimization process, and our goal is to reduce the memory requirement of the master

machine. Thus, we will use the algorithm from Corollary 9.4.3 to calculate ∆-inexact

gradient for the master machine, which requires only an oracle access to the gradient
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estimates {gi(θ) : i ∈ [m]}.

Assumption 9.5.14. Let I ⊆ [m] be the set of honest workers with |I| ≥ (1− ϵ)m.

1. There exists δ with 0 ≤ ϵ ≤ δ ≤ δ0, for some sufficiently small δ0, such that for every θ ∈ Θ,

the set {gi(θ) | i ∈ I} is (Cϵ, δ)-stable with respect to ∇f̄(θ) for a large enough constant C.

2. We assume that f̄ is L-smooth and ρ-Hessian Lipschitz on Θ, i.e., for every θ1, θ2 ∈ Θ we

have that ∥∇f̄(θ1)−∇f̄(θ2)∥2 ≤ L∥θ1− θ2∥2 and ∥∇2f̄(θ1)−∇2f̄(θ2)∥2 ≤ ρ∥θ1− θ2∥2 .

We note that if the samples of honest workers are sampled i.i.d. from a distribution P ,

then the set {gi(θ) : i ∈ I} for a fixed θ ∈ Θ will be stable with respect to∇f̄(θ) with high

probability, provided that the distribution of ∇f(θ;Z) satisfies mild concentration under

Z ∼ P and m is sufficiently large. Using a standard cover argument with the smoothness

properties of f , this can be extended to all θ ∈ Θ. We thus obtain the following theorem,

under Assumption 9.5.14.

Theorem 9.5.15. Suppose that Assumption 9.5.14 holds. Let m denote the number of workers.

Assume 0 < τ < 1, ∆ := C ′δ < 1, for C ′ a sufficiently large constant and define

Q := 2 log
(

ρ(f̄(θ0)− infθ∈Rd f̄(θ))
48Lτ(∆6/5d3/5 + ∆7/5d7/10)

)
, Tth := L

384(ρ1/2 + L(∆2/5d1/5 + ∆3/5d3/10) .

There is an algorithm where the master, if initialized at θ0, does T = 2(f̄(θ0)−inf
θ∈Rd f̄(θ))

3∆2 QTth

iterations, each running in md polylog(d, 1/ϵ, T/τ) time, uses d polylog(d, 1/ϵ, T/τ) memory,

and outputs a vector θ̂ such that, with probability 1 − τ , ∥∇f̄(θ̂)∥2 ≤ 4∆ and λmin(∇2f̄(θ̂)) ≥

−∆2/5d1/5.

9.6 Discussion

In this work, we gave the first efficient streaming algorithm with near-optimal space com-

plexity for outlier-robust high-dimensional mean estimation. As an application, we also
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obtained low-space streaming algorithms for a range of other robust estimation tasks. Our

work is a first step towards understanding the space complexity of high-dimensional robust

statistics in the streaming setting.

Our work suggests a number of open problems. First, the sample complexity of our

mean estimation algorithm is Õ(d2/ϵ2), while the information-theoretic optimum (without

space constraints!) is Õ(d/ϵ2). What is the optimal sample-space tradeoff? A similar question

can be asked for the broader tasks of covariance estimation and stochastic optimization.

A more general goal is to characterize the tradeoff between space complexity, number of

passes, and sample size/runtime for other robust high-dimensional statistics tasks, e.g.,

clustering and learning of mixture models.

Finally, another research direction concerns the considered contamination model.

Throughout this paper, we focused on the TV-contamination model. One can consider an

even stronger contamination model with an adaptive adversary, where the outliers can be

completely arbitrary (i.e., not follow any distribution), and the adversary can additionally

control the order in which the points are presented in the stream. Is it possible to obtain

Õϵ(d)-space single-pass streaming algorithms for robust mean estimation in the presence

of such an adversary? While our algorithms can be shown to work in this model with a

poly-logarithmic number of passes, it is not clear whether a single-pass algorithm with

sub-quadratic space complexity exists in this setting.
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10 hypothesis testing under communication constraints

उस ने सुकूत-ए-शब में भी अपना पयाम रख िदया
िहज्र क रात बाम पर माह-ए-तमाम रख िदया

—अहमद फ़राज़

We study hypothesis testing under communication constraints, where each sample is

quantized before being revealed to a statistician. Without communication constraints, it is

well known that the sample complexity of simple binary hypothesis testing is characterized

by the Hellinger distance between the distributions. We show that the sample complexity of

simple binary hypothesis testing under communication constraints is at most a logarithmic

factor larger than in the unconstrained setting and this bound is tight. We develop a

polynomial-time algorithm that achieves the aforementioned sample complexity. Our

framework extends to robust hypothesis testing, where the distributions are corrupted in

the total variation distance. Our proofs rely on a new reverse data processing inequality

and a reverse Markov inequality, which may be of independent interest. For simple M -ary

hypothesis testing, the sample complexity in the absence of communication constraints has

a logarithmic dependence on M . We show that communication constraints can cause an

exponential blow-up leading to Ω(M) sample complexity even for adaptive algorithms.

10.1 Introduction

Statistical inference has been extensively studied under constraints such as memory [Cov69;

HC73a; HC73b; GRT18; BOS20; DKPP22], privacy [DR13; KOV16; DJW18; CKMSU19;

GKKNWZ20], communication [Tsi93; BGMNW16; HÖW21; ACT20b], or a combination

thereof [SVW16; Fel17; DS18; DGKR19; DR19; ACT20a], typically designed to model

physical or economic constraints. Our work focuses on communication constraints, where

the statistician does not have access to the original samples—but only their quantized
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versions—generated through a communication-constrained channel. For example, instead

of observing a sample x ∈ X , the statistician might observe a single bit f(x) ∈ {0, 1} for

some function f : X → {0, 1}. The choice of the channel (here, the function f) crucially

affects the quality of statistical inference and is the topic of study in our paper.

Under communication constraints, a recent line of work has established minimax op-

timal rates for a variety of problems, including distribution estimation and identity test-

ing [Sha14; ACT20a; ACT20b; HÖW21; CKO21; Can22]. However, under the same con-

straints, the problem of simple hypothesis testing has received scant attention. Recall the

simple hypothesis testing framework: Let P be a given finite set of distributions over the

domain X . Given i.i.d. samples X1, . . . , Xn from an unknown distribution p ∈ P , the goal

is to correctly identify p with high probability, with n as small as possible. We denote this

problem as B(P) and use n∗(P) to denote its sample complexity; i.e., the minimum number

of samples required to solve B(P).

When P = {p, q}, the problem is referred to as the simple binary hypothesis testing

problem and has a rich history in statistics [NP33; Wal45; HS73; Cam86]. Given its historical

and practical significance, we have a deep understanding of this problem (cf. Section 10.2

for details). In particular, it is known that n∗(P) = Θ(1/d2
h(p, q)), where dh(p, q) denotes the

Hellinger distance between p and q.

Hypothesis testing under communication constraints was studied in detail in the 1980s

and 1990s under the name “decentralized detection” [Tsi93]. Briefly, the setup involves

n users and a central server. Each user i observes an i.i.d. sample Xi from an unknown

distribution p ∈ P , generates a message Yi ∈ {0, 1, . . . , D − 1} using a channel Ti (chosen

by the statistician), and transmits Yi to the central server. The central server observes

(Y1, . . . , Yn) and produces an estimate p̂ ∈ P . The goal is to choose (T1, . . . ,Tn) so that the

central server can identify p correctly with high probability, while keeping n as small as

possible. We call this problem “simple hypothesis testing under communication constraints”

and denote it by B(P , D). We denote the corresponding sample complexity by n∗(P , D).
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Simple binary hypothesis testing. We begin our discussion with the fundamental setting

of simple binary hypothesis testing under communication constraints, i.e., P = {p, q}. It is

known that the central server should perform a likelihood ratio test [Tsi93]. Furthermore,

an optimal choice of channels can be achieved using deterministic threshold tests; i.e.,

Yi = fi(Xi) for some fi : X → {0, 1, . . . , D − 1}, such that fi is characterized by D intervals

that partition R+, and fi(x) = j if and only if p(x)/q(x) lies in the jth interval. The optimality

of threshold tests crucially relies on the fi’s being possibly non-identical across users [Tsi88].

Nonetheless, several fundamental statistical and computational questions have re-

mained unanswered. We begin with the following statistical question:

For P = {p, q}, what is the sample complexity of B(P , D), and what is n∗(P,D)
n∗(P) ?

Let n∗ = n∗(P) and n∗
bin = n∗(P , 2) for notational convenience. A folklore result using

Scheffe’s test (Definition 10.2.5) implies that n∗
bin/n

∗ ≲ n∗ (cf. Proposition G.1.2). One of

our main results is an exponential improvement on this guarantee, showing that n∗
bin/n

∗ ≲

log(n∗), i.e., communication constraints only lead to at most a logarithmic increase in sample

complexity. More precisely, we show the following sample complexity bound:

n∗(P , D) ≲ n∗(P) max
{

1, log(n∗(P))
D

}
. (10.1)

Furthermore, there exist cases where the bound (10.1) is tight (cf. Theorem 10.4.3). The

bound can further be improved when the support sizes of p and q are smaller than

log(n∗(P)).

Turning to computational considerations, let p and q be distributions over k elements.

Although the optimality of threshold tests implies that each user can search over kΩ(D)

possible such channels, this is prohibitive for large D. Such an exponential-time barrier has

been highlighted as a major computational bottleneck in decentralized detection [Tsi93],

leading to the following question:
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Is there a poly(k,D)-time algorithm to compute channels (T1, . . . ,Tn) that

achieve the sample complexity bound (10.1)?

We answer this question affirmatively by showing that it suffices to consider threshold tests

parametrized by a single quantity (cf. equation (10.5)). In fact, we show that it suffices to

use an identical channel across the users (cf. Lemma 10.4.2).

Robustness to model misspecification. In many scenarios, it may be unreasonable to

assume that the true distribution is either exactly p or q, but rather that it is close to

one of them in total variation distance. Let ϵ be the amount of corruption, so that the

underlying distribution p′ belongs to P1 ∪ P2, where P1 := {p̃ : dTV(p, p̃) ≤ ϵ} and P2 :=

{p̃ : dTV(p, q̃) ≤ ϵ}, and dTV denotes the total variation distance. Our goal is to design

channels and a test such that, given samples from any distribution in P1 (respectively P2),

we output p (respectively q) with high probability. Under the communication constraint of

D messages, we denote this problem by Brobust(p, q, ϵ,D).

As long as ϵ ≲ dTV(p, q), we can use Scheffe’s test to solve Brobust(p, q, ϵ, 2) with at most

O(1/d2
TV(p, q)) samples. We may hope to improve upon this by using the optimal channel

T′ for the uncontaminated hypothesis testing problem, B({p, q}, D). It is, however, unclear

if T′ satisfies any robustness properties like the channel in Scheffe’s test. We show in

Proposition 10.4.8 that in the moderate contamination regime, when ϵ ≲ d2
TV(p, q) (up

to logarithmic factors), T′ solves Brobust(p, q, ϵ,D) with the same sample complexity as

B({p, q}, D). As a converse, we present cases where T′ is not robust to larger ϵ.

For the large contamination setting, we combine our technical results with the frame-

work of “least favorable distributions” pioneered by Huber [Hub65] and extended to the

communication-constrained setting by Veeravalli, Basar, and Poor [VBP94]. We show that

the robust sample complexity under communication constraints, n∗
robust(p, q, ϵ,D), increases

by at most a logarithmic factor. Specifically, letting n∗
robust := n∗

robust(p, q, ϵ) be the robust

sample complexity without any communication constraints, we obtain the following result
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in Theorem 10.4.6:

n∗
robust(p, q, ϵ,D) ≲ n∗

robust max
{

1, log (n∗
robust)
D

}
. (10.2)

This rate can be much tighter than the one obtained using Scheffe’s test. Moreover, the rate

above is achieved by a computationally-efficient algorithm.

M -ary hypothesis testing. Finally, we consider the setting where P contains M > 2

distributions and allow the choice of channels to be adaptive, i.e., the channel Ti may

depend on Y1, . . . , Yi−1. For simplicity, we consider the setting whereD and P are fixed and

focus on the dependence on M . Using a standard tournament procedure, we show that

there is an adaptive algorithm with sample complexity O(M logM). On the other hand,

in the absence of communication constraints, it is known that the sample complexity is

O(logM). We show that this exponential blow-up is necessary using the techniques from

Braverman, Garg, Ma, Nguyen, and Woodruff [BGMNW16], i.e., the sample complexity

under communication constraints is Ω(M). We also show Ω(
√
M) lower bounds using

two other techniques: (i) statistical query lower bounds [SVW16; FGRVX17], and (ii)

the impossibility of ℓ1-embedding [CS02; LMN05]. Although these bounds are weaker

than the Ω(M) lower bound, they have other favorable properties: the support size of the

distributions in the hard instance is much smaller (k is linear inM as opposed to exponential

in M), and the technical arguments that rely on the impossibility of ℓ1-embeddings are

elementary. Lastly, we consider the setting where all of the channels are restricted to be

identical across users, which may be desirable in some applications. We provide specialized

upper and lower bounds in this setting.

Our contributions. We summarize our main contributions as follows:

1. (Simple binary hypothesis testing.) We establish the minimax optimal sample com-

plexity (cf. inequality (10.1)) of binary simple hypothesis testing under communi-
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cation constraints (Theorems 10.4.1 and 10.4.3). Moreover, we provide an efficient

algorithm, running in poly(k,D) time, to find a channel that achieves the minimax

optimal sample complexity.

2. (Robust version of simple binary hypothesis testing.) Theorem 10.4.6 focuses on

the robust hypothesis testing problem and shows that the robust sample complexity

increases by at most a logarithmic factor, which is achievable using a computationally-

efficient algorithm.

3. (M -ary hypothesis testing.) Generalizing to the setting of M -ary distributions, we

show that for some cases, communication constraints can lead to an exponential

increase in sample complexity, even for adaptive channels. We also derive results,

both upper and lower bounds, specialized to settings where the channels are restricted

(cf. Section 10.5).

4. (Technical results.) Along the way, we prove the following two technical results

which may be of independent interest: (i) a reverse data processing inequality for

general f -divergences and communication-constrained channels (Theorem 10.3.2),

and (ii) a reverse Markov inequality for bounded random variables (Lemma 10.3.7).

The remainder of the paper is organized as follows: Section 10.2 defines notation, states the

problem, and recalls useful facts. Section 10.3 contains a reverse data processing inequality

for f -divergences. Section 10.4 uses these inequalities to derive our statistical and com-

putational guarantees for binary hypothesis testing. Finally, Section 10.5 presents results

for M -ary hypothesis testing. More technical proofs are deferred to the supplementary

appendices.
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10.2 Preliminaries

Notation: Throughout this paper, we will focus on discrete distributions. For n ∈ N, we

use [n] to denote {1, . . . , n} and [0 : n] to denote {0, 1, . . . , n}. We use ∆k to denote the set of

distributions over k elements. For a distribution p ∈ ∆k and i ∈ [k], we use both pi and p(i)

to denote the probability of element i under p. Given two distributions p and q, let dTV(p, q)

and dh(p, q) :=
√∑

i(
√
pi −
√
qi)2 denote the total variation and Hellinger distances between

p and q, respectively. Let βh(p, q) denote the Hellinger affinity, i.e., βh(p, q) := 1− 0.5d2
h(p, q).

Given n distributions p(1), . . . , p(n), we use ∏n
i=1 p

(i) to denote their product distribution.

When each p(i) = p, we use p⊗n to denote the n-fold product distribution. For a set A ⊆ X ,

we use IA : X → {0, 1} to denote the indicator function of A. We consider [a, b) to be an

empty set when b ≤ a. For a channel T : X → Y and a distribution p over X , we use Tp to

denote the distribution over Y when X ∼ p passes through the channel T. As the channels

between discrete distributions can be represented by column-stochastic matrices, we also

use bold capital letters, such as T, to denote the corresponding matrices. In particular,

when p is a distribution over [k], represented as a vector in Rk, and T is a channel from

[k]→ [d], represented as a matrix T ∈ Rd×k, the output distribution Tp corresponds to the

usual matrix-vector product. We use c, C, c′, C ′, etc., to denote absolute positive constants,

whose values might change from line to line, but with values which can be inferred by

careful bookkeeping, while c1, C1, c2, C2, etc., are used to denote absolute positive constants

that remain the same throughout the proof. Finally, we use the following notations for

simplicity: (i) ≲ and ≳ to hide positive constants, (ii) the standard asymptotic notationO(·),

Ω(·), and Θ(·), and (iii) poly(·) to denote a quantity that is polynomial in its arguments.
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10.2.1 Definitions and Basic Facts

Definition 10.2.1 (f -divergence). For a convex function f : R+ → R with f(1) = 0, we use

If (p, q) to denote the f -divergence between p and q, defined as If (p, q) := ∑
i qif (pi/qi).14

We use the following facts:

Fact 10.2.2 (Properties of divergences [Tsy09; ZZ73]). For any distributions p, p(1), . . . , p(n)

and q, q(1), . . . , q(n) in ∆k:

1. (Total variation and Hellinger distance.) d2
TV(p, q) ≤ d2

h(p, q) ≤ 2dTV(p, q).

2. (Sub-additivity of total variation.) dTV
(∏n

i=1 p
(i),
∏n
i=1 q

(i)
)
≤ ∑n

i=1 dTV
(
p(i), q(i)

)
.

3. (Hellinger tensorization.) βh
(∏n

i=1 p
(i),
∏n
i=1 q

(i)
)

= ∏n
i=1 βh

(
p(i), q(i)

)
.

4. (Data processing.) For any channel T, f -divergence If , and pair of distributions (p, q), we

have If (Tp,Tq) ≤ If (p, q).

We now define the simple hypothesis testing problem:

Problem 10.2.3 (Simple M -ary hypothesis testing). Given P , a set of M distributions over X ,

we say a function (test) ϕ : ∪∞
n=1X n → P solves the simple M -ary hypothesis testing problem with

sample complexity n if

∑
p∈P

P
x∼p⊗n

{ϕ(x) ̸= p} ≤ 0.1.

We define the sample complexity of hypothesis testing to be the smallest n such that there exists

a test ϕ which solves the hypothesis testing problem with sample complexity n. We use B(P) to

denote the simple M -ary hypothesis testing problem and n∗(P) to denote the sample complexity of

B(P). When M = 2 and P = {p, q}, we also use B(p, q) and n∗(p, q) to denote the simple binary

hypothesis testing problem and its sample complexity, respectively.
14We use the following conventions [Sas18]: f(0) = limt→0+ f(t), 0f(0/0) = 0, and for a > 0, 0f(a/0) =

a limu→∞ f(u)/u.
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Fact 10.2.4 (Hypothesis testing and divergences [Yat85; DL01; CKMSU19; Wai19]). We

have the following:

1. (Total variation and binary hypothesis testing.) For any random variable Z over Z and test

ϕ : Z → {P,Q}, define the probability of error to be PP (ϕ(Z) = Q) + PQ(ϕ(Z) = P ). The

minimum probability of error over all tests is 1− dTV(P,Q) and is achieved by the following

test: let A∗ ⊆ Z be any set that maximizes P (A)−Q(A) over A ⊆ Z , and define ϕ(z) = P

when z ∈ A∗ and ϕ(z) = Q otherwise.

2. (Hellinger distance and B(p, q).) The sample complexity for the simple binary hypothesis test

between p and q is Θ
(

1
d2

h(p,q)

)
, i.e., n∗(p, q) = Θ

(
1

d2
h(p,q)

)
.

3. (Sample complexity of M -ary hypothesis testing.) Let P be a set of M distributions such that

minp,q∈P:p ̸=q dh(p, q) = ρ. Then 1
ρ2 ≲ n∗(P) ≲ logM

ρ2 .

We now define Scheffe’s test, which is commonly used for simple binary hypothesis

testing.

Definition 10.2.5 (Scheffe’s test). For two distributions p and q, consider the set A = {x :

p(x) ≥ q(x)}. Let p′ and q′ denote the distributions of IA(X) when X is distributed as p and q,

respectively. Given (x1, . . . , xn) ∈ X n, Scheffe’s test transforms each individual point xi to IA(xi)

and then applies the optimal test between p′ and q′ to the transformed points.15

It is easy to see that dTV(p′, q′) = dTV(p, q), which implies that dh(p′, q′) ≥ 0.5d2
h(p, q)

(using Fact 10.2.2), leading to an O
(

1
d4

h(p,q)

)
sample complexity of Scheffe’s test. This

dependence is tight [Sur21]. Formally, see Proposition G.1.2 in Appendix G.1.

10.2.2 Simple Hypothesis Testing under Communication Constraints

Let X be the domain, P a family of distributions over X , and T a family of channels from

X to Y . Let TD denote the set of all channels from X to [0 : D− 1]. We first formally define
15Note that p′ and q′ are Bernoulli distributions with probabilities of observing 1 equal to p(A) and q(A),

respectively. The optimal test between p′ and q′ corresponds to a threshold on
∑

i IA(xi).
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the problem of simple hypothesis testing under communication constraints.

Definition 10.2.6 (Simple hypothesis testing under communication constraints). Let {Ui}ni=1

denote a set of n users who choose channels {Ti}ni=1 ⊆ T according to a rule R : [n] → T n.16

Each user Ui then observes a random variable Xi i.i.d. from an (unknown) p ∈ P , and gener-

ates Yi = Ti(Xi) ∈ Y . The central server U0 observes (Y1, . . . , Yn) and constructs an estimate

p̂ = ϕ(Y1, . . . , Yn). We refer to this problem as simple hypothesis testing under communication

constraints of T and denote it by B(P , T ). When Y = [0 : D − 1] and T = TD for D ≥ 2, we call

B(P , TD) the simple hypothesis testing problem under communication constraints of D-messages.

When P = {p, q}, we also use the notation B(p, q, TD).

Definition 10.2.7 (Sample complexity of B(P , TD)). For a given test-rule pair (ϕ,R) with

ϕ : ∪∞
j=1Yj → P , we say that (ϕ,R) solves B(P , TD) with sample complexity n if

∑
p∈P

P
(x1,...,xn)∼p⊗n

(ϕ(y1, . . . , yn) ̸= p) ≤ 0.1. (10.3)

We use n∗(P , TD) to denote the sample complexity of this task, i.e., the smallest n so that there exists a

(ϕ,R)-pair that solves B(P , TD). We use n∗
identical(P , TD) to denote the setting where each channel

is identical, i.e.,R : [n]→ ∪T∈TD
{T}n. In order to emphasize the setting where the channels need

not be identical, we sometimes use n∗
non-identical(P , TD) to denote n∗(P , TD). When P = {p, q},

we will use the notation n∗(p, q, TD), n∗
identical(p, q, TD), and n∗

non-identical(p, q, TD).

We shall discuss the setting of adaptive channels in Section 10.5.

Special case: Binary hypothesis testing. In the rest of this section, we will focus on

the special case when P = {p, q}. For a fixed rule R, an optimal ϕ corresponds to the

likelihood ratio test. Thus, our focus will be on designing the ruleR, while choosing the

test ϕ implicitly17, such that the test-rule pair (ϕ,R) has minimal sample complexity.
16It suffices to consider cases where the ruleR is deterministic. Tsitsiklis [Tsi93, Proposition 2.1] implies

that the sample complexity does not decrease even if the ruleR is coordinated among users and randomized,
such that the seed is not observed by the central server U0.

17We will mention the test explicitly wherever required, e.g., in robust hypothesis testing.



305

A subset of channels called threshold channels plays a key role in our theory: Consider

a set Γ = {γ1, . . . , γD−1} such that 0 < γ1 ≤ · · · ≤ γD−1 < ∞. Let γ0 := 0 and γD := ∞.

Define the function wΓ : [k] → [0 : D − 1] as follows18: if q(x) = 0, then wΓ(x) = D − 1;

otherwise,

wΓ(x) = j if and only if p(x)/q(x) ∈ [γj, γj+1). (10.4)

We are now ready to define a threshold test:

Definition 10.2.8 (Threshold test). We say that a channel T ∈ TD corresponds to a threshold

test for two distributions p and q over [k] if there exists Γ = {γ1, . . . , γD−1} such that 0 < γ1 ≤

· · · ≤ γD−1 <∞, and wΓ(X) ∼ Tp̃ whenever X ∼ p̃ for any p̃ (cf. equation (10.4)). Any such Γ

is called the set of thresholds of the test T. We use T thresh
D to denote the set of all channels T ∈ TD

that correspond to threshold tests.

Note that a priori, searching for an optimal channel over T thresh
D seems to require kΩ(D)

time, as it requires searching over all possible values of Γ. By restricting our attention to a

special class of thresholds parametrized by a single quantity, we will obtain a poly(k,D)-

time algorithm. In particular, we will focus on channels with thresholds in the following

set:

C := {Γ = (γ1, . . . , γD−1) : ∀j ∈ [D − 2], γj+1/γj = 2} . (10.5)

A classical result states that threshold tests (cf. Definition 10.2.8) are optimal tests under

communication constraints:

Theorem 10.2.9 ([Tsi93, Proposition 2.4]). n∗
non-identical(p, q, T thresh

D ) = n∗
non-identical(p, q, TD).

Our lower bounds on the sample complexity of hypothesis testing under communication

constraints crucially rely on the optimality of threshold tests.
18When q(x) = 0 for some x and p(x) ̸= 0, we take p(x)/q(x) = ∞. Without loss of generality, we can

assume that for each x ∈ [k], at least one of p(x) or q(x) is non-zero.
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10.3 Reverse Data Processing Inequality for Quantized

Channels

In this section, we state and prove a reverse data processing inequality for a class of f -

divergences for communication-constrained channels. We begin by defining a suitable

family of f -divergences:

Definition 10.3.1 (Well-behaved f -divergences). We say If (·, ·) is a well-behaved f -divergence

if it satisfies the following:

I.1 f is a convex nonnegative function with f(1) = 0.

I.2 xf(y/x) = yf(x/y).19

I.3 There exist α > 0, κ > 0, C1 > 0, and C2 > 0 such that for all x ∈ [0, κ], we have20

C1x
α ≤ f(1 + x) ≤ C2x

α.

Some examples of well-behaved f -divergences include the total variation distance,

squared Hellinger distance, symmetrized χ2-divergence, symmetrized KL-divergence, and

triangular discrimination (see Claim G.6.1 for more details). If f is differentiable at 1,

f ′(1) = 0, and the corresponding f -divergence is symmetric, then f satisfies I.2 [Gil06;

Sas15]. Given an f -divergence that does not satisfy I.2, we can construct a new f -divergence

with f̃(x) := f(x) + xf(1/x), which is also a convex function21 satisfying f̃(1) = 0 and I.2.

10.3.1 Main Result

The main result of this section is as follows:
19This implies If (p, q) = If (q, p).
20The convexity and non-negativity of f means that α must be at least 1.
21This can be checked by noting that f̃ ′′(x) = f ′′(x) + 1

x3 f ′′(x), which is non-negative, as f is convex.
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Theorem 10.3.2 (Reverse data processing inequality). Let If be a well-behaved f -divergence

with (α, κ, C1, C2) as defined in Definition 10.3.1. Let p and q be two fixed distributions over [k]

such that for all i ∈ [k], we have qi ≥ νpi and pi ≥ νqi, for some ν ∈ [0, 1]. Then for any D ≥ 2,

there exists a channel T∗ ∈ T thresh
D (and thus in TD) such that

1 ≤ If (p, q)
If (T∗p,T∗q) ≤ 4 f(ν)

f(1/(1 + κ)) + 52C2

C1
max

{
1, R
D

}
, (10.6)

where R = min{k, k′} and k′ = 1 + log
(

4C2κα

If (p,q)

)
. Furthermore, given f , p, and q, there is a

poly(k,D)-time algorithm that finds a T∗ achieving the rate in inequality (10.6).

Remark 10.3.3. In the usual data processing inequality, the f -divergence If (Tp,Tq) is upper-

bounded by If (p, q). Since the direction of the inequality is reversed in the second inequality in

Theorem 10.3.2, we interpret it as a reverse data processing inequality. Another natural way to

interpret this result is from the lens of quantization: Theorem 10.3.2 asserts that for any p, q, and

any well-behaved f -divergence, there exist good quantization schemes to preserve the f -divergence.

We provide a brief proof sketch for the special case of the Hellinger distance and D = 2

in Section 10.3.2, and defer the full proof to Appendix G.2.1. As our main focus will be on

the Hellinger distance, we state the following corollary, which will be used later:

Corollary 10.3.4 (Preservation of Hellinger distance). For any p, q ∈ ∆k and D ≥ 2, there

exists a T∗ ∈ T thresh
D such that the following holds:

1 ≤ d2
h(p, q)

d2
h(T∗p,T∗q) ≤ 1800 max

{
1, min{k, k′}

D

}
, (10.7)

where k′ = log(4/d2
h(p, q)). Given p and q, there is a poly(k,D)-time algorithm that finds T∗

achieving the rate in inequality (10.7).

Proof. The desired bound follows by noting that f(x) = (
√
x−1)2 for the Hellinger distance

and taking ν = 0. As shown in Appendix G.6 (Claim G.6.1), we can take κ = 1, C1 = 2−3.5,
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C2 = 1, and α = 2. Note that f(0) = 1 and f(1/(1 + κ)) = (
√

2− 1)2/2 ≥ 0.04. This suffices

to give a guarantee of d2
h(p,q)

d2
h(T∗p,T∗q) ≤ 100 + 900

D
(min{k, k′}) from Theorem 10.3.2.

Remark 10.3.5 (Dimensionality reduction using channels). Corollary 10.3.4 can be interpreted

as saying that the effective support size of p and q for the Hellinger distance is at most k′ :=

log(4/d2
h(p, q)), because the distributions could be mapped to a k′-sized alphabet using a channel in

a manner that preserves the pairwise Hellinger distance up to constant terms. We also remark that

our notion of dimensionality reduction requires the transformation to be performed using a channel,

which is fundamentally different from the setting in Abdullah, Kumar, McGregor, Vassilvitskii, and

Venkatasubramanian [AKMVV16].

The following result states that the bound in Corollary 10.3.4 is tight:

Lemma 10.3.6 (Reverse data processing is tight). There exist positive constants c1, c2, c3, c4, c5,

and c6 such that for every ρ ∈ (0, c1) and D ≥ 2, there exist k ∈ [c2 log(1/ρ), c3 log(1/ρ)] and two

distributions p and q on [k] such that d2
h(p, q) ∈ [c4ρ, c5ρ] and

inf
T∈T thresh

D

d2
h(p, q)

d2
h(Tp,Tq) ≥ c6 ·

R′

D
, (10.8)

where R′ = max{k, k′} and k′ = log (1/ρ). Thus, R′ = Θ(k) = Θ(log(1/ρ)).

The proof of Lemma 10.3.6 is given in Appendix G.2.2.

10.3.2 Proof Sketch of Theorem 10.3.2 and Corollary 10.3.4

We will focus on the case of the Hellinger distance and D = 2. The first step is to establish

the following result:

Lemma 10.3.7 (Reverse Markov inequality). Let X be a random variable over [0, 1), supported

on at most k points, with E[X] > 0. Let k′ = 1 + log(1/E[X]). Then

sup
δ∈[0,1)

δ P (X ≥ δ) ≥ E[X]
13R , (10.9)
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where R = min{k, k′}.

The canonical version of Markov’s inequality states that δ P(X ≥ δ) ≤ E[X] for any

non-negative random variable X and any δ. Since the direction of the inequality is reversed

in Lemma 10.3.7 (up to a shrinkage factor of roughly log(1/E[X])), we call it a reverse

Markov inequality. A generalized version of Lemma 10.3.7 for the case D > 2, along with

its proof, is given in Lemma G.2.1.

Remark 10.3.8. Note that Lemma 10.3.7 is tight, as shown in Claim G.2.4, which is crucially used

in the proof of Lemma 10.3.6.

Remark 10.3.9. It is instructive to compare the guarantee of Lemma 10.3.7 with existing results in

the literature:

1. The Paley-Zygmund inequality [dG99, Corollary 3.3.2] states that for any δ ∈ (0,E[X]), we

have

P(X ≥ δ) ≥
(

1− δ

E[X]

)2 (E[X])2

E[X2] .

Multiplying both sides by δ and optimizing the lower bound over δ (achieved at δ = E[X]/3)

yields

sup
δ≥0

δ P(X ≥ δ) ≳ E[X] · 1
E[X2]/(E[X])2 .

Note that the shrinkage factor is E[X2]/(E[X])2, which is at most 1/E[X], but could be

exponentially larger than the factor log(1/E[X]) provided in Lemma 10.3.7. (For example,

consider a random variable with P(X = 0) = 1 − p and P(X = 1/2) = p: We have

E[X2]/(E[X])2 = 1/p, whereas log(1/E[X]) = log(2/p).)

2. A standard version of the reverse Markov inequality [SB14, Lemma B.1] for a random variable

bounded in [0, 1] states that P(X ≥ δ) ≥ E[X]−δ
1−δ , for δ ∈ (0,E[X]). Multiplying both sides

by δ and optimizing the bound over δ ∈ (0,E[X]), under the condition that E[X] ≤ 0.1,
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gives us the following:

sup
δ≥0

δ P(X ≥ δ) ≳ (E[X])2 = E[X] · 1
1/E[X] ,

i.e., the shrinkage factor is 1/E[X], which is again exponentially larger than log(1/E[X]).

Using Lemma 10.3.7, we now sketch the proof that there exists a channel T ∈ T thresh
2

achieving d2
h(Tp,Tq) ≳ d2

h(p, q)/R. For simplicity of notation, we assume that for all i ∈ [k],

we have pi > 0 and qi > 0. We first define the sets

Al,u =
{
i ∈ [k] : pi

qi
∈ [l, u)

}
,

Al,∞ =
{
i ∈ [k] : pi

qi
∈ [l,∞]

}
. (10.10)

Then d2
h(p, q) can be decomposed as follows:

d2
h(p, q) =

∑
i∈A0,1/2

(√pi −
√
qi)2 +

∑
i∈A1/2,1

(√pi −
√
qi)2

+
∑
i∈A1,2

(√pi −
√
qi)2 +

∑
i∈A2,∞

(√pi −
√
qi)2 .

We note that at least one of these terms must be at least d2
h(p, q)/4. By symmetry, it suffices

to consider the cases where the sum over A2,∞ is at least d2
h(p, q)/4, or the sum over A1,2 is

at least d2
h(p, q)/4.

Case 1: ∑i∈A2,∞

(√
pi −
√
qi
)2
≥ d2

h(p, q)/4. Let T ∈ T thresh
2 be a threshold test with

threshold Γ = {2}, i.e., T is a deterministic channel that corresponds to the function

i 7→ Ipi/qi≥2. We note that Tp and Tq are binary distributions, characterized by p′ =∑
i∈A2,∞ pi and q′ = ∑

i∈A2,∞ qi, respectively. Then

d2
h(p, q) ≤ 4

∑
i∈A2,∞

(√pi −
√
qi)2 ≤ 4

∑
i∈A2,∞

pi = 4p′,
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where the first inequality uses the assumption. Using the fact that p′ ≥ 2q′, we also have

d2
h(Tp,Tq) ≥

(√
p′ −

√
q′
)2
≥
(√

p′ −
√
p′/2

)2
≥ 0.01p′.

Combining the two displayed equations, we obtain d2
h(Tp,Tq) ≥ d2

h(p, q)/400. This com-

pletes the proof.

Case 2: ∑i∈A1,2

(√
pi −
√
qi
)2
≥ d2

h(p, q)/4. For i ∈ A1,2, let δi := (pi − qi)/qi, which lies

in [0, 1). Consider the random variable X over [0, 1) such that for i ∈ A1,2, we define

P(X = δi) = qi and P(X = 0) = 1 −∑i∈A1,2 qi. Let δ ∈ [0, 1) be arbitrary (to be decided

later). Consider the channel T corresponding to the threshold 1 + δ. Suppose for now that

the following inequalities hold:

d2
h(p, q) ≲ EX2 and d2

h(Tp,Tq) ≳ δ2 P(X ≥ δ), (10.11)

which we will establish shortly using a Taylor approximation. Letting Y = X2 and δ′ = δ2,

we obtain the following inequality using the bounds (10.11):

d2
h(Tp,Tq)
d2

h(p, q) ≳
δ2 P(X ≥ δ)

E[X2] = δ′ P(Y ≥ δ′)
E[Y ] . (10.12)

Fix

R = log(1/E[Y ]) = log(1/E[X2]) = log(O(1/d2
h(p, q)).

By Lemma 10.3.7, we note that there exists δ′ (and therefore also δ) such that δ′ P(Y ≥ δ′) ≳

E[Y ]/R, which yields the desired lower bound d2
h(Tp,Tq)
d2

h(p,q) ≳ 1
R

using inequality (10.12).

We now provide a brief proof sketch of the bounds (10.11). We derive the first bound

using the following arguments:

d2
h(p, q) ≤ 4

∑
i∈A1,2

(√pi −
√
qi)2 = 4

∑
i∈A1,2

qi(
√

1 + δi − 1)2 ≤ 4
∑
i∈A1,2

qiδ
2
i = 4E[X2],



312

where the first inequality uses the assumption and the second inequality uses the fact that
√

1 + x ≤ 1 + x for x ≥ 0.

We now turn our attention to the second bound (10.11). Recall that T is a channel

corresponding to the threshold 1 + δ. Let p′ = ∑
i:δi∈[δ,1) pi and q′ = ∑

i:δi∈[δ,1) qi. Note that

q′ = P(X ≥ δ) and p′−q′ = ∑
i:δi∈[δ,1) δiqi = E[X IX≥δ]. Thus, we have (p′−q′)/q′ = E[X|X ≥

δ] ≥ δ.

It can be shown that d2
h(Tp,Tq) ≥ (

√
p′−
√
q′)2 (cf. inequality (G.11) in Appendix G.2),

which leads to the following inequalities:

d2
h(Tp,Tq) ≥ (

√
p′ −

√
q′)2 = q′

(√
1 + p′ − q′

q′ − 1
)2

≳ q′
(
p′ − q′

q′

)2

≥ δ2 P(X ≥ δ),

as follows from studying the function x 7→ (
√

1 + x− 1)/x on (0, 1], extended by continuity

to [0, 1].

10.4 Simple Binary Hypothesis Testing

We will now apply the results from the previous sections to simple binary hypothesis

testing under communication constraints. Let T be a fixed channel, and suppose all users

use the same channel T. In this setting, Fact 10.2.4 implies that the sample complexity is

Θ(1/(d2
h(Tp,Tq))). Without any communication constraints, the sample complexity of the

best test is known to be Θ(1/(d2
h(p, q))). Thus, the additional (multiplicative) penalty of

using the channel T is d2
h(p,q)

d2
h(Tp,Tq) , which is at least 1, by the data processing inequality. As

we are allowed to choose any channel T ∈ TD, we would like to choose the channel that

minimizes this ratio, which was precisely studied in Section 10.3.

10.4.1 Upper Bound

We begin with an upper bound, which follows directly from Corollary 10.3.4.
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Theorem 10.4.1. There exists a positive constant c satisfying the following: for any k ∈ N, let p

and q be two distributions on ∆k and define n∗ := n∗(p, q). For any D ≥ 2, the sample complexity

of simple binary hypothesis testing with identical channels satisfies

n∗
identical(p, q, TD) ≤ c · n∗ ·max

{
1, min{k, log n∗}

D

}
. (10.13)

Furthermore, there is an algorithm which, given p, q, and D, finds a channel T∗ ∈ T thresh
D in

poly(k,D) time that achieves the rate in inequality (10.13).

Proof. As noted earlier, for a fixed T, the sample complexity is

Θ
(

1
d2

h(Tp,Tq)

)
= Θ

(
1

d2
h(p, q) ·

d2
h(p, q)

d2
h(Tp,Tq)

)
= Θ (n∗ · g(T)) ,

where g(T) := d2
h(p,q)

d2
h(Tp,Tq) . Our proof strategy will be to upper-bound the quantity

infT∈TD
g(T). By Corollary 10.3.4, there exists a T∗ such that g(T∗) ≲ max{1,min{k, log(n∗)}/D},

since n∗ = Θ(1/d2
h(p, q)) by Fact 10.2.4. Thus, the proof of Theorem 10.4.1 follows from

Corollary 10.3.4 by choosing the optimal T∗ achieving the bound in Corollary 10.3.4. As

mentioned in Corollary 10.3.4, the channel T∗ can be found efficiently.

10.4.2 Lower Bound

We now prove a lower bound, showing that there exist distributions p and q such that the

upper bound in Theorem 10.4.1 is tight. As discussed in Section 10.2.2, an optimal test that

minimizes the probability of error under communication constraints is a threshold test

based on p(i)
q(i) [Tsi93]. However, this notion of optimality is conditioned on the fact that the

channels are potentially non-identical; examples exist where such a condition is necessary

even for D = 2,M = 2, and n = 2 [Tsi88].

We will show that, up to constants in the sample complexity, it suffices to consider

identical channels for simple hypothesis testing. In fact, we prove a much more general
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result below that does not rely on restricting the function class to threshold tests.

Lemma 10.4.2 (Equivalence between identical and non-identical channels for simple hy-

pothesis testing). Let T be a collection of channels from X → Y . Let p and q be two distributions

on X . Then

n∗
non-identical (p, q, T ) = Θ (n∗

identical(p, q, T )) .

The proof of Lemma 10.4.2 is provided in Appendix G.3.1. We now derive the following

lower bound on n∗
non-identical(p, q, T ):

Theorem 10.4.3. There exist positive constants c1 and c2 such that for every n0 ∈ N and D ≥ 2,

there exist (i) k = Θ(log n0) and (ii) two distributions p and q on [k], such that the following hold:

1. c1n0 ≤ n∗(p, q) ≤ c2n0, and

2. n∗
non-identical(p, q, TD) ≥ n0 log(n0)

D
.

Proof. We first provide a proof sketch. Using Lemma 10.4.2 and Theorem 10.2.9, it suffices

to consider the setting with identical threshold channels. With identical channels, say T, the

problem reduces to that of B(Tp,Tq), and thus to bounding dh(Tp,Tq), using Fact 10.2.4.

Tightness of Lemma 10.3.6 then gives the desired result.

Turning to the details, note that it suffices to consider D ≤ log n0. Moreover, we can

consider the setting where n0 is sufficiently large; the result for general n0 then follows by

changing the constants c1 and c2 appropriately.

Now define ρ = 1/n0. Since n0 is large enough, this ρ satisfies the condition of

Lemma 10.3.6. Let p, q, and k = Θ(log(1/ρ)) be from Lemma 10.3.6, such that (i) d2
h(p, q) =

Θ(ρ) and (ii) inequality (10.8) holds. Using Fact 10.2.4, we have the following:

n∗(p, q) = Θ
(

1
d2

h(p, q)

)
= Θ

(
1
ρ

)
= Θ (n0) . (10.14)
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Thus, p and q satisfy the first condition of the theorem. Furthermore, we have the following

(where c′ represents a positive constant which may change from line to line):

n∗
non-identical(p, q, TD) = n∗

non-identical(p, q, T thresh
D ) (using Theorem 10.2.9)

≥ c′n∗
identical(p, q, T thresh

D ) (using Lemma 10.4.2)

≥ c′ inf
T∈T thresh

D

1
d2

h(Tp,Tq) (using Fact 10.2.4)

= c′

d2
h(p, q) inf

T∈T thresh
D

d2
h(p, q)

d2
h(Tp,Tq)

≥ c′

d2
h(p, q)

log(1/d2
h(p, q))
D

(using Lemma 10.3.6)

≥ c′n∗(p, q) log(c′′n∗(p, q))
D

(using equation (10.14))

≥ n0
log(n0)
D

(using the bounds on n∗(p, q)) .

This completes the proof.

10.4.3 Robust Tests

In this section, we study the robust version of B(p, q, TD). Here, the data-generating dis-

tribution may not belong to P := {p, q}, but is only guaranteed to lie within a certain

radius of an element of P . Our main result (Theorem 10.4.6) shows that communication

constraints increase the sample complexity of the robust version of hypothesis testing by at

most logarithmic factors.

We begin by formally defining the robust version of simple hypothesis testing under

communication constraints:

Definition 10.4.4 (Robust version of B(p, q, TD)). Let P1 and P2 be defined as P1 := {p̃ :

dTV(p, p̃) ≤ ϵ} and P2 := {q̃ : dTV(q, q̃) ≤ ϵ}. The robust version of B(p, q, T ), denoted by

Brobust(p, q, ϵ, T ), is defined as in Definition 10.2.6, but with P = P1 ∪ P2. For a given test-

rule pair (ϕ,R) with ϕ : ∪∞
j=1Yj → P , we say that (ϕ,R) solves Brobust(p, q, ϵ, T ) with sample
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complexity n if

sup
p̃∈P1

P
(x1,...,xn)∼p̃⊗n

(ϕ(y1, . . . , yn) ̸= p) + sup
q̃∈P2

P
(x1,...,xn)∼q̃⊗n

(ϕ(y1, . . . , yn) ̸= q) ≤ 0.1. (10.15)

We use n∗
robust(p, q, ϵ, T ) to denote the sample complexity of this task, i.e., the smallest n so that

there exists a (ϕ,R)-pair that solves Brobust(p, q, ϵ, T ) with sample complexity n. We use B(p, q, ϵ)

and n∗
robust(p, q, ϵ) to denote, respectively, the robust hypothesis testing problem and the sample

complexity of robust testing in the absence of any channel constraints.

For any two distributions p and q with dTV(p, q) = 3ϵ, it is possible to obtain an ϵ-robust

test with sample complexity O(1/ϵ2) (e.g., using Scheffe’s test). However, as the following

example shows, the optimal communication-efficient channel for B(p, q, TD) may not be

robust to ϵ1+α-contamination for any α ∈ [0, 1) (see Appendix G.3.2 for more details).

Example 10.4.5 (Optimal channel may not be robust). Letα ∈ (0, 1) and ϵ > 0 be small enough.

Let p ∈ ∆3 be the distribution (0.5− 3ϵ− ϵ1+α, 0.5 + 3ϵ, ϵ1+α), and let q ∈ ∆3 be the distribution

(0.5, 0.5, 0). Then dTV(p, q) ≥ 3ϵ and n∗
robust(p, q, ϵ) = Θ(1/ϵ2). However, the optimal22 channel

T∗ for B(p, q, T2) is not robust to ϵ1+α-corruption: there exists p̃, satisfying dTV(p, p̃) ≤ ϵ1+α, such

that T∗p̃ = T∗q.

As our main result, we show that there is an (efficient) way to choose channels such

that the sample complexity increases by at most a logarithmic factor:

Theorem 10.4.6 (Sample complexity of Brobust(p, q, TD)). There exists a constant c > 0 such

that for any p, q ∈ ∆k with ϵ < dTV(p,q)
2 and any D ≥ 2, we have

n∗
robust(p, q, ϵ, TD) ≤ c · n∗ ·max

{
1, min{k, log n∗}

D

}
, (10.16)

22The channel corresponds to the function I{3}(x), and it transforms p and q to the distributions (1 −
ϵ1+α, ϵ1+α) and (1, 0), respectively.
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where n∗ := n∗
robust (p, q, ϵ). Furthermore, there is an algorithm which, given p, q, ϵ, and D, finds a

channel T∗ ∈ T thresh
D in poly(k,D) time that achieves the rate in inequality (10.16).

Note that the optimal channel in Theorem 10.4.6 may depend on ϵ. Our proof critically

uses the framework of least favorable distributions (LFDs) for binary hypothesis testing,

pioneered by Huber [Hub65]. LFDs are pairs of distributions p̃ ∈ P1 and q̃ ∈ P2 that

maximize infϕ f(ϕ, p̃, q̃, n), where f(ϕ, p̃, q̃, n) is the probability of error of a test ϕ which

distinguishes p̃ and q̃ based on n samples. Remarkably, LFDs do not depend on n when

P1 and P2 are ϵ-balls around p and q, respectively, in the total variation distance [Hub65;

HS73]. Moreover, these LFDs can be constructed algorithmically. Particularly relevant for

us is the result of Veeravalli et al. [VBP94], who extended these results in the presence of

communication constraints. We achieve Theorem 10.4.6 by applying Corollary 10.3.4 to p̃

and q̃, the LFDs under ϵ-contamination. See Appendix G.3.2 for more details.

As the following remark shows, the sample complexity of robust testing crucially

depends on ϵ:

Remark 10.4.7 (Sample complexity without communication constraints). The sample com-

plexity n∗
robust(p, q, ϵ′) may have phase transitions with respect to ϵ′. For example, n∗

robust(p, q, ϵ′) in

Example 10.4.5 satisfies n∗
robust(p, q, ϵ1+β) = Θ(1/ϵ1+α) for β > α (small corruption) and Θ(1/ϵ2)

for β ∈ [0, α) (large corruption). See Example G.3.1 for another instance.

It is instructive to compare the guarantees of Theorem 10.4.6 with the sample com-

plexity of Scheffe’s test: Examples 10.4.5 and G.3.1 show that Scheffe’s test may be strictly

suboptimal in some regimes.

Finally, we present the following result, proved in Appendix G.3.2, showing that the

channels in Theorem 10.4.1 are moderately robust:

Proposition 10.4.8 (Optimal channels are moderately robust). Let p and q be two distributions

over [k]. Define ϵ0 := cd2
TV(p, q) ·min

{
1, D

log(1/dTV(p,q))

}
for a small enough constant c.23 Let T∗

23This upper bound can be generalized to ϵ0 := cd2
h(T∗p, T∗q).
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be a channel that maximizes d2
h(Tp,Tq) over T ∈ TD. Let n∗

D be the sample complexity of T∗ for p

and q (recall that n∗
D = Θ(n∗(p, q, TD))). Let ϕ∗ be the corresponding optimal test.24 Then there

exists a test ϕ′ that uses T∗ for each user and solves Brobust(p, q, ϵ0, TD) with sample complexity

Θ(n∗
D).

Proposition 10.4.8 implies that optimal communication channels are already Θ(ϵ2)-

robust up to logarithmic factors. However, the result falls short of our desired goal of

designing an Θ(ϵ)-robust test. (Informally, we say a channel is ϵ′-robust if it can be used to

perform hypothesis testing with reasonable sample complexity despite ϵ′-corruption.) This

guarantee is roughly the best possible, as can be seen by taking α→ 1 in Example 10.4.5.

10.5 Simple M -ary Hypothesis Testing

In this section, we study the M -wise simple hypothesis testing problem, i.e., P is a set

of M ≥ 2 distributions. Our focus in this section will be slightly different from that of

Section 10.4 in the following ways: (i) in addition to the choices of identical or non-identical

channels, we will also allow channels to be selected adaptively; and (ii) our primary focus

will be on studying the effect of M , the number of hypotheses, instead of the pairwise

distance, i.e., minp,q∈P:p ̸=q dh(p, q).

Definition 10.5.1 (Sequentially adaptive channels). Let X be the domain, P a family of distri-

butions over X , and T a family of channels from X to Y . Let (U1, . . . , Un) denote n (ordered) users.

Each user Ui observes a random variable Xi i.i.d. from an (unknown) p′ ∈ P . The observations

are then released sequentially, as follows: for each time i ∈ [n], user Ui first selects a channel

Ti ∈ T based on Xi (personal sample) and (Y1, . . . , Yi−1) (public knowledge up to now), generates

Yi = Ti(Xi), and finally releases Yi to everyone. The central server U0 observes Y1, . . . , Yn and

constructs an estimate p̂ = ϕ(Y1, . . . , Yn). Both the hypothesis testing task and its sample complexity
24The optimal test corresponds to a likelihood ratio test between T∗p and T∗q.
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are defined analogously to Definitions 10.2.6 and 10.2.7. When T is the set of channels that map to

D alphabets, i.e., T = TD, we denote the sample complexity by n∗
adaptive(P , TD).

10.5.1 Upper Bounds

In the following result, we show using a standard argument that we can use a

communication-efficient binary test from Theorem 10.4.1 as a subroutine to solve the

M -wise hypothesis testing problem.

Proposition 10.5.2 (Upper bounds using threshold tests). Let P be set of M distributions

in ∆k such that ρ = minp,q∈P:p ̸=q dh(p, q). Let k′ = log(1/ρ) and define the blow-up factor

R := min{k,log(1/ρ)}
D

+ 1. Then the sample complexity of the simple M -ary hypothesis testing problem

satisfies the bounds

1. n∗
non-identical(P , TD) ≲ M2 logM

ρ2 ·R,

2. n∗
adaptive(P , TD) ≲ M logM

ρ2 ·R.

The proof of Proposition 10.5.2, which is provided in Appendix G.4.1, proceeds by

analyzing a standard tournament procedure, which we now briefly describe. We think

of each hypothesis as a player, and each hypothesis test between any two distributions

(players) as a game. The tournament procedure decides the fixtures of the games (which

distributions will play against each other) and the overall winner of the tournament (the

hypothesis that will be returned) based on the results of individual games. It is easy to see

that the true distribution p ∈ P will never lose a game against any of the competitors, with

high probability. Thus, as long as we have a unique player who has not lost a single game,

we can confidently choose it to be the winner. An obvious strategy is to organize all pairwise

Θ(M2) tests and output the player who never loses a game. Sans communication constraints,

each game (hypothesis test) can be played with the same set of samples, and since the failure

probability is exponentially small, it suffices to take O(logM) samples so that the results of

all the games involving player p are correct. However, under communication constraints,
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we observe the samples only after they have passed through a channel. Furthermore, the

channel that would ideally be employed for the game between p and q crucially relies

on p and q, and it is unclear if the same channel provides useful information for the

game between p and another player q′. We can circumvent this obstacle by using a new

channel and a fresh set of samples for each game, which guarantees correctness after taking

O(M2 logM) samples. Recall that the choice of channels was non-adaptive here—when

the channels can be adaptive, we can reduce the number of games (and thus the sample

complexity) by organizing a “knock-out” style tournament of M − 1 games, where each

losing player is discarded from the tournament.

Remark 10.5.3 (Dependence on M and ρ). We now comment on the dependence of these bounds

on M and ρ. In particular, note that:

1. As shown later in Theorem 10.5.8, the dependence on M is nearly tight (up to logarithmic

factors) for the case of adaptive algorithms (for constant ρ and D).

2. For non-adaptive algorithms and D = 2, Theorem 10.5.10 shows a lower bound of Ω(M2) for

the case of identical channels.

3. The dependence on ρ is tight for constant M (Theorem 10.4.3).

Remark 10.5.4 (Robust M -ary hypothesis testing). One can also consider a robust version

of simple M -ary hypothesis testing, which is often called hypothesis selection, i.e., the true distri-

bution p satisfies minq∈P dTV(p, q) ≤ ϵ (analogous to Definition 10.4.4). One can use the robust

test for binary hypothesis testing from Section 10.4.3 to obtain a similar dependence on M as in

Proposition 10.5.2 under this setting.

As the dependence on M is nearly tight for adaptive channels (for constant ρ), we now

shift our attention to procedures that use identical channels, which might be desirable in

certain practical situations. We establish the following bound for identical channels:
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Theorem 10.5.5 (Upper bounds with identical channels). Let P be a set of M distributions in

∆k satisfying minp,q∈P:p ̸=q dTV(p, q) > ϵ. Then

n∗
identical(P , TD) ≲ D logM

ϵ2 min
{
log(DM2)M6+ 4

D−1 , kM
4

D−1 log(Dk)
}
. (10.17)

In particular, for D = Ω(log(M)), we have

n∗
identical(P , TD) ≲ log2 M

ϵ2 min
{
M6, k log k

}
(10.18)

(since n∗
identical(P , TD) decreases in D). Furthermore, for any p and q, the channel achieving

the rates in inequalities (10.17) and (10.18) can be found efficiently using a linear program of

polynomial size.

Proof. Let P =
{
p(1), . . . , p(M)

}
. We prove the bound (10.17) by reducing the problem

to a (decentralized) testing problem between distributions P ′ =
{
q(1), . . . , q(M)

}
, where

q(i) ∈ ∆D and q(i) = Tp(i) for some T ∈ TD. Defining ϵ′ = mini ̸=j dTV
(
Tq(i),Tq(j)

)
,

Fact 10.2.4 shows the existence of an algorithm with sample complexityO
(

logM
ϵ′2

)
. Thus, the

goal is to find a channel T that maximizes mini ̸=j dTV
(
Tp(i),Tp(j)

)
, leading to the linear

program

max
T∈TD

min
i ̸=j

dTV(Tp(i),Tp(j)). (10.19)

Let OPT be the value of the maximum in expression (10.19). The overall sample com-

plexity of the algorithm is then O
(

logM
OPT2

)
. We now prove each of the two bounds in

inequality (10.17) by lower-bounding OPT in two different ways.

Bound II. We first prove the second bound in inequality (10.17) of Theorem 10.5.5. The

following result, proved in Appendix G.4.2, provides a lower bound on the quantity (10.19)

by using a Johnson-Lindenstrauss (JL) type of sketch:
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Lemma 10.5.6 (JL-sketch). There exists a constant c > 0 such that the following holds: Let{
p(1), . . . , p(M)

}
⊆ ∆k be M distributions such that mini ̸=j dTV(p(i), p(j)) > ϵ. Then

max
T∈TD

min
i ̸=j

dTV(Tp(i),Tp(j)) ≥ c · ϵ
√
kM

2
D−1

√
D log(Dk)

.

Bound I. We note that the first bound in inequality (10.17) is better than the second

bound when k ≫ M . Our strategy will be to reduce the problem from a domain with k

elements to a domain of (potentially) smaller size.

Claim 10.5.7 (Reduction to a domain of size M2). Let P =
{
p(1), . . . , p(M)

}
and consider the

setting of Theorem 10.5.5. There exists a channel T : [k]→ [M2] such that for all 1 ≤ i < j ≤M ,

we have dTV
(
Tp(i),Tp(j)

)
≥ 1

M2 · dTV
(
p(i), p(j)

)
.

Proof. Note that the result holds trivially for k ≤M2, so assume that k > M2. Let d =
(
M
2

)
.

For two distributions p and q, we have dTV(p, q) = 1
2∥p − q∥1. Thus, we will show the

existence of a column-stochastic matrix T ∈ Rd×k, i.e., each entry of T is non-negative and

the sum of each column is 1, satisfying the following conclusion when interpreted as an

inequality concerning matrices and vectors:
∥∥∥T(p(i) − p(j))

∥∥∥
1
≥ 1

M2 ·
∥∥∥p(i) − p(j)

∥∥∥
1
.

We will index rows by (i, j), for 1 ≤ i < j ≤M . We first define a matrix T′ ∈ Rd×k, such

that the (i, j)th row is the vector z′
(i,j) ∈ Rk with ℓth entry equal to Ip(i)(ℓ)>p(j)(ℓ). It is easy to

see that

∥∥∥T′p(i) −T′p(j)
∥∥∥

1
=
∣∣∣〈z′

(i,j), p
(i) − p(j)

〉∣∣∣ = 1
2
∥∥∥p(i) − p(j)

∥∥∥
1
. (10.20)

We now construct T by transforming T′ into a column-stochastic matrix by dividing each

column by the sum of its entries. Let
{
z(i,j)

}
denote the rows of T. As each entry of T′ is at

most 1 and the number of rows is d, each entry of T is at least 1
d

times the corresponding

entry of T′, i.e., zi,j ≥
z′

i,j

d
, interpreted as an entrywise inequality.
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Thus, for any 1 ≤ i < j ≤M , we have

∥∥∥Tp(i) −Tp(j)
∥∥∥

1
≥
∣∣∣〈zi,j, p(i) − p(j)

〉∣∣∣ ≥ 1
d

∣∣∣〈z′
(i,j), p

(i) − p(j)
〉∣∣∣ ,

noting that each entry in the sum ⟨zi,j, p(i)−p(j)⟩ is nonnegative by construction. Combining

with inequality (10.20), we obtain

∥∥∥Tp(i) −Tp(j)
∥∥∥

1
≥ 1

2d
∥∥∥p(i) − p(j)

∥∥∥
1
≥ 1
M2

∥∥∥p(i) − p(j)
∥∥∥

1
.

This completes the proof.

Returning to the original problem setting, let T1 be a channel from Claim 10.5.7 that

transforms p(i) ∈ ∆k to q(i) ∈ ∆M2 , such that mini ̸=j dTV(q(i), q(j)) ≥ ϵ
M2 . Define ϵ′ = ϵ

M2 and

k′ = M2. Applying Lemma 10.5.6, there exists a channel T2 : [k′] → [D] such that for all

i ̸= j, we have

dTV
(
T2q

(i),T2q
(j)
)
≳

ϵ′
√
k′

1
M

2
D−1

√
D log(Dk′)

= ϵ

M3+ 2
D−1

√
D log(DM2)

.

We define the final channel T : [k]→ [D] to be the concatenation of the two channels T1 and

T2. In matrix notation, this corresponds to T := T2 ×T1. Then OPT ≳ ϵ

M
3+ 2

D−1
√
D log(DM2)

.

10.5.2 Lower Bounds

In this section, we present lower bounds for the M -ary hypothesis testing problem. We

begin by proving a lower bound of Ω(M) for adaptive algorithms, thus also for non-adaptive

algorithms. Although we state our results for sequentially adaptive algorithms, these lower

bounds also hold for the more general blackboard protocol; see the papers [BGMNW16;

SVW16] for more details.
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Theorem 10.5.8 (Adaptive lower bounds). For every M ≥ 2 and ϵ < 0.1, there exist k ∈ N

and a set of M distributions PM ⊆ ∆k such that the following hold:

1. (Lower bound from strong distributed data processing and direct-sum reduction [BGMNW16].)

k = O
(
2M
)
, n∗(PM) ≲ logM

ϵ2
, and n∗

adaptive(PM , TD) ≳ M
ϵ2 logD .

2. (Lower bound from SQ dimension [SVW16; Fel17].) k = O(M), n∗(PM) ≲ logM
ϵ2

, and

n∗
adaptive(PM , TD) ≳ Ω

(
M1/3

ϵ2/3D2/3(logD)1/3

)
as long as M ≳ logD

ϵD
.

The proof of Theorem 10.5.8 is given in Appendix G.5.

Remark 10.5.9 (An elementary proof of Ω(
√
M)). We also provide an elementary proof of an

Ω(
√
M) lower bound for non-adaptive channels that relies on the impossibility of ℓ1-embedding

using linear transforms [LMN05; CS02]. See Appendix G.5.3 for more details.

Theorem 10.5.10 (Lower bounds for identical channels and D = 2). There exist constants

c1, c2 > 0 such that the following holds for every M ≥ 2 and PM :=
{
p(1), . . . , p(M)

}
⊆ ∆k:

Let ϵ1 := mini ̸=j dh
(
p(i), p(j)

)
and ϵ2 := maxi ̸=j dh

(
p(i), p(j)

)
. Then n∗(PM) ≤ c1 logM

ϵ21
and

n∗
identical(PM , T2) ≥ c2M2

ϵ22
.

Remark 10.5.11. Theorem 10.5.10 is a strong lower bound in the sense that it holds for every

set of distributions. By a standard volumetric argument, it is possible to construct a set of M

distributions PM ⊆ ∆k such that (i) ϵ2 ≲ ϵ1 = c for a constant c and (ii) M = 2Ω(k). As an

algorithm for distribution estimation in dTV implies a testing algorithm (see, e.g., [Tsy09]), a

standard argument implies that any algorithm that uses an identical channel T ∈ T2 and learns the

underlying distribution p in dTV up to a small constant requires at least 2Ω(k) samples. This is in stark

contrast to the setting of non-identical channels, where Acharya, Canonne, and Tyagi [ACT20b]

provide an algorithm with sample complexity O(k2).

Proof of Theorem 10.5.10. Observe that the upper bound on n∗(PM) follows directly from

Fact 10.2.4. We now focus on the lower bound. Our goal is to show that there exists a
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constant c2 such that

sup
T∈T2

min
i ̸=j

dh(Tp(i),Tp(j)) ≤ c2ϵ2

M
, (10.21)

since Fact 10.2.4 then implies a lower bound of n∗(PM , {T}) ≳ M2

ϵ22
.

Fix a channel T ∈ T2. Let QM =
{
q(1), . . . , q(M)

}
be the set of binary distributions

obtained after transforming PM via the channel, where q(i) = Tpi. Since QM is a set of

binary distributions, each distribution q(i) can be represented by a single scalar parameter,

which we denote by qi. Without loss of generality, let 0 ≤ q1 < q2 < · · · < qk ≤ 1. By the

data processing inequality, we have maxi ̸=j dh
(
q(i), q(j)

)
≤ dh

(
p(i), p(j)

)
≤ ϵ2. We will show

that in fact, there exists an index i∗ such that dh
(
q(i∗), q(i∗+1)

)
≲ ϵ2

M
. Taking a supremum

over all T ∈ T2 would then establish the result in inequality (10.21).

For a q ∈ [0, 1], let Ber(q) denote the Bernoulli distribution with parameter q. For

0 ≤ q ≤ q′ ≤ 1/2, we have the following (cf. Claim G.6.2):

√
q′ −√q ≤ dh (Ber(q),Ber(q′)) ≤

√
2
(√

q′ −√q
)
. (10.22)

Let r be the largest integer such that qr ≤ 1/2. We will assume that r ≥ M
2 (otherwise,

apply the following argument to 1− qi). Using inequality (10.22) twice, we obtain

r−1∑
i=1

dh
(
q(i), q(i+1)

)
≤
√

2
r−1∑
i=1

(√qi+1 −
√
qi) =

√
2 (√qr −

√
q1) ≤

√
2dh

(
q(1), q(r)

)
≤
√

2ϵ2.

As r ≥ M
2 , the preceding inequality implies that there exists some i∗ such that

dh
(
q(i∗), q(i∗+1)

)
≲
ϵ2

r
≲

ϵ2

M
.
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10.6 Discussion

We have studied the problem of simple hypothesis testing under communication constraints.

Taking a cue from past work on decentralized detection, we have focused on threshold

channels and analyzed the sample complexity for a (near-optimal) threshold channel. For

simple binary hypothesis testing, we showed that this choice leads to an at most logarithmic

increase in the sample complexity of the test. We extended this result to the robust setting,

where distributions may be contaminated in total variation. Importantly, our algorithms

for hypothesis testing in the simple and robust settings were shown to be computationally

efficient. Finally, we studied M -ary hypothesis testing by considering settings where

the channels are identical, non-identical, or adaptive. We showed that communication

constraints may lead to an exponential increase in sample complexity even for adaptive

channels. For identical channels, we developed an efficient algorithm and analyzed its

sample complexity. At a technical level, our results rely on a reverse data processing

inequality for communication-constrained channels, a reverse Markov inequality, and a

sketching algorithm akin to the Johnson-Lindenstrauss theorem.

There are several research directions that are worth exploring: Is adaptivity of channels

useful in simple binary hypothesis testing? Can one tighten the dependence of sample

complexity on the minimum Hellinger distance between the distributions for M -ary hy-

pothesis testing? (Our results use total variation as a proxy for Hellinger and are likely

to be loose.) It would also be interesting to study simple hypothesis testing under other

constraints such as local differential privacy and memory. The technical tools developed in

this paper, particularly the reverse data processing inequality, may also have applications

in quantization via “single-shot compression” in information theory.
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11 hypothesis testing under local differential privacy and

communication constraints

We study simple binary hypothesis testing under both local differential privacy (LDP)

and communication constraints. We qualify our results as either minimax optimal or

instance optimal: the former hold for the set of distribution pairs with prescribed Hellinger

divergence and total variation distance, whereas the latter hold for specific distribution pairs.

For the sample complexity of simple hypothesis testing under pure LDP constraints, we

establish instance-optimal bounds for distributions with binary support; minimax-optimal

bounds for general distributions; and (approximately) instance-optimal, computationally

efficient algorithms for general distributions. When both privacy and communication

constraints are present, we develop instance-optimal, computationally efficient algorithms

that achieve the minimum possible sample complexity (up to universal constants). Our

results on instance-optimal algorithms hinge on identifying the extreme points of the joint

range set A of two distributions p and q, defined as A := {(Tp,Tq)|T ∈ C}, where C is the

set of channels characterizing the constraints.

11.1 Introduction

Statistical inference on distributed data is becoming increasingly common, due to the prolif-

eration of massive datasets which cannot be stored on a single server, and greater awareness

of the security and privacy risks of centralized data. An institution (or statistician) that

wishes to infer an aggregate statistic of such distributed data needs to solicit information,

such as the raw data or some relevant statistic, from data owners (individuals). Individuals

may be wary of sharing their data due to its sensitive nature or their lack of trust in the

institution. The local differential privacy (LDP) paradigm suggests a solution by requiring

that individuals’ responses divulge only a limited amount of information about their data
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to the institution. Privacy is typically ensured by deliberately randomizing individuals’

responses, e.g., by adding noise. See Definition 11.1.1 below for a formal definition; we

refer the reader to Dwork and Roth [DR13] for more details on differential privacy.

In this paper, we study distributed estimation under LDP constraints, focusing on

simple binary hypothesis testing, a fundamental problem in statistical estimation. We will

also consider LDP constraints in tandem with communication constraints. This is a more

realistic setting, since bandwidth considerations often impose constraints on the size of

individuals’ communications. The case when only communication constraints are present

was addressed previously by Pensia, Jog, and Loh [PJL22].

Recall that simple binary hypothesis testing is defined as follows: Let p and q be two

distributions over a finite domain X , and let X1, . . . , Xn ∈ X n be n i.i.d. samples drawn

from either p or q. The goal of the statistician is to identify (with high probability) whether

the samples were drawn from p or q. This problem has been extensively studied in both

asymptotic and nonasymptotic settings [NP33; Wal45; Cam86]. For example, it is known

that the optimal test for this problem is the likelihood ratio test, and its performance

can be characterized in terms of divergences between p and q, such as the total variation

distance, Hellinger divergence, or Kullback–Leibler divergence. In particular, the sample

complexity of hypothesis testing, defined as the smallest sample size needed to achieve an

error probability smaller than a small constant, say, 0.01, is Θ
(

1
d2

h(p,q)

)
, where d2

h(p, q) is the

Hellinger divergence between p and q.

In the context of local differential privacy, the statistician no longer has access to the

original samples X1, . . . , Xn, but only their privatized counterparts: Y1, . . . , Yn ∈ Yn, for

some set Y .25 Each Xi is transformed to Yi via a private channel Ti, which is simply a

probability kernel specifying Ti(y, x) = P(Yi = y|Xi = x). With a slight abuse of notation,

we shall use Ti to denote the transition kernel in R|Y|×|X |, as well as the stochastic map

Yi = Ti(Xi). A formal definition of privacy is given below:
25As shown in Kairouz, Oh, and Viswanath [KOV16], for simple binary hypothesis testing, we can take Y

to be X , with the same sample complexity (up to constant factors); see Fact 11.2.7.
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Definition 11.1.1 (ϵ-LDP). Let ϵ ∈ R+, and let X and Y be two domains. A channel T : X → Y

satisfies ϵ-LDP if

sup
x,x′∈X

sup
A⊆Y

P[T(x) ∈ A]− eϵ · P[T(x′) ∈ A] ≤ 0,

where we interpret T as a stochastic map on X . Equivalently, if X and Y are countable domains (as

will be the case for us), a channel T is ϵ-LDP if supx,x′∈X supy∈Y
T(y,x)
T(y,x′) ≤ eϵ, where we interpret

T as the transition kernel.

When ϵ =∞, we may set Yi equal to Xi with probability 1, and we recover the vanilla

version of the problem with no privacy constraints.

Existing results on simple binary hypothesis testing under LDP constraints have focused

on the high-privacy regime of ϵ ∈ (0, c), for a constant c > 0, and have shown that the

sample complexity is Θ
(

1
ϵ2d2

TV(p,q)

)
, where dTV(p, q) is the total variation distance between

p and q (cf. Fact 11.2.7). Thus, when ϵ is a constant, the sample complexity is Θ
(

1
d2

TV(p,q)

)
,

and when ϵ = ∞ (no privacy), the sample complexity is Θ
(

1
d2

h(p,q)

)
. Although these

two divergences satisfy d2
TV(p, q) ≲ d2

h(p, q) ≲ dTV(p, q), the bounds are tight; i.e., the two

sample complexities can be quadratically far apart. Existing results therefore do not inform

sample complexity when 1≪ ϵ <∞. This is not an artifact of analysis: the optimal tests in

the low and high privacy regimes are fundamentally different.

The large-ϵ regime has been increasingly used in practice, due to privacy amplification

provided by shuffling [CSUZZ19; BEMMRLRKTS17; FMT21]. Our paper makes progress

on the computational and statistical fronts in the large-ϵ regime, as will be highlighted in

Section 11.1.3 below.

11.1.1 Problem Setup

For a natural number k, we use [k] to denote the set {1, 2, . . . , k}. In our paper, we focus on

the private-coin, non-interactive protocol.26 As we will be working with both privacy and
26We refer the reader to Acharya, Canonne, Liu, Sun, and Tyagi [ACLST22] for differences between various

protocols.
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communication constraints in this paper, we first define the generic protocol for distributed

inference under an arbitrary set of channels C below:

Definition 11.1.2 (Simple binary hypothesis testing under channel constraints). LetX andY

be two countable sets. Let C be a set of channels from X to Y , and let p and q be two distributions on

X . Let {Ui}ni=1 denote a set of n users who choose channels {Ti}ni=1 ∈ Cn according to a deterministic

rule27 R : [n] → C. Each user Ui then observes Xi and generates Yi = Ti(Xi) independently,

where X1, . . . , Xn is a sequence of i.i.d. random variables drawn from an (unknown) r ∈ {p, q}.

The central server U0 observes (Y1, . . . , Yn) and constructs an estimate r̂ = ϕ(Y1, . . . , Yn), for some

test ϕ : ∪∞
i=1Y i → {p, q}. We refer to this problem as simple binary hypothesis testing under

channel constraints.

In the non-interactive setup, we can assume that all Ti’s are identical equal to some T, as

it will increase the sample complexity by at most a constant factor [PJL22] (cf. Fact 11.2.7).

We now specialize the setting of Definition 11.1.2 to the case of LDP constraints:

Definition 11.1.3 (Simple binary hypothesis testing under LDP constraints). Consider the

problem in Definition 11.1.2 with Y = N, where C is the set of all ϵ-LDP channels from X to Y . We

denote this problem by B(p, q, ϵ). For a given test-rule pair (ϕ,R) with ϕ : ∪∞
j=1Yj → {p, q}, we

say that (ϕ,R) solves B(p, q, ϵ) with sample complexity n if

P
(X1,...,Xn)∼p⊗n

(ϕ(Y1, . . . , Yn) ̸= p) + P
(X1,...,Xn)∼q⊗n

(ϕ(Y1, . . . , Yn) ̸= q) ≤ 0.1. (11.1)

We use n∗(p, q, ϵ) to denote the sample complexity of this task, i.e., the smallest n so that there exists

a (ϕ,R)-pair that solves B(p, q, ϵ). We use B(p, q) and n∗(p, q) to refer to the setting of non-private

testing, i.e., when ϵ =∞, which corresponds to the case when C is the set of all possible channels

from X to Y .
27When C is a convex set of channels, as will be the case in this paper, the deterministic rules are equivalent

to randomized rules (with independent randomness).
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For any fixed ruleR, the optimal choice of ϕ corresponds to the likelihood ratio test on

{Yi}ni=1. Thus, in the rest of this paper, our focus will be optimizing the rule R, with the

choice of ϕ made implicitly. In fact, we can take Y to be X , at the cost of a constant-factor

increase in the sample complexity [KOV16] (cf. Fact 11.2.7).

We now define the threshold for free privacy, in terms of a large enough universal

constant Cthresh > 0 which can be explicitly deduced from our proofs:

Definition 11.1.4 (Threshold for free privacy). We define ϵ∗(p, q) (also denoted by ϵ∗ when the

context is clear) to be the smallest ϵ such that n∗(p, q, ϵ) ≤ Cthresh ·n∗(p, q); i.e., for all ϵ ≥ ϵ∗(p, q), we

can obtain ϵ-LDP without any substantial increase in sample complexity compared to the non-private

setting.

Next, we study the problem of simple hypothesis testing under both privacy and

communication constraints. By communication constraints, we mean that the channel T

maps from X to [ℓ] for some ℓ ∈ N, which is potentially much smaller than |X |.

Definition 11.1.5 (Simple binary hypothesis testing under LDP and communication con-

straints). Consider the problem in Definition 11.1.2 and Definition 11.1.3, with C equal to the set

of all channels that satisfy ϵ-LDP and Y = [ℓ]. We denote this problem by B(p, q, ϵ, ℓ), and use

n∗(p, q, ϵ, ℓ) to denote its sample complexity.

Communication constraints are worth studying not only for their practical relevance

in distributed inference, but also for their potential to simplify algorithms without sig-

nificantly impacting performance. Indeed, the sample complexities of simple hypothesis

testing with and without communication constraints are almost identical [BNOP21; PJL22]

(cf. Fact 11.2.8), even for a single-bit (ℓ = 2) communication constraint. As we explain

later, a similar statement can be made for privacy constraints, as well.
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11.1.2 Existing Results

As noted earlier, the problem of simple hypothesis testing with just communication con-

straints was addressed in Pensia, Jog, and Loh [PJL22]. Since communication and privacy

constraints are the most popular information constraints studied in the literature, the

LDP-only and LDP-with-communication-constraints settings considered in this paper are

natural next steps. Many of our results, particularly those on minimax-optimal sample

complexity bounds, are in a similar vein as those in Pensia, Jog, and Loh [PJL22]. Before

describing our results, let us briefly mention the most relevant prior work. We discuss

further related work in Section 11.1.4.

Existing results on sample complexity. Existing results (cf. Duchi, Jordan, and Wain-

wright [DJW18, Theorem 1] and Asoodeh and Zhang [AZ22, Theorem 2]) imply that

n∗(p, q, ϵ) ≳



1
ϵ2 · d2

TV(p,q) , if ϵ ∈ (0, 1],

1
eϵ · d2

TV(p,q) , if eϵ ∈
(
e,

d2
h(p,q)

d2
TV(p,q)

]
,

1
d2

h(p,q) , if eϵ > d2
h(p,q)

d2
TV(p,q) .

(11.2)

An upper bound on the sample complexity can be obtained by choosing a specific private

channel T and analyzing the resulting test. A folklore result (see, for example, Joseph,

Mao, Neel, and Roth [JMNR19, Theorem 5.1]) shows that setting T = TRR×TScheffe, where

TScheffe maps X to {0, 1} using a threshold rule based on p(x)
q(x) , and TRR is the binary-input

binary-output randomized response channel, gives n∗(p, q, ϵ) ≲ 1
min(1,ϵ2) · d2

TV(p,q) . This shows

that when ϵ ∈ (0, 1] (or (0, c], for some constant c), the lower bound is tight up to constants.

Observe that for any ℓ ≥ 2, the sample complexity with privacy and communication

constraints n∗(p, q, ϵ, ℓ) also satisfies the same lower and upper bounds, since the channel T

has only two outputs.

However, the following questions remain unanswered:
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What is the optimal sample complexity for ϵ≫ 1? In particular, are the existing

lower bounds Equation (11.2) tight? What is the threshold for free privacy?

In Section 11.1.3.1, we establish minimax-optimal bounds on the sample complexity for all

values of ϵ, over sets of distribution pairs with fixed total variation distance and Hellinger

divergence. In particular, we show that the lower bounds Equation (11.2) are tight for

binary distributions, but may be arbitrarily loose for general distributions.

Existing results on computationally efficient algorithms. Recall that each user needs to

select a channel T to optimize the sample complexity. Once T is chosen, the optimal test

is simply a likelihood ratio test between Tp and Tq. Thus, the computational complexity

lies in determining T. As noted earlier, for ϵ ≤ 1, the optimal channel is T = TRR ×TScheffe,

and this can be computed efficiently. However, this channel T may no longer be optimal in

the regime of ϵ≫ 1.

As with statistical rates, prior literature on finding optimal channels for ϵ≫ 1 is scarce.

Existing algorithms either take time exponential in the domain size [KOV16], or their

sample complexity is suboptimal by polynomial factors (depending on 1
d2

TV(p,q) , as opposed

to 1
d2

h(p,q)). This raises the following natural question:

Is there a polynomial-time algorithm that finds a channel T whose sample

complexity is (nearly) optimal?

We answer this question in the affirmative in Section 11.1.3.3.

11.1.3 Our Results

We are now ready to describe our results in this paper, which we outline in the next three

subsections. In particular, Section 11.1.3.1 focuses on the sample complexity of simple

hypothesis testing under local privacy, Section 11.1.3.2 focuses on structural properties of
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the extreme points of the joint range under channel constraints, and Section 11.1.3.3 states

our algorithmic guarantees.

11.1.3.1 Statistical Rates

We begin by analyzing the sample complexity when both p and q are binary distribu-

tions. We prove the following result in Section 11.3.1, showing that the existing lower

bounds Equation (11.2) are tight for binary distributions:

Theorem 11.1.6 (Sample complexity of binary distributions). Let p and q be two binary

distributions. Then

n∗(p, q, ϵ) ≍



1
ϵ2 · d2

TV(p,q) , if ϵ ≤ 1,

1
eϵ · d2

TV(p,q) , if eϵ ∈
[
e,

d2
h(p,q)

d2
TV(p,q)

]
,

1
d2

h(p,q) , if eϵ > d2
h(p,q)

d2
TV(p,q) .

(11.3)

In particular, the threshold ϵ∗ for free privacy (Definition 11.1.4) satisfies eϵ∗ ≍ d2
h(p,q)

d2
TV(p,q) .

Note that the sample complexity n∗(p, q, ϵ) for all ranges of ϵ is completely characterized

by the total variation distance and Hellinger divergence between p and q. A natural set

to consider is all distribution pairs (not just those with binary support) with a prescribed

total variation distance and Hellinger divergence; we investigate minimax-optimal sample

complexity over this set. Our next result shows that removing the binary support condition

radically changes the sample complexity, even if the total variation distance and Hellinger

divergence are the same. Specifically, we show that there are ternary distribution pairs

whose sample complexity (as a function of the total variation distance and Hellinger

divergence) is significantly larger than the corresponding sample complexity for binary

distributions.

Theorem 11.1.7 (Sample complexity lower bound for general distributions). For any ρ ∈

(0, 0.5) and ν ∈ (0, 0.5) such that 2ν2 ≤ ρ ≤ ν, there exist ternary distributions p and q such that
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d2
h(p, q) = ρ, dTV(p, q) = ν, and the sample complexity behaves as

n∗(p, q, ϵ) ≍



1
ϵ2 · d2

TV(p,q) , if ϵ ≤ 1,

min
(

1
d2

TV(p,q) ,
1

eϵ · d4
h(p,q)

)
, if eϵ ∈

[
e, 1

d2
h(p,q)

]
,

1
d2

h(p,q) , if eϵ > 1
d2

h(p,q) .

(11.4)

We prove this result in Section 11.3.2.

Remark 11.1.8. We highlight the differences between the sample complexity in the binary setting (cf.

equation Equation (11.3)) and the worst-case general distributions (cf. equation Equation (11.4))

below (also see Figure 11.1):

1. (Relaxing privacy may not lead to significant improvements in accuracy.) In equation Equa-

tion (11.4), there is an arbitrarily large range of ϵ where the sample complexity remains

roughly constant. In particular, when e ≤ eϵ ≲ d2
TV(p,q)
d4

h(p,q) , the sample complexity of hypothesis

testing remains roughly the same (up to constants). That is, we are sacrificing privacy without

any significant gains in statistical efficiency. This is in stark contrast to the binary setting,

where increasing eϵ by a large constant factor leads to a constant-factor improvement in sample

complexity.

2. (The threshold for free privacy is larger.) Let ϵ∗ := ϵ(p, q) be the threshold for free privacy

(cf. Definition 11.1.4). In the binary setting, one has eϵ∗ ≍ d2
h(p,q)

d2
TV(p,q) , whereas for general

distributions, one may need eϵ∗ ≳ 1
d2

h(p,q) . The former ϵ∗ can be arbitrarily smaller than the

latter.

To complement the result above, which provides a lower bound on the sample complex-

ity for worst-case distributions, our next result provides an upper bound on the sample

complexity that nearly matches the rates (up to logarithmic factors) for arbitrary distribu-

tions. Moreover, the proposed algorithm uses an ϵ-LDP channel with binary outputs. The

following result is proved in Section 11.3.3:
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Theorem 11.1.9 (Sample complexity upper bounds and an efficient algorithm for hypothesis

testing for general distributions). Let p and q be two distributions on [k]. Let ϵ > 0. Then the

sample complexity behaves as

n∗(p, q, ϵ) ≲



1
ϵ2 · d2

TV(p,q) , if ϵ ≤ 1,

min
(

1
d2

TV(p,q) ,
α2

eϵ · d4
h(p,q)

)
, if eϵ ∈

(
e, α

d2
h(p,q)

]
,

α
d2

h(p,q) , if eϵ > α
d2

h(p,q) ,

(11.5)

where α ≲ log(1/d2
h(p, q)) ≍ log (n∗(p, q)).

Moreover, the rates above are achieved by an ϵ-LDP channel T that maps [k] to [2] and can be

found in time polynomial in k, for any choice of p, q, and ϵ.

Theorems 11.1.7 and 11.1.9 imply that the above sample complexity is minimax optimal

(up to logarithmic factors) over the class of distributions with total variation distance ν

and Hellinger divergence ρ satisfying the conditions in Theorem 11.1.7. We summarize

this in the following theorem:

Theorem 11.1.10 (Minimax-optimal bounds). Let ρ ∈ (0, 0.5) and ν ∈ (0, 0.5) be such that

2ν2 ≤ ρ ≤ ν. Let Sρ,ν be the set of all distribution pairs with discrete supports, with total variation

distance and Hellinger divergence being ν and ρ, respectively:

Sρ,ν := {(p, q) : k ∈ N, p ∈ ∆k, q ∈ ∆k, dTV(p, q) = ν, d2
h(p, q) = ρ}.

Let n∗(Sρ,ν , ϵ) be the minimax-optimal sample complexity of hypothesis testing under ϵ-LDP con-

straints, defined as

n∗(Sρ,ν , ϵ) = min
(ϕ,R)

max
(p,q)∈Sρ,ν

n∗(p, q, ϵ),
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for test-rule pairs (ϕ,R), as defined in Definition 11.1.3. Then

n∗(Sρ,ν , ϵ) =



Θ̃
(

1
ϵ2 · ν2

)
, if ϵ ≤ 1,

Θ̃
(
min

(
1
ν2 ,

1
eϵ · ρ2

))
, if eϵ ∈

[
e, 1

ρ

]
,

Θ̃
(

1
ρ

)
, if eϵ > 1

ρ
.

(11.6)

Here, the Θ̃ notation hides poly-logarithmic factors in 1/ν and 1/ρ.

Remark 11.1.11. A version of the above theorem may also be stated for privacy and communication

constraints, by defining

n∗(Sρ,ν , ϵ, ℓ) = min
(ϕ,R)

max
(p,q)∈Sρ,ν

n∗(p, q, ϵ, ℓ).

In fact, it may seen that the same sample complexity bounds continue to hold for n∗(Sρ,ν , ϵ, ℓ), with

ℓ ≥ 2, since the lower bound in Theorem 11.1.7 continues to hold with communication constraints,

as does the upper bound in Theorem 11.1.9, which uses a channel with only binary outputs.

Remark 11.1.12. The above theorem mirrors a minimax optimality result for communication-

constrained hypothesis testing from Pensia, Jog, and Loh [PJL22]. There, the set under consideration

was Sρ, where ρ is the Hellinger divergence between the distribution pair, and the minimax-optimal

sample complexity was shown to be Θ̃(1/ρ) even for a binary communication constraint.

Finally, we consider the threshold for free privacy ϵ∗ for general distributions; see

Definition 11.1.4. Observe that Theorem 11.1.9 does not provide any upper bounds on

ϵ∗, since the sample complexity in Theorem 11.1.9 is bounded away from n∗(p, q), due

to the logarithmic multiplier α. Recall that Theorem 11.1.7 implies eϵ∗ ≳ 1
d2

h(p,q) in the

worst case. Our next result, proved in Section 11.3.3, shows that this is roughly tight, and

eϵ
∗
≲ 1

d2
h(p,q) · log

(
1

d2
h(p,q)

)
for all distributions:
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Theorem 11.1.13. Let p and q be two distributions on [k], and let eϵ ≳ 1
d2

h(p,q) log
(

1
d2

h(p,q)

)
. Then

n∗(p, q, ϵ) ≍ n∗(p, q). Moreover, there is a channel T achieving this sample complexity that maps

[k] to a domain of size ⌈log(n∗(p, q))⌉, and which can be computed in poly(k, log(⌈n∗(p, q)⌉)) time.

We thereby settle the question of minimax-optimal sample complexity (up to log-

arithmic factors) for simple binary hypothesis testing under LDP-only and LDP-with-

communication constraints (over the class of distributions with a given total variation

distance and Hellinger divergence). Moreover, the minimax-optimal upper bounds are

achieved by computationally efficient, communication-efficient algorithms. However, there

can be a wide gap between instance-optimal and minimax-optimal procedures; in the next

two subsections, we present structural and computational results for instance-optimal

algorithms.
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Figure 11.1: In this plot, we show the difference between the behavior of sample complexity
under ϵ-LDP constraints for binary distributions and (worst-case) ternary distributions
from Theorem 11.1.7. We take two pairs of distributions (p, q)—one pair of binary distri-
butions (shown in blue, with marker ◦) and one pair of ternary distributions (shown in
orange, with marker +)—such that the two pairs have Hellinger divergence d2

h(p, q) = 10−8

and total variation distance dTV(p, q) = 10−5. For each value of ϵ, shown on the horizontal
axis after being mapped to eϵ, we compute minT∈Pϵ 1/d2

h(Tp,Tq), where Pϵ is the set of all
ϵ-LDP channels, and plot it on vertical axis. Thus, the vertical axis characterizes the sample
complexity n∗(p, q, ϵ) of simple binary hypothesis testing between p and q with privacy
constraints, up to constant factors (cf. Fact 11.2.7). Both axes are shown in log-scale here.
Since the total variation distance between the two pairs is identical, we see that their curves
overlap for small ϵ (ϵ ≪ 1, which is consistent with the fact that n∗(p, q, ϵ) ≍ 1

ϵ2d2
TV(p,q) for

small ϵ). As predicted by Theorem 11.1.6, the curve for binary distributions decreases
rapidly for ϵ ≫ 1 until it saturates at 1/d2

h(p, q). Moreover, for eϵ ≍ d2
h(p, q)/d2

TV(p, q), the
predicted threshold for free privacy, the vertical axis is within constant factors of its asymp-
totic value, as predicted. On the other hand, the curve for ternary distributions seems to
have three different phases, as predicted by Theorem 11.1.7: (i) for small ϵ, it behaves as
1/(ϵ2d2

TV(p, q)); (ii) for moderate values of ϵ, such that e≪ eϵ ≪ d2
TV(p,q)
d4

h(p,q) , it remains stagnant

roughly at 1
d2

TV(p,q) ; and (iii) for eϵ ≫ d2
TV(p,q)
d4

h(p,q) , the curve decreases rapidly until it approaches
1/d2

h(p, q). The phase (ii) corresponds to the phenomenon that we are leaking privacy
without any gains in statistical efficiency. Finally, eϵ needs to be as large as 1/d2

h(p, q) for
the vertical axis to be within a factor of 10 of its asymptotic value. We refer the reader to
Remark 11.1.8 for more details.
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11.1.3.2 Structure of Extreme Points under the Joint Range

In this section, we present results for the extreme points of the joint range of an arbitrary

pair of distributions when transformed by a set of channels. Formally, if C is a convex

set of channels from X to Y , and p and q are two distributions on X , we are interested

in the extreme points of the set A := {(Tp,Tq) : T ∈ C}, which is a convex subset of

∆|Y| ×∆|Y|.28 The extreme points of a convex set are naturally insightful for maximizing

quasi-convex functions, and we will present the consequences of the results in this section

in Section 11.1.3.3.

We consider two choices of C: first, when C is the set of all channels from X to Y = [ℓ],

and second, when C is the set of all ϵ-LDP channels from X to Y = [ℓ]. We use Tℓ,k to denote

the set of all channels that map from [k] to [ℓ].

The following class of deterministic channels plays a critical role in our theory:

Definition 11.1.14 (Threshold channels). For some k ∈ N, let p and q be two distributions

on [k]. For any ℓ ∈ N, a deterministic channel T ∈ Tℓ,k is a threshold channel if the following

property holds for every u, v ∈ [k]: If p(u)
q(u) <

p(v)
q(v) and T(u) = T(v), then any w ∈ [k] such that

p(w)
q(w) ∈

(
p(u)
q(u) ,

p(v)
q(v)

)
satisfies T(w) = T(u)(= T(v)). (The likelihood ratios are assumed to take

values on the extended real line; i.e., on R ∪ {−∞,+∞}.)

Remark 11.1.15. Threshold channels are intuitively easy to understand when all the likelihood

ratios are distinct (this may be assumed without loss of generality in our paper, as explained later):

Arrange the inputs in increasing order of their likelihood ratios and partition them into ℓ contiguous

blocks. Thus, there are at most kℓ such threshold channels (up to reordering of output labels).

Our first result proved in Section 11.4 is for the class of communication-constrained chan-

nels, and shows that all extreme points of the joint range are obtained using deterministic

threshold channels:

28For k ∈ N, we use ∆k to denote the probability simplex on a domain of alphabet size k.
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Theorem 11.1.16 (Extreme points of the joint range under communication constraints). Let

p and q be two distributions on [k]. Let A be the set of all pairs of distributions that are obtained by

passing p and q through a channel of output size ℓ, i.e.,

A = {(Tp,Tq) : T ∈ Tℓ,k}.

If (Tp,Tq) is an extreme point of A, then T is a threshold channel.

We note that the above result is quite surprising: (Tp,Tq) is extreme point ofA only if T

is an extreme point of Tℓ,k (i.e., a deterministic channel), but Theorem 11.1.16 demands that

T be a deterministic threshold channel, meaning it lies in a very small subset of deterministic

channels. Indeed, even for ℓ = 2, the number of deterministic channels from [k] to [2] is 2k,

whereas the number of threshold channels is just 2k. We note that the result above is similar

in spirit to Tsitsiklis [Tsi93, Proposition 2.4]. However, the focus there was on a particular

objective, the probability of error in simple hypothesis testing, with non-identical channels

for users. Our result is for identical channels and is generally applicable to quasi-convex

objectives, as mentioned later.

We now consider the case where C is the set of ϵ-LDP channels from [k] to [ℓ]. Since

C is a set of private channels, it does not contain any deterministic channels (thus, does

not contain threshold channels). Somewhat surprisingly, we still show that the threshold

channels play a fundamental role in the extreme points of the joint range under C. The

following result shows that any extreme point of the joint range A can be obtained by a

threshold channel mapping into [2ℓ2], followed by an ϵ-LDP channel from [2ℓ2] to [ℓ]:

Theorem 11.1.17 (Extreme points of the joint range under privacy and communication

constraints). Let p and q be distributions on [k]. Let C be the set of ϵ-LDP channels from [k] to [ℓ].

Let A be the set of all pairs of distributions that are obtained by applying a channel from C to p and
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q, i.e.,

A = {(Tp,Tq) | T ∈ C}. (11.7)

If (Tp,Tq) is an extreme point of A for T ∈ C, then T can be written as T = T2 ×T1 for some

threshold channel T1 ∈ T2ℓ2,k and some T2 an extreme point of the set of ϵ-LDP channels from [2ℓ2]

to [ℓ].

We prove this structural result in Section 11.5, which leads to polynomial-time al-

gorithms for constant ℓ for maximizing quasi-convex functions, as mentioned in Sec-

tion 11.1.3.3.

11.1.3.3 Computationally Efficient Algorithms for Instance Optimality

The results from the previous sections characterized the minimax-optimal sample com-

plexity, but did not address instance optimality. Instance-optimal performance may be

substantially better than minimax-optimal performance, as seen by comparing the instance-

optimal bounds for binary distributions to the minimax-optimal bounds for general distri-

butions. In this section, we focus on identifying an instance-optimal channel T (satisfying

the necessary constraints) for a given pair (p, q) of distributions.

Let p and q be fixed distributions over [k]. Let Pϵℓ,k be the set of all ϵ-LDP channels from

[k] to [ℓ], and let Tℓ,k be the set of all channels from [k] to [ℓ]. Let C ∈ {Pϵℓ,k, Tℓ,k}. As before,

define A = {(Tp,Tq) : T ∈ C}. Let g : A → R be a (jointly) quasi-convex function; i.e.,

for all t ∈ R, the sublevel sets {(p′, q′) : g(p′, q′) ≤ t} are convex. In this paper, we are

primarily interested in functions corresponding to divergences between the distribution

pair. So, unless otherwise mentioned, we shall assume the quasi-convex functions g in

this paper are permutation-invariant; i.e., g(p′, q′) = g(Πp,Πq) for all permutation matrices

Π. However, our algorithmic results will continue to hold even without this assumption,

with an additional factor of ℓ! in the time complexity. We will consider the problem of
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identifying T that solves

max
T∈C

g(Tp,Tq).

The quasi-convexity of g implies that the maximum is attained at some T such that (Tp,Tq)

is an extreme point of A. We can thus leverage the results from Section 11.1.3.2 to search

over the subset of channels satisfying certain structural properties.

Identifying T that maximizes the Hellinger divergence leads to an instance-optimal test

for minimizing sample complexity for testing between p and q with channel constraints C:

This is because if each user chooses the channel T, the resulting sample complexity will be

Θ
(

1
d2

h(Tp,Tq)

)
. Thus, the instance-optimal sample complexity will be obtained by a channel

T that attains maxT∈C d
2
h(Tp,Tq). Note that the Hellinger divergence is convex (and thus

quasi-convex) in its arguments. Apart from the Hellinger divergence, other functions of

interest such as the Kullback–Leibler divergence or Chernoff information (which are also

convex) characterize the asymptotic error rates in hypothesis testing, so finding T for these

functions identifies instance-optimal channels in the asymptotic (large-sample) regime.

Other potential functions of interest include Rényi divergences of all orders, which are

quasi-convex, but not necessarily convex [EH14].

As mentioned earlier, the results of Kairouz, Oh, and Viswanath [KOV16] give a lin-

ear program with 2k variables to find an instance-optimal channel under privacy con-

straints, which is computationally prohibitive. It is also unclear if their result extends

when the channels are further restricted to have communication constraints in addition to

privacy constraints. We now show how to improve on the guarantees of Kairouz, Oh, and

Viswanath [KOV16] in the presence of communication constraints, using the structural

results from the previous subsection.

Corollary 11.1.18 (Computationally efficient algorithms for maximizing quasi-convex

functions). Let p and q be fixed distributions over [k], let C ∈ {Tℓ,k,Pϵℓ,k}, and letA = {(Tp,Tq) :
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T ∈ C}. Let g : A → R be a jointly quasi-convex function. When C = Tℓ,k, there is an algorithm

that solves maxT∈C g(Tp,Tq) in time polynomial in kℓ. When C = Pϵℓ,k, there is an algorithm that

solves maxT∈C g(Tp,Tq) in time polynomial in kℓ2 and 2ℓ3 log ℓ.

We prove Corollary 11.1.18 in Section 11.4 and Section 11.5.3 for C = Tℓ,k and C = Pϵℓ,k,

respectively.

Remark 11.1.19. When ℓ is constant, we obtain a polynomial-time algorithm for maximizing

any quasi-convex function under Tℓ,k or Pϵℓ,k channel constraints. When C = Tℓ,k and g is the

Kullback–Leibler divergence, this exactly solves (for small ℓ) a problem introduced in Carpi, Garg,

and Erkip [CGE21], which proposed a polynomial-time heuristic.

Applying the above result to the Hellinger divergence d2
h, we obtain the following result

for simple binary hypothesis testing, proved in Section 11.5.3:

Corollary 11.1.20 (Computationally efficient algorithms for instance-optimal results under

communication constraints). Let p and q be two distributions on [k]. For any ϵ and any integer

ℓ > 1, there is an algorithm that runs in time polynomial in kℓ2 and 2ℓ3 log ℓ and outputs an ϵ-LDP

channel T mapping from [k] to [ℓ], such that ifN denotes the sample complexity of hypothesis testing

between p and q when each individual uses the channel T, then N ≍ n∗(p, q, ϵ, ℓ).

In particular, the sample complexity with T satisfies

N ≲ n∗(p, q, ϵ) ·
(

1 + log (n∗ (p, q, ϵ))
ℓ

)
. (11.8)

The channel T may be decomposed as a deterministic threshold channel to a domain of size [2ℓ2],

followed by an ϵ-LDP channel from [2ℓ2] to [ℓ].

Thus, by choosing ℓ = 2, we obtain a polynomial-time algorithm with nearly instance-

optimal sample complexity (up to logarithmic factors) under just ϵ-LDP constraints.
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11.1.4 Related Work

Distributed estimation has been studied extensively under resource constraints such as

memory, privacy, and communication. Typically, this line of research considers problems of

interest such as distribution estimation [RT70; LR86; CKO21; BHÖ20], identity or indepen-

dence testing [ACT20a; ACT20b; ACFST21], and parameter estimation [Hel74; DJWZ14;

DJW18; BGMNW16; DR19; BCÖ20; DKPP22], and identifies minimax-optimal bounds on

the error or sample complexity. In what follows, we limit our discussion to related work

on hypothesis testing under resource constraints.

For memory-constrained hypothesis testing, the earliest works in Cover [Cov69] and Hell-

man and Cover [HC73a] derived tight bounds on the memory size needed to perform

asymptotically error-free testing. Hellman and Cover [HC71] also highlighted the ben-

efits of randomized algorithms. These benefits were also noted in recent work by Berg,

Ordentlich, and Shayevitz [BOS20], which considered the error exponent in terms of the

memory size. Recently, Braverman, Garg, and Zamir [BGZ22] showed tight bounds on the

memory size needed to test between two Bernoulli distributions.

Communication-constrained hypothesis testing has two different interpretations. In the

information theory literature, Berger [Ber79], Ahlswede and Csiszár [AC86], and Amari

and Han [AH98] considered a family of problems where two nodes, one which only

observes Xi’s and the other which only observes Yi’s, try to distinguish between PXY and

QXY . Communication between the nodes occurs over rate-limited channels. The second

interpretation, also called “decentralized detection” in Tsitsiklis [Tsi88], is more relevant to

this work. Here, the observedXi’s are distributed amongst different nodes (one observation

per node) that communicate a finite number of messages (bits) to a central node, which

needs to determine the hypothesis. Tsitsiklis [Tsi88; Tsi93] identified the optimal decision

rules for individual nodes and considered asymptotic error rates in terms of the number of

bits. These results were recently extended to the nonasymptotic regime in Pensia, Jog, and

Loh [PJL22; PLJ22].
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Privacy-constrained hypothesis testing has been studied in the asymptotic and nonasymp-

totic regimes under different notions of privacy. The local privacy setting, which is relevant

to this paper, is similar to the decentralized detection model in Tsitsiklis [Tsi93], except that

the each node’s communication to the central server is private. This is achieved by passing

observations through private channels. Liao, Sankar, Calmon, and Tan [LSCT17; LSTC17]

considered maximizing the error exponent under local privacy notions defined via maximal

leakage and mutual information. Sheffet [She18] analyzed the performance of the random-

ized response method for LDP for hypothesis testing. Gopi, Kamath, Kulkarni, Nikolov,

Wu, and Zhang [GKKNWZ20] showed that M -ary hypothesis testing under pure LDP con-

straints requires exponentially more samples (Ω(M) instead of O(logM)). Closely related

to the instance-optimal algorithms in our paper, Kairouz, Oh, and Viswanath [KOV16]

presented an algorithm to find LDP channels that maximize the output divergence for two

fixed probability distributions at the channel input; the proposed algorithm runs in time

exponential in the domain size of the input distributions.29 Note that divergences are di-

rectly related to error exponents and sample complexities in binary hypothesis testing. The

results of Kairouz, Oh, and Viswanath [KOV16] on extreme points of the polytope of LDP

channels were strengthened in Holohan, Leith, and Mason [HLM17], which characterized

the extreme points in special cases. We were able to find only two other papers that consider

instance optimality, but in rather special settings [GGKMZ21; AFT22]. For simple binary

hypothesis testing in the global differential privacy setting, Canonne, Kamath, McMillan,

Smith, and Ullman [CKMSU19] identified the optimal test and corresponding sample

complexity. Bun, Kamath, Steinke, and Wu [BKSW19] showed that O(logM) samples are

enough for M -ary hypothesis testing in the global differential privacy setting.
29We remark, however, that the algorithm in Kairouz, Oh, and Viswanath [KOV16] is applicable to a wider

class of objective functions, which they term “sublinear.”
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11.1.5 Organization

This paper is organized as follows: Section 11.2 records standard results. Section 11.3

focuses on the sample complexity of hypothesis testing under privacy constraints. Sec-

tion 11.4 considers extreme points of the joint range under communication constraints.

Section 11.5 characterizes the extreme points under both privacy and communication

constraints. Section 11.6 explores other notions of privacy beyond pure LDP. Finally, we

conclude with a discussion in Section 11.7. We defer proofs of some intermediate results to

the appendices.

11.2 Preliminaries and Facts

Notation: Throughout this paper, we will focus on discrete distributions. For a natural

number k ∈ N, we use [k] to denote the set {1, . . . , k} and ∆k to denote the set of distributions

over [k]. We represent a probability distribution p ∈ ∆k as a vector in Rk. Thus, pi denotes

the probability of element i under p. Given two distributions p and q, let dTV(p, q) :=
1
2
∑
i |pi−qi| and d2

h(p, q) := ∑
i(
√
pi−
√
qi)2 denote the total variation distance and Hellinger

divergence between p and q, respectively.

We denote channels with bold letters such as T. As the channels between discrete

distributions can be represented by rectangular column-stochastic matrices (each column

is nonnegative and sums to one), we also use bold capital letters, such as T, to denote the

corresponding matrices. In particular, if a channel T is from [k] to [ℓ], we denote it by an

ℓ× k matrix, where each of the k columns is in ∆ℓ. In the same vein, for a column index

c ∈ [k] and a row index r ∈ [ℓ], we use T(r, c) to refer to the entry at the corresponding

location. For a channel T : X → Y and a distribution p over X , we use Tp to denote the

distribution over Y whenX ∼ p passes through the channel T. In the notation above, when

p is a distribution over [k], represented as a vector in Rk, and T is a channel from [k]→ [ℓ],

represented as a matrix T ∈ Rℓ×k, the output distribution Tp corresponds to the usual
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matrix-vector product. We shall also use T to denote the stochastic map transforming the

channel input X to the channel output Y = T(X). Similarly, for two channels T1 and T2

from [k1] to [k2] and [k2] to [k3], respectively, the channel T3 from [k1] to [k3] that corresponds

to applying T2 to the output of T1 is equal to the matrix product T2 ×T1.

Let Tℓ,k be the set of all channels that map from [k] to [ℓ]. We use T thresh
ℓ,k to denote the

subset of Tℓ,k that corresponds to threshold channels (cf. Definition 11.1.14). We use Pϵℓ,k

to denote the set of all ϵ-LDP channels from [k] to [ℓ]. Recall that for two distributions

p and q, we use n∗(p, q, ϵ) (respectively, n∗(p, q, ϵ, ℓ)) to denote the sample complexity of

simple binary hypothesis testing under privacy constraints (respectively, both privacy and

communication constraints).

For a set A, we use conv(A) to denote the convex hull of A. For a convex set A, we use

ext(A) to denote the set of extreme points of A. Finally, we use the following notations for

simplicity: (i) ≲, ≳, and ≍ to hide positive constants, and (ii) the standard asymptotic

notation O(·), Ω(·), and Θ(·). Finally, we use Õ(·), Ω̃(·), and Θ̃ to hide poly-logarithmic

factors in their arguments.

11.2.1 Convexity

We refer the reader to Bertsimas and Tsitsiklis [BT97] for further details. We will use the

following facts repeatedly in the paper, often without mentioning them explicitly:

Fact 11.2.1 (Extreme points of linear transformations). Let A be a convex, compact set in a

finite-dimensional space. Let T be a linear function on A, and define the set A′ := {Tx : x ∈ A}.

Then A′ is convex and compact, and ext(A′) ⊆ {Tx : x ∈ ext(A)}.

Fact 11.2.2. Let A be a convex, compact set. If A = conv(B) for some set B, then ext(A) ⊆ B.

Fact 11.2.3 (Number of vertices and vertex enumeration). Let A ⊆ Rn be a bounded polytope

defined by m linear inequalities. The number of vertices of A is at most
(
m
n

)
. Moreover, there is an
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algorithm that takes eO(n logm) time and output all the vertices of A.30

Fact 11.2.4 (Extreme points of channels). The set of extreme points of Tℓ,k is the set of all

deterministic channels from [k] to [ℓ].

11.2.2 Local Privacy

We state standard facts from the privacy literature here.

Definition 11.2.5 (Randomized response). For an integer k ≥ 2, the k-ary randomized

response channel with privacy parameter ϵ is a channel from [k] to [k] defined as follows: for

any i ∈ [k], T(i) = i with probability eϵ

(k−1)+eϵ and T(i) = j with probability 1
(k−1)+eϵ , for any

j ∈ [k] \ {i}. The standard randomized response [War65] corresponds to k = 2, which we denote

by Tϵ
RR. We omit ϵ in the superscript when it is clear from context.

We will also use the following result on the extreme points for Theorem 11.1.7.

Fact 11.2.6 (Extreme points of the LDP polytope in special cases [HLM17]). We mention all

the extreme points of Pϵℓ,k (up to permutation of rows and columns; if a channel is an extreme point,

then any permutation of rows and/or columns is an extreme point) below for some special cases.

1. (Trivial extreme points) A channel with one row of all ones and the rest of the rows with zero

values is always an extreme point of Pϵℓ,k. We call such extreme points trivial.

2. (ℓ = 2 and k ≥ 2) All non-trivial extreme points of Pϵ2,k are of the form (up to permutation

of rows):

 a a · · · a 1− a 1− a · · · 1− a

1− a 1− a · · · 1− a a a · · · a

 ,

where a/(1− a) = eϵ. In other words, the columns are of only two types, containing a and

1− a.
30Throughout this paper, we assume the bit-complexity of linear inequalities is bounded.
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3. (ℓ = 3 and k = 3) There are two types of non-trivial extreme points of Pϵ3,3: one with two

nonzero rows and another with three nonzero rows. For the former, the nonzero rows are

exactly the extreme points of Pϵ2,3. For the latter, two extreme points exist, of the following

form:


1− 2a a a

a 1− 2a a

a a 1− 2a

 ,

one with 1−2a
a

= eϵ and one with a
1−2a = eϵ. The case of 1−2a

a
= eϵ corresponds to the usual

randomized response (Definition 11.2.5).

11.2.3 Hypothesis Testing

In this section, we state some standard facts regarding hypothesis testing and divergences

that will be used repeatedly.

Fact 11.2.7 (Hypothesis testing and divergences; see, for example, Tsybakov [Tsy09]). Let

p and q be two arbitrary distributions. Then:

1. We have d2
TV(p, q) ≤ d2

h(p, q) ≤ 2dTV(p, q).

2. (Sample complexity of non-private hypothesis testing) We have n∗(p, q) ≍ 1
d2

h(p,q) .

3. (Sample complexity in the high-privacy regime) For every ϵ ≤ 1, we have n∗(p, q, ϵ) ≍
1

ϵ2d2
TV(p,q) . See the references [DJW18, Theorem 1], [AZ22, Theorem 2], and [JMNR19,

Theorem 5.1].

4. (Restricting the size of the output domain) Let p and q be distributions over [k]. Then

n∗(p, q, ϵ) ≍ n∗(p, q, ϵ, k). This follows by applying Theorem 2 in Kairouz, Oh, and Viswanath

[KOV16] to d2
h(·, ·).
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5. (Choice of identical channels in Definition 11.1.2) Let T be a channel that maximizes

d2
h(Tp,Tq) among all channels in C. Then the sample complexity of hypothesis testing

under the channel constraints of C is Θ
(

1
d2

h(Tp,Tq)

)
. See Lemma 4.2 in Pensia, Jog, and

Loh [PJL22].

Fact 11.2.8 (Preservation of Hellinger distance under communication constraints (Theorem

1 in Bhatt, Nazer, Ordentlich, and Polyanskiy [BNOP21] and Corollary 3.4 in Pensia, Jog,

and Loh [PJL22])). Let p and q be two distributions on [k]. Then for any ℓ ∈ N, there exists a

channel T from [k] to [ℓ], which can be computed in time polynomial in k, such that

d2
h(p, q) ≲ d2

h(Tp,Tq) ·
(

1 + ℓ

min(k, log(1/d2
h(p, q)))

)
. (11.9)

Moreover, this bound is tight in the following sense: for every choice of ρ ∈ (0, 1), there exist two

distributions p and q such that d2
h(p, q) ≍ ρ, and for every channel T ∈ Tℓ,k, the right-hand side of

inequality Equation (11.9) is further upper-bounded by O(ρ).

11.3 Locally Private Simple Hypothesis Testing

In this section, we provide upper and lower bounds for locally private simple hypothesis

testing. This section is organized as follows: In Section 11.3.1, we derive instance-optimal

bounds when both distributions are binary. We then prove minimax-optimal bounds for

general distributions (with support size at least three): Lower bounds on sample complexity

are proved in Section 11.3.2 and upper bounds in Section 11.3.3. Proofs of some of the

technical arguments are deferred to the appendices.
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11.3.1 Binary Distributions and Instance-Optimality of Randomized

Response

We first consider the special case when p and q are both binary distributions. Our main

result characterizes the instance-optimal sample complexity in this setting:

Theorem 11.1.6 (Sample complexity of binary distributions). Let p and q be two binary

distributions. Then

n∗(p, q, ϵ) ≍



1
ϵ2 · d2

TV(p,q) , if ϵ ≤ 1,

1
eϵ · d2

TV(p,q) , if eϵ ∈
[
e,

d2
h(p,q)

d2
TV(p,q)

]
,

1
d2

h(p,q) , if eϵ > d2
h(p,q)

d2
TV(p,q) .

(11.3)

By Fact 11.2.7, the proof of Theorem 11.1.6 is a consequence of the following bound on

the strong data processing inequality for randomized responses:

Proposition 11.3.1 (Strong data processing inequality for Hellinger divergence). Let p and

q be two binary distributions. Then

max
T∈Pϵ

2,2
d2

h (Tp,Tq) ≍


ϵ2 · d2

TV(p, q), if ϵ ≤ 1

min (eϵ · d2
TV(p, q), d2

h(p, q)) , otherwise.

Moreover, the maximum is achieved by the randomized response channel.

Proof. Let A = {(Tp,Tq) : T ∈ Pϵ2,2} be the joint range of p and q under ϵ-LDP privacy

constraints. Since A is a convex set and d2
h is a convex function over A, the maximizer of d2

h

in A is an extreme point of A. Since A is a linear transformation of Pϵ2,2, Fact 11.2.1 implies

that any extreme point of A is obtained by using a channel T corresponding to an extreme

point of Pϵ2,2. By Fact 11.2.6, the only extreme point of Pϵ2,2 is the randomized response

channel Tϵ
RR. Thus, in the rest of the proof, we consider T = Tϵ

RR.
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By abusing notation, we will also use p and q to denote the probabilities of observing

1 under the two respective distributions. Without loss of generality, we will assume that

0 ≤ p ≤ q and p ≤ 1/2. We will repeatedly use the following claim, which is proved in

Appendix H.4:

Claim 11.3.2 (Approximation for Hellinger divergence of binary distributions). Let p, q ∈

[0, 1]. Let Ber(p) and Ber(q) be the corresponding Bernoulli distributions with min(p, q) ≤ 1/2.

Then

d2
h (Ber(p),Ber(q)) ≍ d2

TV(Ber(p),Ber(q))
max(p, q) .

Applying Claim 11.3.2, we obtain

d2
h(p, q) ≍ d2

TV(p, q)
q

. (11.10)

We know that the transformed distributions p′ := Tϵ
RRp and q′ := Tϵ

RRq are binary distribu-

tions; by abusing notation, let p′ and q′ also be the corresponding real-valued parameters

associated with these binary distributions. By the definition of the randomized response,

we have

p′ := p(eϵ − 1) + 1
1 + eϵ

, and q′ := q(eϵ − 1) + 1
1 + eϵ

. (11.11)

Consequently, we have 0 ≤ p′ ≤ q′ and p′ ≤ 1/2. We directly see that

dTV(p′, q′) = q′ − p′ = (q − p)(eϵ − 1)
eϵ + 1 = dTV(p, q) · e

ϵ − 1
eϵ + 1 .

We now apply Claim 11.3.2 below to the distributions p′ and q′:

d2
h(p′, q′) ≍ d2

TV(p′, q′)
q′



354

= d2
TV(p, q) ·

(
eϵ − 1
eϵ + 1

)2
· 1 + eϵ

q(eϵ − 1) + 1

(using Equation (11.11))

≍ d2
TV(p, q) · (e

ϵ − 1)2

eϵ + 1 ·min
(

1, 1
q(eϵ − 1)

)
(

using 1
a+ b

≍ min
(1
a
,
1
b

)
for a, b > 0

)
≍ d2

TV(p, q) · (e
ϵ − 1)2

eϵ + 1 ·min
(

1, d2
h(p, q)

d2
TV(p, q)(eϵ − 1)

)
using Equation (11.10) and min(1, a) ≍ min(1, b) if a ≍ b


≍ min

(
d2

TV(p, q) · (eϵ − 1)2

eϵ + 1 , d2
h(p, q) · e

ϵ − 1
eϵ + 1

)

≍


min (d2

TV(p, q) · ϵ2 , d2
h(p, q) · ϵ) , if ϵ ≤ 1,

min (d2
TV(p, q) · eϵ , d2

h(p, q)) , otherwise,

(using eϵ − 1 ≍ ϵ for ϵ ≤ 1 and eϵ otherwise)

≍


ϵ2d2

TV(p, q), if ϵ ≤ 1,

min (d2
TV(p, q)eϵ, d2

h(p, q)) , otherwise,

where the last step uses the inequality d2
TV(p, q) ≤ d2

h(p, q) from Fact 11.2.7.

11.3.2 General Distributions: Lower Bounds and Higher Cost of Privacy

In this section, we establish lower bounds for the sample complexity of private hypothesis

testing for general distributions. In the subsequent section, the lower bounds will be shown

to be tight up to logarithmic factors.

We formally state the lower bound in the statement below:

Theorem 11.1.7 (Sample complexity lower bound for general distributions). For any ρ ∈

(0, 0.5) and ν ∈ (0, 0.5) such that 2ν2 ≤ ρ ≤ ν, there exist ternary distributions p and q such that
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d2
h(p, q) = ρ, dTV(p, q) = ν, and the sample complexity behaves as

n∗(p, q, ϵ) ≍



1
ϵ2 · d2

TV(p,q) , if ϵ ≤ 1,

min
(

1
d2

TV(p,q) ,
1

eϵ · d4
h(p,q)

)
, if eϵ ∈

[
e, 1

d2
h(p,q)

]
,

1
d2

h(p,q) , if eϵ > 1
d2

h(p,q) .

(11.4)

We provide the proof below. We refer the reader to Remark 11.1.8 for further discussion

on differences between the worst-case sample complexity of general distributions and the

sample complexity of binary distributions (cf. Theorem 11.1.6). We note that a similar

construction is mentioned in Canonne, Kamath, McMillan, Smith, and Ullman [CKMSU19,

Section 1.3]; however, their focus is on the central model of differential privacy.

11.3.2.1 Proof of Theorem 11.1.7

Proof. The case when ϵ ≤ 1 follows from Fact 11.2.7. Thus, we set ϵ ≥ 1 in the remainder of

this section. We start with a helpful approximation for computing the Hellinger divergence,

proved in Appendix H.4:

Claim 11.3.3 (Additive approximation for
√
· ). There exist constants 0 < c1 ≤ c2 such that for

0 < y ≤ x, we have c1 · y
2

x
≤ (
√
x−
√
x− y)2 ≤ c2 · y

2

x
.

For some γ ∈ (0, 0.25) and δ > 0 to be decided later, let p and q be the following ternary

distributions:

p =


0

1/2

1/2

 , and q =


2γ1+δ

1/2 + γ − γ1+δ

1/2− γ − γ1+δ

 .

Since γ ≤ 0.25 and δ ≥ 0, these two are valid distributions.

Observe that dTV(p, q) = γ + γ1+δ ≍ γ and and d2
h(p, q) ≍ γ1+δ by Claim 11.3.3. We

choose γ and δ such that ν = dTV(p, q) and ρ = d2
h(p, q). Such a choice of γ and δ can be
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made by the argument given in Appendix H.4.2 as long as ν ∈ (0, 0.5) and ρ ∈ [2ν2, ν].

Thus, these two distributions satisfy the first two conditions of the theorem statement.

In the rest of the proof, we will use the facts that γ1+δ ≍ ρ and γ ≍ ν. In particular, we

have γ2 ≲ γ1+δ ≲ γ.

Since both p and q are supported on [3], we can restrict our attention to ternary output

channels (see Fact 11.2.7). Recall that Pϵ3,3 is the set of all ϵ-LDP channels from [3] to [3].

We will establish the following result: for all ϵ such that e ≤ eϵ ≲ 1
d2

h(p,q) , we have

max
T∈Pϵ

3,3
d2

h(Tp,Tq) ≍ max
(
d2

TV(p, q), d4
h(p, q)eϵ

)
≍ max(γ2, eϵγ2+2δ). (11.12)

By Fact 11.2.7, equation Equation (11.12) implies that for e ≤ eϵ ≲ 1
d2

h(p,q) , we have

n∗(p, q, ϵ) ≍ min
(

1
d2

TV(p, q) ,
1

eϵ · d4
h(p, q)

)
. (11.13)

Let ϵ0 be the right endpoint of the range for ϵ above, i.e., eϵ0 ≍ 1
d2

h(p,q) . Then equation Equa-

tion (11.13) shows that n∗(p, q, ϵ0) ≍ 1/d2
h(p, q) ≍ n∗(p, q). Since for any ϵ such that ϵ > ϵ0,

we have n∗(p, q, ϵ) ∈ [n∗(p, q, ϵ0), n∗(p, q)], the desired conclusion in equation Equation (11.4)

holds for ϵ > ϵ0, as well. Thus, in the remainder of this proof, we will focus on establishing

equation Equation (11.12).

Since d2
h(·, ·) is a convex, bounded function and the set of ϵ-LDP channels is a convex

polytope, it suffices to restrict our attention only to the extreme points of the polytope. As

mentioned in Fact 11.2.6, these extreme points are of three types:

Case I. (Exactly one nonzero row) Any such extreme point T maps the entire domain to

a single point with probability 1. After transformation under this channel, all distributions

become indistinguishable, giving dh(Tp,Tq) = 0.

Case II. (Exactly two nonzero rows) This corresponds to the case when T = Tϵ
RR ×T′,
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where T′ is a deterministic threshold channel from [3] to [2].31 There are two non-trivial

options for choosing T′, which we analyze below.

The first choice of T′ maps {1} and {2, 3} to different elements. The transformed

distributions p′ and q′ are [0, 1] and [2γ1+δ, 1 − 2γ1+δ], respectively. Using Claim 11.3.3,

we obtain d2
h(p′, q′) ≍ γ1+δ and dTV(p′, q′) ≍ γ1+δ. Let p′′ and q′′ be the corresponding

distributions after applying the randomized response with parameter ϵ. Since p′ and q′ are

binary distributions, we can apply Proposition 11.3.1 to obtain

d2
h(p′′, q′′) ≍ min(d2

h(p′, q′), eϵd2
TV(p′, q′)) ≍ min(γ1+δ, eϵγ2+2δ) ≍ γ1+δ ·min(1, eϵγ1+δ),

which is equal to eϵ·γ2+2δ in the regime of interest and consistent with the desired expression

in equation Equation (11.12).

The second choice of T′ maps {1, 2} and {3} to different elements. The transformed

distributions p′ and q′ are [1/2, 1/2] and [1/2+γ+γ1+δ, 1/2−γ−γ1+δ], respectively. Applying

Claim 11.3.3, we observe that d2
h(p′, q′) ≍ γ2 and dTV(p′, q′) ≍ γ. Let p′′ and q′′ be the

corresponding distributions after applying the randomized response with parameter ϵ.

Applying Proposition 11.3.1, we obtain

d2
h(p′′, q′′) ≍ min(d2

h(p′, q′), eϵd2
TV(p′, q′)) ≍ min(γ2, eϵγ2) ≍ γ2

in the regime of interest. Again, this is consistent with equation Equation (11.12).

Case III. (All nonzero rows) There are two extreme points of this type (up to a permu-

tation of the rows), both of the following form:

T1 =


1− 2α α α

α 1− 2α α

α α 1− 2α

 .
31We use Theorem 11.1.17 to restrict our attention only to threshold channels.
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For the first extreme point, α satisfies 1−2α
α

= eϵ, while the second extreme point has α
1−2α =

eϵ. These channels are relatively easy to analyze, since they transform the distributions

element-wise: each entry x of the original distribution is transformed to α + x(1 − 3α).

Consequently, the transformed distributions p′ and q′ are

p′ =


α

1−α
2

1−α
2

 , and q′ =


α + 2γ1+δ(1− 3α)

1−α
2 + (γ − γ1+δ)(1− 3α)

1−α
2 + (−γ − γ1+δ)(1− 3α)

 . (11.14)

We now compute the Hellinger divergence between these two distributions for both the

extreme points.

Let us first consider the case where 1−2α
α

= eϵ. Then α = 1
2+eϵ ≍ e−ϵ, since ϵ ≥ 0. Thus, in

the desired range of eϵ ≲ γ−(1+δ), the parameter α satisfies α ≳ γ1+δ. We will now calculate

the Hellinger divergence between p′ and q′ in equation Equation (11.14) by analyzing the

contribution from each of the three terms in the sum ∑3
i=1(

√
p′
i −

√
q′
i)2. For the first term,

we apply Claim 11.3.3 with x = α+2γ1+δ(1− 3α) and y = 2γ1+δ(1− 3α), to see that its

contribution is Θ(γ2+2δ/α) ≍ eϵγ2+2δ (since 1 − 3α ≥ 0.1). Applying Claim 11.3.3 again,

we see that the contributions from the second and third elements are Θ(γ2), since α≪ 1

and γ ≪ 1, respectively. Overall, the Hellinger divergence is O
(
max(γ2, eϵγ2+2δ)

)
, which

satisfies equation Equation (11.12).

Finally, let us consider the case when α
1−2α = eϵ. We set β = 1−2α. Then β = 1/(1+2eϵ),

which is much less than 1 in the desired range and is of the order of e−ϵ. Thus, each entry

x of the distribution is mapped to 1
2(1− β + x(3β − 1)). The transformed distributions are

p′ = 1
2 ·


1− β

1+β
2

1+β
2

 , and q′ = 1
2 ·


1− β + 2γ1+δ(3β − 1)

1+β
2 + (γ − γ1+δ)(3β − 1)

1+β
2 + (−γ − γ1+δ)(3β − 1)

 . (11.15)
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As β is much less than 1 in the desired range of ϵ, we can apply Claim 11.3.3 to see that

contribution of the first element is Θ(γ2+2δ), and the contributions of both the second

and third elements are Θ(γ2). Overall, the Hellinger divergence is Θ(γ2), which is again

consistent with equation Equation (11.12).

Combining all the cases above, the maximum Hellinger divergence after applying any

ϵ-LDP channel is Θ(γ2 ·max(1, eϵγ2δ)), as desired.

11.3.3 General Distributions: Upper Bounds and Minimax Optimality

We now demonstrate an algorithm that finds a private channel matching the minimax rate

in Theorem 11.1.7 up to logarithmic factors. Moreover, the proposed algorithm is both

computationally efficient and communication efficient.

Theorem 11.1.9 (Sample complexity upper bounds and an efficient algorithm for hypothesis

testing for general distributions). Let p and q be two distributions on [k]. Let ϵ > 0. Then the

sample complexity behaves as

n∗(p, q, ϵ) ≲



1
ϵ2 · d2

TV(p,q) , if ϵ ≤ 1,

min
(

1
d2

TV(p,q) ,
α2

eϵ · d4
h(p,q)

)
, if eϵ ∈

(
e, α

d2
h(p,q)

]
,

α
d2

h(p,q) , if eϵ > α
d2

h(p,q) ,

(11.5)

where α ≲ log(1/d2
h(p, q)) ≍ log (n∗(p, q)).

Moreover, the rates above are achieved by an ϵ-LDP channel T that maps [k] to [2] and can be

found in time polynomial in k, for any choice of p, q, and ϵ.

In comparison with Theorem 11.1.7, we see that the test above is minimax optimal up to

logarithmic factors over the class of distributions with fixed Hellinger divergence and total

variation distance. The channel T satisfying this rate is of the following simple form: a

deterministic binary channel T′, followed by the randomized response. In fact, we can take
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T′ to be either Scheffe’s test (which preserves the total variation distance) or the binary

channel from Fact 11.2.8 (which preserves the Hellinger divergence), whichever of the two

is better. We provide the complete proof in Section 11.3.3.1.

One obvious shortcoming of Theorem 11.1.9 is that even when ϵ → ∞, the test does

not recover the optimal sample complexity of 1/d2
h(p, q), due to the logarithmic multiplier

α. We now consider the case when eϵ ≳ 1
d2

h(p,q) and exhibit a channel that achieves the

optimal sample complexity as soon as eϵ ≳ 1
d2

h(p,q) log
(

1
d2

h(p,q)

)
. Thus, privacy can be attained

essentially for free in this regime.

Theorem 11.1.13. Let p and q be two distributions on [k], and let eϵ ≳ 1
d2

h(p,q) log
(

1
d2

h(p,q)

)
. Then

n∗(p, q, ϵ) ≍ n∗(p, q). Moreover, there is a channel T achieving this sample complexity that maps

[k] to a domain of size ⌈log(n∗(p, q))⌉, and which can be computed in poly(k, log(⌈n∗(p, q)⌉)) time.

We note that the size of the output domain of ⌈log(n∗(p, q))⌉ is tight in the sense that any

channel that achieves the sample complexity within constant factors of n∗(p, q) must use an

output domain of size at least Ω(log(n∗(p, q))); this follows by the tightness of Fact 11.2.8

in the worst case. Consequently, the channel T achieving the rate above is roughly of the

form (1) a communication-efficient channel from Fact 11.2.8 that preserves the Hellinger

divergence up to constant factors, followed by (2) an ℓ-ary randomized response channel,

for ℓ ≥ 2.

We give the proof of Theorem 11.1.13 in Section 11.3.3.2 and defer the proofs of some of

the intermediate results to Appendix H.1.

11.3.3.1 Proof of Theorem 11.1.9

In this section, we provide the proof of Theorem 11.1.9. We first note that this result can

be slightly strengthened, replacing α by
n∗

binary
n∗ , where n∗

binary is the sample complexity of

hypothesis testing under binary communication constraints. This choice of α is smaller, by

Pensia, Jog, and Loh [PJL22, Corollary 3.4 and Theorem 4.1].
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Proof. The case of ϵ ≤ 1 follows from Fact 11.2.7; thus, we focus on the setting where ϵ > 1.

We will establish these bounds via Proposition 11.3.1, by using a binary deterministic

channel, followed by the binary randomized response channel. A sample complexity of

1/d2
TV(p, q) is direct by using the channel for ϵ = 1. Thus, our focus will be on the term
1

eϵd4
h(p,q) .

Let T′ ∈ T2,k be a deterministic binary output channel to be decided later. Consider the

channel T = Tϵ
RR ×T′. By Proposition 11.3.1, we have

d2
h (Tϵ

RR ×T′p,Tϵ
RR ×T′q) ≍ min

(
eϵd2

TV (T′p,T′q) , d2
h (T′p,T′q)

)
≥ min

(
eϵd4

h (T′p,T′q) , d2
h (T′p,T′q)

)
= d2

h (T′p,T′q) ·min
(
eϵd2

h (T′p,T′q) , 1
)
, (11.16)

where the first inequality uses Fact 11.2.7

If we choose the channel T′ from Fact 11.2.8, we have d2
h(T′p,T′q) ≥ 1

α
· d2

h (p, q). Apply-

ing this to inequality Equation (11.16), we obtain

d2
h (Tϵ

RR ×T′p,Tϵ
RR ×T′q) ≳ 1

α
· d2

h (p, q) ·min
( 1
α
· eϵd2

h (p, q) , 1
)
.

By Fact 11.2.7, the sample complexity of Tϵ
RR × T′, which is ϵ-LDP, is at most α

d2
h(p,q) ·

max
(

1, α
eϵd2

h(p,q)

)
, which is equivalent to the desired statement.

Finally, the claim on the runtime is immediate, since the channel T′ from Fact 11.2.8

can be found efficiently.

11.3.3.2 Proof of Theorem 11.1.13

We will prove a slightly generalized version of Theorem 11.1.13 below that works for a

wider range of ϵ:
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Proposition 11.3.4. Let p and q be two distributions on [k] and ϵ > 1. Then there exists an ϵ-LDP

channel T from [k] to [ℓ], for ℓ = min(⌈log(1/d2
h(p, q))⌉, k), such that

d2
h(Tp,Tq) ≳ d2

h(p, q) ·min
(

1, eϵ · d2
h(p, q)

log(1/d2
h(p, q))

)
·min

(
1, eϵ

log(1/d2
h(p, q))

)
.

Furthermore, the channel T can be be computed in poly(k, ℓ) time.

By Fact 11.2.7, Proposition 11.3.4 implies the following:

n∗(p, q, ϵ) ≲ n∗ ·max
(

1, n
∗ log(n∗)
eϵ

)
·max

(
1, log n∗

eϵ

)
,

where n∗ := n∗(p, q). Setting eϵ equal to n∗ log(n∗) proves Theorem 11.1.13. Thus, we will

focus on proving Proposition 11.3.4 in the rest of this section. We establish this result with

the help of the following observations:

• (Lemma 11.3.5) First, we show that the randomized response preserves the con-

tribution to the Hellinger divergence by “comparable elements” (elements whose

likelihood ratio is in the interval
[

1
2 , 2

]
) when ϵ is large compared to the support size.

In particular, we first define the following sets:

A =
{
i ∈ [k] : pi

qi
∈
[1
2 , 1

)}
and A′ =

{
i ∈ [k] : pi

qi
∈ [1, 2]

}
. (11.17)

Let Tϵ,ℓ
RR denote the randomized response channel from [ℓ] to [ℓ] with privacy pa-

rameter ϵ (cf. Definition 11.2.5). The following result is proved in Appendix H.1.1:

Lemma 11.3.5 (Randomized response preserves contribution of comparable ele-

ments). Let p and q be two distributions on [ℓ]. Suppose ∑i∈A
⋃
A′(√qi −

√
pi)2 ≥ τ . Then
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Tϵ,ℓ
RR, for ℓ ≤ eϵ, satisfies

d2
h(Tϵ,ℓ

RRp,T
ϵ,ℓ
RRq) ≳ min

(
1, eϵ τ

ℓ

)
· τ .

Thus, when eϵ ≳ ℓ
τ

, the randomized response preserves the original contribution of comparable

elements.

• (Lemma 11.3.6) We then show in Lemma 11.3.6, proved in Appendix H.1.2, that

either we can reduce the problem to the previous special case (small support size

and main contribution to Hellinger divergence is from comparable elements) or to

the case when the distributions are binary (where Proposition 11.3.1 is applicable

and is, in a sense, the easy case for privacy).

Lemma 11.3.6 (Reduction to base case). Let p and q be two distributions on [k]. Then

there is a channel T, which can be computed in time polynomial in k, that maps [k] to [ℓ] (for

ℓ to be decided below) such that for p′ = Tp and q′ = Tq, at least one of the following holds:

1. For any ℓ > 2 and ℓ ≤ min (k, 1 + log (1/d2
h(p, q))), we have

∑
i∈B

⋃
B′

(√
q′
i −

√
p′
i

)2
≳ d2

h(p, q) · ℓ

min (k, 1 + log (1/d2
h(p, q))) ,

where B and B′ are defined analogously to A and A′ in equation Equation (11.17), but

with respect to distributions p′ and q′.

2. ℓ = 2 and d2
h(p′, q′) ≳ d2

h(p, q).

We now provide the proof of Proposition 11.3.4, with the help of Lemmata 11.3.5

and 11.3.6.

Proof. (Proof of Proposition 11.3.4) The channel T will be of the form T = Tϵ,ℓ
RR×T1, where

T1 is a channel from [k] to [ℓ] and ℓ is to be decided. The privacy of T is clear from the

construction.
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We begin by applying Lemma 11.3.6. Let T1 be the channel from Lemma 11.3.6 that

maps from [k] to [ℓ]. Let p′ = T1p and q′ = T1q, and define p̃ = Tϵ,ℓ
RRp

′ and q̃ = Tϵ,ℓ
RRq

′. The

claim on runtime thus follows from Lemma 11.3.6.

Suppose for now that T1 from Lemma 11.3.6 is a binary channel. Then we know

that d2
h(p′, q′) ≳ d2

h(p, q) and dTV(p′, q′) ≳ d2
h(p′, q′), where the latter holds by Fact 11.2.7.

Applying Proposition 11.3.1, we have

d2
h(p̃, q̃) ≳ min

(
d2

h(p′, q′), eϵd2
TV(p′, q′)

)
≳ min

(
d2

h(p′, q′), eϵd4
h(p′, q′)

)
≳ d2

h(p, q) min
(
1, eϵd2

h(p, q)
)
,

which concludes the proof in this case.

We now consider the case when ℓ > 2 in the guarantee of Lemma 11.3.6. Then the

comparable elements of p′ and q′ preserve a significant fraction of the Hellinger divergence

(depending on the chosen value of ℓ) between p and q. Let k′ = min (k, 1 + log(1/d2
h(p, q))),

and choose ℓ to be min(k′, eϵ). Then Lemma 11.3.6 implies that the contribution to the

Hellinger divergence from comparable elements of p′ and q′ is at least τ , for τ ≍ d2
h(p, q) ℓ

k′ .

We will now apply Lemma 11.3.5 to p′ and q′ with the above choice of τ . Since ℓ ≤ eϵ by

construction, applying Lemma 11.3.5 to p′ and q′, we obtain

d2
h(p̃, q̃) ≳ τ ·min

(
1, e

ϵτ

ℓ

)
≳ d2

h(p, q) ℓ
k′ ·min

(
1, eϵ · d2

h(p, q)
log(1/d2

h(p, q))

)

≳ d2
h(p, q) ·min

(
1, eϵ

log(1/d2
h(p, q))

)
·min

(
1, eϵ · d2

h(p, q)
log(1/d2

h(p, q))

)
,

where the last step uses the facts that ℓ = min(eϵ, k′) and k′ ≳ log(1/d2
h(p, q)). This completes

the proof.



365

11.4 Extreme Points of Joint Range Under Communication

Constraints

In this section, our goal is to understand the extreme points of the setA := {(Tp,Tq) : T ∈

Tℓ,k}. This will allow us to identify the structure of optimizers of quasi-convex functions

over A. The main result of this section is the following:

Theorem 11.1.16 (Extreme points of the joint range under communication constraints). Let

p and q be two distributions on [k]. Let A be the set of all pairs of distributions that are obtained by

passing p and q through a channel of output size ℓ, i.e.,

A = {(Tp,Tq) : T ∈ Tℓ,k}.

If (Tp,Tq) is an extreme point of A, then T is a threshold channel.

We provide the proof of Theorem 11.1.16 in Section 11.4.1. Before proving Theo-

rem 11.1.16, we discuss some consequences for optimizing quasi-convex functions over A.

The following result proves Corollary 11.1.18 for C = Tℓ,k:

Corollary 11.4.1 (Threshold channels maximize quasi-convex functions). Let p and q be two

distributions on [k]. Let A := {(Tp,Tq) : T ∈ Tℓ,k}. Let g be a real-valued quasi-convex function

over A. Then

max
T∈Tℓ,k

g(Tp,Tq) = max
T∈T thresh

ℓ,k

g(Tp,Tq).

Moreover, the above optimization problem can be solved in time poly(kℓ).32

Proof. Observe thatA is a closed polytope. LetX be the set of extreme points ofA. Observe

thatX ⊆ {(Tp,Tq) : T ∈ Tℓ,k and T is deterministic}, and thus is finite. SinceA is a closed
32Recall that g is assumed to be permutation invariant. If not, an extra factor of ℓ! will appear in the time

complexity.
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polytope, A is convex hull of X . Furthermore, the maximum of g on X is well-defined

and finite, as X is a finite set. Any y ∈ A can be expressed as a convex combination

y = ∑
xi∈X λixi. Recall that an equivalent definition of quasi-convexity is that g satisfies

g(λx+ (1− λ)y) ≤ max(g(x), g(y)) for all λ ∈ [0, 1]. By repeatedly using this fact, we have

g(λ) = g

∑
xi∈X

λixi

 ≤ max
x∈X

g(x).

By Theorem 11.1.16, any extreme point x ∈ X is obtained by passing p and q through a

threshold channel. Thus, the maximum of g over X is attained by passing p and q through

a threshold channel. The claimed runtime is obtained by trying all possible threshold

channels.

Remark 11.4.2. (Quasi-)convex functions of interest include all f -divergences, Rényi divergences,

Chernoff information, and Lp norms. We note that the above result also holds for post-processing:

For any fixed channel H ∈ Tℓ′,ℓ, we have

max
T∈Tℓ,k

g(HTp,HTq) = max
T∈T thresh

ℓ,k

g(HTp,HTq).

This is because g(Hp′,Hq′) is a quasi-convex function of (p′, q′) ∈ A.

Remark 11.4.3. If g is the Hellinger divergence and C = Tℓ,k, we can conclude the following result

for the communication-constrained setting: There exists a T ∈ T thresh
ℓ,k that attains the instance-

optimal sample complexity (up to universal constants) for hypothesis testing under a communication

constraint of size ℓ. This result is implied in Pensia, Jog, and Loh [PJL22] by Theorem 2.9 (which is a

result from Tsitsiklis [Tsi93]) and Lemma 4.2. The above argument provides a more straightforward

proof.

11.4.1 Proof of Theorem 11.1.16

We now provide the proof of Theorem 11.1.16.



367

Proof. (Proof of Theorem 11.1.16) We first make the following simplifying assumption

about the likelihood ratios: there is at most a single element i∗ with qi∗ = 0, and for all

other elements i ∈ [k] \ {i∗}, pi/qi is a unique value. If there are two or more elements

with the same likelihood ratio, we can merge those elements into a single alphabet without

loss of generality, as we explain next. Let p′ and q′ be the distributions after merging these

elements, and let k′ ≤ k be the new cardinality. Then for any channel T ∈ Tℓ,k, there

exists another channel T′ ∈ Tℓ,k′ such that (Tp,Tq) = (T′p′,T′q′). We can then apply the

following arguments to p′ and q′. See Appendix H.4.1 for more details.

In the following, we will consider pi/qi to be∞ if qi = 0, and we introduce the notation

θi := pi/qi. We will further assume, without loss of generality, that pi/qi is strictly increasing

in i. Since the elements are ordered with respect to the likelihood ratio, a threshold channel

corresponds to a map that partitions the set [k] into contiguous blocks. Formally, we have

the following definition:

Definition 11.4.4 (Partitions and threshold partitions). We say that S = (S1, S2, . . . , Sℓ)

forms an ℓ-partition of [k] if ∪ℓi=1Si = [k] and Si ∩ Sj = ∅ for 1 ≤ i ̸= j ≤ ℓ. We say that S forms

an ℓ-threshold partition of [k] if in addition, for all i < j ∈ ℓ, every entry of Si is less than every

entry of Sj .

As mentioned before, channels corresponding to ℓ-threshold partitions are precisely the

threshold channels up to a permutation of output labels. The channels corresponding to

ℓ-partitions are the set of all deterministic channels that map [k] to ℓ, which are the extreme

points of Tℓ,k (cf. Fact 11.2.4).

Observe that A is a convex, compact set, which is a linear transformation of the convex,

compact set Tℓ,k, and any extreme point ofA is of the form (Tp,Tq), where T is an extreme

point of Tℓ,k (cf. Fact 11.2.1). Now suppose (Tp,Tq) is an extreme point of A, but T is

not a threshold channel. Thus, T corresponds to some ℓ-partition S of [k] that is not

an ℓ-threshold partition. We will now show that (Tp,Tq) is not an extreme point of A,

by showing that there exist two distinct channels T1 ∈ Tℓ,k and T2 ∈ Tℓ,k such that the
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following holds:

1
2 ·T1p+ 1

2 ·T2p = Tp, and 1
2 ·T1q + 1

2 ·T2q = Tq, (11.18)

and T1p ̸= Tp.

Since S is not a ℓ-threshold partition, there exist 1 ≤ a < b < c ≤ k and m ̸= n in [ℓ]

such that a, c ∈ Sm and b ∈ Sn, and pa/qa < pb/qb < pc/qc. Among qa, qb, and qc, only qc is

potentially zero. Suppose for now that qc ̸= 0; we will consider the alternative case shortly.

For some ϵ1 ∈ (0, 1) and ϵ2 ∈ (0, 1) to be determined later, let T1 be the following

channel:

1. For x ̸∈ {a, b}, T1 maps x to T(x).

2. For x = a (respectively b), T1 maps x to m (respectively n) with probability 1 − ϵ1

(respectively 1− ϵ2) and to n (respectively m) with probability ϵ1 (respectively ϵ2).

Thus, the channels T and T1 have all columns identical, except for those corresponding to

inputs a and b. Let vi be the ith column of T. Observe that va is a degenerate distribution

at m ∈ [ℓ] and vb is a degenerate distribution at n ∈ [ℓ] (equivalently, T(m, a) = 1 and

T(n, b) = 1). Thus, we can write

T1q = Tq + (ϵ2qb − ϵ1qa)(va − vb),

T1p = Tp+ (ϵ2pb − ϵ1pa)(va − vb).

If we choose ϵ1qa = ϵ2qb, we have T1q = Tq and

T1p = Tp+ (ϵ2pb − ϵ1pa)(va − vb)

= Tp+ (ϵ2qbθb − ϵ1qaθa)(va − vb)

= Tp+ ϵ1qa(θb − θa)(va − vb). (11.19)
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Recall that θb > θa, as mentioned above.

We now define T2. For some ϵ3 ∈ (0, 1) and ϵ4 ∈ (0, 1) to be decided later, we have:

1. For x ̸∈ {b, c}, T2 maps x to T(x).

2. For x = c (respectively b), T2 maps x to m (respectively n) with probability 1 − ϵ3

(respectively 1− ϵ4) and to n (respectively m) with probability ϵ3 (respectively ϵ4).

With the same arguments as before, we have

T2q = Tq + (ϵ4qb − ϵ3qc)(vc − vb),

T1p = Tp+ (ϵ4pb − ϵ3pc)(vc − vb).

If we choose ϵ3qc = ϵ4qb, we have T2q = Tq and

T2p = Tp+ (ϵ4qbθb − ϵ3qcθc)(vc − vb)

= Tp+ ϵ3qc(θb − θc)(vc − vb)

= Tp+ ϵ3qc(θb − θc)(va − vb), (11.20)

where the last line follows by the fact that va = vc, since T maps both a and c to m almost

surely.

Let ϵ1 ∈ (0, 1) and ϵ3 ∈ (0, 1) be such that ϵ1qa(θb − θa) = −ϵ3qc(θb − θc). Such a choice

always exists because θb − θa and −(θb − θc) are both strictly positive and finite. Then

equations Equation (11.19) and Equation (11.20) imply that Tp = 1
2T1p + 1

2T2p and

Tq = 1
2T1q + 1

2T2q, and T1p ̸= Tp. Moreover, T1p ̸= Tp. Thus, (Tp,Tq) is not an extreme

point of A.

We now outline how to modify the construction above when qc is zero. By setting ϵ4

to be zero, we obtain T2q = Tq and T2p = Tp+ (−ϵ3pc) (va − vb). The desired conclusion

follows by choosing ϵ1 and ϵ3 small enough such that ϵ1qa(θb − θa) = −ϵ3pc.
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11.5 Extreme Points of Joint Range under Privacy

Constraints

In the previous section, we considered the extreme points of the joint range under com-

munication constraints. Such communication constraints are routinely applied in practice

in the presence of additional constraints such as local differential privacy. However, the

results of the previous section do not apply directly, as the joint range is now a strict subset

of the set in Theorem 11.1.16, and the extreme points differ significantly. For example, the

threshold channels are not even private. However, we show in this section that threshold

channels still play a fundamental role. Our main result in this section is the following

theorem:

Theorem 11.1.17 (Extreme points of the joint range under privacy and communication

constraints). Let p and q be distributions on [k]. Let C be the set of ϵ-LDP channels from [k] to [ℓ].

Let A be the set of all pairs of distributions that are obtained by applying a channel from C to p and

q, i.e.,

A = {(Tp,Tq) | T ∈ C}. (11.7)

If (Tp,Tq) is an extreme point of A for T ∈ C, then T can be written as T = T2 ×T1 for some

threshold channel T1 ∈ T2ℓ2,k and some T2 an extreme point of the set of ϵ-LDP channels from [2ℓ2]

to [ℓ].

Actually, our result applies to a broader family of linear programming (LP) channels

that we describe below:

Definition 11.5.1 (LP family of channels). For any ℓ ∈ N, let ν = (ν1, ν2, . . . , νℓ) and γ =

(γ1, γ2, . . . , γℓ) be two nonnegative vectors in Rℓ
+. For k ∈ N, define the set of linear programming

(LP) channels J γ,ν
ℓ,k , a subset of Tℓ,k, to be the (convex) set of all channels from [k] to [ℓ] that satisfy
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the following constraints:

For each row j ∈ [ℓ], and for each i, i′ ∈ [k], we have T(j, i) ≤ γjT(j, i′) + νj. (11.21)

When γj = eϵ and νj = 0 for all j ∈ [ℓ], we recover the set of ϵ-LDP channels from [k] to

[ℓ]. Another example will be mentioned in Section 11.6 for a relaxed version of approximate

LDP.

The rest of this section is organized as follows: In Section 11.5.1, we show that any T that

leads to an extreme point of A cannot have more than 2ℓ2 unique columns (Lemma 11.5.2).

We use this result to prove Theorem 11.1.17 in Section 11.5.2. In Section 11.5.3, we apply

Theorem 11.1.17 to prove Corollaries 11.1.18 and 11.1.20.

11.5.1 Bound on the Number of Unique Columns

The following result will be critical in the proof of Theorem 11.1.17, the main result of this

section.

Lemma 11.5.2. Let p and q be distributions on [k]. Let C be the set of channels from [k] to [ℓ],

from Definition 11.5.1. Let A be the set of all pairs of distributions that are obtained by applying a

channel from C to p and q, i.e.,

A = {(Tp,Tq) | T ∈ C}. (11.22)

If T has more than 2ℓ2 unique columns, then (Tp,Tq) is not an extreme point of A.

We prove this result in Section 11.5.1.2 after proving a quantitatively weaker, but simpler,

result in Section 11.5.1.1.
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11.5.1.1 Warm-Up: An Exponential Bound on the Number of Unique Columns

In this section, we first prove a weaker version of Lemma 11.5.2, where we upper-bound

the number of unique columns in the extreme points of C from Definition 11.5.1 (not just

those that lead to extreme points of A) by an exponential in ℓ. In fact, this bound will be

applicable for a broader class of channels that satisfy the following property:

Condition 11.5.3 (Only one free entry per column). Let C be a convex set of channels from [k] to

[ℓ]. Let T be an extreme point of C. Then there exist numbers {m1, . . . ,mℓ} and {M1, . . . ,Mℓ} such

that for every column c ∈ [k], there exists at most a single row r ∈ [ℓ] such that T(r, c) ̸∈ {mr,Mr}.

We call such entries free.

We show in Appendix H.2 that extreme points of the LP channels from Definition 11.5.1

satisfy Condition 11.5.3. The following claim bounds the number of unique columns in any

extreme point of C, and thus also implies a version of Theorem 11.1.17 with ℓ · 2ℓ−1 instead

of 2ℓ2 (cf. Fact 11.2.1).

Claim 11.5.4 (Number of unique columns in an extreme point is at most exponential in ℓ).

Let C be a set of channels satisfying the property of Condition 11.5.3. Let T be an extreme point

of C. Then the number of unique columns in T is at most ℓ · 2ℓ−1. In particular, T can be written

as T2 × T1, where T1 is a deterministic map from [k] to [ℓ′] and T2 is a map from [ℓ′] to [ℓ], for

ℓ′ = ℓ · 2ℓ−1.

Proof. We use the notation from Condition 11.5.3. For each column, there are ℓ possible

locations of a potential free entry. Let this location be j∗; the value at this location is still

flexible. Now let us consider the number of ways to assign values at the remaining locations.

For each j ∈ [ℓ] \ {j∗}, the entry is either mj or Mj (since j is not a free entry). Thus, there

are 2ℓ−1 such possible assignments. Since the column entries sum to one, each of those

2ℓ−1 assignments fixes the value at the j∗ location, as well. Thus, there are at most ℓ · 2ℓ−1

unique columns in T.
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11.5.1.2 Forbidden Structure in Extreme Points Using the Joint Range

In Claim 11.5.4, we considered the extreme points of LP channels. However, we are actually

interested in a (potentially much) smaller set: the extreme points that correspond to the

extreme points of the joint range A. In this section, we identify a necessary structural

property for extreme points of LP channels that lead to extreme points of the joint range.

We begin by defining the notion of a “loose” entry in a channel in C:

Definition 11.5.5 (Loose and tight entries). Let T be a channel in J γ,ν
ℓ,k from Definition 11.5.1

that maps from [k] to [ℓ]. Let {m1, . . . ,mℓ} and {M1, . . . ,Mℓ} be the row-wise minimum and

maximum entries, respectively. For c ∈ [k] and r ∈ [ℓ], we say an entry T(r, c) is max-tight

if T(r, c) = Mr and Mr = γrmr + νr. An entry T(r, c) is min-tight if T(r, c) = mr and

Mr = γrmr + νr. An entry that is neither max-tight nor min-tight is called loose.

Remark 11.5.6. Our results in this section continue to hold for a slightly more general definition,

where we replace the linear functions γjx + νj by arbitrary monotonically increasing functions

fj(x). We focus on linear functions for simplicity and clarity. (Also see Remark 11.5.11.)

If the rest of the row is kept fixed, a max-tight entry cannot be increased without violating

privacy constraints, but it can be decreased. Similarly, a min-tight entry cannot be decreased

without violating privacy constraints, but it can be increased. Loose entries can be either

increased or decreased without violating privacy constraints. These perturbations need to

be balanced by adjusting other entries in the same column to satisfy column stochasticity; for

example, a max-tight entry can be decreased while simultaneously increasing a min-tight

or loose entry in the same column. This is formalized below:

Condition 11.5.7 (Mass can be transferred from entries that are not tight). Let C be a set of

channels from [k] to [ℓ]. Let T be any extreme point of C. Suppose there are two rows (r, r′) and

two columns (c, c′) (in the display below, we take r < r′ and c < c′ without loss of generality) with
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values (m,m′,M,M ′), as shown below:



· · · · · · · · · · · · · · ·

· · · M · · · m · · ·

· · · · · · · · · · · · · · ·

· · · m′ · · · M ′ · · ·

· · · · · · · · · · · · · · ·


,

such that:

• T(r, c) and T(r′, c′) are not min-tight (M and M ′ above, respectively).

• T(r, c′) and T(r′, c) are not max-tight (m and m′ above, respectively).

Then there exist ϵ′ > 0 and δ′ > 0 such that for all ϵ ∈ [0, ϵ′) and δ ∈ [0, δ′), the following

matrix T′ also belongs to C:

T′ =



· · · · · · · · · · · · · · ·

· · · M − ϵ · · · m+ δ · · ·

· · · · · · · · · · · · · · ·

· · · m′ + ϵ · · · M ′ − δ · · ·

· · · · · · · · · · · · · · ·


,

where the omitted entries of T and T′ are the same.

We show that the channels from Definition 11.5.1 satisfy Condition 11.5.7 in Ap-

pendix H.2. Using Condition 11.5.7, we show that the following structure is forbidden in

the channels that lead to extreme points of the joint range:

Lemma 11.5.8. Let p and q be two distributions on [k]. Let C be the set of LP channels from

Definition 11.5.1 (or, more generally, a convex set of channels satisfying Condition 11.5.7) from [k]

to [ℓ]. Suppose pi/qi is strictly increasing in i. Let T ∈ C have the following structure: there are
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two rows (r, r′) (in the display below, r < r′ is taken without loss of generality) and three columns

i1 < i2 < i3 with values (m,m′,m′′,M,M ′,M ′′), as shown below:



· · · · · · · · · · · · · · · · · · · · ·

· · · M · · · m · · · M ′ · · ·

· · · · · · · · · · · · · · · · · · · · ·

· · · m′ · · · M ′′ · · · m′′ · · ·

· · · · · · · · · · · · · · · · · · · · ·


,

such that:

• T(r, i1),T(r, i3), and T(r′, i2) are not min-tight (M,M ′, and M ′′ above, respectively).

• T(r, i2),T(r′, i1), and T(r′, i3) are not max-tight (m,m′, and m′′ above, respectively).

Let A := {(Tp,Tq) : T ∈ C}. Then (Tp,Tq) cannot be an extreme point of A.

Proof. Firstly, the set A is convex since C is convex. For some ϵ > 0 and δ > 0 to be decided

later, consider the following perturbed matrices:

T′ =



· · · · · · · · · · · · · · · · · · · · ·

· · · M − ϵ · · · m+ δ · · · M ′ · · ·

· · · · · · · · · · · · · · · · · · · · ·

· · · m′ + ϵ · · · M ′′ − δ · · · m′′ · · ·

· · · · · · · · · · · · · · · · · · · · ·


,

T′′ =



· · · · · · · · · · · · · · · · · · · · ·

· · · M · · · m+ ϵ′ · · · M ′ − δ′ · · ·

· · · · · · · · · · · · · · · · · · · · ·

· · · m′ · · · M ′′ − ϵ′ · · · m′′ + δ′ · · ·

· · · · · · · · · · · · · · · · · · · · ·


.
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To be specific, the entries of T′, T′′, and T match except in the six locations highlighted

here. Since C satisfies Condition 11.5.7 (see Claim H.2.2), both T′ and T′′ belong to the

set C if ϵ, ϵ′, δ, and δ are small enough and positive. We will now show that there exist

choices of these parameters such that (Tp,Tq) is a convex combination of (T′p,T′q) and

(T′′p,T′′q), and these three points are distinct elements of A. Consequently, (Tp,Tq) will

not be an extreme point of A.

For any j ∈ ℓ, let vj denote the vector in Rℓ that is 1 at the jth location and 0 otherwise.

Define θi := pi/qi to be the likelihood ratio. If θi < ∞, then pi = θiqi. Since θi is strictly

increasing in i, only θi3 may be infinity. Let us first suppose that θi3 <∞. We will consider

the case when θi3 might be infinity in the end.

Let us begin by analyzing how T′ transforms p and q. Since T′ differs from T only in the

four locations mentioned above, T′p and Tp, both of which are distributions on [ℓ], differ

only in the elements r and r′ of [ℓ]. On the element r, (T′q)r − (Tq)r is equal to −ϵqi1 + δqi2 ,

and equal to its negation on the element r′. In particular, they satisfy the relation

T′q = Tq + (−ϵqi1 + δqi2) (vr − vr′) .

If ϵqi1 = δqi2 , we have T′q = Tq. Under the same setting, p is transformed as follows:

T′p = Tp+ (−ϵpi1 + δpi2) (vr − vr′)

= Tp+ (−ϵθi1qi1 + δθi2qi2) (vr − vr′)

= Tp+ ϵqi1(−θi1 + θi2) (vr − vr′) .

We now analyze the effect of T′′, which satisfies

T′′q = Tq + (ϵ′qi2 − δ′qi3) (vr − vr′) .
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If ϵ′qi2 = δ′qi3 , we have T′′q = Tq. Under the same setting, p is transformed as follows:

T′′p = Tp+ (ϵ′pi2 − δ′pi3) (vr − vr′)

= Tp+ (−ϵ′θi2qi2 + δ′θi3qi3) (vr − vr′)

= Tp+ ϵ′qi2(−θi2 + θi3) (vr − vr′) .

Now observe that θi1 < θi2 < θi3 . By choosing ϵ > 0 and ϵ′ > 0 small enough such that

ϵqi1(−θi1 + θi2) = ϵ′qi2(−θi2 + θi3), we obtain

(Tp,Tq) = 1
2 · (T

′p,T′q) + 1
2 · (T

′p,T′q) ,

and all three points are distinct elements of A. Such a choice of ϵ and ϵ′ always exists,

since both qi1(−θi1 + θi2) and qi2(−θi2 + θi3) are positive and finite. Thus, (Tp,Tq) is not an

extreme point of A.

Let us now consider the case when θi3 =∞, or equivalently, qi3 = 0. Define ϵ′ to be 0, so

that T′′q = Tq and T′′p = Tp− δ′pi3 (vr − vr′). Then choose δ′ > 0 and ϵ > 0 small enough

such that ϵqi1 (θi2 − θi1) = δ′pi3 , which is possible since both sides are positive and finite.

Thus, (Tp,Tq) is a non-trivial convex combination of (T′p,T′q) and (T′′p,T′′q), so is not

an extreme point of A.

11.5.1.3 Proof of Lemma 11.5.2

Proof. Without loss of generality, we assume that the likelihood ratios pi/qi are unique and

strictly increasing in i. We refer the reader to the proof of Theorem 11.1.16 and Claim H.4.1

for more details.

Let T ∈ C be a channel from [k] to [ℓ] such that (Tp,Tq) is an extreme point of A.

Suppose that there are ℓ′ unique columns in T with ℓ′ > 2ℓ2. From now on, we assume that

ℓ′ = 2ℓ2; otherwise, we apply the following argument to the first 2ℓ2 distinct columns.

Let c, c′ ∈ [k] be such that the cth and c′th columns of T are distinct. Observe that for
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every pair of distinct columns c and c′, there are two rows such that cth column has a strictly

bigger value than the c′th column on one row, and vice versa on the another row. This is

because both of the columns sum up to 1, so if a particular column has a larger entry in a

row, its entry must be smaller in a different row. In particular, there exist two rows g(c, c′)

and h(c, c′) such that T(g(c, c′), c) > T(g(c, c′), c′) and T(h(c, c′), c) < T(h(c, c′), c′). As a

result, T(g(c, c′), c) and T(h(c, c′), c′) are not min-tight, and T(g(c, c′), c′) and T(h(c, c′), c)

are not max-tight.

We now order the distinct columns of T in the order of their appearance from left to

right. Let i1, i2, . . . , iℓ′ be the indices of the unique columns. For example, the first distinct

column i1 is the first column of T (corresponding to the element 1). The second distinct

column i2 is the first column of T that is different from the first column. The third distinct

column is the first column of T that is different from the first two columns. Let I be the set

of unique column indices of T.

Now, we divide the distinct columns in T into pairs: H = {(i1, i2), (i3, i4), . . . , (iℓ′−1, iℓ′)}.

The total number of possible choices inH is ℓ′/2, and for every (m,m+ 1) inH, the possible

number of choices of (g(im, im+1), h(im, im+1)) is at most ℓ(ℓ− 1), since both of these lie in

[ℓ] and are distinct. Thus, there must exist two pairs inH whose corresponding indices are

the same, since ℓ′

2 = ℓ2 > ℓ(ℓ− 1).

Without loss of generality, we let these pairs of columns be (i1, i2) and (i3, i4). Let

r := g(i1, i2) = g(i3, i4) and r′ := h(i1, i2) = h(i3, i4). Then the previous discussion implies

that:

• T(r, i1) and T(r, i3) are not min-tight, and T(r′, i1) and T(r′, i3) are not max-tight.

• T(r, i2) and T(r, i4) are not max-tight, and T(r′, i2) and T(r′, i4) are not min-tight.

Thus, the columns i1, i2, and i3 satisfy the conditions of Lemma 11.5.8, i.e., they exhibit the

forbidden structure. This implies that (Tp,Tq) cannot be an extreme point ofA. Therefore,

ℓ′ ≤ 2ℓ2.
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11.5.2 Proof of Theorem 11.1.17: Unique Columns to Threshold

Channels

In this section, we provide the proof of Theorem 11.1.17 using Lemma 11.5.2. Noting that

our main structural result is more widely applicable (Condition 11.5.7), we prove a more

general version of Theorem 11.1.17 below for Definition 11.5.1. Before doing so, we require

an additional property on the set of our channels, proved in Appendix H.2:

Claim 11.5.9 (Closure under pre-processing). The set J γ,ν
ℓ,k satisfies the following closure

property under pre-processing:

J γ,ν
ℓ,k =

k⋃
ℓ′=1

{
T2 ×T1 : T2 ∈ J γ,ν

ℓ,ℓ′ and T1 ∈ Tℓ′,k
}
. (11.23)

Informally, if we take an arbitrary channel T1 and compose it with an LP private channel

T2, the composition T2 ×T1 is also LP private.

The following result is thus a more general version of Theorem 11.1.17:

Theorem 11.5.10 (Structure of optimal channels). Let p and q be distributions on [k]. For

any ℓ ∈ N, let C be the set of channels J γ,ν
ℓ,k from Definition 11.5.1. Let A be the set of all pairs of

distributions that are obtained by applying a channel from C to p and q, i.e.,

A = {(Tp,Tq) | T ∈ C}. (11.24)

If (Tp,Tq) is an extreme point ofA, then T can be written as T = T2×T1, for some T1 ∈ T thresh
ℓ′,k

and T2 an extreme point of the set J γ,ν
ℓ,ℓ′ .

Proof. Since C is convex, the joint range A is convex. By Lemma 11.5.2, we know that if

(Tp,Tq) is an extreme point of A, then T can be written as T2 ×T1, where T1 ∈ Tℓ′,k for

ℓ′ := 2ℓ2. Using Claim 11.5.9, any such channel in C is of the form T2×T1, where T1 ∈ Tℓ′,k
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and T2 ∈ J γ,ν
ℓ,ℓ′ . Combining the last two observations, we obtain the following:

A = conv
({

(T2 ×T1p,T2 ×T1q) : T2 ∈ J γ,ν
ℓ,ℓ′ ,T1 ∈ Tℓ′,k

})
. (11.25)

We now claim that we can further take T1 to be a threshold channel T1 ∈ T thresh
ℓ′,k and T2 to be

an extreme point of J γ,ν
ℓ,ℓ′ . This claim follows if we can write an arbitrary point inA as a con-

vex combination of elements of the set
{
(T2 ×T1p,T2 ×T1q) : T2 ∈ ext

(
J γ,ν
ℓ,ℓ′

)
,T1 ∈ T thresh

ℓ′,k

}
.

By equation Equation (11.25), it suffices to demonstrate this convex combination for all

points of the form (T2 ×T1p,T2 ×T1q), for some T2 ∈ J γ,ν
ℓ,ℓ′ and T1 ∈ Tℓ′,k.

Let H1,H2, . . . be extreme points of J γ,ν
ℓ,ℓ′ , and let L1,L2, . . . be an enumeration of the

threshold channels T thresh
ℓ′,k . By definition, any T1 ∈ J γ,ν

ℓ,ℓ′ can be written as∑i αiHi for some

convex combination α1, α2, . . . . Furthermore, Theorem 11.1.16 implies that any (T2p,T2q),

for T2 ∈ Tℓ′,k, can be written as ∑j βj(Ljp,Ljq) = (∑j βjLjp,
∑
j βjLjq), for some convex

combination β1, β2, . . . .

Thus, any arbitrary point (T2 × T1p,T2 × T1q), for T2 ∈ J γ,ν
ℓ,ℓ′ and T1 ∈ Tℓ′,k, can be

written as

(T2 ×T1p,T2 ×T1q) =
((∑

i

αiHi

)
×T1p,

(∑
i

αiHi

)
×T1q

)

=
∑
i

αi (Hi ×T1p,Hi ×T1q)

=
∑
i

αi (Hi (T1p) ,Hi (T1q))

=
∑
i

αi

Hi

∑
j

βjLjp

 ,Hi

∑
j

βjLjq


=
∑
i

αi

∑
j

βjHi × Ljp,
∑
j

βjHi × Ljq


=
∑
i

∑
j

αiβj (Hi × Ljp,Hi × Ljq) .

Finally, note that {αiβj} are also valid convex combinations of (Hi × Ljp,Hi × Ljq), since
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they are nonnegative and sum to 1.

Remark 11.5.11 (Extending Theorems 11.1.17 and 11.5.10 to a more general set of con-

straints). We note that Theorem 11.5.10 can be extended to an arbitrary convex set of channels C

that satisfy (appropriately modified versions of) Condition 11.5.7 and equation Equation (11.23).

(Also see Remark 11.5.6.)

11.5.3 Application to Hypothesis Testing

In Section 11.3, we showed that the minimax-optimal sample complexity can be obtained

by a communication-efficient and efficiently computable channel, up to logarithmic factors.

However, for a particular (p, q), these guarantees can be significantly improved. For example,

consider the extreme case when p and q are the following two distributions on [k]: for γ

small enough,

p = [α, 1− α− (k − 2)γ, γ, γ, . . . , γ],

q = [β, 1− β − (k − 2)γ, γ, γ, . . . , γ].

Let T′ be a deterministic binary channel that maps the first and second elements to different

elements, while assigning the remaining elements arbitrarily. Now consider the following

private channel T: the channel T′, followed by the randomized response over binary

distributions. Then as γ → 0, the performance of T mirrors equation Equation (11.3),

which is much better than the minimax bound of equation Equation (11.4). Thus, there

is a wide gap between instance-optimal and minimax-optimal performance. We thus

consider the computational question of optimizing a quasi-convex function g(Tp,Tq) over

all possible ϵ-private channels that map to a domain of size ℓ.

The following result proves Corollary 11.1.18 for C equal to Pϵℓ,k:

Corollary 11.5.12 (Computationally efficient algorithms for maximizing quasi-convex

functions under privacy constraints). Let p and q be fixed distributions over [k], let C be the set
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of channels J γ,ν
ℓ,k from Definition 11.5.1, and let A = {(Tp,Tq) : T ∈ C}. Let g : A → R be a

jointly quasi-convex function. Then there is an algorithm that solves maxT∈C g(Tp,Tq) in time

polynomial in kℓ2 and 2O(ℓ3 log ℓ).33

Proof. The algorithm is as follows: we try all threshold channels in T1 ∈ T thresh
ℓ′,k and all

extreme points of J γ,ν
ℓ,ℓ′ , and output the channel T = T2 × T1 that attains the maximum

value of g(Tp,Tq). By Theorem 11.5.10 and quasi-convexity of g, we know the algorithm

will output a correct value, since all extreme points are of this form. Thus, we focus on

bounding the runtime. We know that the cardinality of T thresh
ℓ′,k is bounded by kℓ′ (up to a

rotation of output rows). By Fact 11.2.3, the time taken to iterate through all the extreme

points of ϵ-LDP channels from [ℓ′] to [ℓ] is at most polynomial in 2ℓ3 log ℓ, since Jℓ,ℓ′ is a

polytope in R2ℓ3 with poly(ℓ) inequalities. This completes the proof.

The proof of Corollary 11.1.20 is immediate from Fact 11.2.7, Corollary 11.1.18, and

Proposition 11.6.2, stated later.

11.6 Extensions to Other Notions of Privacy

In this section, we explore computational and statistical aspects of hypothesis testing under

other notions of privacy. Section 11.6.1 is on approximate privacy, in which we first focus

on (ϵ, δ)-LDP and then our proposed definition of approximate privacy. Next, we focus on

binary communication constraints for Rényi differential privacy in Section 11.6.2. This will

be possible since our algorithmic and structural results were not restricted to the case of

pure LDP.

We begin by noting that communication constraints have a benign effect on the sample

complexity of hypothesis testing for many notions of privacy:

33Recall that g is assumed to be permutation invariant. If not, an extra factor of ℓ! will appear in the time
complexity.
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Condition 11.6.1 (Closure under post-processing). Let k ∈ N. For each r ∈ N, consider sets

Cr ⊆ Tr,k and define C = ∪r∈NCr. We say C satisfies ℓ-post-processing if for every r ∈ N, if

T ∈ Cr and H is a deterministic channel from [r] to [ℓ], the channel H×T also belongs to Cℓ, and

thus to C.

Post-processing is satisfied by various notions of privacy: ϵ-pure privacy, (ϵ, δ)-

approximate privacy (see Dwork and Roth [DR13, Proposition 2.1]), and Rényi

privacy [Mir17]. For a set of channels C, we use the notation n∗(p, q, C) to denote the

sample complexity of hypothesis testing under channel constraints of C in Definition 11.1.2.

The following result shows that even with binary communication constraints, the sample

complexity increases by at most a logarithmic factor:

Proposition 11.6.2 (Benign effect of communication constraints on sample complexity

under closure). Let p and q be any two distributions on [k]. Let C be a set of channels that satisfy

ℓ-post-processing (Condition 11.6.1) for some ℓ > 1. Let Cℓ denote the subset of channels in C that

map to a domain of size ℓ. Then

n∗(p, q, Cℓ) ≲ n∗(p, q, C) ·
(

1 + log (n∗(p, q, C))
ℓ

)
. (11.26)

Proof. Let T be the optimal channel in C that maximizes d2
h(Tp,Tq). Let k′ be the size of

the range of T. By Fact 11.2.7, we have n∗(p, q, C) ≍ 1/d2
h(Tp,Tq). By Fact 11.2.8, we know

that there exists T′ ∈ Tℓ,k′ such that34

d2
h(Tp,Tq) ≲ d2

h(T′(Tp),T′(Tq)) ·
(

1 + log(1/d2
h(Tp,Tq))
ℓ

)
. (11.27)

By the assumed closure of C under post-processing, the channel T′ × T belongs to C.

Thus, the channel T′ ×T also belongs to Cℓ, since its output is of size ℓ. This implies that
34If the supremum is not attained, the proof can be modified by considering a suitable sequence of channels

and applying a similar argument.
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the sample complexity n∗(p, q, Cℓ) is at most 1/d2
h(T′ × Tp,T′ × Tq). Using the fact that

n∗(p, q, C) ≍ 1/d2
h(Tp,Tq), we obtain the desired result.

Thus, in the rest of this section, our main focus will be on the setting of binary channels.

11.6.1 Approximate Local Privacy

In this section, we first focus on (ϵ, δ)-approximate LDP (Definition 11.6.3). We begin

by showing upper bounds on the associated sample complexity. On the computational

front, we present efficient algorithms for the case of binary constraints and then propose a

relaxation for the case of larger output domains.

We first recall the definition of (ϵ, δ)-LDP:

Definition 11.6.3 ((ϵ, δ)-LDP). We say a channel from X to Y is (ϵ, δ)-LDP if for all S ⊆ Y , we

have

sup
x,x′∈X

P[T(x) ∈ S)]− eϵ · P[T(x) ∈ S)]− δ ≤ 0. (11.28)

What makes the analysis of (ϵ, δ)-LDP different from ϵ-LDP is that when |Y| > 2, the

condition in inequality (11.28) should be verified for all sets S ⊆ Y , not just singleton sets

(|S| = 1). Only when |Y| = 2 is it enough to consider singleton sets S.

Let n∗(p, q, (ϵ, δ)) denote the sample complexity for the setting in Definition 11.1.3, with

C equal to the set of all (ϵ, δ)-LDP channels. We directly obtain the following upper bound

on the sample complexity, proved in Appendix H.3, which happens to be tight for the case

of binary distributions:

Claim 11.6.4 (Sample complexity of approximate LDP). For all δ ∈ (0, 1), we have

n∗(p, q, (ϵ, δ)) ≲ min
(
n∗(p, q, ϵ) · 1

1− δ , n
∗(p, q) · 1

δ

)
.

Moreover, this is tight (up to constant factors) when both p and q are binary distributions.
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In the rest of this section, we focus on efficient algorithms in the presence of both privacy

and communication constraints.

Turning to computationally efficient algorithms for the case of privacy and commu-

nication constraints, we present two kinds of results: exact results for the case of binary

outputs, and sharp relaxations for the case of multiple outputs.

Binary channels: Let C be the set of all (ϵ, δ)-approximate LDP channels from [k] to [2],

i.e., binary channels. Let γ = (eϵ, eϵ) and ν = (δ, δ). Observe that C is then equal to J γ,ν
2,k ,

defined in Definition 11.5.1. Thus, Theorem 11.5.10 and Corollary 11.5.12 hold in this case,

as well.

Channels with larger output spaces: Here, we define a new notion of privacy that relaxes

(ϵ, δ)-LDP. It is enough to verify whether the privacy condition holds for singleton events

S:

Definition 11.6.5 ((ϵ, δ)-SLDP). We say a channel X to Y is (ϵ, δ)-singleton-based-LDP

((ϵ, δ)-SLDP) if for all S ⊆ Y , we have

sup
x,x′∈X

P[T(x) ∈ S)]− eϵ · P[T(x) ∈ S)]− δ · |S| ≤ 0.

The following result shows that (ϵ, δ)-SLDP is a good approximation to (ϵ, δ)-LDP when

the output space is small:

Claim 11.6.6 (Relations between LDP and SLDP). Consider a channel T from X to [ℓ].

1. If T is (ϵ, δ)-SLDP, it is (ϵ, ℓδ)-LDP.

2. If T is (ϵ, δ)-LDP, it is (ϵ, δ)-SLDP.

The proof is immediate from the definitions of (ϵ, δ)-LDP and (ϵ, δ)-SLDP, and we

omit it. We now show that it is easy to optimize over SLDP channels in the presence of
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communication constraints. For any ℓ ∈ N, let C be the set of all channels from [k] to [ℓ] that

satisfy (ϵ, δ)-SLDP. Let γ = (eϵ, eϵ, . . . , eϵ) and ν = (δ, δ, . . . , δ). Observe that C is then equal

to J γ,ν
ℓ,k , defined in Definition 11.5.1. Thus, Theorem 11.5.10 and Corollary 11.5.12 imply

that we can efficiently optimize over SLDP channels.

11.6.2 Other Notions of Privacy

We briefly note that our computationally efficient algorithms hold for a wider family of

channels defined in Definition 11.5.1; see also Remark 11.5.11.

Finally, we consider the case of Rényi differential privacy introduced in Mironov [Mir17]:

Definition 11.6.7 ((ϵ, α)-Rényi differential privacy). Let ϵ ∈ R+ and α > 1, and let X and Y

be two domains. A channel T : X → Y satisfies (ϵ, α)-RDP if for all x, x′ ∈ X , we have

Dα(T(x)∥T(x′)) ≤ ϵ,

where Dα(p∥q) is the Rényi divergence of order α between two distributions p and q on the same

probability space, defined as

Dα(p∥q) := 1
α− 1 log E

X∼q

[(
p(X)
q(X)

)α]
.

Rényi divergence is also defined for α = 1 and α = ∞ by taking limits. When α =

1, the limit yields the Kullback–Leibler divergence, and when α = ∞, it leads to the

supremum of the log-likelihood ratio between p and q. In fact, (∞, ϵ)-RDP is identical to

ϵ-LDP. Similarly, (1, ϵ)-RDP is closely related to mutual information-based privacy [CY16],

since the corresponding channel T has Shannon capacity at most ϵ.

Proposition 11.6.8 (Rényi differential privacy and binary constraints). Let ϵ > 0 and α > 1.

Let C be the set of (ϵ, α)-RDP channels from [k] to [2]. Let p and q be two distributions on [k], and
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define A := {(Tp,Tq) : T ∈ C}. If (Tp,Tq) is an extreme point of A for T ∈ C, then T can be

written as T1 ×T2, where T1 is an extreme point of the set of (ϵ, α)-RDP channels from [2] to [2],

and T2 is a binary threshold channel from [k].

Proof. Consider two binary distributions [x, 1− x] and [y, 1− y], where 0 ≤ x, y ≤ 1. The

α-Rényi divergence between the distributions is given by

Dα(x∥y) := 1
α− 1 log

(
xαy1−α + (1− x)α(1− y)1−α

)
.

Observe that the term inside the logarithm is convex in y for fixed x, and is minimized when

y = x. Hence, the Rényi divergence above, as a function of y, is decreasing for y ∈ [0, x]

and increasing for y ∈ [x, 1]. A similar conclusion holds for fixed y and varying x.

Consider a channel T ∈ C given by

T =

 x1 x2 . . . xk

1− x1 1− x2 . . . 1− xk

 .

Without loss of generality, assume x1 ≤ x2 ≤ · · · ≤ xk Suppose there is an index j such

that x1 < xj < xk. Observe that xj /∈ {0, 1}. By the monotonicity property of the Rényi

divergence noted above, for any index i, we have

max {Dα(xj∥xi), Dα(xi∥xj)} < max {Dα(x1∥xk), Dα(xk∥x1)} ≤ ϵ.

This means that xj can be perturbed up and down by a small enough δ such that the Rényi

divergence constraints continue to be satisfied. Such perturbations will allow T to be

written as a convex combination of two distinct matrices, so T cannot be an extreme point

of the (convex) set C. Thus, an extreme point must have only two distinct columns; i.e., it
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must have the form

T =

 x1 x1 . . . x1 xk xk . . . xk

1− x1 1− x1 . . . 1− x1 1− xk 1− xk . . . 1− xk

 .

Equivalently, any extreme point is a deterministic channel from [k] → [2] followed by

an RDP-channel from [2] → [2]. Since we are only concerned with extreme points that

correspond to extreme points of the joint range A, an argument identical to the one in

the proof of Theorem 11.5.10 yields that an extreme point must admit a decomposition

T1 ×T2, where T2 is a threshold channel from [k]→ [2] and T1 is an extreme point of the

set of RDP channels from [2]→ [2].

The above result implies that given a quasi-convex function g : A → R, if we are

interested in maximizing g(Tp,Tq) over T ∈ C, the optimal T can be written as T1 ×T2,

where T1 is a binary-input, binary-output Rényi private channel and T2 is a threshold

channel. Since there are only 2k threshold channels, we can try all those choices of T2, and

then try to optimize over T1 for each of those choices. However, each such problem is over

binary inputs and binary outputs, and thus is amenable to grid search.

Remark 11.6.9. In addition to the convexity of RDP channels, we also used the closure-under-pre-

processing property (see Claim 11.5.9) and the unimodality of Dα(x∥y) when one of the variables

is fixed and the other is varied. The above proof technique will therefore work for any set of convex

channels from [k] → [2] that are closed under pre-processing, and are defined in terms of such a

unimodal function. In particular, our results will continue to hold for all f -divergence-based private

channels, defined as all T satisfying

Df (T(x)∥T(x′)) ≤ ϵ.

Our results also hold for zero-concentrated differential privacy (z-CDP) [BS16], which is a notion

of privacy defined using Rényi divergences.
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11.7 Conclusion

In this paper, we considered the sample complexity of simple binary hypothesis testing

under privacy and communication constraints. We considered two families of problems:

finding minimax-optimal bounds and algorithms, and finding instance-optimal bounds

and algorithms.

For minimax optimality, we considered the set of distributions with fixed Hellinger

divergences and total variation distances. This is a natural family to consider, because these

two metrics characterize the sample complexity in the low- and high-privacy regimes. Prior

work did not resolve the question of sample complexity in the moderate-privacy regime;

our work has addressed this gap in the literature, by establishing a sample-complexity

lower bound via a carefully constructed family of distribution pairs on the ternary alphabet.

Our results highlight a curious separation between the binary and ternary (and larger

alphabet) settings, roughly implying that the binary case is substantially easier (i.e., has a

lower sample complexity) than the general case.

Our focus on instance optimality sets our paper apart from most prior work on

information-constrained estimation, which exclusively considered minimax optimality.

When only privacy constraints are imposed, we established approximately instance-optimal

algorithms; i.e., for any distribution pair, we proposed a protocol whose sample complexity

is within logarithmic factors of the true sample complexity. Importantly, the algorithm we

proposed to identify this protocol is computationally efficient, taking time polynomial in k,

the support size of the distributions. When both privacy and communication constraints

are in force, we developed instance-optimal algorithms, i.e., protocols whose sample

complexity is within constant factors of the true sample complexity. As before, these

algorithms take time polynomial in k, for any constant communication constraint of size ℓ.

Our results highlight the critical role played by threshold channels in both

communication- and privacy-constrained settings. We showed that for any distri-

bution pair, the channel with output size ℓ that maximizes the output divergence
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(Hellinger, Kullback–Leibler, or any quasi-convex function in general) among all channels

with fixed output size ℓ must be a threshold channel. Furthermore, optimal private

channels with output size ℓ admit a decomposition into a threshold channel cascaded with

a private channel. These two results underpin our algorithmic contributions.

There are many interesting open problems stemming from our work that would be worth

exploring. We did not characterize instance-optimal sample complexity in the moderate-

privacy regime; our work shows that it is not characterized in terms of the Hellinger

divergence and total variation distance, but leaves open the possibility of some other

divergence, such as the Eγ divergence, capturing the sample complexity. We identified a

forbidden structure for optimal private channels; however, the best algorithm from Kairouz,

Oh, and Viswanath [KOV16] does not use this information at all. It would be interesting to

see if that algorithm could be made more efficient by incorporating the extra structural

information. Many open questions remain for the approximate LDP setting, as well. There

is no known upper bound on the number of outputs that suffice for optimal approximate

LDP channels. It is plausible, but unknown, if instance-optimal private channels with ℓ > 2

outputs admit decompositions into threshold channels cascaded with private channels,

similar to the pure LDP setting. It would be interesting to see if optimal SLDP channels,

which are efficient to find, are nearly instance optimal for approximate LDP.
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a appendix to Chapter 3

A.1 Robust Mean Estimation and Stability

A.1.1 Robust Mean Estimation from Subset Stability

The theorem statement in [DK19, Theorem 2.7] requires that the input multiset S is stable.
We note that the arguments straightforwardly go through when S contains a large stable
subset S ′ ⊆ S (see, e.g., [DKKLMS16; DKKLMS17; DHL19]).

For concreteness, we describe a simple pre-processing of the data, that ensures that the
data follows the definition as is: simply throw away points so that the cardinality of the
corrupted set matches the cardinality of the stable subset.

Proposition A.1.1. Let S be a set such that ∃S ′ ⊆ S such that |S ′| ≥ (1− ϵ)|S| and S ′ is (Cϵ, δ)
for some C > 0. Let T be an ϵ-corrupted version of S. Let T ′ be the multiset obtained by removing
ϵn points of T . Let ϵ′ = 2ϵ

1−ϵ . Then T ′ is an ϵ′-corrupted version of a ((C − 1)ϵ′/2, δ) stable set.

Proof. Let T be an ϵ-corrupted version of S. That is, T = S ∪ A \ R. We now remove ϵn
points arbitrarily from T to obtain the multiset T ′ of cardinality (1− ϵ)n.

Let S2 be any subset of S ′ such that |S2| = |T1| = (1 − ϵ)n. Therefore, T ′ is at most
(2ϵ)/(1 − ϵ)-corrupted version of S2. As S ′ is (Cϵ, δ) stable and S2 is a large subset of S ′,
Claim A.1.2 states that S2 is (ϵ2, δ) stable where ϵ2 ≥ 1− (1−Cϵ)/(1− ϵ) = (C − 1)ϵ′/2.

Claim A.1.2. If a set S is (ϵ, δ) stable, then its subset S ′ of cardinality m > (1− ϵ)n is (1− (1−
ϵ) n
m
, δ) stable.

Proof. To show that S ′ is (ϵ′, δ) stable, it suffices to ensure that ϵ′ ≤ ϵ and (1 − ϵ′)|S ′| ≥
(1− ϵ)|S|. Therefore, we require that

(1− ϵ′)m ≥ (1− ϵ)n =⇒ ϵ′ ≤ 1− (1− ϵ)n
m

.

The upper bound is always less than ϵ for m ≤ n.

A.1.2 Adapting to Unknown Upper Bound on Covariance

As stated, the stability-based algorithms in [DKKLMS17; DK19] assume that the inliers
are drawn from a distribution with unknown bounded covariance Σ ⪯ σ2I , where the
parameter σ > 0 is known. Here we note that essentially the same algorithms work even if
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the parameter σ > 0 is unknown. For this, we establish the following simple modification
of standard results, see, e.g., [DK19].

Theorem A.1.3. Let T ⊂ Rd be an ϵ-corrupted version of a set S, where S is (Cϵ, δ)-stable with
respect to µS and σ2, where C > 0 is a sufficiently large constant. There exists a polynomial time
algorithm that given T and ϵ (but not σ or δ) returns a vector µ̂ so that ∥µS − µ̂∥2 = O(σδ).

Proof. The algorithm is very similar to the algorithm from [DK19] except for the stopping
condition. We define a weight function w : T → R≥0 initialized so that w(x) = 1/|T | for all
x ∈ T . We iteratively do the following:

• Compute µ(w) = 1
∥w∥1

∑
x∈T w(x)x.

• Compute Σ(w) = 1
∥w∥1

∑
x∈T w(x)(x− µ(w))(x− µ(w))⊤.

• Compute an approximate largest eigenvector v of Σ(w).

• Define g(x) for x ∈ T as g(x) = |v · (x− µ(w))|2.

• Find the largest t so that ∑x∈T :g(x)≥tw(x) ≥ ϵ.

• Define f(x) =

g(x) if g(x) ≥ t

0 otherwise
.

• Let m be the largest value of f(x) for any x ∈ T with w(x) ̸= 0.

• Set w(x) to w(x)(1− f(x)/m) for all x ∈ T .

We then repeat this loop unless ∥w∥1 < 1− 2ϵ, in which case we return µ(w).
Note that if S is (ϵ, δ)-stable with respect to µS and σ2, then S/σ is (ϵ, δ) with respect

to µS/σ and 1. We note that if σ was known, the weighted universal filter algorithm of
[DK19] could be applied to T/σ in order to learn µS/σ to error O(δ). Multiplying the result
by σ would yield an approximation to µS with error O(σδ). We note that this algorithm
is equivalent to the one provided above, except that we would stop the loop as soon as
Σ(w) ≤ σ(1 +O(δ2/ϵ)) rather than waiting until ∥w∥1 ≤ 1− 2ϵ.

However, we note that by the analysis in [DK19] of this algorithm, that at each iteration
until it stops, ∑x∈S w(x) decreases by less than ∑x∈T\S w(x) does. Since the latter cannot
decrease by more than ϵ, this means that the algorithm of [DK19] would stop before ours
does. Our algorithm then continues to remove an additional O(ϵ) mass from the weight
function w (but only this much since f has support on points of mass only a bit more than
ϵ). It is easy to see that these extra removals do not increase Σ(w) by more than a factor of
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1 +O(ϵ). This means that when our algorithm terminates Σ(w)/σ ≤ I +O(δ2/ϵ). Thus, by
the weighted version of Lemma 2.4 of [DK19], we have that

∥µS − µ(w)∥2 = σ∥µS/σ − µ(w)/σ∥2 ≤ σO(δ +
√
ϵ(δ2/ϵ)) = O(σδ) .

This completes the proof.

A.2 Tools from Concentration and Truncation
Organization In Section A.2.1, we state the concentration results that we will use repeat-
edly in the following sections. Section A.2.2 contains some well-known results regarding
the properties of the truncated distribution.

A.2.1 Concentration Results

We first state Talagrand’s concentration inequality for bounded empirical processes.

Theorem A.2.1 ([BLM13, Theorem 12.5]). Let Y1, . . . , Yn be independent identically distributed
random vectors. Assume that EYi,s = 0, and that Yi,s ≤ L for all s ∈ T . Define

Z = sup
s∈T

n∑
i=1

Yi,s, σ2 = sup
s∈T

n∑
i=1

EY 2
i,s.

Then, with probability at least 1− exp(−t), we have that

Z = O(EZ + σ
√
t+ Lt). (A.1)

See [BLM13, Exercise 12.15] for explicit constants.

We will also repeatedly use the following version of Matrix Bernstein inequality [Tro15;
Min17].

Theorem A.2.2 ([Tro15, Corollary 7.3.2]). Let S1, . . . , Sn be n independent symmetric matrices
such that ESi = 0 and ∥Si∥op ≤ L a.s. for each index i. Let Z = ∑n

i=1 Si and let V be any PSD
matrix such that ∑n

i=1 ESiS⊤
i ⪯ V . Let ν = ∥V ∥op and r = r(V ). Then, we have that

E ∥Z∥op = O(
√
ν log r + L log r). (A.2)
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In particular, if Si = ξixix
⊤
i , where ξi is a Rademacher random variable, and xi is sampled

independently from a distribution with zero mean, covariance Σ, and bounded support
√
L, i.e.,

∥xi∥2 ≤
√
L almost surely. Then E ∥Z∥op = O(

√
nL∥Σ∥op log r(Σ) + L log r(Σ)).

A.2.2 Properties under Truncation

We state some basic results regarding truncation of a distribution in this subsection.
These results are well-known in literature and are included here for completeness (see,
e.g., [DKKLMS17; LRV16]).

Proposition A.2.3 (Shift in mean by truncation). Let X be sampled from a distribution with
mean 0 and covariance Σ ⪯ I . For a t ≥ 0, let g(·) be defined as

g(x) =


x, if x ∈ [−t, t],

t, if x > t,

−t, if x < −t.

If t ≥ Cϵ− 1
2 , then for all v ∈ Sd−1, |E g(x⊤v)| ≤ C−1√ϵ.

Proof. Let Z = x⊤v. By Markov’s inequality,

P(Z ≥ t) ≤ P(Z2 ≥ C2ϵ−1) ≤ 1
C2ϵ−1 = C−2ϵ.

We get that

|E g(Z)| = |EZ − g(Z)| ≤ E |Z − g(Z)| ≤ E |Z| I
|Z|≥t

≤
√
ϵC−1. (A.3)

Proposition A.2.4 (Shift in mean by truncation under higher moments). Let X be sampled
from a distribution with mean 0 and covariance (1− σ2

kϵ
1− 2

k )I ⪯ Σ ⪯ I . Moreover, assume that
the distribution has bounded moments, i.e., for a k ≥ 4:

∀v ∈ Sd−1, (E(v⊤X)k) 1
k ≤ σk. (A.4)

Note that σ2 ≤ 1. Let Tk = σkϵ
− 1

k . Then

1. For all M ∈M, E(x⊤Mx) k
2 ≤ σkk .

2. For all M ∈M and t ≥ CT 2
k , Ex⊤Mx Ix⊤Mx≥t ≤ σ2

kC
2
k

−1ϵ1− 2
k .
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3. Let f(·) be defined as f(x) = min(x, t). For a t ≥ CT 2
k , |E f(x⊤Mx) − 1| ≤ σ2

kϵ
1− 2

k (1 +
C1− k

2 ).

4. Let t ≥ CTk. For all v ∈ Sd−1, |Ex⊤v I|x⊤v|≤t | ≤ σkϵ
1− 1

kC1−k.

5. Let g(·) be defined as g(x) = sign(x) min(|x|, t). For t ≥ CTk and all v ∈ Sd−1,
|E g(x⊤v)| ≤ σkC

1−kϵ1− 1
k .

6. E ∥X∥k2 ≤ d
k
2σkk .

7. P(∥X∥2 ≥ σk
√
dϵ−1/k) ≤ ϵ.

Proof. We prove each statement in turn.

1. We use the spectral decomposition of M , to write M = U⊤∆U , where U is a rotation
matrix, ∆ is a non-negative diagonal matrix with diagonal entries λi and trace 1.
Observe that if the random variable X satisfies Equation (A.4), then the random
variable Z := UX also satisfies Equation (A.4).

We use the aforementioned observation and apply Jensen’s inequality to get:

E(x⊤Mx) k
2 = E(Z⊤∆Z) k

2 = E(
d∑
i=1

λiz
2
i )

k
2 ≤

d∑
i=1

λi E zki ≤
∑
i=1

λiσ
k
k ≤ σkk .

2. Let Z = x⊤Mx. From the first part, we have that k
2 -th moment of Z is bounded by σ2

k.
By Markov’s inequality, we get that

P {Z ≥ t} ≤ P
{
Z ≥ CT 2

k

}
≤ P

{
Z ≥ C

σ2
k

ϵ
2
k

}
≤ ϵ

C
k
2σkk

EZ
k
2 ≤ ϵ

C
k
2
.

We can now apply Hölder’s inequality to get

E
[
Z I
Z≥CT 2

k

]
≤ σ2

kC
2
k

−1ϵ1− 2
k .

3. As above, let Z = x⊤Mx. It follows that f(x) ≤ x. Therefore, we get that

E f(x⊤Mx) ≤ Ex⊤Mx ≤ 1.

For the lower bound, we get that

E f(x⊤Mx) ≥ Ex⊤Mx I
x⊤Mx≤CT 2

k

= Ex⊤Mx1− Ex⊤Mx I
x⊤Mx>CT 2

k
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≥ 1− σ2
kϵ

1− 2
k − σ2

kϵ
1− 2

kC1− k
2 .

4. Let Z = x⊤v. We note that

P(Z ≥ t) ≥ P(Z ≥ CTk) ≤ P(Zk ≥ CkT kk ) ≤ σkk
σkkϵ

−1Ck
≤ C−kϵ.

We now bound the deviation in mean by truncation:

EZ = EZ I
|Z|≤t

+EZ I
|Z|>t

= 0

=⇒ |EZ I
|Z|≤t
| = |EZ I

Z>t
|

≤ (EZk) 1
k (P{Z > t})1− 1

k

= σkC
1−kϵ1− 1

k .

5. Let Z = x⊤v. We get that

|E g(Z)| = |EZ − g(Z)| ≤ E |Z − g(Z)| ≤ E |Z| I
|Z|≥CTk

≤ σkϵ
1− 1

kC1−k.

6. It follows by taking M = 1
d
I in the first part.

7. This follows by Markov’s inequality and the previous part.

Lemma A.2.5. Let P be a distribution with mean µ and covariance I . Let X ∼ P . For k > 2, let
its k-th central moment be bounded as

for all v ∈ Sd−1 : (E |v⊤X|k) 1
k ≤ σk.

For ϵ ≤ 0.5, let E be the event

E = {∥X − µ∥2 ≤ T},

where T is such that P(E) ≥ 1− ϵ. Let Z be the random variable X|E, that is X conditioned on
X ∈ E. Then, we have that

1. ∥µ− EZ∥2 ≤ 1
1−ϵσkϵ

1− 1
k ≤ 2σkϵ1− 1

k .

2. (1− 3σ2
kϵ

1− 2
k )I ⪯ Cov(Z) ⪯ 1

1−ϵI .
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Proof. We prove each statement in turn.

1. Let Q be the distribution of Z. We will assume that P(Ec) > 0, otherwise the results
hold trivially. Let R be the distribution of X conditioned on X ∈ Ec and let Y ∼ R.
Note that P can be written as the convex combination of Q and R.

P = (P(E))Q+ (1− P(E))R. (A.5)

Using this decomposition, we can calculate the shift in mean along any direction
v ∈ Sd−1:

P(E)v⊤ EZ + (1− PE)E v⊤Y = v⊤ EX = µ

=⇒ v⊤(EZ − µ) = 1
P(E) E

[
−v⊤(X − µ) I

X ̸∈E

]
≤ 1

P(E)(E |v⊤(X − µ)|k) 1
k (P(Ec))1− 1

k

≤ 1
P(E)σkϵ

1− 1
k ,

where the first inequality uses Hölder’s inequality. Therefore, ∥EZ − µ∥2 ≤
σkϵ

1−1/k/(1− ϵ).

2. We will follow the notations from the previous part. Note that for all v ∈ Sd−1, the
mean minimizes the quadratic loss. In particular,

E(v⊤(Z − EZ))2 ≤ E(v⊤(Z − µ))2.

Using (A.5), we have that

E(v⊤(Z − µ))2 ≤ 1
P(E) E(v⊤(X − µ))2 ≤ 1

1− ϵ.

Therefore, we obtain the following upper bound:

E v⊤(Z − EZ)2 ≤ E(v⊤(Z − µ))2 ≤ 1
1− ϵ.

We now turn our attention to lower bound. We first note that

(1− P(E))E(v⊤(Y − µ))2 = E(v⊤(X − µ))2 I {X ∈ Ec}

≤ (E(v⊤(X − µ))k) 2
k (P(E))1− 2

k ≤ σ2
kϵ

1− 2
k .
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Using (A.5), we get

E(v⊤(Z − µ))2 = 1
P(E)(E(v⊤(X − µ))2 − (1− P(E))E(v⊤(Y − µ))2)

≥ (1− (1− P(E))E(v⊤(Y − µ))2) ≥ 1− σ2
kϵ

1− 2
k .

We are now ready to bound from below the deviation from mean:

E(v⊤(Z − EZ))2 = E(v⊤(Z − µ))2 − (v⊤(EZ − µ))2

≥ 1− σ2
kϵ

1− 2
k − (σkϵ

1− 1
k

1− ϵ )2

≥ 1− σ2
kϵ

1− 2
k − σ2

kϵ
1− 2

k

1− ϵ ≥ 1− 3σ2
kϵ

1− 2
k .

A.3 Bounds on the Number of Points with Large
Projections

Organization This section contains the proofs of Lemma 3.2.3 and Lemma 3.4.2 from
the main paper. In Section A.3.1, we prove the results controlling the number of outliers
uniformly along all directions v ∈ Sd−1. We then generalize these results to projections
along PSD matrices in Section A.3.2.

A.3.1 Linear Projections

We state Lemma 1 from Lugosi and Mendelson [LM21b]. We will use this result for
distributions with bounded covariance.

Lemma A.3.1 ([LM21b, Lemma 1]). Let x1, . . . , xn be n i.i.d. points from a distribution with
mean zero and covariance Σ ⪯ I . Let Q2 be defined as follows:

Q2 = 256
ϵ

√
tr(Σ)
n

+ 16√
ϵ
.

Then, for a constant c > 0, with probability at least 1− exp(−cϵn),

sup
v∈Sd−1

∣∣∣{i : |v⊤xi| ≥ Q2
}∣∣∣ ≤ 0.25ϵn .
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We state the following straightforward generalization of Lemma A.3.1 for distributions
with bounded central moments. We give the proof for completeness.

Lemma A.3.2. Let x1, . . . , xn be n i.i.d. points from a distribution with mean zero and covariance
Σ ⪯ I . Further assume that for all v ∈ Sd−1:

(E(v⊤X)k) 1
k ≤ σk. (A.6)

Let Qk be defined as follows:

Qk = Θ
1
ϵ

√
tr(Σ)
n

+ σkϵ
− 1

k

 .
Then, there exists a c > 0, such that with probability at least 1− exp(−cnϵ),

sup
v∈Sd−1

∣∣∣{i : |x⊤
i v| ≥ Qk

}∣∣∣ = O(nϵ). (A.7)

Proof. We follow the same strategy as in Lugosi and Mendelson [LM21b]. We first set Qk

as follows:

Qk = C

1
ϵ

√
tr(Σ)
n

+ σkϵ
− 1

k

 ,
for a large enough constant C to be determined later. Consider the function χ : R → R
defined by

χ(x) =


0, if x ≤ Qk

2 ,

2x
Qk
− 1, if x ∈

[
Qk

2 , Qk

]
,

1, if x ≥ Qk.

(A.8)

Therefore, Ix⊤v≥Qk
≤ χ(x⊤

i v) ≤ Ix⊤v≥Qk/2 and note that χ(·) is a 2
Qk

Lipschitz. We first bound
the number of points violating the upper tail bounds. The random quantity of interest is
the following:

Z = sup
v∈Sd−1

n∑
i=1

I
x⊤

i v≥Qk

. (A.9)
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We first calculate its expectation using the symmetrization principle [LT91; BLM13]. We
have that

EZ = E sup
v∈Sd−1

n∑
i=1

I
x⊤

i v≥Qk

≤ E sup
v∈Sd−1

n∑
i=1

χ(x⊤
i v)

≤ E sup
v∈Sd−1

n∑
i=1

(χ(x⊤
i v)− Eχ(x⊤

i v)) + sup
v∈Sd−1

E
n∑
i=1

χ(x⊤
i v)

≤ 2E sup
v∈Sd−1

n∑
i=1

ϵiχ(x⊤
i v) + sup

v∈Sd−1
E

n∑
i=1

χ(x⊤
i v). (A.10)

We bound the second term in Eq. (A.10) by

E
n∑
i=1

χ(x⊤
i v) ≤ E

n∑
i=1

I
x⊤

i v≥Qk/2
= nP(x⊤

i v ≥ Qk/2) ≤ nP(x⊤
i v ≥ Cσkϵ

− 1
k ) = O(nϵ),

by applying Markov inequality and choosing a large enough constant C for Qk. For the
first term in Eq. (A.10), we upper bound χ(·) using contraction principle for Rademacher
averages and independence of xi:

E sup
v∈Sd−1

n∑
i=1

ϵiχ(x⊤
i v) ≤ 2

Qk

E sup
v∈Sd−1

n∑
i=1

ϵix
⊤
i v

= 2
Qk

E
∥∥∥∥∥∑

i

ϵixi

∥∥∥∥∥
2
≤ n

2
Qk

√
n tr(Σ) = O(nϵ),

where we use the covariance bound on xi and a large enough constant for Qk ≥
(C/ϵ)

√
tr(Σ)/n. Therefore, we get that EZ = O(nϵ). We can upper bound the wimpy vari-

ance, i.e., the quantity σ2 in Theorem A.2.1, by O(ϵn). By Talagrand’s concentration A.2.1,
we get that probability 1− exp(−cnϵ),

Z = O(nϵ+
√
nσ
√
cnϵ
√
nγ + cnϵ) = O(nϵ). (A.11)

A.3.2 Matrix Projections

We will now use the results from the previous section to prove Lemma 3.2.3 and
Lemma 3.4.2. The proof follows the ideas from [DL22b, Proposition 1].
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Lemma A.3.3. Suppose that the event E1 holds, where E1 is the following

E1 :=
{

sup
v∈Sd−1

|{i : |x⊤
i v| ≥ Q0}| ≤ 0.25ϵn

}
.

Let Q = 8Q0. Then the event E also holds, where E is defined as follows:

E :=
{

sup
M∈M

|{i : x⊤
i Mxi ≥ Q2}| ≤ ϵn

}
.

Proof. We follow the same proof strategy as Depersin and Lecué [DL22b]. We reproduce
the proof here for completeness.

Suppose that E1 holds but the desired event E does not hold. Let M be such that
|{i : x⊤

i Mxi ≥ Q2}| > ϵn. Let G be the Gaussian vector in Rd independent of x1, . . . , xn

with distribution N (0,M). We will work conditionally on x1, . . . , xn in the remaining of
the proof. By Gaussian concentration (see, e.g., [BLM13]) we have that with probability at
least 0.999: ∥G∥2 ≤ 5. Let Z be the following random variable

Z =
n∑
i=1

I
|x⊤

i G|2≥25Q2
0,∥G∥2≤5

.

Under E1, we have that Z ≤ 0.25ϵn, implying E[Z] ≤ 0.25ϵn. Moreover, we have that
x⊤
i G ∼ N (0, x⊤

i Mxi). For i such that x⊤
i Mxi ≥ Q2, we have that

P(|x⊤
i G|2 > 25Q2

0, ∥G∥2 ≤ 5) ≥ P(|x⊤
i G|2 > 25Q2

0)− P(∥G∥2 > 5)

≥ 2P
(
g ≥ 5

8

)
− 0.001 > 0.528− 0.001 > 0.527,

where g is a standard Gaussian random variable. Therefore,

EZ =
n∑
i=1

P(|x⊤
i G|2 > 25Q2

0, ∥G∥2 ≤ 5) ≥ ϵn(0.527),

which is a contradiction as E[Z] ≤ 0.25ϵn.

We are now ready to prove Lemma 3.2.3 and 3.4.2.

Proof. (Proof of Lemma 3.2.3) The result now follows from Lemma A.3.1, due to Lugosi
and Mendelson [LM21b, Lemma 1], and Lemma A.3.3.
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Proof. (Proof of Lemma 3.4.2) The result now follows from Lemma A.3.2, which might
require a change of variables, and Lemma A.3.3.

A.4 Stability for Distributions with Bounded Covariance
Organization Section A.4.1 contains the proof of the sufficient conditions for stability
under bounded covariance assumption (Claim 3.2.1). Section A.4.2 contains the arguments
for deterministic rounding (Lemma A.4.2).

A.4.1 Sufficient Conditions for Stability

The following claim simplifies the stability condition for the bounded covariance case.

Claim A.4.1 (Claim 3.2.1). Let S be a set such that ∥µS−µ∥2 ≤ σδ, and ∥ΣS−σ2I∥op ≤ σ2δ2/ϵ

for some 0 ≤ ϵ ≤ δ. Let ϵ′ < 0.5. Then S is (ϵ′, δ′) stable with respect to µ and σ2, where
δ′ = 2

√
ϵ′ + 2δ

√
ϵ′/ϵ.

Proof. Let ϵ′ < 0.5. Without loss of generality, we can assume that σ = 1. For S ′ ⊆ S : |S ′| ≥
(1− ϵ′)|S|,

1
|S ′|

∑
i∈S′

(x⊤
i v)2 − 1 ≤ 1

|S ′|
∑
i∈S

(x⊤
i v)2 − 1 ≤ 1

1− ϵ′

(
1 + δ2

ϵ

)
− 1

=
δ2

ϵ
+ ϵ′

1− ϵ′ ≤
1
ϵ′

2ϵ′ + 2δ
√
ϵ′

ϵ

2

≤ (δ′)2

ϵ′ .

As δ′ ≥
√
ϵ′, the lower bound on eigenvalues of ΣS′ is trivially satisfied. We now bound

the deviation in mean. Observe that the uniform distribution on S ′ can be obtained by
conditioning the uniform distribution on S on an event E, such that P(E) ≥ 1− ϵ′. Using
this observation in conjunction with Hölder’s inequality gives us that for any v, the shift in
mean is at most∣∣∣∣∣∣ 1

|S ′|
∑
i∈S′

v⊤xi −
1
|S|

∑
i∈S′

v⊤xi

∣∣∣∣∣∣ ≤ 2
√

1 + δ2

ϵ

√
ϵ′ ≤ 2

√
ϵ′ + 2δ

√
ϵ′

ϵ
≤ δ′. (A.12)

A.4.2 Deterministic Rounding of the Weight Function

The next lemma states that it suffices to find a distribution w ∈ ∆n,ϵ for stability.
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Lemma A.4.2 (Lemma 3.2.9). For ϵ ≤ 1
3 , let w ∈ ∆n,ϵ be such that for ϵ ≤ δ, we have

1. ∥µw − µ∥2 ≤ σδ.

2. ∥Σw − σ2I∥op ≤ σ2δ2/ϵ.

Then there exists a subset S1 ⊆ S such that

1. |S1| ≥ (1− 2ϵ)|S|.

2. S1 is (ϵ′, δ′) stable with respect to µ and σ2, where δ′ = O(δ +
√
ϵ+
√
ϵ′).

Proof. Without loss of generality, we will assume that σ2 = 1. We will use Claim A.4.1 to
prove this result by first showing that there exists a subset S ′ ⊆ [n] with bounded covariance
and good sample mean.

Without loss of generality, we will assume that ϵn is an integer and µ = 0. We will also
assume that 1

(1−ϵ)n ≥ w1 ≥ w2 ≥ · · · ≥ wn ≥ 0. For any k ∈ [n], we have that

1 =
∑
i

wi ≤
n− k

(1− ϵ)n + kwk,

which implies that

wk ≥
1
k

(1− ϵ)n− (n− k)
(1− ϵ)n = k − ϵn

(1− ϵ)nk .

Setting k = 2ϵn, we have that

wk ≥
2ϵn

2n(1− ϵ) = 1
2(1− ϵ)n. (A.13)

We now have a lower bound on wi for all i ≤ (1− 2ϵ)n. Now let S1 be the set of the n− k
points with the largest wi. In particular, for each i ∈ S1, wi ≥ 1

2(1−ϵ)n . We have that,

∑
i∈S1

1
|S1|

(x⊤
i v)2 =

∑
i∈S1

1
(1− 2ϵ)n(x⊤

i v)2

≤
∑
i∈S1

1
(1− 2ϵ)2wi(1− ϵ)(x⊤

i v)2 (Using Eq. (A.13))

≤ 2(1− ϵ)
(1− 2ϵ)

∑
i∈S

wi(x⊤
i v)2

≤ 9
(

1 + δ2

ϵ

)
. (A.14)
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Let the uniform distribution on S1 be u(1) and the uniform distribution on S be u. We now
calculate the total variation distance between w and u(1).

dTV(w, u(1)) ≤ dTV(w, u) + dTV(u, u(1)) ≤ ϵ+ 2ϵ = 3ϵ.

Therefore, there exist distributions p(1), p(2), p(3) such that

w = (1− 3ϵ)p(1) + 3ϵp(2), u(1) = (1− 3ϵ)p(1) + 3ϵp(3). (A.15)

This decomposition follows from an alternate characterization of total variation distance(see,
e.g., [Tsy09, Lemma 2.1]). The decomposition in (A.15) implies that for any unit vector v,
the following holds:

3ϵ
∑
i

p
(2)
i (x⊤

i v)2 ≤
∑
i

wi(x⊤
i v)2 ≤ 1 + δ2

ϵ
(A.16)

3ϵ
∑
i

p
(3)
i (x⊤

i v)2 ≤
∑
i

u
(1)
i (x⊤

i v)2 ≤ 9
(

1 + δ2

ϵ

)
. (A.17)

Let v be an arbitrary unit vector. Then using (A.15), we get the following:
∣∣∣∣∣
n∑
i=1

(1− 3ϵ)p(1)
i x⊤

i v

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
i=1

wix
⊤
i v

∣∣∣∣∣+
∣∣∣∣∣3ϵ∑

i

p
(2)
i x⊤

i v

∣∣∣∣∣
≤ δ + 3ϵ

√√√√ n∑
i=1

p
(2)
i (x⊤

i v)2 (Stability of w)

= δ +
√

3ϵ
√√√√3ϵ

n∑
i=1

p
(2)
i (x⊤

i v)2

≤ δ +
√

3ϵ

√√√√(1 + δ2

ϵ

)
(Using (A.16))

≤ δ +
√

3ϵ+
√

3δ ≤ 3δ + 2
√
ϵ.

We will now combine this result with (A.16) and (A.15). Starting with the decomposition
in (A.15), we have the following:

∣∣∣∣∣
n∑
i=1

u
(1)
i x⊤

i v

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
i=1

(1− 3ϵ)p(1)
i x⊤

i v

∣∣∣∣∣+
∣∣∣∣∣
n∑
i=1

3ϵp(3)
i x⊤

i v

∣∣∣∣∣
≤ 3δ + 2

√
ϵ+
√

3ϵ
√

3ϵ
∑
i

p
(3)
i (x⊤

i v)2

≤ 3δ + 2
√
ϵ+
√

27
√
ϵ+ δ2 (Using (A.17))
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≤ 10δ + 10
√
ϵ. (A.18)

Therefore using Equations (A.14) and (A.18), we have a set S1 that satisfies the con-
ditions in Claim A.4.1 with δ′′ = 10δ + 10

√
ϵ. Using Claim A.4.1, we get that S1 is (ϵ′, δ′)

stable.

A.5 Stability for Distributions with Bounded Central
Moments

Organization In this section, we provide the detailed arguments regarding the proof of
Theorem 3.1.8 that were omitted from the main text. We start with a simplified stability
condition in Section A.5.1. Section A.5.2 contains the argument for rounding a good
distribution w ∈ ∆n,ϵ to a subset. Section A.5.3 contains the arguments for controlling the
second moment matrix from above and below respectively. Sections A.5.3 and A.5.4 contain
the arguments for concentration of the second moment matrix and mean respectively.

A.5.1 Sufficient Conditions for Stability

We will prove the existence of a stable set with high probability using the following claim.
This is analogous to Claim A.4.1 in the bounded covariance setting, but we also need a
lower bound on the minimum eigenvalue of ΣS′ for all large subsets S ′.

Claim 3.4.1. Let 0 ≤ ϵ ≤ δ and ϵ ≤ 0.5. A set S is (ϵ, O(δ)) stable with respect to µ and σ2 = 1,
if it satisfies the following for all unit vectors v.

1. ∥µS − µ∥2 ≤ δ.

2. v⊤ΣSv ≤ 1 + δ2/ϵ.

3. For all subsets S ′ ⊆ S : |S ′| ≥ (1− ϵ)|S|, v⊤ΣS′v ≥ (1− δ2/ϵ).

Proof. Without loss of generality, we will assume that µ = 0. We first show the second
condition in the definition of stability. Let S ′ be any proper subset of S, such that |S ′| ≥
(1− ϵ)|S|. Note that the minimum eigenvalue of S ′ is lower-bounded by the assumption:

v⊤ΣS′v = 1
|S \ Sϵ|

∑
i∈S\Sϵ

(v⊤x)2 ≥ 1− δ2

ϵ
. (A.19)
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We now look at the largest eigenvalue of S ′:

v⊤ΣSv − 1 = 1
|S ′|

∑
i∈S′

(v⊤x)2 − 1 ≤ |S|
|S ′|

1
|S|

∑
i∈S

(v⊤x)2 − 1

≤ 1
1− ϵ

(
1 + δ2

ϵ

)
− 1 ≤ 1

1− ϵ

(
δ2

ϵ
+ ϵ

)
≤ 2δ2

ϵ
+ 2ϵ ≤ 4δ

2

ϵ
.

We now need to show that the mean of S ′ is also good. In order to do that, we first control
the deviation due to a small set S \ S ′.

1
|S|

∑
i∈S\S′

(v⊤xi)2 = 1
|S|

∑
i∈S

(v⊤xi)2 − 1
|S|

∑
i∈S′

(
v⊤xi

)2


≤
(

1 + δ2

ϵ

)
− |S

′|
|S|

(
1− δ2

ϵ

)

≤
(

1 + δ2

ϵ

)
− (1− ϵ)

(
1− δ2

ϵ

)
≤ 2δ2

ϵ
+ ϵ. (A.20)

We first break the deviation in mean into two terms, and control each individually:
∣∣∣∣∣∣ 1
|S ′|

∑
i∈S′

(v⊤xi)

∣∣∣∣∣∣ = |S|
|S ′|

∣∣∣∣∣∣ 1
|S|

∑
i∈S\Sϵ

(v⊤xi)

∣∣∣∣∣∣ ≤ |S||S ′|

∣∣∣∣∣ 1
|S|

∑
i∈S

(v⊤xi)
∣∣∣∣∣+ |S||S ′|

∣∣∣∣∣∣ 1
|S|

∑
i∈S\S′

(v⊤xi)

∣∣∣∣∣∣ .
We can upper bound the first term by ∥µS∥/(1− ϵ) ≤ δ/(1− ϵ). We bound the second term
using the Cauchy-Schwarz inequality and Eq. (A.20):

|S|
|S ′|

∣∣∣∣∣∣ 1
|S|

∑
i∈S\S′

(v⊤xi)

∣∣∣∣∣∣ ≤ |S \ S
′|

|S ′|
·

∣∣∣∣∣∣ 1
|S \ S ′|

∑
i∈S\S′

(v⊤xi)

∣∣∣∣∣∣
≤ |S \ S

′|
|S ′|

·
√√√√ 1
|S \ S ′|

∑
i∈S\S′

(v⊤xi)2

=

√
|S \ S ′||S|
|S ′|

·
√√√√ 1
|S|

∑
i∈S\S′

(v⊤xi)2 ≤
√
ϵ

1− ϵ

√
2δ2

ϵ
+ ϵ.

Overall, we get that

|v⊤µS′| ≤ 1
1− ϵ(δ +

√
2δ + ϵ) ≤ 5δ + 2ϵ ≤ 7δ.
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A.5.2 Randomized Rounding of Weight Function

In this section, we show how to recover a subset from a w ∈ ∆n,ϵ. Unlike the deterministic
rounding in Section A.4.2, we do a randomized rounding in Lemma A.5.1 to get a better
dependence on ϵ. For the second condition (δ2 = O(ϵ)) in Lemma A.5.1 to hold, it is
necessary that n = Ω(d). If n = O(d), it is not a problem because, in this regime, the
bounded covariance assumption already leads to optimal error.

Lemma A.5.1. Let k ≥ 4. Let w ∈ ∆n,ϵ, for ϵ ≤ 1
3 , be a distribution on the set of points S such that

1. ∥µw − µ∥2 ≤ δ.

2. ∥Σw∥op − 1 ≤ δ2

ϵ
≤ r1, for some r1 > 1.

3. Let C ≥ 4. For all subsets S ′: |S ′| ≥ (1− Cϵ)n and v ∈ Sd−1: v⊤ΣS′v ≥ 1− δ2/(Cϵ).

4. wi > 0 implies that ∥xi∥2 ≤ r2σk
√
dγ−1/k for some r2 ≥ 1.

Then, there exists a subset S1 ⊆ [n] such that

1. |S1| ≥ (1− 2ϵ)n.

2. S1 is (ϵ′, δ′) stable, where

ϵ′ = (C − 2)ϵ, δ′ = O
(
δ +

√
r1d log d

n
+ r2σkϵ

1
2 − 1

k

√
d log d
n

+ r2r1σkϵ
1− 1

k

)
. (A.21)

Proof. We will use Claim 3.4.1 to prove this result. Without loss of generality, let µ = 0.
Therefore, it suffices to find a subset such that both the mean and the largest eigenvalue
are controlled. Let Yi ∼ Bernoulli(wi(1− ϵ)n). We have that ∑n

i=1 EYi = (1− ϵ)n. Let S1 be
the (random) set:

S1 = {i : Yi = 1}. (A.22)

By a Chernoff bound, we have that for some constant c′ > 0,

P(|S1| ≥ (1− 2ϵ)n) ≤ exp(−c′nϵ). (A.23)

Let E be the event E = {|S1| ≥ (1− 2ϵ)n}. We now bound the mean of the set S1. Consider
the following random variable Z:

Z =
∑
i

(Yi − (1− ϵ)win)xi. (A.24)
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The random variable Z satisfies EZ = 0. Moreover, its covariance can be bounded using
the assumption as follows:

v⊤ΣZv =
n∑
i=1

wi(1− ϵ)n(1− wi(1− ϵ)n)(v⊤xi)2

≤ (1− ϵ)n
n∑
i=1

wi(x⊤
i v)2 ≤ (1− ϵ)n

(
1 + δ2

ϵ

)
⪯ 2r1n.

Therefore, with probability at least 0.8, we have that

∥Z∥2 ≤ 10
√
r1nd

=⇒ ∥
∑

Yixi∥2 ≤ (1− ϵ)n∥
∑
i

wiXi∥2 + 10
√
r1nd.

Let E2 be the event that E2 = {∥∑Yixi∥2 ≤ (1− ϵ)nσ + 10
√
r1nd}. This implies that on the

event E ∩ E1,

∥µS1∥2 ≤
1− ϵ
1− 2ϵδ + 10 c5

1− 2ϵ

√
d

n
≤ 2δ + 30

√
r1d

n
. (A.25)

We now focus our attention on upper bounding the eigenvalue. Define the symmet-
ric random matrix, Zi as Zi := Yixix

⊤
i − wi(1 − ϵ)nxix⊤

i . We have that EZi = 0 and
∥Zi∥op ≤ r2

2dσkϵ
1− 1

k almost surely. We now bound the matrix variance statistic (used in
Theorem A.2.2):

ν(Z) =
∥∥∥∥∥
n∑
i=1

wi(1− ϵ)n(1− wi(1− ϵ)n)∥xi∥2xix
⊤
i

∥∥∥∥∥
op

≤
∥∥∥∥∥
n∑
i=1

wi(1− ϵ)n
r2

2σ
2
kd

ϵ
2
k

xix
⊤
i

∥∥∥∥∥
op

≤ (1− ϵ)r
2
2σ

2
knd

ϵ
2
k

∥∥∥∥∥
n∑
i=1

wixix
⊤
i

∥∥∥∥∥
op

≤ (1− ϵ)r
2
2σ

2
knd

ϵ
2
k

∥∥∥Σw

∥∥∥
op
≤ 2r1r

2
2σ

2
knd

ϵ
2
k

.

By the Matrix-Chernoff concentration result (Theorem A.2.2), we get that with probability
at least 0.8, we have that

∥∥∥∥∥
n∑
i=1

Yixix
⊤
i − wi(1− ϵ)nxix⊤

i

∥∥∥∥∥
op

= O

√r1r2
2σ

2
knd log d
ϵ

2
k

+ r2
2σ

2
kd log d
ϵ

2
k

 . (A.26)
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Let E3 be the event above, which happens with probability at least 0.8. Under the event
E ∩ E3, we get that

v⊤ΣS1v ≤
1− ϵ
1− 2ϵwi(x

⊤
i v)2 + 1

1− 2ϵO
√r1r2

2σ
2
kd log d
nϵ

2
k

+ r2
2σ

2
kd log d
nϵ

2
k


≤ 1− ϵ

1− 2ϵ

(
1 + δ2

ϵ

)
+O

√r1r2
2σ

2
kd log d
nϵ

2
k

+ r2
2σ

2
kd log d
nϵ

2
k


≤ 1 + 1

ϵ
O

ϵ2 + δ2 +
√
d log d
n

r1r2σkϵ
1− 1

k + r2
2σ

2
kϵ

1− 2
k
d log d
n


≤ 1 + 1

ϵ

O
δ + r1r2σkϵ

1− 1
k +

√
d log d
n

+ r2σkϵ
1
2 − 1

k

√
d log d
n

2

. (A.27)

Let ϵ′ = (C − 2)ϵ. Note that if |S1| ≥ (1 − 2ϵ)|S|, then |S ′| ≥ (1 − ϵ′)|S1| implies that
|S ′| ≥ (1− Cϵ)|S|, which leads to a lower bound on the minimum eigenvalue. This follows
from the following elementary calculations:

|S ′|
|S|
≥ (1− 2ϵ) |S1|

|S|
≥ (1− 2ϵ)(1− (C − 2)ϵ) ≥ 1− Cϵ. (A.28)

Using Equations (A.23), (A.25) and (A.27), we get that there exists a subset S1 such
that for all v ∈ Sd−1 and δ′ = O(δ +

√
r1d log d/n+ r1r2σkϵ

1/2−1/k
√
d log d/n+ r1r2σkϵ

1− 1
k ):

1. |S1| ≥ (1− 2ϵ)n ≥ (1− ϵ′)n.

2. ∥µS1∥2 ≤ δ′.

3. v⊤ΣS1v ≤ 1 + δ′2

ϵ′
.

4. For all subsets S ′ ⊆ S1 : |S ′| ≥ (1− ϵ′)|S1|, v⊤ΣS′v ≥ 1− δ′2

ϵ′
.

We now invoke Claim 3.4.1 to conclude that S ′ is (ϵ′, 7δ′)-stable.

A.5.3 Upper Bound on the Second Moment Matrix

Lemma A.5.2. Consider the conditions in Lemma 3.4.3. Then, with probability 1− τ , R′/n ≤ δ2/ϵ

, where δ = O(
√
d log d/n+ σkϵ

1− 1
k + σ4

√
log(1/τ)/n).
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Proof. (Proof of Lemma A.5.2) We first calculate the wimpy variance required for Theo-
rem A.2.1,

σ2 = sup
M∈M

n∑
i=1

Var(f(x⊤
i Mxi)) ≤ sup

M∈M

n∑
i=1

E f(x⊤
i Mxi)2

≤ n sup
M∈M

E(x⊤
i Mxi)4 ≤ nσ4

4.

We use symmetrization, contraction, and matrix concentration (Theorem A.2.2) to bound
ER′ as follows:

ER′ = E sup
M∈M

n∑
i=1

f(x⊤
i Mxi)− E f(x⊤

i Mxi) ≤ 2E sup
M∈M

n∑
i=1

ϵif(x⊤
i Mxi)

≤ 2E sup
M∈M

n∑
i=1

ϵix
⊤
i Mxi = 2E

∥∥∥∥∥
n∑
i=1

ϵixix
⊤
i

∥∥∥∥∥
op

= O

√σ2
knd log(d)

ϵ
2
k

+ σ2
kd log d
ϵ

2
k

 ,
where we use Theorem A.2.2, with ν = O(σ2

kndϵ
− 2

k ) and L = O(σ2
kdϵ

− 2
k ).

Note that Qk = O(σkϵ− 1
k + (1/ϵ)

√
d/n. As R′ is bounded by Q2

k, we can apply Theo-
rem A.2.1 to get that with probability at least 1− τ , R′/n is bounded as follows:

R′

n
= O

√σ2
kd log d
nϵ

2
k

+ σ2
kd log d
nϵ

2
k

+ σ2
4

√
log( 1

τ
)

n
+ σ2

k

ϵ
2
k

log( 1
τ
)

n
+ 1
ϵ2
d

n

log( 1
τ
)

n


= 1
ϵ
O

√d log d
n

σkϵ
1− 1

k + d log d
n

σ2
kϵ

1− 2
k + σ4ϵσ4

√
log( 1

τ
)

n
+ σ2

kϵϵ
1− 2

k + d

n


( Using log( 1

τ
)

n
= O(ϵ))

= 1
ϵ
O

√d log d
n

+ σkϵ
1− 1

k + σkϵ
1
2 − 1

k

√
d log d
n

+ σ4ϵ+ σ4

√
log( 1

τ
)

n

2

= 1
ϵ
O

√d log d
n

+ σkϵ
1− 1

k + σ4

√
log( 1

τ
)

n

2

(Using σ4ϵ ≤ σkϵ
1− 1

k and σkϵ
1
2 − 1

k = O(1))

≤ δ2

ϵ
,

where we use the parameter regime stated in Lemma 3.4.3.
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A.5.4 Controlling the Mean

Lemma A.5.3. Consider the setting in Lemma 3.4.5. Then, with probability, 1− τ − exp(−nϵ),

R′

n
= O

(√
d

n
+
√

log(1/τ)
n

+ σkϵ
1− 1

k

)
.

Proof. We first calculate the wimpy variance required for Theorem A.2.1,

σ2 = sup
v∈Sd−1

n∑
i=1

Var(g(x⊤
i v)) ≤ sup

v∈Sd−1

n∑
i=1

E g(v⊤xi)2 ≤ sup
v∈Sd−1

nE(v⊤xi)2 ≤ n.

We use symmetrization, contraction of Rademacher averages to bound ER′.

ER′ = E sup
v∈Sd−1

n∑
i=1

g(v⊤xi)− E g(v⊤xi)

≤ 2E sup
v∈Sd−1

n∑
i=1

ϵig(v⊤xi)

≤ 2E sup
v∈Sd−1

n∑
i=1

ϵiv
⊤xi = 2E

∥∥∥∥∥
n∑
i=1

ϵixi

∥∥∥∥∥
2
≤ 2

√
d

n
.

By applying Theorem A.2.1, we get that with probability at least 1− τ ,

R′

n
= O

ER′

n
+
√

log(1/τ)
n

+Qk
log(1/τ)

n


= O

√d

n
+
√

log(1/τ)
n

+ σkϵ
− 1

k
log( 1

τ
)

n
+ 1
ϵ

√
d

n

log(1/τ)
n


= O

√d

n
+
√

log(1/τ)
n

+ σkϵ
1− 1

k

 ,
where the last inequality uses the assumption that log(1/τ)

n
= O(ϵ).
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b appendix to Chapter 4

Additional Notation For a vector x ∈ Rd and H ⊂ [d], we denote vH to denote the vector
that is equal to v on i ∈ H , and zero otherwise. For a real-valued random variable X and
m ∈ N, we use ∥X∥Lm to denote (E |X|m)1/m.

B.1 Miscellaneous Lemmas and Facts

B.1.1 Finding a Stable Subset from a Stable Weighted Subset

For a set S on n points, we define ∆n,ϵ as the set of weights w ∈ Rn such that wi ∈
[0, 1/((1 − ϵ)n] for all i ∈ [n] and ∑

iwi = 1. For a fixed vector µ ∈ Rd that will be clear
from context, a set of n points S = {x1, . . . , xn}, and weights w ∈ ∆n,ϵ over S, we use Σw to
denote ∑iwi(xi − µ)(xi − µ)⊤.

The goal of this section is to show Proposition B.1.1, which states that if we have a weight
w over S such that Σw (with respect to some vector µ) has bounded Xk norm proportional
to σ2 for some σ > 0, then there must exist some large subset S ′ ⊆ S that is stable with
respect to µ and σ.

Proposition B.1.1. Let S be a set of n points in Rd. Let ∆n,ϵ be the set of weights defined above,
and define the notation Σw = ∑

xi∈S wi(xi − µ)(xi − µ)⊤ for some given vector µ ∈ Rd. Suppose
that there exists a w ∈ ∆n,ϵ such that ∥Σw∥Xk

≤ Bσ2 for some vector µ. Then there exists a subset
S ′ ⊆ S such that (i)|S ′| ≥ (1− 2ϵ)n and (ii) S ′ is (ϵ, δ, k)-stable with respect to µ and σ, where
δ = O(

√
B + 1).

Observe that ∥Σw∥Xk
≤ Bσ2 implies ∥Σw−σ2I∥Xk

≤ (B+1)σ2 by the triangle inequality.
In order to show Proposition B.1.1, we show Lemma B.1.2, which is a weakening of Proposi-
tion B.1.1 where we additionally assume that µw = ∑

iwixi is close to µ, where µ is the vector
we use to define Σw as well as the vector that we want to find a large sample subset S ′ to be
stable with respect to. To use Lemma B.1.2, we additionally show Proposition B.1.4, which
states that ∥Σw∥Xk

≤ Bσ2 is enough to imply that µw is close to µ. We combine Lemma B.1.2
and Proposition B.1.4 to prove Proposition B.1.1 at the end of Appendix B.1.1.

Lemma B.1.2. Suppose, for some ϵ ≤ 1
3 and for some δ ≥

√
ϵ, there exist a w ∈ ∆n,ϵ over a set of n

samples S = {x1, . . . , xn}, a µ ∈ Rd and a σ > 0 such that

• ∥µw − µ∥2,k ≤ δσ,

• ∥∑i∈[n] wi(xi − µ)(xi − µ)⊤ − σ2I∥Xk
≤ σ2 δ2

ϵ
.
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Then, there exists a subset S ′ ⊆ S of samples such that

• |S ′| ≥ (1− 2ϵ)|S|,

• S ′ is (ϵ, δ′, k)-stable with respect to µ and σ, where δ′ = O(δ +
√
ϵ).

Proof. Without loss of generality, we will only handle the σ = 1 case to simplify notation.
The main step is to show the existence of a large subset S ′ whose mean is within

10δ + 10
√
ϵ of µ and whose variance is at most 9(1 + δ2/ϵ). In fact, we can simply choose S ′

to be the subset whose weights wi are the largest.
Without loss of generality, assume µ = 0 and that ϵn is an integer. We also order the

samples in decreasing order of weight in w, namely, 1/((1− ϵ)n) ≥ w1 ≥ w2 ≥ . . . ≥ wn.
First, we will lower bound each wi. We have that for each k ∈ [n],

1 =
∑
i

wi ≤
k

(1− ϵ)n + (n− k)wk,

which upon rearranging implies that

wk ≥
(1− ϵ)n− k

(1− ϵ)n(n− k) .

In particular, for k = (1− 2ϵ)n, we have

w(1−2ϵ)n ≥
1

2(1− ϵ)n.

Letting S ′ to be the (1− 2ϵ)n points with the largest weight, we have that for all i ∈ S ′,
wi ≥ 1

2(1−ϵ)n . We will use this to now bound the Xk norm of ΣS′ = 1
|S′|

∑
i∈S′ xix

⊤
i . Consider

an arbitrary M ∈ Xk, we have

∑
i∈S′

1
|S ′|
⟨xix⊤

i ,M⟩ =
∑
i∈S′

1
(1− 2ϵ)n⟨xix

⊤
i ,M⟩

≤
∑
i∈S′

2(1− ϵ)
1− 2ϵ wi⟨xix

⊤
i ,M⟩

≤
∑
i∈S

2(1− ϵ)
1− 2ϵ wi⟨xix

⊤
i ,M⟩

≤ 9
(

1 + δ2

ϵ

)
.

Since δ ≥
√
ϵ, this in turn implies the (rather loose in constants) inequality that ∥ΣS′ −

I∥Xk
≤ 20(δ2/ϵ).
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Next, we show that the mean µS′ of S ′ is 10δ + 10
√
ϵ-close to µ = 0. This will essentially

follow from 1) the uniform distribution US′ over S ′ is close in total variation distance to
w and 2) the contribution of the tail to the mean of a bounded-covariance distribution is
small.

For 1), using the notation that US is the uniform distribution over S (analogous to the
S ′ notation just before), it is immediate that by the triangle inequality,

dTV(w,US′) ≤ dTV(w,US) + dTV(US, US′) ≤ ϵ+ 2ϵ = 3ϵ.

A standard consequence is that there exists distributions p(1), p(2) and p(3) such that

w = (1− 3ϵ)p(1) + 3ϵp(2) and US′ = (1− 3ϵ)p(1) + 3ϵp(3).

Intuitively, treating p(2) and p(3) as the “tails”, we will bound their contributions to the
mean under the boundedness of the covariance of w and US′ .

Take any k-sparse unit vector direction v ∈ Uk, we can bound the following variances in
the direction of v:

3ϵ
∑
i

p
(2)
i ⟨xi, v⟩2 ≤

∑
i

wi⟨xi, v⟩2 ≤ 1 + δ2

ϵ
,

3ϵ
∑
i

p
(3)
i ⟨xi, v⟩2 ≤

∑
i

US′,i⟨xi, v⟩2 ≤ 9
(

1 + δ2

ϵ

)
,

where we used the fact that vv⊤ is in Xk for a k-sparse unit vector v.
By Jensen’s inequality, we can then conclude that

∣∣∣∣∣3ϵ∑
i

p
(2)
i ⟨xi, v⟩

∣∣∣∣∣ ≤ √3ϵ
√

3ϵ
∑
i

p
(2)
i ⟨xi, v⟩2 ≤

√
3ϵ
√

1 + δ2

ϵ
≤
√

3(
√
ϵ+ δ),

∣∣∣∣∣3ϵ∑
i

p
(3)
i ⟨xi, v⟩

∣∣∣∣∣ ≤ √3ϵ
√

3ϵ
∑
i

p
(3)
i ⟨xi, v⟩2 ≤ 3

√
3ϵ
√

1 + δ2

ϵ
≤ 3
√

3(
√
ϵ+ δ).

Finally, since US′ = w − 3ϵp(2) + 3ϵp(3), by the triangle inequality, we have

|⟨µS′ − µ, v⟩| =
∣∣∣∣∣∑
i

US′,i⟨xi, v⟩
∣∣∣∣∣

≤
∣∣∣∣∣∑
i

wi⟨xi, v⟩
∣∣∣∣∣+

∣∣∣∣∣3ϵ∑
i

p
(2)
i ⟨xi, v⟩

∣∣∣∣∣+
∣∣∣∣∣3ϵ∑

i

p
(3)
i ⟨xi, v⟩

∣∣∣∣∣
≤ δ +

√
3(
√
ϵ+ δ) + 3

√
3(
√
ϵ+ δ)

≤ 10δ + 10
√
ϵ,
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where the second inequality uses the above bounds as well as the assumption that ∥µw −
µ∥2,k ≤ δ.

Now that we have shown that µS′ is close to µ in ℓ2,k norm and ΣS′ is small in theXk norm,
we will use the following lemma (Lemma B.1.3) to show that the set S ′ is (ϵ, O(δ+

√
ϵ)-stable

with respect to µ.

Lemma B.1.3 (Bounded Mean and Covariance implies O(
√
ϵ) stability). Let µ ∈ Rd and let

S ′ be a set of samples such that ∥µS′ − µ∥2,k ≤ δ and
∥∥∥ 1

|S′|
∑
x∈S′(x− µ)(x− µ)⊤ − I

∥∥∥
Xk

≤ δ2

ϵ
for

some 0 ≤ ϵ ≤ δ and ϵ ≤ 0.5. Then S ′ is (ϵ, δ′, k)-stable with respect to µ where δ′ = O(δ +
√
ϵ)

and δ′ ≥
√
ϵ.

Proof. Consider an arbitrary large subset S ′′ ⊆ S ′ where |S ′′| ≥ (1− ϵ)|S ′|. Without loss of
generality, take µ = 0. Then, for an arbitrary M ∈ Xk,

⟨ΣS′′ − I,M⟩ = 1
S ′′

∑
i∈S′′
⟨xix⊤

i ,M⟩ − 1,

which is trivially at least −1 ≥ −(δ′2)/ϵ for δ′ ≥
√
ϵ. As for the upper bound, we have

⟨Σ− I,M⟩ = 1
S ′′

∑
i∈S′′
⟨xix⊤

i ,M⟩ − 1

≤

 1
S ′′

∑
i∈S′
⟨xix⊤

i ,M⟩

− 1

≤ 1
1− ϵ

(
1 + δ2

ϵ

)
− 1

=
δ2

ϵ
+ ϵ

1− ϵ
≤ 2
ϵ
(δ2 + ϵ2)

≤ δ′2

ϵ
,

for some δ′ = Θ(δ +
√
ϵ).

We now bound the error in the mean of S ′′ in ℓ2,k norm. First, observe that, for an
arbitrary k-sparse unit vector v,

∣∣∣∣∣∣ 1
|S ′|

∑
i∈S′\S′′

⟨xi, v⟩

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
|S ′|

∑
i∈S′

I[xi ∈ S ′ \ S ′′]⟨xi, v⟩

∣∣∣∣∣∣
≤ 1
|S ′|

∑
i∈S′
|I[xi ∈ S ′ \ S ′′]⟨xi, v⟩|
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≤
√
ϵ

√√√√ 1
|S ′|

∑
i∈S′
⟨xi, v⟩2

≤
√
ϵ

√
1 + δ2

ϵ

=
√
ϵ+ δ2 ,

where the second inequality is an application of H’́older’s inequality, and the third inequal-
ity uses the fact that for a unit k-sparse vector v, vv⊤ is in Xk.

Thus, again for an arbitrary k-sparse unit vector v,

|⟨µS′′ , v⟩| =

∣∣∣∣∣∣ 1
|S ′′|

∑
i∈S′′
⟨xi, v⟩

∣∣∣∣∣∣
≤ 1

1− ϵ

∣∣∣∣∣∣ 1
|S ′|

∑
i∈S′′
⟨xi, v⟩

∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣ 1
|S ′|

∑
i∈S′
⟨xi, v⟩

∣∣∣∣∣∣+
∣∣∣∣∣∣ 1
|S ′|

∑
i∈S′\S′′

⟨xi, v⟩

∣∣∣∣∣∣


≤ 2(δ +
√
ϵ+ δ2) = O(δ +

√
ϵ) = δ′.

Proposition B.1.4 (Bounded Covariance and Stability). Let µ ∈ Rd and let S be a set of n
samples. Let w ∈ ∆n,ϵ over the set of samples S such that ∥∑iwi(xi − µ)(xi − µ)⊤∥χk

≤ r for
some r > 0. Then ∥µw − µ∥2,k ≤

√
r.

Proof. For every k-sparse unit vector v, vv⊤ is in Xk, and thus for every sparse unit vector v,
we have that ∑iwi⟨xi − µ, v⟩2 ≤ r. Applying Cauchy-Schwarz inequality, we get that for
any sparse unit vector v, it follows that ∑iwi⟨xi − µ, v⟩ ≤

√∑
iwi⟨xi − µ, v⟩2 ≤

√
r.

With Proposition B.1.4 and Lemma B.1.2, we can prove Proposition B.1.1.

Proof of Proposition B.1.1. Without loss of generality, we will assume that σ = 1. By Propo-
sition B.1.4, we have that ∥µw − µ∥2,k ≤

√
B. We thus have a weighting w ∈ ∆n,ϵ,

where ∥µw − µ∥2,k ≤ δ0 and ∥Σw − I∥Xk
≤ δ2

0/ϵ for δ0 =
√
B + 1, where we use trian-

gle inequality on the ∥ · ∥Xk
norm. By Lemma B.1.2, we know that there exists a set

S ′ such that |S ′| ≥ (1 − 2ϵ)n and S ′ is (ϵ, δ, k)-stable with respect to µ and σ, where
δ = O(δ0 +

√
ϵ) = O(

√
ϵ+
√
B + 1) = O(

√
B + 1).
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B.1.2 Median-of-Means Pre-Processing

This section shows Fact 4.2.2, which states that the median-of-means pre-processing tech-
nique allows us to reduce to the constant-corruption case.

Fact 4.2.2 (Median-of-Means Pre-Processing). Suppose there is an efficient algorithm such that,
on input σ ∈ R+ and a 0.01-corrupted set of n≫ k2 log d+ log(1/τ) samples from a distribution
D with mean µ and covariance Σ with ∥Σ∥Xk

≤ σ2 and EX∼D[(Xj − µj)4] = O(σ4) for each
coordinate j ∈ [d], returns µ̂ such that ∥µ̂− µ∥2,k ≤ O(σ) with probability at least 1− τ .

Then, there is an efficient algorithm such that, on input ϵ ∈ (0, 0.01] and an ϵ-corrupted set of
n≫ (k2 log d+ log(1/τ))/ϵ samples from a distribution with mean µ and covariance Σ, satisfying
(i) ∥Σ∥Xk

≤ 1 and (ii) EX∼D[(Xj − µj)4] = O(1) for every coordinate j ∈ [d], returns a mean
estimate µ̂ such that ∥µ̂− µ∥2,k ≤ O(

√
ϵ) with probability at least 1− τ .

Proof. The new algorithm simply performs median-of-means preprocessing as defined in
Section 4.2 before the fact statement, yielding g new samples that are fed into the algorithm
that works with constant corruption. The uncorrupted new samples, namely the ones that
are the sample mean of groups containing no originally corrupted samples, are distributed
i.i.d. according to the distribution D′ which has mean µ, and covariance Σ′ = (g/n)Σ, with
axis-wise fourth moment EY∼D′ [(Yj − µj)4] being bounded by C(g2/n2)EX∼D[(Xj − µj)4]
for every j ∈ [d] for some constant C > 0, obtained by the following fact:

Fact B.1.5. (Marcinkiewicz-Zygmund inequality) Recall the notation ∥X∥Ls for a centered random
variableX , defined asE[|X|s]1/s. LetW1, . . . ,Wm,W be identical and independent centered random
variables on R with a finite ∥W∥Ls norm for s ≥ 2. Then,

∥∥∥∥∥ 1
m

m∑
i=1

Wi

∥∥∥∥∥
Ls

≤ 3
√
s√
m
∥W∥Ls .

First note that we give g samples to the original algorithm, and g = Ω(ϵn) = Ω(k2 log d+
log(1/τ)) by definition. Next, we need to check that the normalized axis-wise 4th moment of
D′ is O(1) times the (bound on the) Xk-norm of the covariance matrix, that is, for all j ∈ [d],
it holds that (EX∼D′ [(Xj − µj)4])1/4 ≤ O(σ4) and ∥Σ′∥Xk

= O(σ2). By the calculations at the
end of the previous paragraph and the assumptions in the statement, we note that this is
true for σ = O(

√
g/n).

Lastly, we check that, by the scale-invariance of the original algorithm that works
with constant corruption, the estimation error of the final algorithm is upper bounded by
O(σ∥Σ∥Xk

) = O(
√

(g/n)∥Σ∥Xk
) = O(

√
g/n) = O(

√
ϵ) as desired.
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B.1.3 Basic Properties of Xk-Norm

The following is a straightforward bound on the Xk-norm of a matrix based on entry-wise
bounds.

Lemma 4.6.2. Let A ∈ Rd×d be a symmetric matrix such that |Ai,i| ≤ η1 for each i ∈ [d], and
|Ai,j| ≤ η2 for each i ̸= j ∈ [d]× [d]. Then ∥A∥Xk

≤ η1 + kη2.

Proof. Let A = B + C, where B is a diagonal matrix and C is diagonal-free. Then we have
the following using triangle inequality: ∥A∥Xk

≤ ∥B∥Xk
+ ∥C∥Xk

. Thus it suffices to bound
each of these terms by 1.

∥B∥Xk
≤ sup

M :
∑d

i=1 |Mi,i|≤1
⟨B,M⟩ = ∥B∥∞ ≤ η1,

where we use that B is a diagonal matrix with entry at most η1.

∥C∥Xk
≤ sup

M :∥M∥1≤k
⟨C,M⟩ = sup

M :∥M∥1≤k
∥C∥∞∥M∥1 ≤ kη2.

B.2 Concentration and Truncation

B.2.1 Truncation Can Increase Spectral Norm of Covariance

We show how truncation can increase the spectral norm of covariance from 1 to ω(1).
Consider the distribution which, with probability 1/(2k), returns a vector where each

coordinate is independent −
√
k with probability 2/3 and 2

√
k with probability 1/3. Other-

wise, with probability 1− 1/(2
√
k), the distribution returns the origin. The mean of the

distribution is the origin, and the covariance is I .
Now consider the truncation h0,

√
k, which truncates at distance

√
k from the ori-

gin. Let Y be the resulting random variable. The mean of Y , µ′, is thus equal to
(1/2k)(−

√
k/3, . . . ,−

√
k/3) = −1/(6

√
k)v, where v is the all ones vector. The norm

of µ′ is Θ(
√
d/k). Since the distribution returns the origin with constant probability

(asymptotically tending to 1), the variance of Y along the direction of µ′, which is v/
√
d, is

at least Ω(d/k) = ω(1).
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B.2.2 Preserving Moments under Truncation

Lemma 4.3.2 shows that truncation (mostly) preserves the mean, covariance and axis-wise
fourth moments of a distribution under axis-wise fourth moment assumptions on the input
distribution.

Lemma 4.3.2 (Truncation in ℓ∞). LetP be a distribution overRd with meanµP and covariance ΣP ,
with ∥Σ∥Xk

≤ σ2 for some σ2 > 0. LetX ∼ P and assume that for all j ∈ [d], E[(X−µP )4
j ] ≤ σ4ν4

for some ν ≥ 1. Let b ∈ Rd be such that ∥b − µ∥∞ ≤ a/2 and a := 2σ
√
k/ϵ for some ϵ ∈ (0, 1).

Define Q to be the distribution of Y := ha,b(X). Let the mean and covariance of Q be µQ and ΣQ

respectively. Then the following hold:

(1) ∥µP − µQ∥∞ ≤ σ
√
ϵ/k

(2) ∥µP − µQ∥2,k ≤ σ
√
ϵ

(3) ∥ΣP − ΣQ∥Xk
≤ 3σ2ϵν4

(4) For all i ∈ [d], E[(Y − µQ)4
i ] ≤ 8ν4σ4

(5) ∥Y − µQ∥∞ ≤ 2a = 4σ
√
k/ϵ almost surely.

Proof. Let Y := ha,b(X) and denote µ := µP . Fix an i ∈ [d]. Since |µi − bi| ≤ a/2 and we
truncate at radius a, we have the following:

|Yi − µi| ≤ |Xi − µi|, and |Xi − Yi| ≤ |Xi − µi|. (B.1)

Let Ei be the event that Yi ̸= Xi. We get the following by Markov’s inequality and moment
bounds:

P(Ei) = P(|Xi − bi| > a) ≤ P(|Xi − µi| ≥ a/2) ≤ min
(

4σ
2

a2 , 16σ
4ν4

a4

)
= min

(
ϵ

k
,
ϵ2ν4

k2

)
.

(B.2)

1. We can verify the following relation using Equation (B.1):

|Yi −Xi| ≤ I
Ei

· (|Yi −Xi|) ≤ I
Ei

· (|Xi − µi|) . (B.3)

Applying Cauchy-Schwarz on the above inequality gives the desired conclusion:

|E[Yi]− µi| = |E[Yi −Xi]| ≤ E
[
I
E
· (|Xi − µi|)

]
≤
√
P(E)

√
E [|Xi − µi|2] ≤ σ

√
ϵ

k
,
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where we use that variance of Xi is at most σ2 and use Equation (B.2).

2. This follows directly from above.

3. By Lemma 4.6.2, it suffices to show that ∥ΣQ − ΣP∥∞ ≤ 3σ2ϵν4/k. Using triangle
inequality, we obtain the following:

∥ΣP − ΣQ∥∞ =
∥∥∥∥E[(X − µP )(X − µP )⊤]− E[(Y − µP )(Y − µP )⊤]

+ (µQ − µP )(µQ − µP )⊤
∥∥∥∥

∞

≤
∥∥∥∥E[(X − µP )(X − µP )⊤]− E[(Y − µP )(Y − µP )⊤]

∥∥∥∥
∞

+
∥∥∥∥(µQ − µP )(µQ − µP )⊤

∥∥∥∥
∞
.

By the first part above, we have that ∥(µQ − µP )(µQ − µP )⊤∥∞ ≤ σ2ϵ/k ≤ σ2ν4ϵ/k,
where we use that ν ≥ 1. We will thus focus on the first term. Without loss of
generality, we will assume that µP = 0 for the remainder of this proof. Thus for any
i, j ∈ [d], we thus need to upper bound E[|XiXj − YiYj|].

E[|XiXj − YiYj|] ≤ E[|Xi∥Xj − Yj|] + E[|Yj∥Xi − Yi|]

≤ E[|Xi∥Xj| · IEj

] + E[|Xi∥Xj| · IEi

] (Using Equation (B.3))

≤
√
E[|XiXj|2]

(√
P(Ei) +

√
P(Ej)

)
≤ (E[X4

i ])1/4(E[X4
j ])1/4

(√
P(Ei) +

√
P(Ej)

)
= σ2ν2

(
2ϵν

2

k

)

= 2σ2ν4ϵ

k
.

Combining the above with Lemma 4.6.2, we get that the ∥ΣP − ΣQ∥Xk
≤ 3σ2ϵν4.

4. Fix an i ∈ [d]. We use the triangle inequality and Equation (B.3) to get the following:

E[(Y − µQ)4
i ] ≤ 4(E[(Y − µP )4

i ]) + 4∥µP − µQ∥4
∞ ≤ 4σ4ν4 + 4σ4ϵ2/k2 ≤ 8σ4ν4,

where the last inequality uses that ν ≥ 1 and ϵ ≤ 1.

5. This follows by definition of the random variable Y , the function ha,b, and the param-
eter a.
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B.2.3 Standard Concentration Tools

Fact B.2.1 (VC inequality). Let F be a family of boolean functions over X with VC dimension
r and let S = {x1, . . . , xn} be a set of n i.i.d. data points from a distribution P over X . If
n≫ c(r + log(1/τ))/γ2, then with probability 1− τ , for all f ∈ F , we have that

∣∣∣∣∣
n∑
i=1

f(xi)
n
− E

P
[f(x)]

∣∣∣∣∣ ≤ γ.

Lemma B.2.2 (Uniform concentration over Ak,P ). Let S be a set of n i.i.d. data points from a
distribution P , and let Ak,P be as defined in Equation (4.4). There exists a constant c > 0 such
that if n ≥ c(k2 log d+ log(1/τ))/(q2), then Equation (4.5) holds with probability at least 1− τ
over the set S of n i.i.d. points from distribution P .

Proof. Let Q be the distribution of y := xx⊤. Let F := {Iy·A>s1 : A ∈ Ak}. Suppose for now
that VC dimension ofF is less thanCk2 log(d). Then the standard VC inequality (Fact B.2.1)
implies that if n ≥ c(k2 log d + log(1/τ))/(q2), then Equation (4.5) holds because under
y ∼ Q, P(y · A > s1) ≤ q for all A ∈ Ak,P . Thus it remains to show an upper bound on the
VC dimension of F . Since F corresponds to a family of linear functions that are k2-sparse
in d2 dimensional space, [AV19, Theorem 6] implies that the VC dimension is at most
4k2 log(3d). This completes the proof.

B.3 Choice of Numerical Constants
This section shows how to pick the numerical constants q, s1, s2, s3, VZ and B. In the proof
of Theorem 4.5.1, these constants need to satisfy the following constraints:

1. s3 ≥ 2.

2. q is at least a small constant since the sample complexity is inversely proportional to
1/q2.

3. See (4.8):

1
s2

+ s2

s2
3
≤ 10−6.
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4. See (4.10):

σ2

s1
+ 4
s3

+ s2 × ν4

s3 × s2
1
≤ 10−6 × q.

5. See (4.12): B ≥ s3 × s1 + 10
√
VZ .

6. See (4.13): 0.57(σ2×r2×s2)√
VZ

≤ 0.1.

7. Paley-Zygmund: 0.004 ≥ 4× q.

Therefore, we pick the constants as follows:

1. ν, σ and r are the numbers we get from the ℓ∞ truncation, and thus there is nothing
to choose here.

2. q = 0.001.

3. s2 = 107.

4. s3 = 1010.

5. Solve for s1 in terms of above in Constraint 4. It suffices to take s1 = max(σ2, ν2)×1010.

6. Solve for
√
VZ using Constraint 6. It suffices to take VZ = 1016σ4r4.

7. Solve for B using Constraint 5. It suffices to take B = max(σ2, σ2r2, ν2)× 1020.
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c appendix to Chapter 5

C.1 List of Algorithms

C.1.1 Iterative Filtering Algorithm

A recent line of work in the robust mean estimation literature has led to various algorithms
that succeed when stability holds (see Diakonikolas and Kane [DK19] for a recent survey).
We choose to work with the iterative filtering algorithm with independent removal [DK19]:

Theorem C.1.1. (Diakonikolas and Kane [DK19]) Let ϵ < 1/2, and suppose S ⊆ Rp is a multiset
such that there exists a subset S ′ ⊆ S such that (i) |S ′| ≥ (1− ϵ)|S| and (ii) S ′ is (Cϵ, δ)-stable
with respect to µ and σ2 for a large enough constant C > 1. Let T be an ϵ-corrupted version of S.
Then there exists a computationally efficient algorithm that, given T and ϵ as inputs, with probability
at least 1−O(exp(−Ω(nϵ))), outputs a multiset T ′ ⊆ T such that (i) |T ′| ≥ (1− c1ϵ)|T | and (ii)
T ′ is (c2Cϵ, c3δ)-stable with respect to µ and σ2.

Remark C.1.2. Note that by the definition of stability, the empirical mean of an (ϵ, δ)-stable set
lies within σδ of µ. Thus, Theorem C.1.1 provides a high-probability error bound on the empirical
mean of the filtered data points, when the original data set is an ϵ-corrupted version of a data set
containing a large stable subset.

Stability-based algorithms use the fact that if the empirical covariance matrix has a
small spectral norm, the empirical mean is a good estimate of µ. The algorithm mentioned
in Theorem C.1.1 uses this insight to obtain a subset of cardinality (1−O(ϵ))n such that
the resulting empirical covariance matrix has a small spectral norm. At a high level, the
algorithm iteratively uses the projection of the points along the leading eigenvector of the
empirical covariance matrix (of the remaining points) to define a distribution over the
(remaining) points such that the probability mass over the outliers is greater than the mass
over the inliers. This distribution is then used to remove points stochastically, so that at each
iteration, the algorithm is more likely to remove outliers than inliers. Since the number of
outliers is at most ϵn, it does not remove too many inliers. Whereas prior work has focused
on using the filtering algorithm mentioned in Theorem C.1.1 as a subroutine to find an
estimate µ̂ for µ (or, more generally, to robustly estimate the gradient of a function), we
emphasize that our motivation in applying the filtering algorithm is to identify a subset T ′

that satisfies weak stability—indeed, mean estimation is unnecessary because we already
know the covariate distribution is centered around 0.
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The probability of success of our preprocessing step will depend on the probability
of success of Theorem C.1.1 applied to i.i.d. data from a distribution satisfying Assump-
tion 5.2.1. We will use the following recent result from Diakonikolas et al. [DKP20], which
provides a useful guarantee for when the condition of Theorem C.1.1 is satisfied with high
probability:

Theorem C.1.3. (Diakonikolas et al. [DKP20]) Let S be a set of n i.i.d. points from a distribution
inRp with mean µ and covariance I . Suppose the distribution satisfies (k, 2)-hypercontractivity with
parameter σk, for some k ≥ 4. Suppose ϵ′ := C

(
ϵ+ log(1/τ)

n

)
= O(1), for a large enough constantC.

Then with probability at least 1−τ , there exists a subset S ′ ⊆ S such that |S ′| ≥ (1−ϵ′)|S| and S ′ is
(C1ϵ

′, δ)-stable, where C1 > 2 is any large constant and δ = O
(√

p log p
n

+ σkϵ
1− 1

k + σ4

√
log(1/τ)

n

)
,

with prefactor depending on C1.

Combining the two theorems above, we see that with probability 1− τ , we can identify
a large subset S ′ ⊆ S, in a computationally efficient manner, such that S ′ is (O(ϵ), δ)-stable
for an appropriate choice of ϵ and δ as specified by Theorem C.1.3. This rather technical
conclusion is the starting point of our work.

C.1.2 Additional Algorithms

Algorithm 11 Huber Regression Asymmetric Noise

1: function Huber_Regression_with_Filtering((xi, yi)i∈[2n], γ, ϵ
′)

2: for i← 1 to n do
3: (x′

i, y
′
i)←

(
xi−xn+i√

2 , yi−yn+i√
2

)
4: end for
5: S1 ← FilteredCovariates((x′

i)i∈[n], ϵ
′)

6: β̂ ← HuberRegression((x′
i, y

′
i)i∈S1 , γ)

7: return β̂
8: end function

C.2 Notation and Definitions
Here, we list some notation and basic definitions used in the paper. For a real-valued
random variable z, let ∥z∥ψ2 denote the sub-Gaussian norm of z. We use [n] as a shorthand
for {1, . . . , n}. For a vector b ∈ Rn and m ∈ [n], we say that b is m-sparse if at most m entries
of b are nonzero, and we also write ∥b∥0 = m. For 1 ≤ i ≤ n, we write |b|(i) to denote the
ith smallest component of b according to magnitude. Let Sn−1 denote the unit sphere in
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Algorithm 12 Alternating minimization algorithm

1: function Alternating_Minimization((xi, yi)i∈[n],m, J)
2: b0 ← 0
3: for j ← 1 to J do
4: bj ← HTm(PXbj−1 + (I − PX)y)
5: end for
6: β̂J ← (X⊤X)−1X⊤(y − bj)
7: return β̂J
8: end function

Algorithm 13 Alternating minimization algorithm

1: function Alternating_Minimization_with_Filtering((x′
i, y

′
i)i∈[n], ϵ

′,m, J)
2: T1 ←FilteredCovariates((xi)i∈[n], ϵ

′)
3: β̂J ← Alternating_Minimization((x′

i, y
′
i)i∈T1 ,m, J)

4: return β̂J
5: end function

Algorithm 14 LAD with filtered covariates

1: function LAD_with_Filtering((x′
i, y

′
i)i∈[n], ϵ

′)
2: T1 ←FilteredCovariates((xi)i∈[n], ϵ

′)
3: β̂LAD ← LAD((x′

i, y
′
i)i∈T1)

4: return β̂LAD
5: end function

n dimensions. For a square matrix M , we use λmax(M) and λmin(M) to denote the largest
and smallest eigenvalues, respectively. We use ∥M∥2 to denote the spectral norm. For two
matrices M1,M2, we writeM1 ⪰M2 to denote the fact that M1−M2 is positive semidefinite.

For a differentiable function f , we use ∇f to denote its gradient. For a scalar x ∈ R,
we use sgn(x) to denote the sign of x, i.e., sgn(x) = 0 for x = 0; sgn(x) = 1 for x > 0; and
sgn(x) = −1 for x < 0. For two sets A and B, let A \ B denote the set difference and let
A△B denote the symmetric difference. Let I(A) denote the indicator function over a set A.

We use c, C, c1, C1, . . . to denote absolute positive constants with values that might
change from line to line. We also use the standard big-O notation to simplify the expressions
in two regimes: For two nonnegative functions f and g with domainD, we say that f = O(g)
when one of the following is true: (i) D = N, and there exists constants C and n0 such that
f(n) ≤ Cg(n) for all n ≥ n0; or (ii) D = [0, 1], and there exists constants C and ϵ0 ∈ (0, 1)
such that f(ϵ) ≤ Cg(ϵ) for ϵ ≤ ϵ0. The setting will be clear from context. We say that
f = Ω(g) if g = O(f), and we say that f = Θ(g) when f = O(g) and f = Ω(g). We also use
≲ and ≳ to hide constants.
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We also recall the following definitions:

Definition C.2.1. (Hypercontractivity) A random vector X ∈ Rp satisfies (k, 2)-
hypercontractivity with parameter σk if for all unit vectors v ∈ Rp, we have

(
E |v⊤X|k

)1/k
≤

σk
(
E(v⊤X)2

)1/2
.

We note that (k, 2)-hypercontractivity is also referred to as kth bounded moments or
Lk − L2 norm equivalence.

Definition C.2.2. (Strong convexity) For a convex set X ⊆ Rn, we say that a continuously
differentiable function f : X → R is α-strongly convex if for any x, y ∈ X , we have

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ α

2 ∥y − x∥
2
2.

C.3 Contributions and Related Work
In this appendix, we further discuss our contributions in the context of previous work.

C.3.1 Contributions

We will assume throughout our paper that prior to contamination, the covariates are drawn
from a distribution with mean 0 and covariance I , and also satisfies a property known
as hypercontractivity (bounded fourth moments). We will also assume that the additive
noise in the linear model is independent of the covariates and (in most cases) has finite
first or second moments. Note that these assumptions are significantly less restrictive than
the usual assumptions of sub-Gaussianity. Under these assumptions, we can show that the
Huber estimator after filtering achieves the optimal ℓ2-error rate of O

(
σ
√

p
n

+ σ
√

log(1/τ)
n

)
,

provided the sample size satisfies n = Ω(p log p). Furthermore, our method is computation-
ally feasible, since we simply need to perform the iterative filtering algorithm, followed by
optimization of a convex function. If adversarial contamination is introduced to the covari-
ates and/or response variables, the error bound of the filtered Huber estimator becomes
O
(
σ
(√

p log p
n

+
√

log(1/τ)
n

+ ϵ1−1/k
))

, provided n = Ω(p log p) and the covariates satisfy an
additional kth moment bound, for k ≥ 4. Note that the dependence on ϵ matches the lower
bound derived in Bakshi and Prasad [BP21].35 When the covariates are drawn from a

35However, the kth moment of the covariates in the lower bound instance of [BP21, Theorem 6.1] increases
as ϵ decreases, so the optimal rate (in terms of ϵ) could possibly be better. On the other hand, no polynomial-
time estimators with better rates are currently known for our setting. We also note that the lower bound
of Ω(

√
ϵ) [CATJFB20, Theorem D.1] for the case of bounded fourth moments is not applicable here due to

different assumptions: the covariance is degenerate in [CATJFB20, Theorem D.1].
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Gaussian distribution with identity covariance, the error of the filtered Huber estimator
improves to O

(
σ
(√

p
n

+
√

log(1/τ)
n

+ ϵ
√

log(1/ϵ)
))

, provided n = Ω(p). The dependence on

p, n, and τ is optimal, while the dependence on ϵ is nearly-optimal up to a
√

log(1/ϵ) fac-
tor [CGR16]. (This rate also shaves off the additional

√
log(1/ϵ) factor achieved in previous

works [DKS19; CATJFB20], which obtained the rateO(ϵ log(1/ϵ)) in terms of ϵ.) Going back
to the heavy-tailed setting, i.e., when the covariates are drawn from a distribution with
mean zero and bounded fourth moments, we extend our analysis to the setting where the
covariance matrix Σ of the covariates is unknown but satisfies (1/2)I ⪯ Σ ⪯ 2I . We show
that the filtered Huber estimator achieves the error rate O

(
σ
(√

p log p
n

+
√

log(1/τ)
n

+
√
ϵ
))

,
provided n = Ω(p log p). The SQ lower bound of [DKS19] suggests that such a dependence
on ϵ is essentially optimal for computationally-efficient algorithms when n = o(p2) even
when the uncontaminated distribution is Gaussian.

We derive error bounds for the LTS and LAD estimators under slightly different as-
sumptions: When the noise distribution has bounded (k′)th moments, for some k′ ≥ 2,
we obtain an error rate of the form O

(
σ
(
p log p
n

+ ϵ+ log(1/τ)
n

)1/2−1/k′)
for the LTS estimator,

provided n = Ω(p log p). Assuming a first moment bound of κ on the noise distribution,
we can show that the LAD estimator has ℓ2-error O(κ), provided n = Ω(p log p). Although
the error bounds for the LTS and LAD estimators are somewhat weaker than the bounds
we obtain for the Huber regression estimator, we note that the LTS estimator is extremely
quick to compute in practice [BJK15; BJKK17], and the LAD estimator does not involve
any tuning parameters, unlike the Huber estimator (which requires a tuning parameter
for the loss) and the LTS estimator (which requires a tuning parameter specifying the
degree of trimming). Furthermore, we show that a simple postprocessing step involving
applying the robust multivariate mean algorithm to a shifted data set can be used to obtain
near-optimal error guarantees in terms of τ and p. Lastly, we note that the LTS or LAD
estimators may be practically useful for initializing a gradient descent algorithm when
optimizing the Huber regression objective in order to save on computation.

C.3.2 Related Work

Several recent works have highlighted significant challenges that appear in the presence of
heavy-tailed responses and/or adversarial contamination in responses [LDB09; NTN11;
NT13; BJK15; MGJK19; SF20; WLJ07]. In all of these works, the covariates are assumed to
satisfy strong assumptions: sub-Gaussian tails and no contamination. The preceding works
can be loosely categorized into two categories: (i) regularization-based estimators and (ii)
thresholding-based estimators. In the first category, a popular choice is a penalized Lasso-
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type estimator that solves minβ,z
{

1
n
∥y −Xβ − z∥2

2 + λ∥z∥1
}

, where the variable z accounts
for outliers in the response variables. Several works have shown that Lasso-type estimators
can handle contamination or heavy-tailed noise in responses [NT13; SF20]—indeed, Huber
regression is closely related to penalized Lasso-type estimators [SO11; SF20]. The idea
of using the Huber loss for estimation under heavy-tailed error distributions has recently
been studied in the context of mean estimation [Cat12; Min19] and regression [FLW17;
SZF20]. Our work on Huber regression is closely related to Sun et al. [SZF20], and we
roughly follow their proof structure. However, we establish significantly tighter results for
heavy-tailed covariates (see Section 5.3 for more details).

Another popular convex estimator is the LAD estimator with a Lasso penalty [WLJ07;
KP19]. In the dense setting, Karmalkar and Price [KP19] (see also [DMT07]) studied the
LAD estimator minβ ∥y −Xβ∥1, and showed its robustness to adversarial contamination in
the responses. However, their theory imposes a deterministic condition on the covariates
that holds with high probability for sub-Gaussian distributions, but not necessarily for
heavy-tailed or corrupted covariates. As opposed to convex relaxation-based estimators,
several recent works have studied alternating minimization algorithms for robust regres-
sion [JK17; BJK15; BJKK17; JTK14]. These algorithms were developed to optimize the
nonconvex objective function corresponding to the LTS estimator [Rou84]. In our paper,
we critically leverage the aforementioned results on LAD [KP19] and LTS [BJK15; BJKK17]
estimation by showing that the deterministic conditions under which the respective algo-
rithms are guaranteed to succeed are satisfied with high probability by our preprocessed
covariates.

Turning to papers which analyze corruption in both covariates and responses, a
general framework for robust convex optimization was considered in Diakonikolas et
al. [DKKLSS19] and Prasad et al. [PSBR20] using the robust mean estimation algorithm on
gradients of the loss function. Although these results lead to polynomial-time estimators
for several tasks, the resulting rates are suboptimal for linear regression. In the Gaussian
setting, Diakonikolas et al. [DKS19] proposed computationally efficient estimator with
near-optimal error (as a function of ϵ) guarantees under adversarial contamination in both
covariates and responses. In fact, our result improves the dependence from ϵ log(1/ϵ) to
ϵ
√

log(1/ϵ).

C.4 Auxiliary Results
We recall the Chernoff bound below [Ver18; BLM13]:
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Lemma C.4.1. LetX1, . . . , Xn be independent {0, 1}-valued random variables. Let µ̂ = 1
n

∑n
i=1 Xi

be the empirical mean and let µ denote its expectation, i.e., µ = 1
n

∑n
i=1 EXi. Then with probability

at least 1− τ , we have

µ̂ ≲ µ+ log(1/τ)
n

.

In particular, for κ ≥ 1, we have µ̂ ≤ 2κµ, with probability at least 1− exp(−cκnµ).

We will use the following version of Talagrand’s concentration inequality regarding
bounded empirical processes [Tal96b]:

Lemma C.4.2. (Theorem 12.5 of Boucheron et al. [BLM13]) Let X1, . . . , Xn be n i.i.d. vectors
such that for each s ∈ T , we have EXi,s = 0 and Xi,s ≤ L. Define Z := sups∈T

∑n
i=1 Xi,s, and

define σ2 (the wimpy variance) to be σ2 := sups∈T E∑n
i=1 X

2
i,s. Then with probability at least

1− τ , we have

Z ≲ EZ + σ
√

log(1/τ) + L log(1/τ).

We recall the following lemma from Lugosi and Mendelson [LM21b]:

Lemma C.4.3. (Lugosi and Mendelson [LM21b]) Let X1, . . . , Xn be n i.i.d. points from a
distribution over Rp with mean zero and covariance Σ. For an ϵ > 0 such that ϵ = O(1), let
Q := C

(√
∥Σ∥2
ϵ

+ 1
ϵ

√
tr(Σ)
n

)
for a large enough constant C. For a unit vector v, define the set

Sv :=
{
i : |X⊤

i v| ≥ Q
}

. Let E be the event E = {supv |Sv| ≤ ϵn}. Then with probability at least
1− exp(−ncϵ), the event E holds.

We will also require the following generalization of the result above from Diakonikolas
et al. [DKP20, Lemma C.1]:

Lemma C.4.4. (Diakonikolas et al. [DKP20]) Let X1, . . . , Xn be n i.i.d. points from a distri-
bution over Rp with mean zero and covariance Σ. Suppose that for some k ≥ 2, the inequality
E
(
(v⊤Xi)k

)1/k
≤ σx,k E

(
(v⊤Xi)2

)1/2
holds for all v ∈ Sp−1. For some ϵ > 0 such that ϵ = O(1),

define Q := C
(
σx,k

√
∥Σ∥2ϵ

−1/k + 1
ϵ

√
tr(Σ)
n

)
for a large enough constant C. For a unit vector

v, define the set Sv :=
{
i : |X⊤

i v| ≥ Q
}

. Let E be the event E = {supv |Sv| ≤ ϵn}. Then with
probability at least 1− exp(−ncϵ), the event E holds.

We also need the following version of the matrix Bernstein inequality:

Lemma C.4.5. (Corollary 7.3.2 of Tropp [Tro15]) Let S1, . . . , Sn be n independent symmetric
matrices such that E[Si] = 0 and ∥Si∥2 ≤ L a.s., for each index i. Let Z = ∑n

i=1 Si, and let V be
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any positive semidefinite matrix such that ∑n
i=1 E[SiS⊤

i ] ⪯ V . Let ν = ∥V ∥2 and r = rank(V ).
Then

E[∥Z∥2] ≲
√
ν log r + L log r.

In particular, if Si = ξixix
⊤
i , where ξi is a Rademacher random variable and xi is sampled indepen-

dently from a distribution with E[xix⊤
i ] = Σ and bounded support

√
L, i.e., ∥xi∥2 ≤

√
L a.s. for

each index i, we have E[∥Z∥2] ≲
√
nL∥Σ∥2 log(rank(Σ)) + L log(rank(Σ)).

We will also use the following results:

Lemma C.4.6. (Lemma 6.1.2 of Vershynin [Ver18]) Let Y and Z be independent random variables
such that E(Z) = 0. Then for every convex function f , one has

E(f(Y )) ≤ E(f(Y + Z)).

Lemma C.4.7. Let W and Z be two independent symmetric random variables. Let Y := W + Z.
Then for any r ≥ 0, we have P(|Z| ≥ r) ≤ 2P(|Y | ≥ r).

Proof. Note that

{Z ≥ r,W ≥ 0} ∪ {Z ≤ −r,W ≤ 0} ⊆ {|Y | ≥ r}.

Thus, by the independence of W and Z and the symmetry of Z, we have

P(|Y | ≥ r) ≥ P(Z ≥ r,W ≥ 0) + P(Z ≤ −r,W ≤ 0)

= P(Z ≥ r)P(W ≥ 0) + P(Z ≤ −r)P(W ≤ 0)

= P(Z ≥ r)
(
P(W ≥ 0) + P(W ≤ 0)

)
≥ P(Z ≥ r)

= 1
2 P(|Z| ≥ r),

completing the proof.

We also recall the following result on convex functions from Sun et al. [SZF20]:

Lemma C.4.8. Let L(β) : Rp → R be a convex function and let β1 ∈ Rp. For some η ∈ (0, 1] and
β2 ∈ Rp, let βη = β1 + η(β2 − β1). Then we have

⟨∇L(βη)−∇L(β1), βη − β1⟩ ≤ η⟨∇L(β2)−∇L(β1), β2 − β1⟩.
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We will use the following standard properties regarding convexity and strong convex-
ity [Nes04; BV04]:

Lemma C.4.9. For a convex setX ⊆ Rn, let f be a continuously differentiable function f : X → R.
Then the following statements hold:

1. If f is α-strongly convex and continuously differentiable, then for any two points x, y ∈ X ,
we have

⟨∇f(y)−∇f(x), y − x⟩ ≥ α∥y − x∥2
2.

2. If f is twice continuously differentiable, then∇2f ⪰ αI .

3. If f is α1-strongly convex and g is α2-strongly convex, then f + g is (α1 + α2)-strongly
convex.

C.5 Lower bounds for OLS and Multivariate Sample Mean
In this appendix, we derive a lower bound on the ℓ2-error of the OLS estimator by first
proving a lower bound on the estimation error of the empirical mean.

C.5.1 Lower Bound for Mean Estimation

We prove the following result regarding the estimation error of the sample mean. This
result generalizes an analogous univariate result of Catoni [Cat12, Proposition 6.2].

Proposition C.5.1. For any variance of σ2 > 0, dimension p, sample size n, and probability τ ≤ 1
4 ,

there exists a multivariate distribution with mean µ ∈ Rp and covariance σ2I such that the sample
mean µ̂ on n i.i.d. samples satisfies the bound

∥µ̂− µ∥2
2 = Ω

(
pσ2

nτ

)
,

with probability at least τ . Moreover, the distribution of the random variable µ + ZX satisfies
the bound, where X is uniform on {−1, 1}p and Z is a univariate random variable supported on{
−σ

√
n
2τ , 0, σ

√
n
2τ

}
, with

P
(
Z = −σ

√
n

2τ

)
= P

(
Z = σ

√
n

2τ

)
= τ

n
,

and X and Z are independent.
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Proof. Without loss of generality, we will assume that µ = 0. Let ϵ = 1√
2nτ , so

P(Z = −σnϵ) = P(Z = σnϵ) = 1
2n2ϵ2

and P(Z = 0) = 1− 1
n2ϵ2

. Note that Cov(ZX) = E(Z2)I = σ2I .
Let (X1, . . . , Xn) and (Z1, . . . , Zn) be independent pairs of n i.i.d. random samples drawn

from the distributions of X and Z, respectively. Let Wi := ZiXi, so the Wi’s are i.i.d. and
µ̂ = 1

n

∑n
i=1 Wi. Now note that for all i, we have ∥Xi∥2 = √p. Hence, we can write

P (∥µ̂− µ∥2 ≥ σ
√
pϵ) = P

(∥∥∥∥∥ 1
n

n∑
i=1

Wi

∥∥∥∥∥
2
≥ σ
√
pϵ

)

≥ P (∃i : ∥Wi∥2 ≥ σn
√
pϵ and ∀j ̸= i, ∥Wj∥2 = 0)

= P (∃i : ∥Xi∥2|Zi| ≥ σn
√
pϵ and ∀j ̸= i, ∥ZjXj∥2 = 0)

= P (∃i : |Zi| ≥ σnϵ and ∀j ̸= i, Zj = 0)

= n · 1
n2ϵ2

(
1− 1

n2ϵ2

)n−1

≥ 1
nϵ2

(
1− 1

n2ϵ2

)n
.

We now simplify the last term using two simple observations: (i) (1 + x)r ≥ 1 + rx, for
x ≥ −1 and r ≥ 1; and (ii) 1

nϵ2
= 2τ ≤ 1

2 :

1
nϵ2

(
1− 1

n2ϵ2

)n
≥ 1
nϵ2

(
1− 1

nϵ2

)
≥ 1

2nϵ2 = τ.

Thus, we conclude that

∥µ̂− µ∥2 ≥ σ
√
dϵ = σ

√
p

2nτ ,

with probability at least τ .

C.5.2 Lower Bound for OLS

In this section, we state a lower bound for the OLS estimator using reductions to the sample
mean. We consider the following linear model:

yi = x⊤
i β

∗ + zi, 1 ≤ i ≤ n,

where xi and zi are independent. We also assume that E(z2
i ) = σ2.
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Proposition C.5.2. (Lower bound for OLS for multivariate distributions) For every dimension
p, sample size n = Ω(p), and probability τ ≤ 1

4 such that log(1/τ)
n

= O(1), there exist covariate
and error distributions satisfying Assumptions 5.2.1 and 5.2.3, such that the OLS estimator β̂OLS

satisfies the bound

∥β̂OLS − β∗∥2
2 = Ω

(
pσ2

nτ

)
,

with probability at least τ
2 . Moreover, the bound is satisfied when the distribution of the covariates is

uniform on {−1, 1}p, and the distribution of the noise is defined as in Proposition C.5.1.

Proof. Suppose the covariates and noise are sampled according to the stated distributions;
we will show that the lower bound holds. Let the corresponding sampled points be denoted
by {(xi, yi)}ni=1.

Note that the distribution of the covariates is O(1)-sub-Gaussian; i.e., for any unit vector
v, we have ∥v⊤x∥ψ2 = O(1). Thus, Assumption 5.2.1 holds. Furthermore, the covariance
matrix of the covariates has exponential concentration near the true covariance I , so if we
denote Σn = 1

n

∑n
i=1 xix

⊤
i and define the event

E1 :=
{
x1, . . . , xn : ∥Σ−1

n − I∥2 ≤ 0.1
}
,

then P(E1) ≥ 1− exp(−cn) when n = Ω(p) (cf. Exercise 4.7.3 of Vershynin [Ver18]).
Define Ŵ := 1

n

∑n
i=1 xizi, and note that the OLS estimator satisfies β̂ − β∗ = Σ−1

n Ŵ .
Thus,

∥β̂OLS − β∗∥2 ≥ ∥Ŵ∥2 − ∥(Σ−1
n − I)Ŵ∥2 ≥ ∥Ŵ∥2 − ∥Σ−1

n − I∥2∥Ŵ∥2.

Let E2 be the event

E2 :=

∥Ŵ∥2 = Ω
√pσ2

nτ

 .
Then on the event E1 ∩ E2, we have

∥β̂OLS − β∗∥2 ≥ 0.9∥Ŵ∥2 = Ω
√pσ2

nτ

 .
Finally, note that P(E2) ≥ τ by Proposition C.5.1, so P(E1 ∩ E2) ≥ τ − exp(−cn) ≥ τ

2 , and
the desired result follows.
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C.6 Results Regarding Stability
In this appendix, we state and prove several results stemming from our notions of stability.

Proposition C.6.1. Let S = {x1, . . . , xn} be an (ϵ, δ)-stable set with respect to µ = 0 and σ2 = 1,
such that δ2

ϵ
< 1. Then S is also (ϵ, L, U)-weakly stable with L = (1− ϵ)

(
1− δ2

ϵ

)
and U = 1 + δ2

ϵ
.

In particular, if δ2

ϵ
< 0.5, we have L = Ω(1) and U = O(1).

Proof. By the definition of strong stability and the triangle inequality, we clearly have
∥∥∥∥∥∥ 1
n

∑
i∈[n]

xix
⊤
i

∥∥∥∥∥∥
2

≤ 1 + δ2

ϵ
,

showing that we can take U = 1 + δ2

ϵ
.

For the lower bound, consider a subset S ⊆ [n] such that |S| ≥ (1− ϵ)n. By the stability
condition, we know that for any unit vector v, we have

v⊤
(
I − 1
|S|

∑
i∈S

xix
⊤
i

)
v ≤ δ2

ϵ
,

implying that
n

|S|
· v⊤

(
1
n

∑
i∈S

xix
⊤
i

)
v ≥ 1− δ2

ϵ
.

Hence,

λmin

(
1
n

∑
i∈S

xix
⊤
i

)
≥ |S|

n

(
1− δ2

ϵ

)
≥ (1− ϵ)

(
1− δ2

ϵ

)
,

giving the desired result. The second result follows by noting that ϵ < 1/2.

Proposition C.6.2. Let S = {x1, . . . , xn} be a set of n i.i.d. points in Rp from a distribution P
with mean 0 and covariance Σ. Suppose the following holds:

1. κlI ⪯ Σ ⪯ κuI , where κl ∈ (0, 1] and κu ≥ 1 are constants.

2. The distribution P satisfies (4, 2)-hypercontractivity with parameter σx,4.

Let ϵ < c∗, where c∗ is a small enough constant depending on σx,4 and κl

κu
. Suppose n ≳ κ2

u

κ2
l
·

(p log p)σ2
x,4√

ϵ
+ κu

κl
· p
ϵ
. Then with probability at least 1− O(exp(−Ω(nϵ))), for every subset S ′ ⊆ S

such that |S ′| ≥ (1− ϵ)n, we have λmin
(

1
n

∑
i∈S′ xix

⊤
i

)
≥ 0.8κl.

Proof. The proof follows the same principle as the references [KM15; DKP20]. In particular,
the proof is similar to Diakonikolas et al. [DKP20, Lemma 4.3] who consider the case when
κl = κu = 1. For completeness, we provide a full proof here for the general case.
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Let r ≥ 2 denote a large enough constant to be specified later. First, we only consider
distributions which are supported on a ball of radius at most rσx,4

√
κuϵ

−1/4√p. (This is
because a standard argument shows that we can simply ignore the points that do not satisfy
this condition, since (E ∥X∥4

2)1/4 ≤ σx,4
√
κuϵ

−1/4√p for X ∼ P , as outlined at the end of the
proof.) We will allow P to have a nonzero mean µ, as long as ∥µ∥2 ≤ σx,4

√
κuϵ

−1/4.
We will now apply Lemma C.4.4, which establishes a bound for an (1− ϵ)-fraction of

points when projected along any unit vector. Let Q = C
(
σx,4
√
κuϵ

−1/4 + 1
ϵ

√
pκu

n

)
+ ∥µ∥2,

which is greater than the threshold from Lemma C.4.4 applied to the recentered distribution
P . Using the bound on ∥µ∥2, we have Q ≲

(
σx,4
√
κuϵ

−1/4 + 1
ϵ

√
pκu

n

)
. Let E denote the event

from Lemma C.4.4, stating that for any unit vector v, we have
∣∣∣{i : |x⊤

i v| ≥ Q}
∣∣∣ ≤ ϵn. By

Lemma C.4.4, we know that P(E) ≥ 1− exp(−cnϵ).
We will now assume that the event E holds and incur an additional failure probability

of exp(−cnϵ) by a union bound. Define the function f : R+ → R+, as follows:

f(x) =

x, if x ∈ [0, Q2],

Q2, otherwise,
,

and let g(x) = −f(x). For any v ∈ Sp−1, on the event E , we have the following bound:

min
S′:|S′|≥(1−ϵ)n

∑
i∈S′

(x⊤
i v)2 ≥

n∑
i=1

f((x⊤
i v)2)− ϵQ2n

= −
(

n∑
i=1

g((x⊤
i v)2)− E g((x⊤

i v)2)
)

+ nE f((x⊤
i v)2)− ϵQ2n.

Taking an infimum over v ∈ Sp−1, we then have

inf
v∈Sp−1

min
S′:|S′|≥(1−ϵ)n

∑
i∈S′

(x⊤
i v)2 ≥ −ϵQ2n− sup

v∈Sp−1

(
n∑
i=1

g((x⊤
i v)2)− E g((x⊤

i v)2)
)

+ n
(

inf
v∈Sp−1

E f((x⊤
i v)2)

)
. (C.1)

Now define the random variable

N := sup
v∈Sp−1

n∑
i=1

g((x⊤
i v)2)− E g((x⊤

i v)2).

Let ξ1, . . . , ξn be n i.i.d. Rademacher random variables. We first bound the expectation of
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N using symmetrization and contraction of Rademacher averages [LT91; BLM13]:

EN ≤ 2E sup
v∈Sp−1

∣∣∣∣∣
n∑
i=1

ξig((x⊤
i v)2)

∣∣∣∣∣ ≤ 4E sup
v∈Sp−1

∣∣∣∣∣
n∑
i=1

ξi(x⊤
i v)2

∣∣∣∣∣
≤ 4E

(∥∥∥∥∥
n∑
i=1

ξixix
⊤
i

∥∥∥∥∥
2

)

≲
r2σ2

x,4κup log p
√
ϵ

+

√√√√nr2σ2
x,4κ

2
up log p
√
ϵ

,

where the last step uses the matrix Bernstein inequality (Lemma C.4.5) with L equal to
(rσx,4

√
κuϵ

−1/4√p)2 and ν = nLκu, because ∥xi∥2 ≤ rσx,4
√
κuϵ

−1/4√p and Exix⊤
i ⪯ κuI . We

now bound the following term (which is usually called the wimpy variance [BLM13]):

σ2 := sup
v∈Sp−1

nVar(g((x⊤
i v)2)) ≤ sup

v∈Sp−1
nE((x⊤

i v)2)2 ≤ nσ4
x,4(v⊤Σv)2 ≤ nσ4

x,4κ
2
u.

Using Talagrand’s inequality for bounded empirical processes (cf. Lemma C.4.2), we
therefore have that with probability at least 1− exp(−nϵ),

N

n
≲
r2σ2

x,4κup log p
n
√
ϵ

+

√√√√r2σ2
x,4κ

2
up log p

n
√
ϵ

+ σ2
x,4κu

√
ϵ+ ϵQ2

≲
r2σ2

x,4κup log p
n
√
ϵ

+

√√√√r2σ2
x,4κ

2
up log p

n
√
ϵ

+ σ2
x,4κu

√
ϵ+ σ2

x,4κu
√
ϵ+ pκu

ϵn

≲
r2σ2

x,4κup log p
n
√
ϵ

+

√√√√r2σ2
x,4κ

2
up log p

n
√
ϵ

+ σ2
x,4κu

√
ϵ+ pκu

ϵn
,

where we use the definition ofQ. By taking ϵ ≲
(
κl

κu

)2 ( 1
σx,4

)4
and n ≳ κ2

u

κ2
l
· r

2σ2
x,4(p log p)

√
ϵ

+ κu

κl
· p
ϵ
,

we can make the expression above less than 0.05κl. These calculations also show that we
can upper-bound ϵQ2 by 0.05κl. Thus, we have the following:

max
{
N

n
, ϵQ2

}
≤ 0.05κl. (C.2)

Finally, note that for any v ∈ Sp−1, the Cauchy-Schwarz inequality gives

E
∣∣∣f((x⊤

i v)2)− (x⊤
i v)2

∣∣∣ = E
(
(x⊤

i v)2 I{(x⊤
i v)2 > Q2}

)
≤
√
E(x⊤

i v)4
√
P(|x⊤

i v| > Q)

≤ E[|x⊤
i v|4]
Q2 ≲

σ4
x,4κ

2
u

κuσ2
x,4ϵ

−1/2 =
√
ϵσ2

x,4κu,
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implying that there exists a constant c > 0 such that

E f((x⊤
i v)2) ≥ E(x⊤

i v)2 − cσ2
x,4
√
ϵκu ≥ κl − cσ2

x,4
√
ϵκu.

Taking ϵ ≲
(
κl

κu

)2 ( 1
σx,4

)4
, we have

E f((x⊤
i v)2) ≥ 0.95κl. (C.3)

Combining inequalities (C.1), (C.2), and (C.3), we then obtain the bound

1
n

inf
v∈Sp−1

min
S′:|S′|≥(1−ϵ)n

∑
i∈S′

(x⊤
i v)2 ≥ inf

v∈Sp−1
E f((x⊤

i v)2)− ϵQ2 − N

n

≥ 0.95κl − 0.05κl − 0.05κl ≥ 0.85κl.

This completes the proof.

Unbounded support: We now outline a general argument for the case when the sup-
port of the distribution is unbounded. Let X ∼ P . By Jensen’s inequality and (4, 2)-
hypercontractivity, we have

E ∥X∥4
2 = p2 E


 p∑
j=1

1
p
X2
j

2
 ≤ p2 E

 p∑
j=1

1
p

(
X2
j

)2
 = pE

 p∑
j=1

X4
j

 ≤ σ4
x,4p

2κ2
u,

since for each j, we have E[X4
j ] = E[(e⊤

j X)4] ≤ σ4
x,4∥Σ∥2

2, where ej is the canonical basis
vector. Applying Markov’s inequality, we then obtain

P{∥X∥2 > rσx,4
√
κuϵ

−1/4√p} ≤ E ∥X∥4
2

r4σ4
x,4κ

2
uϵ

−1p2 ≤
ϵ

r4 ,

where r ≥ 2 is the constant to be specified below. Let Er = {x : ∥x∥2 ≤ rσx,4
√
κuϵ

−1/4√p}.
Applying a Chernoff bound, we see that with probability at least 1− exp(−cnϵ), at most
nϵ
2 points lie outside Er, where we take r to be a sufficiently large constant. Let Pr be the

distribution of P conditioned on Er. Simply ignoring the points that lie outside Er, we will
only focus on points that come from the distribution Pr and incur an additional failure
probability of exp(−cnϵ).

Let y1, . . . , ym be m i.i.d. points from Pr, where m ≥ n
(
1− ϵ

2

)
. It suffices to show that

any subset of {y1, . . . , ym} of size at least
(
1− ϵ

2

)
m satisfies the desired conclusion. This

is exactly what was considered in the first part of the proof, up to constant factors; thus,
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it remains to show that the distribution Pr satisfies (4, 2)-hypercontractivity and has an
appropriately bounded second moment matrix.

Let Zr ∼ Pr and X ∼ P . For any v ∈ Sp−1, we have E(v⊤Z)2 ≤ E(v⊤X)2. We now look
at the lower bound:

P(X ∈ Er)E[(v⊤Z)2] = E
[
(v⊤X)2 I

X∈Er

]
= E(v⊤X)2 − E[(v⊤X)2 I

X∈Ec
r

]

≥ E(v⊤X)2 −
√
E[(v⊤X)4]

√
P(X ̸∈ Er)

≥ E(v⊤X)2 − σ2
x,4 E(v⊤X)2

√
ϵr−4

≥ E[(v⊤X)2](1− σ2
x,4
√
ϵr−2).

This shows that E(v⊤Z)2 ≥ 0.99κl, when ϵ ≲ κ2
l r

4σ−4
x,4. It also shows that Pr satisfies

(4, 2)-hypercontractivity, as follows:

(
E(v⊤Zr)4

)1/4
≤
(
E(v⊤X)4

)1/4
≤ σx,4

(
E(v⊤X)2

)1/2
≤ σx,4(

1− σ2
x,4
√
ϵr−2

)1/2

(
E(v⊤Z)2

)1/2
.

Thus, when ϵ ≲ r4σ−4
x,4, we see that Pr satisfies (4, 2)-hypercontractivity with σ′

x,4 ≤ 2σx,4.
Finally, we note that Pr might not be centered, but the means of Pr and P differ by at most
σx,4
√
κuϵ

3/4 in the Euclidean norm: for any unit vector v ∈ Sp−1, we have

|E[v⊤Z]| ≤ |2P(X ∈ Er)E[v⊤Z]|

= 2
∣∣∣∣E [v⊤X I

X∈Er

]∣∣∣∣
= 2

∣∣∣∣E[v⊤X]− E[(v⊤X) I
X∈Ec

r

]
∣∣∣∣

= 2
∣∣∣∣E[(v⊤X) I

X∈Ec
r

]
∣∣∣∣

≤ 2
(
E[(v⊤X)4]

)1/4
(P(X ̸∈ Er))3/4

≤ 2σx,4
√
κuϵ

3/4r−3,

using the facts that P{X ∈ Er} ≥ 1
2 and P{X ̸∈ Er} ≤ ϵ

r4 . The proof now follows from the
bounded support setting considered above, which allows the norm of the mean to be as
large as σx,4

√
κuϵ

−1/4.

Proposition C.6.3. Consider the setting of Theorem C.1.3 with k = 4. Let ϵ < c∗, where c∗ is
a small enough constant. Let C be any large constant. Suppose n = Ω

(
p log p
ϵ

)
. Then for any
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τ = O(exp(−Ω(nϵ))), with probability at least 1− τ , there exists a set S1 ⊆ S such that

(i) |S1| ≥ (1− ϵ)n,

(ii) S1 is (ϵ1, δ1)-stable, where ϵ1 = Cϵ and δ1 = O
(√

p log p
n

+ σx,4ϵ
3/4 + σx,4

√
log(1/τ)

n

)
, and

(iii) δ2
1
ϵ1
< 0.01.

Moreover, let T be an ϵ′-corrupted set version of S, where ϵ′ ≤ ϵ. Let T1 be the output of the
filter algorithm with input T and ϵ. Then with probability at least 1− 2τ , the set T1 satisfies

(i) |T1| ≥ (1− c1ϵ)n,

(ii) T1 is (ϵ2, δ2)-stable, where ϵ2 = c2Cϵ and δ = O
(√

p log p
n

+ σx,4ϵ
3/4 + σx,4

√
log(1/τ)

n

)
, and

(iii) δ2
2
ϵ2
< 0.05.

Proof. We will show that these statements are consequences of Theorems C.1.1 and C.1.3.
Fix the constant C, the desired premultiplier in the stability results. Let ϵ3 > 0 be a

value to be decided later, and let τ be such that log(1/τ)
n

≤ c1ϵ3. Suppose ϵ3 is such that
ϵ := C1

(
ϵ3 + log(1/τ)

n

)
is the parameter in Theorem C.1.3. Applying Theorem C.1.3, we see

that with probability 1− τ , there exists a (Cϵ, δ1)-stable set S ′ ⊆ S, with |S ′| ≥ (1− ϵ)|S|
and δ1 = O

(√
p log p
n

+ σx,4ϵ
3/4
3 + σx,4

√
log(1/τ)

n

)
, where the premultiplier depends on C.

Note that

δ2
1
ϵ1

≲
p log p
nϵ

+ σ2
x,4ϵ

1/2
3 + σ2

x,4
log(1/τ)

nϵ

≲
p log p
nϵ

+ σ2
x,4
√
ϵ+ σ2

x,4
c1

C1
.

The last expression can be made less than 0.01 by choosing n = Ω
(
p log p
ϵ

)
, restricting ϵ (and

thus ϵ3) to be less than a small enough constant c∗, and choosing c1 to be small enough.
The last condition yields that the failure probability can be made as small as exp(−Ω(nϵ)).
This completes the proof of the first statement. Moreover, the bound 0.01 was arbitrary
and can be made as small as required under qualitatively similar constraints.

For the second part, we assume that the constant C is large enough for Theorem C.1.1
to succeed. By the first part, we know that with probability at least 1− exp(−Ω(nϵ)), there
exist S1 ⊆ S such that |S1| ≥ (1− ϵ)|S| and S1 is (Cϵ, δ1)-stable. Theorem C.1.1 then implies
that with probability at least 1 − O(exp(−Ω(nϵ))), the output of the filter algorithm T1

satisfies |T1| ≥ (1− c1ϵ)n and is (ϵ2, δ2)-stable, where ϵ2 = c2Cϵ and δ2 = c3δ1. It remains to



468

check that δ2
2
ϵ2
< 0.05. Note that δ2

2
ϵ2

= c2
3

c2C
· δ2

ϵ
. Since c3, c2 and C are constants, we can make

δ2
2
ϵ2
< 0.05 by taking δ2

1
ϵ
< 0.05 · c2C

c2
3

in the first part.

Proposition C.6.4. Let {x1, . . . , xn} be an (ϵ, δ)-stable set with respect to µ and σ2. Then for any
unit vector v and any S ′ ⊆ [n] such that |S ′| ≤ ϵn, we have

1
n

∑
i∈S′

((xi − µ)⊤v)2 ≤ 3σ2δ2

ϵ
. (C.4)

Proof. Without loss of generality, we assume that µ = 0 and σ2 = 1. By the stability
assumption, we have the inequality

1
n

∑
i∈[n]

(x⊤
i v)2 ≤ 1 + δ2

ϵ
.

Furthermore, using the lower bound on eigenvalues over the set [n] \ S ′, we have

1
|[n] \ S ′|

∑
i∈[n]\S′

(x⊤
i v)2 ≥ 1− δ2

ϵ
.

Combining the inequalities, we obtain

1
n

∑
i∈S′

(x⊤
i v)2 = 1

n

∑
i∈[n]

(x⊤
i v)2 − |[n] \ S ′|

n

1
|[n] \ S ′|

∑
i∈[n]\S′

(x⊤
i v)2

≤
(

1 + δ2

ϵ

)
− (1− ϵ)

(
1− δ2

ϵ

)

= 2δ2

ϵ
+ ϵ− δ2 ≤ 3δ2

ϵ
,

where we use the fact that ϵ ≤ δ.

Proposition C.6.5. Let {x1, . . . , xn} be an (ϵ, δ)-stable set with respect to µ and σ2. Then for any
unit vector v and any S ′ ⊆ [n] such that |S ′| ≤ ϵn, we have

1
n

∑
i∈S′
|(xi − µ)⊤v| ≤ 2σδ. (C.5)

Proof. Without loss of generality, we assume that µ = 0 and σ2 = 1. By Proposition C.6.4,
we have

1
n

∑
i∈S′

(x⊤
i v)2 ≤ 4δ2

ϵ
.
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Applying the Cauchy-Schwarz inequality, we then have

1
|S ′|

∑
i∈S′
|x⊤
i v| ≤

√√√√ 1
|S ′|

∑
i∈S′
|x⊤
i v|2 ≤

√√√√ n

|S ′|
4δ2

ϵ
.

Hence, we obtain

1
n

∑
i∈S′
|x⊤
i v| =

|S ′|
n

1
|S ′|

∑
i∈S′
|x⊤
i v| ≤

|S ′|
n

√√√√ n

|S ′|
4δ2

ϵ
=
√
|S ′|
n

4δ2

ϵ
≤ 2δ.

Proposition C.6.6. Let {x1, . . . , xn} be an (ϵ, δ)-stable set with respect to µ and σ2. Let a1, . . . , an

be scalars and suppose max1≤i≤n |ai| ≤ a. Then for any S ′ ⊆ [n] such that |S ′| ≤ ϵn, we have
∥∥∥∥∥∥ 1
n

∑
i∈S′

ai(xi − µ)

∥∥∥∥∥∥
2

≤ 2aσδ. (C.6)

Proof. Without loss of generality, we assume that µ = 0 and σ2 = 1. We have
∥∥∥∥∥∥ 1
n

∑
i∈S′

aixi

∥∥∥∥∥∥
2

= 1
n

sup
v∈Sp−1

∑
i∈S′

aix
⊤
i v ≤

1
n

sup
v∈Sp−1

∑
i∈S′
|ai||x⊤

i v| ≤
a

n
sup

v∈Sp−1

∑
i∈S′
|x⊤
i v| ≤ 2aδ,

(C.7)

where the last step uses Proposition C.6.5.

C.7 Huber Regression
In this appendix, we provide additional proof details for the results in Section 5.3.

C.7.1 Selection of γ

In this section, we discuss how to estimate an appropriate tuning parameter γ from the
data.

C.7.1.1 Random Design and Asymmetric Noise

We first consider the setting of random design and asymmetric noise, discussed in Sec-
tion 5.3.2. A natural approach is to estimate the scale of the noise distribution based on
residuals yi − x⊤

i β̂0 calculated from an initial estimate β̂0 of β∗. Indeed, the estimate β̂0 can



470

be quite rough, since only need to estimate the scale of the noise up to a constant factor.
Based on these observations, consider the following procedure:

1. Split the sample into two equal parts.

2. Using the first part, compute β̂0 via the LAD estimator (cf. Section 5.5 below).

3. Using the second part, compute the symmetrized data points {(x′
i, y

′
i)}

⌊n/2⌋
i=1 defined

as in the first step of Algorithm 11. Then compute the residuals w′
i = y′

i − (x′
i)⊤β̂0.

4. Define γ̂ to be twice the
(
1− c∗

4

)th
empirical quantile of the |w′

i|’s.

Note that by our assumptions on the original data set, the sample-splitting step yields
two sets of i.i.d. points. Thus, we may use Theorem 5.5.1 to show that ∥β̂0 − β∗∥2 = O(κ)
if we assume E |zi| = κ < ∞. Altogether, we can show that our procedure yields an
estimator γ̂ such that P (|Z1 − Z2| ≥ γ̂/2) ≤ c∗ (where Z1 and Z2 are fresh i.i.d. draws
from the distribution of the zi’s) and γ̂ = O(E |zi|), with high probability. Although other
methods for choosing an initial estimator β̂0 would also work, we suggest using the LAD
estimator for initialization, since it is tuning parameter-free.

To prove that this method works, we use the result of Theorem 5.5.1, as well as the
following lemma, where we denote ϵ = c∗ for notational brevity.

Lemma C.7.1. Let S = {(x1, y1), . . . , (x2n, y2n)}2n
i=1 be i.i.d. points from the linear model yi =

x⊤
i β

∗ + zi, where the covariates are centered and isotropic, and the noise is independent of the
covariates and satisfies E |zi| = κ < ∞. Let β̂0 be an estimator independent of S such that
∥β̂0 − β∗∥2 = O(κ). Then the sample-splitting estimator γ̂ with ϵ = c∗ satisfies

(i) P
(
|Z1 − Z2| ≥ γ̂√

2

)
< ϵ, and

(ii) |γ̂| = O
(
κ
ϵ

)
,

with probability at least 1− 2 exp(−Ω(nϵ2)).

Proof. Let β1 = β∗− β̂0. Note that conditioned on β̂0, the pairs {(x′
i, w

′
i)}

⌊n/2⌋
i=1 are i.i.d. draws

from the linear model
w′
i = (x′

i)⊤β1 + z′
i, (C.8)

where z′
i
d= z1−z2√

2 is the symmetrized version of the error variables.
Let x′, w′, and z′ denote generic random variables with the same distributions as x′

i,
w′
i, and z′

i, respectively. Note that x′ is centered and isotropic, and z′ is symmetric with
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E |z′| ≤
√

2κ. By the triangle inequality, we therefore have

E |w′| ≤ E |(x′)⊤β1|+ E |z′| ≤
√
E ((x′)⊤β1)2 + E |z′| ≤ ∥β1∥2 +

√
2κ = O(κ),

using the fact that x′ is isotropic and ∥β1∥2 = O(κ) by assumption.
Now let Fn denote the empirical cdf of the |w′

i|’s, so Fn(t) = 1
n

∑n
i=1 I(|w′

i| ≤ t). Define
the event

E :=
{

sup
t∈R
|Fn(t)− P(|w′| ≤ t)| ≤ ϵ

8

}
.

By the Dvoretzky-Kiefer-Wolfowitz inequality [Mas90], we know that P(E) ≥
1 − 2 exp(−nϵ2/32). Note that by definition, we have γ̂

2 = inf
{
t : Fn(t) ≥ 1− ϵ

4

}
.

On the event E , we therefore have

P
(
|w′| ≥ γ̂

2

)
≤ 3ϵ

8 . (C.9)

Furthermore, since both z′ and (x′)⊤β1 are symmetric random variables, Lemma C.4.7
applied to the linear model (C.8) gives us

P
(
|z′| ≥ γ̂

2

)
≤ 2P

(
|w′| ≥ γ̂

2

)
≤ 3ϵ

4 < ϵ,

which is part (i).
We now show that |γ̂| ≤ 8E |w′|

ϵ
on the event E . Suppose the contrary. By Markov’s

inequality, we would have

P
(
|w′| ≥ γ̂

2

)
≤ P

(
|w′| ≥ 4E |w′|

ϵ

)
≤ ϵ

4 ,

which contradicts inequality (C.9). Therefore, we must have γ̂ = O
(
E |w′|
ϵ

)
= O

(
κ
ϵ

)
, as

wanted.

C.7.1.2 Adversarial Contamination

We now consider the setting of Section 5.3.3. Since the adversarial contamination mecha-
nism might create dependencies between data points, the analysis of a sample-splitting
algorithm to estimate an appropriate parameter γ from the data, as in the previous sub-
section, becomes more complicated. A covering argument akin to the one employed in
the proof of Theorem 5.6.2 below could be used instead, albeit at the price of a slightly
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worse error rate. Another approach would be to tune the Huber parameter using Lepski’s
method [Lep91; Bir01b], at the expense of a slightly worse error probability due to a union
bound over a grid of parameter values. As noted in Remark 5.3.3, if the (k′)th moment
of the noise distribution is finite and known, Markov’s inequality implies that we can set
γ = Ω((E |z1 − z2|k

′)1/k′), for any positive k′.

C.7.2 Proof of Theorem 5.3.1

We will follow the proof structure of Sun et al. [SZF20]. The proof relies on the fact that
Lγ(β) is a convex function. We first show (Lemma C.7.2) that the gradient at β∗ is small,
and then show (Lemma C.7.3) that the loss function is strongly convex in a sufficiently
large ball around β∗. Combining these two observations, we conclude that β∗ is close
to the empirical minimizer, β̂H,γ . Our rates are substantially tighter than those of Sun et
al. [SZF20] due to the improved guarantees of Lemmas C.7.2 and C.7.3 in comparison to
the results in that paper.

We now state and prove the two supporting lemmas:

Lemma C.7.2. Consider the setting of Theorem 5.3.1. With probability at least 1− τ , the gradient
of the loss function satisfies

∥∇Lγ(β∗)∥2 ≲ γ
√
U

√p

n
+
√

log 1/τ
n

 .
Proof. We first note that the gradient at β∗ has a simple structure:

∇Lγ(β∗) = − 1
n

n∑
i=1

ψγ(yi − x⊤
i β

∗)xi = − 1
n

n∑
i=1

ψγ(zi)xi.

For brevity, we defineW := ∇Lγ(β∗) andWi = ψγ(zi). Note that since the zi’s are symmetric,
the Wi’s are i.i.d. bounded random variables and E(W ) = 0.

We will now show that W has sub-Gaussian concentration around 0. Let v be any unit
vector. Since the Wi’s are bounded by γ, the sub-Gaussian norm of v⊤Z can be bounded
using Proposition 2.6.1 of Vershynin [Ver18]:

∥v⊤W∥ψ2 ≲
1
n

√ ∑
i∈[n]

γ2(v⊤xi)2 ≤ γ

√
U

n
,

where the last step uses weak stability. Therefore, W is an O
(
γ
√

U
n

)
-sub-Gaussian vector,

so again using the results of Vershynin [Ver18] for the concentration of a sub-Gaussian
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vector, we have

∥W∥2 = ∥W − EW∥2 ≲ γ

√
U

n

√p+
√

log 1
τ

 ,
with probability at least 1− τ .

Lemma C.7.3. Consider the setting in Theorem 5.3.1. Let r, U , τ , and γ be such that

C2

(
r
√
U

γ
+ P

(
|zi| ≥

γ

2

)
+ log(1/τ)

n

)
≤ ϵ,

for a constant C2 > 0. Then with probability at least 1− τ , the loss function Lγ(β) is L-strongly
convex in the ball {β : ∥β − β∗∥2 ≤ r}.

Proof. First note that Lγ(β) is a convex function. The Hessian of Lγ is not defined due to
the fact that the Huber loss is not twice differentiable at γ. However, if we define the matrix

Hn(β) := 1
n

n∑
i=1

xix
⊤
i I
(
|yi − x⊤

i β| < γ
)
,

it follows that the strong convexity parameter ofL(β) is at least λmin(Hn) (see Lemma C.4.9).
LetW := supβ:∥β−β∗∥2≤r

1
n

∑n
i=1 I

(
|yi − x⊤

i β| ≥ γ
)

and define the event E := {W < ϵ}. By
the weak stability property, we are guaranteed that on the event E , we have λmin(Hn(β)) ≥ L

for any β such that ∥β − β∗∥2 ≤ r.
In the remainder of the proof, we will show that the event E holds with high probability.

We first note that W can be bounded from above, as follows:

W = sup
β:∥β−β∗∥≤r

1
n

n∑
i=1

I
(
|yi − x⊤

i β| ≥ γ
)

≤ sup
β:∥β−β∗∥≤r

1
n

n∑
i=1

I
(
|x⊤
i (β − β∗)| ≥ γ

2

)
+ 1
n

n∑
i=1

I
(
|zi| ≥

γ

2

)
. (C.10)

We can deterministically bound the first term using weak stability. Using the fact that for
x ≥ 0 and y > 0, the inequality I(x ≥ y) ≤ x

y
holds, we obtain the following bound for all β

such that ∥β − β∗∥2 ≤ r:

1
n

n∑
i=1

I
(
|x⊤
i (β − β∗)| ≥ γ

2

)
≤ 2
γ

∑n
i=1 |x⊤

i (β − β∗)|
n

≤ 2
γ

√√√√ 1
n

n∑
i=1
|x⊤
i (β − β∗)|2

≤ 2
γ

√
U∥β − β∗∥2

2 ≤
2r
√
U

γ
,
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where we also use weak stability and the Cauchy-Schwarz inequality. Altogether, we obtain

W ≤ 2r
√
U

γ
+ 1
n

n∑
i=1

I
(
|zi| ≥

γ

2

)
. (C.11)

Now let W ′ := 1
n

∑n
i=1 I

(
|zi| ≥ γ

2

)
. Note that

EW ′ = 1
n

n∑
i=1

E I
(
|zi| ≥

γ

2

)
= P

(
|zi| ≥

γ

2

)
.

Note thatW ′ is an empirical mean of indicator random variables. Thus, applying a Chernoff
bound (cf. Lemma C.4.1), we obtain

W ′ ≲ EW ′ + log(1/τ)
n

,

with probability at least 1−τ . Overall, we obtain the following bound onW : with probability
at least 1− τ ,

W ≲
r
√
U

γ
+ P

(
|z1| ≥

γ

2

)
+ log(1/τ)

n
. (C.12)

Therefore, the event E (and thus, the desired lower bound on Hn) holds with probability
1− τ , as long as the right-hand side of inequality (C.12) is less than ϵ.

With the help of Lemmas C.7.2 and C.7.3, we are ready to prove the theorem. Through-
out the remainder of the proof, let β̂ = β̂H,γ .

We first verify the conditions for Lemma C.7.3. By assumption, we have C2 log(1/τ)
n

≤ ϵ
3

and C2 P (|zi| ≥ γ/2) ≤ ϵ
3 . Therefore, for all r ≤ ϵγ

3C2
√
U

:= r∗, the condition of Lemma C.7.3
is satisfied, and the function Lγ is L-strongly convex in the region {β : ∥β − β∗∥2 ≤ r∗}.

For an η ∈ (0, 1], let β̂η be defined as β̂η := β∗ + η(β̂ − β∗), and let η∗ ∈ (0, 1] be the
largest η such that ∥β̂η − β∗∥2 ≤ r∗. Using the convexity of Lγ(β) with Lemma C.4.8 and
the Cauchy-Schwarz inequality, we have

⟨β̂η∗ − β∗,∇Lγ(β̂η∗)−∇Lγ(β∗)⟩ ≤ η∗⟨β̂ − β∗,∇Lγ(β̂)−∇Lγ(β∗)⟩

≤ η∗∥∇Lγ(β∗)∥2∥β̂ − β∗∥2, (C.13)

where we use the fact that∇Lγ(β̂) = 0. Using the L-strong convexity of Lγ in the ball of
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radius r∗ (cf. Lemma C.4.9) and inequality (C.13), we obtain

η∗∥∇Lγ(β∗)∥2∥β̂ − β∗∥2 ≥ ⟨β̂η∗ − β∗,∇Lγ(β̂η∗)−∇Lγ(β∗)⟩ ≥ L∥β̂η∗ − β∗∥2
2.

We now use Lemma C.7.2 and the fact that ∥β̂η∗−β∗∥2 = η∗∥β̂−β∗∥2 to obtain the following
bound:

∥β̂η∗ − β∗∥2 ≤
1
L
∥∇Lγ(β∗)∥2 ≤ C

γ
√
U

L

√p

n
+
√

log(1/τ)
n

 := Rn. (C.14)

Note that Rn

r∗ = 3CC2U
ϵL

(√
p
n

+
√

log(1/τ)
n

)
, so under the sample complexity assumption

n = Ω
((
p+ log

(
1
τ

))
U2

L2ϵ2

)
, we have Rn ≤ r∗, implying in particular that η∗ = 1 and β̂ = β̂η∗

satisfies the stated error bound.
The statement about L-strong convexity follows from the triangle inequality, since for

sufficiently large n, we have ∥β̂ − β∗∥2 ≤ Rn ≤ r∗

2 , so the function Lγ is L-strongly convex
in a ball of radius r∗

2 around β̂.

C.7.3 Proof of Theorem 5.3.4

We first note that by taking pairwise differences, we reduce our case to the symmetric
noise setting analyzed in Section 5.3.1: Given 2n data points, Algorithm 11 creates a data
set {(x′

i, y
′
i)}ni=1 satisfying the linear model y′

i = (x′
i)⊤β∗ + z′

i, where z′
i = zi−zn+i√

2 . Note that
the new covariates still satisfy Ex′

i = 0 and Ex′
i(x′

i)⊤ = I . Importantly, the errors are now
drawn from a symmetric distribution.

Let S1 be the set returned by the filter algorithm with cardinality Ω(n), and define the
event

E = {S1 satisfies weak stability with ϵ = Ω(1), L = Ω(1), and U = O(1)}.

We first give the proof of the theorem statement on the event E . Since the noise is symmetric
and independent of the covariates (thus also of E), we have P (|z′

i| ≥ γ/2) = O(ϵ), so
Theorem 5.3.1 applies and gives the desired result. In the rest of the proof, we will show
that E holds with probability 1− exp(−Ω(n)) ≥ 1− τ .

By Proposition C.6.1, if S1 is (ϵ1, δ1)-stable, then it also satisfies weak stability with
ϵ = ϵ1, L = (1 − ϵ1)

(
1− δ2

1
ϵ1

)
, and U = 1 + δ2

1
ϵ1

. Therefore, it suffices to show that S1 is
(ϵ1, δ1)-stable such that ϵ1 = Ω(1) and (say) δ2

1
ϵ1
< 0.5. By Proposition C.6.3, we know that

if ϵ′ < c∗ and n = Ω
(
p log p
ϵ′

)
, then with probability at least 1− O(exp(−Ω(nϵ′))), the set S1
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is (ϵ1, δ1)-stable with δ2
1
ϵ1
< 0.2 and ϵ1 = Ω(ϵ′). Therefore, choosing ϵ′ to be a small enough

constant, say c∗

2 , we conclude that the event E holds with probability 1−O(exp(−Ω(n))).
This requires that n = Ω

(
p log p
ϵ′

)
= Ω(p log p), completing the proof.

C.7.4 Proof of Theorem 5.3.6

In the course of this proof, we will need to refer to set functions that take a finite set
as the argument and return a value in R. The sets we consider will be of the form S =
{(u1, v1), (u2, v2), . . . , (un, vn)}, where ui ∈ Rp, vi ∈ R, and n ≥ 1. The set functions will be
of the following form:

F (S) :=
n∑
i=1

f(ui, vi),

for some f : Rp × R→ R. For ease of notation, we will use the following convention:

F (S) =
∑

(x,y)∈S
f(x, y).

This simplifies notation by avoiding explicit indexing of the elements in the sets being
considered. For example, if S ′ ⊆ S, we may express F (S ′) = ∑

(x,y)∈S′ f(x, y).
For ease of presentation, we also redefine the algorithm with different notation, as

reflected in Algorithm 15.

Algorithm 15 Huber Regression - Adversarial Corruption

1: function Huber_Regression_With_Filtering(T = {x′
i, y

′
i : i ∈ [2n]}, γ, ϵ′

1)
2: for i← 1 to n do
3: (x̃i, ỹi)←

(
x′

i−x
′
n+i√
2 ,

y′
i−y

′
n+i√
2

)
4: end for
5: T1 ← {(x̃i, ỹi)}ni=1
6: T2 ← FilteredCovariates(T1, ϵ

′
1)

7: β̂ ← HuberRegression(T2, γ)
8: return β̂
9: end function

We state the following technical lemma, which is proved in Appendix C.7.5:

Lemma C.7.4. Under the setting of Theorem 5.3.6, with probability at least 1− 2τ , we have the
following statements:
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(i) The filtered set of covariates T2 satisfies weak stability with parameters ϵ1 = Ω(1), L = Ω(1),
and U = O(1).

(ii) The gradient of the loss function satisfies ∥∇Lγ(β∗)∥2 ≲ γ
(√

p log p
n

+ ϵ1−1/k +
√

log(1/τ)
n

)
.

(iii) For r ≳ ϵ1γ√
U

, γ ≳ σ√
ϵ1

, and log(1/τ)
n

≲ ϵ1, the function Lγ is L-strongly convex in a ball of
radius r around β∗.

Note that we can then follow the proof of Theorem 5.3.1 exactly, where we replace
Lemmas C.7.2 and C.7.3 with statements (ii) and (iii) of Lemma C.7.4 and impose the
condition that ϵ is less than a small enough constant.

C.7.5 Proof of Lemma C.7.4

Proof of (i): Recall that T1 is a set of cardinality n, where we subtract pairs of points in
the corrupted data set (and rescale by

√
2). Analogously, we define the set S1, where we

perform pairwise subtraction on the uncorrupted data set S (and rescale by
√

2). It can be
shown that T1 is an (at most) 2ϵ-corrupted version of set S1, and S1 is a set of n i.i.d. data
points from a linear model, where (i) the covariates are drawn from a centered isotropic
distribution with kth moment bounded by cσx,k; and (ii) the additive noise is zero-mean,
symmetric, independent of the covariates, and of variance σ2.

By Theorem C.1.3, we know that with probability 1− τ , there exists a set S2 ⊆ S1 such
that |S2| ≥ (1− ϵ′

1)n and S2 is (ϵ2, δ2)-stable, where ϵ2 = Cϵ′
1 and δ2 ≲

√
p log p
n

+ σx,kϵ1
1−1/k +

σx,4
√

log(1/τ)
n

. Here, we take ϵ1 = p log p
n

+ 2ϵ and define ϵ′
1 = C

(
ϵ1 + log(1/τ)

n

)
, and note that

ϵ1, ϵ
′
1 = O(1) by our assumptions. Recall that T2 is the output of the filter algorithm on

the set T1 with parameter ϵ′
1 ≥ 2ϵ. Since T1 is an (at most) 2ϵ-corrupted version of S1,

the existence of the stable set S2, in conjunction with Theorem C.1.1, implies that with
probability 1 − τ : (i) T2 has cardinality at least (1 − c2ϵ

′
1)n, and (ii) T2 is (ϵ3, δ3)-stable,

where ϵ3 = c2ϵ2 and δ3 = c4δ2.
Moreover, by Proposition C.6.2, we know that for ϵ5 a small enough constant, with

probability at least 1−O(exp(−Ω(nϵ5))), every S3 ⊆ S1 with cardinality at least (1− ϵ5)n
satisfies the inequality λmin

(
1
n

∑
(x,y)∈S3 xx

⊤
)
≥ 0.8. Since the amount of corruption is

sufficiently small, we will be able to translate this guarantee to the filtered set T2.
We now choose ϵ5 ∈ (0, 1) to be a small enough constant and choose ϵ′

1 sufficiently small
(note that the latter is possible for a small enough choice of ϵ and large enough choice of
n), so that the following are satisfied simultaneously:
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1. Both δ2
2
ϵ2

= O(1) and δ2
3
ϵ3

= O(1): note that

δ2
2
ϵ2

≲
p log p
n

+ σ2
x,kϵ

2−2/k
1 + σ2

x,4
log(1/τ)

n

ϵ1 + log(1/τ)
n

≲ 1.

2. The cardinality of S2 satisfies |S2| ≥ (1− ϵ′
1)n ≥

(
1− ϵ5

20

)
n ≥ n

2 .

3. The cardinality of T2 satisfies |T2| ≥ (1− c2ϵ
′
1)n ≥

(
1− ϵ5

20

)
n ≥ n

2 .

4. The inequality 4ϵ < 4ϵ′
1 ≤ ϵ5

10 holds.

We now show that the covariates in T2 satisfy weak stability with ϵ6 = ϵ5
3 = Ω(1),

L = Ω(1), and U = O(1). Suppose T ′
2 ⊆ T2 is such that |T ′

2| ≥ (1− ϵ6)|T2|. Then

1
|T2|

λmax

 ∑
(x,y)∈T ′

2

xx⊤

 ≤ 1
|T2|

λmax

 ∑
(x,y)∈T2

xx⊤

 ≤ 1 + δ2
3
ϵ3

= O(1),

using the (ϵ3, δ3)-stability of T2, giving the upper bound U = O(1). To obtain the lower
bound, note that

|T ′
2 ∩ S1| ≥ |T ′

2| − |T2△S1|

≥ |T2|
(

1− ϵ5

3

)
− 2ϵn

≥ n
(

1− ϵ5

3

)(
1− ϵ5

20

)
− ϵ5n

20 ≥ (1− ϵ5)n.

Therefore, T ′
2 ∩ S1 is a subset of S1 with cardinality at least (1− ϵ5)n, and we conclude that

1
|T2|

λmin

 ∑
(x,y)∈T ′

2

xx⊤

 ≥ 1
n
λmin

 ∑
(x,y)∈T ′

2∩S1

xx⊤

 ≥ 0.8.

This gives the desired lower bound L = Ω(1).

Proof of (ii): Using the same strategy as in previous step, we can show that weak stability
also holds on S2 with parameters ϵ6, L = Ω(1), and U = O(1). We will use this fact to prove
concentration results analogous to Lemmas C.7.2 and C.7.3.

In fact, in the proof of Lemma C.7.2, the only property of the covariates that we leveraged
was the fact that they satisfy weak stability with U = O(1). Thus, we can analogously argue



479

that (since the additive noise is independent of the covariates)
∥∥∥∥∥∥ 1
|S2|

∑
(x,y)∈S2

∇ℓγ(y − x⊤β∗)

∥∥∥∥∥∥
2

≲ γ

√p

n
+
√

log(1/τ)
n

 , (C.15)

with probability at least 1− τ .
We will now translate this result back to T2 using the fact that both S2 and T2 are stable.

Let Lγ denote the Huber loss function with parameter γ applied to the set T2:

Lγ(β) = 1
|T2|

∑
(x,y)∈T2

ℓγ(y − x⊤β).

Using the triangle inequality together with the bound (C.15) and the notation z =
y − x⊤β∗, we then obtain

∥∇Lγ(β∗)∥2 =

∥∥∥∥∥∥ 1
|T2|

∑
(x,y)∈T2

xψγ(z)

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥ 1
|T2|

∑
(x,y)∈S2

xψγ(z)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1
|T2|

∑
(x,y)∈S2\T2

xψγ(z)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1
|T2|

∑
(x,y)∈T2\S2

xψγ(z)

∥∥∥∥∥∥
2

≲

∥∥∥∥∥∥ 1
|S2|

∑
(x,y)∈S2

xψγ(z)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1
|S2|

∑
(x,y)∈S2\T2

xψγ(z)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1
|T2|

∑
(x,y)∈T2\S2

xψγ(z)

∥∥∥∥∥∥
2

≲ γ

√p

n
+
√

log(1/τ)
n

+ δ2 + δ3

 ,
with probability at least 1− τ , where the last step uses Proposition C.6.6 and the stability
of S2 and T2. Using the bounds on δ2 and δ3 completes the proof.

Proof of (iii): We have shown that with probability at least 1 − 2τ , the sets S2 and T2

both satisfy weak stability with ϵ6, L = Ω(1), and U = O(1); in addition, statements (1)–(4)
hold in the proof of part (i) above. We denote this high-probability event by E , and show
that under the additional assumptions, the desired strong convexity statement holds on
the event E .

By the same argument used in the proof of Lemma C.7.3, we know that on event E , if
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r, γ, and τ satisfy the inequality

r
√
U

γ
+ σ2

γ2 + log(1/τ)
n

≲ ϵ6,

then

sup
β:∥β−β∗∥2≤r

1
|S2|

∑
(x,y)∈S2

I
(
|y − x⊤β| ≥ γ

)
≤ ϵ6

10 . (C.16)

Crucially, we use the fact that conditioned on the event E (which is entirely defined in
terms of the covariates), the noise random variables {zi = yi − x⊤

i β
∗ : (xi, yi) ∈ S2} remain

i.i.d.
Now let W := supβ:∥β−β∗∥2≤r

1
|T2|

∑
(x,y)∈T2

∑n
i=1 I

(
|y − x⊤β| ≥ γ

)
. Note that

W ≤ |T2 \ S2|
|T2|

+ sup
β:∥β−β∗∥2≤r

1
|T2|

∑
(x,y)∈S2

I
(
|y − x⊤β| ≥ γ

)
. (C.17)

On the event E , we can bound the first term by

|T2 \ S2|
|T2|

≤ |T1 \ S2|
n/2 ≤ 2

n
(|T1 \ S1|+ |S1 \ S2|) ≤

2
n

(
2ϵn+ ϵ6n

20

)
≤ 2ϵ6

5 ,

where the third inequality uses the fact that |S2| ≥ (1 − ϵ5/20)n, and the last inequality
uses the bound 4ϵ ≤ ϵ5

10 = 3ϵ6
10 , which were established in the proof of part (i). The second

term of inequality (C.17) can be bounded by

sup
β:∥β−β∗∥2≤r

1
|T2|

∑
(x,y)∈S2

I
(
|y − x⊤β| ≥ γ

)
= |S2|
|T2|
· sup
β:∥β−β∗∥2≤r

1
|S2|

∑
(x,y)∈S2

I
(
|y − x⊤β| ≥ γ

)
≤ n

n/2 ·
ϵ6

10 = ϵ6

5 ,

using inequality (C.16). Thus,

W ≤ 2ϵ6

5 + ϵ6

5 < ϵ6.

Now define the matrix

Hn(β) := 1
|T2|

∑
(x,y)∈T2

xx⊤ I
(
|y − x⊤β| < γ

)
.

It follows that the strong convexity parameter of Lγ(β) is at least λmin(Hn). Using the fact
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that T2 satisfies weak stability and W ≤ ϵ6, we conclude that on the event E , we have
λmin(Hn(β)) ≥ L for any β such that ∥β − β∗∥2 ≤ r, as wanted.

C.7.6 Proof of Theorem 5.3.11

We will show that conditions analogous to the ones stated in Lemma C.7.4 hold in this
setting. As the proof is very similar to the proof in Section C.7.5, we only highlight several
arguments which need to be adapted. We use the same notation defined in the previous
section.

Condition (i): Since the distribution of the covariates has a bounded covariance, Theo-
rem C.10.1 implies that, with probability at least 1− τ , the set S2 is (ϵ2, δ2)-stable, where
δ2 ≲

√
p log p
n

+
√
ϵ+

√
log(1/τ)

n
. Recall that we needed δ2

2
ϵ2

= O(1). This is still satisfied, since
n ≳ p log p and ϵ+ log(1/τ)

n
< c, for a sufficiently small positive constant c.

It remains to establish (ϵ, L, U)-weak stability of T2 with ϵ = Ω(1), L = Ω(1), and
U = O(1). Similar to the proof of Lemma C.7.4, the lower bounds on ϵ and L follow from
the properties of S2 which hold by the small ball property of the covariates, as shown in
Proposition C.6.2.

Condition (ii): As shown in the proof of Lemma C.7.4, the norm of the gradient is
bounded as ∥∇Lγ(β∗)∥2 ≲ γ

(√
p
n

+
√

log(1/τ)
n

)
+ δ2 + δ3. Since δ3 = O(δ2), the bound on δ2

established in the previous paragraph suffices.

Condition (iii): This is exactly same as before, because we only used weak stability of
the sets S2 and T2 to show this result.

C.8 Least Trimmed Squares
In this appendix, we provide additional proof details for the results in Section 5.4.

C.8.1 Proof of Theorem 5.4.2

We begin by stating the following deterministic result, which is implicit in Bhatia et
al. [BJKK17]. For completeness, we provide a proof in Appendix C.8.2. Recall the defini-
tions of the SSC and SSS properties from Definition 5.2.7.
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Lemma C.8.1. (Adapted from Lemma 5 of Bhatia et al. [BJKK17]) Suppose y = Xβ∗ + z, where
the SSC and SSS parameters of the xi’s, denoted by {λk} and {Λk}, respectively, satisfy Λ2m

λn
< 1

4

and Λn = O(λn). Suppose z = w + b∗, for some vector w ∈ Rn and an m-sparse vector b∗ ∈ Rn,
and let G and H be numbers such that G ≥ supS′:|S′|≤2m

√∑
i∈S′ w2

i and H ≥ ∥∑n
i=1 xiwi∥2.

Then Algorithm 12, after J ≿ log2

(
∥b∗∥2

2G+2H/
√
λn

)
iterations, outputs an estimator β̂ such that

∥β̂ − β∗∥2 ≲ G
√

Λn+H
λn

.

Remark C.8.2. The proof of Lemma C.8.1 actually implies that for any error level e ≳ G
√

Λn+H
λn

,
Algorithm 12 is guaranteed to output an estimator satisfying the error bound ∥β̂ − β∗∥2 ≤ e after
J ≳ log2

(
∥b∗∥2
e

)
iterations. This form of the result is helpful in settings such as Theorem 5.4.2

below, where we can obtain data-driven upper bounds on G and H , and consequently also on the
term G

√
Λn+H
λn

, which hold with high probability. Together with a data-driven upper bound on ∥b∗∥2,
this provides a calculable lower bound on the number of iterations required for Algorithm 12 to
succeed in outputting an estimator with small error.

Note that the statement of Lemma C.8.1 is deterministic: In Bhatia et al. [BJKK17],
it was shown that when the covariates are i.i.d. Gaussian, the SSC and SSS conditions
hold with high probability. Our proof of Theorem 5.4.2 essentially proceeds by showing
that these conditions hold with high probability for possibly heavy-tailed, adversarially
contaminated covariates after applying filtering.

Turning to the proof of the theorem, we will use the notation zi := yi − x⊤
i β

∗ and
z′
i := y′

i − (x′
i)⊤β∗. Let m = C1

(
p log p+ ϵn+ log

(
1
τ

))
, for a large enough constant C1 > 6

to be chosen later. We will now apply Proposition C.6.3 with ϵ1 = C2m
n

, for a constant C2 ≥ 1
to be decided later. In order for Proposition C.6.3 to be applicable, we need ϵ1 < c∗ and
n = Ω

(
p log p
ϵ1

)
: For any C2, the latter condition can be satisfied by choosing C1 sufficiently

large, and then the former condition can be satisfied by restricting ϵ, log(1/τ)
n

, and p log p
n

to be
less than sufficiently small constants. Let T1 ⊆ T be the set of data points corresponding
to covariates which survive the filter algorithm, and let n1 := |T1|. Proposition C.6.3
guarantees that with probability at least 1− 2τ , we have

• |T1| ≥ (1− c1ϵ1)n ≥ n
2 ,

• the covariates of the points in T1 are (ϵ2, δ2)-stable, where

δ2 = O

√p log p
n

+ σx,4ϵ
3/4
1 + σ4

√
log(1/τ)

n


and ϵ2 = Θ(ϵ1), and
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• δ2
2
ϵ2
< 0.05.

We will now choose C2 sufficiently large such that ϵ2n = Θ(ϵ1n) = Θ(C2m) > 4m. From
here on, we will also assume that ϵ, log(1/τ)

n
, and p log p

n
are bounded such that 4m ≤ n.

We now show that the SSC and SSS parameters of the covariates in T1 are well-behaved,
so that Lemma C.8.1 applies. We will apply the lemma to the model

y′
i = (x′

i)⊤β∗ + wi + b∗
i , 1 ≤ i ≤ n1, (C.18)

where for a set T2 ⊆ T1 to be defined later, we define the vector w ∈ Rn1 according to

wi :=

zi, if (xi, yi) ∈ T2,

0, otherwise,

and then simply define b∗ := y′
i − (x′

i)⊤β∗ − w. Let the SSC and SSS parameters of T1 be
denoted by {λk} and {Λk}, respectively. Note that

Λ2m ≤ Λϵ2n/2 ≤ Λϵ2n1 ≤
3n1δ

2
2

ϵ2
≤ 0.15n1,

where we have used Proposition C.6.4 in the third inequality. By the (ϵ2, δ2)-stability of T1,
we have λn1 ≥ n1

(
1− δ2

2
ϵ2

)
≥ 0.9n1. Therefore, Λ2m

λn1
≤ 1

4 . Since

Λn1 ≤ n1

(
1 + δ2

2
ϵ2

)
≤ 1.05n1,

we also have Λn1 = O(λn1). Thus, the eigenvalue conditions of Lemma C.8.1 are indeed
satisfied.

We now turn to the definition of T2 and show that with this definition, b∗ is m-sparse.
Let S2 ⊆ S be the set of n− m

4 uncontaminated data points with the smallest values of |zi|.
Let F be the cumulative distribution function of |zi| and let F−1 be its generalized inverse,
i.e., F−1(p) = inft P(|z| ≤ t) ≥ p. Note that by a Chernoff bound, we have

∣∣∣∣{i ∈ [n] : |zi| > F−1
(

1− m

8n

)}∣∣∣∣ ≤ m

4 , (C.19)

with probability at least 1− exp(−Ω(m)). Let S ′
2 := S2 ∩ T denote the corresponding set of

data points that are preserved after corruption.
Next, let qi := xizi, for 1 ≤ i ≤ n, and note that the qi’s are i.i.d. random variables

with mean zero and covariance σ2I . Applying Theorem C.1.3 with ϵ3 = m
3n on the set
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S ′ := {q1, . . . , qn}, we see that, with probability except O(exp(−Ω(m))), there exists a set
S3 ⊆ S ′ such that (i) |S3| ≥ (1−ϵ3)n, and (ii) S3 is (C4ϵ3, δ3)-stable with respect to σ2, where
C4 = c1C2 + 1 and δ3 = O

(√
p log p
n

+ σ
√

m
n

)
. Let S ′

3 := {(xi, yi) : xizi ∈ S3} ∩ T denote the
corresponding set of (x, y) pairs that are also preserved after corruption.

Finally, we define the set
T2 := T1 ∩ S ′

2 ∩ S ′
3.

Note that

|T1 \ T2| ≤ (|S \ S2|+ |T \ S|) + (|S ′ \ S3|+ |T \ S|) ≤ 2ϵn+ m

4 + m

3 ≤ m,

where we use the fact that m ≥ 6ϵn (since C1 > 3). Thus, the vector b∗ ∈ Rn1 is indeed
m-sparse, and Lemma C.8.1 implies an error bound of order G√

n1
+ H

n1
= O

(
G√
n

+ H
n

)
. It

remains to control the parameters G and H .
Recall that with high probability, inequality (C.19) holds, in which case the nonzero

entries of wi have magnitude at most F−1
(
1− m

8n

)
. Thus, we have

sup
S′:|S′|≤2m

√∑
i∈S′

w2
i ≤
√

2mF−1
(

1− m

8n

)
≲
√
m
(
m

n

)−1/k′

,

where the second inequality follows from the (k′)th moment condition on zi. Thus, we may
take G = O

(√
m
(
m
n

)−1/k′)
.

Turning to H , note that with high probability, we have

|T2|
|S3|
≥ |T1| −m

n
≥ 1− c1ϵ1 −

m

n
= 1− (c1C2 + 1)m

n
= 1− C4ϵ3.

Hence, the (C4ϵ3, δ3)-stability of S3 implies that

∥∥∥∥∥
n1∑
i=1

x′
iwi

∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

(x,y)∈T2

xizi

∥∥∥∥∥∥
2

≤ |T2|σδ3 ≤ nσδ3,

where we employ the notation used in the proof of Theorem 5.3.6 in the second expression.
Therefore, H ≤ nσδ3.

Altogether, we arrive at the error bound

∥β̂ − β∗∥2 ≤
G√
n

+ H

n
≲ σ

(
δ3 + σz,k′

(
m

n

) 1
2 − 1

k′
)
≲ σσz,k′

(
p log p
n

+ ϵ+ log(1/τ)
n

) 1
2 − 1

k′

,



485

where we use the value of m and the fact that δ3 ≲ σz,k′

(
m
n

)1/2−1/k′

. Moreover, the prob-
ability of error is at most O(exp(−Ω(m))). Lastly, we choose C1 large enough so that the
error probability is at most O(τ).

Finally, we bound the number of iterations of the alternating minimization algorithm
required to guarantee the desired accuracy bound. In light of Remark C.8.2, it suffices to
obtain a high-probability upper bound on ∥b∗∥2 that can be computed from the data. Recall
the notation S = (X, y) and T = (X ′, y′) for the i.i.d. and corrupted data sets, respectively,
and recall that T1 ⊆ T denotes the filtered data set. Abusing notation slightly, we write the
model (C.18) in matrix/vector form as y′

T1 = X ′
T1β

∗ + wT1 + b∗
T1 . We claim that

∥b∗
T1∥2 = O (∥y′∥2(1 + ∥X ′∥2)) , (C.20)

with probability at least 1−O(exp(−Ω(n))).
Recall that by construction, either b∗

i = 0 or wi = 0 for each i in the model (C.18). Thus,
by the triangle inequality, we have

∥b∗
T1∥2 ≤ ∥y′

T1∥2 + ∥X ′
T1β

∗∥2 ≤ ∥y′∥2 + ∥X ′β∗∥2 ≤ ∥y′∥2 + ∥X ′∥2∥β∗∥2.

We now use concentration properties of the i.i.d. points in S to obtain a data-driven upper
bound on ∥β∗∥2. Note that E(y2

i ) = ∥β∗∥2
2 + σ2. Furthermore, by Lemma C.4.6 and the

convexity of the absolute value function, we have

E |yi| = E |x⊤
i β

∗ + zi| ≥ max{E |x⊤
i β

∗|,E |zi|}.

Furthermore, we can lower-bound both E |x⊤
i β

∗| and E |zi| using Proposition C.9.1 and
Assumption 5.2.1:

E |x⊤
i β

∗| ≥ ∥β
∗∥2

σ2
x,4

,

E |zi| ≥
σ

σ2
z,4
,

using the assumption that (E |zi|4)1/4 ≤ σz,4σ by (4, 2)-hypercontractivity.
By the Paley-Zygmund inequality (e.g., see Exercise 2.4 of Boucheron et al. [BLM13]),

we have

P
(
|yi| ≥

E |yi|
2

)
≥ (E |yi|)2

4E y2
i
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≥
max

{
∥β∗∥2

2
σ4

x,4
, σ2

σ4
z,4

}
4(∥β∗∥2

2 + σ2)

≥ 1
max{σ4

x,4, σ
4
z,4}
·

1
2 (∥β∗∥2

2 + σ2)
4(∥β∗∥2

2 + σ2)

= 1
8 max(σ4

x,4, σ
4
z,4)

.

Thus,

P
(
|yi| ≥

∥β∗∥2

2σ2
x,4

)
≥ 1

8 max{σ4
x,4, σ

4
z,4}

.

Let γ = 16 max{σ4
x,4, σ

4
z,4}, which is assumed to beO(1). LetW be the ⌈(1− 1/γ)n⌉th largest

|yi|. Then by a Chernoff bound, we have

P
(
W <

∥β∗∥2

2σ2
x,4

)
≤ exp

(
−Ω

(
n

α

))
.

Finally, for ϵ < 1
2γ , we have maxi |y′

i| ≥ W . Therefore, with high probability,

∥β∗∥2 ≤ 2σ2
x,4 max

i
|y′
i| = O(∥y′∥2).

This completes the proof.

C.8.2 Proof of Lemma C.8.1

In this appendix, we reproduce the proof of the convergence guarantee for alternating
minimization from Bhatia et al. [BJKK17].

We begin by introducing some additional notation: For a vector a ∈ Rn and a set S ⊆ [n],
we will use aS to denote the vector q ∈ Rn such that (i) for i ∈ S, qi = vi; and (ii) for i ̸∈ S,
qi = 0. Similarly, for a matrix A ∈ Rn×p and a set S ⊆ [n], we will use AS to denote the
matrix Q ∈ Rn×p such that (i) for i ∈ S, the ith row of Q is the same as the ith row of A; and
(ii) for i ̸∈ S, all entries in the ith row of Q are 0.

Lemma C.8.3. Suppose a ∈ Rn. Let b = HTr(a), let S1 = supp(b), and let S ⊆ [n] be such that
S1 ⊆ S. Then for any r-sparse vector c, we have ∥b− aS∥2 ≤ ∥c− aS∥2.

Proof. Without loss of generality, let a be such that |a1| ≥ |a2| ≥ · · · ≥ |an|. Then S1 = [r].
Note that for any vector c, we have

∥c− aS∥2
2 ≥ ∥cS − aS∥2

2 =
∑
i∈S

(ci − ai)2.
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It is not hard to see that the right-hand expression is minimized over r-sparse vectors when
ci = ai for i ∈ S1 and ci = 0 for i ∈ S \ S1. This yields the expression ∥b− aS∥2

2, completing
the proof.

Using the notation from Bhatia et al. [BJKK17], let X ∈ Rd×n denote the matrix of
covariates, let Y ∈ Rn denote the vector of responses, and let Z := Y −X⊤β∗. (Note that
the matrix X is now defined to be the transpose of the design matrix that we denote by X
elsewhere in the paper.) Recall that the model is Y = X⊤β∗ + w + b∗, where the idea is
that w has small entries and is nearly orthogonal to X , whereas b∗ is m-sparse.

Recall that bj was defined iteratively in the algorithm, and further define

λj := (XX⊤)−1X(bj − b∗),

g := (I − PX)w.

Note that the update step can be written as follows:

bj+1 = HTm

(
PXb

j + (I − PX)(X⊤β∗ + w + b∗)
)

= HTm(b∗ +X⊤λj + g),

using the fact that X⊤ = PXX
⊤. Denote Ij := supp(bj)∪ supp(b∗). Applying Lemma C.8.3

with a = b∗ +X⊤λj + g and S = Ij+1, we have

∥bj+1 − (b∗ +X⊤λj + g)Ij+1∥2 ≤ ∥b∗ − (b∗ +X⊤λj + g)Ij+1∥2

= ∥b∗ − b∗ −X⊤
Ij+1

λj − gIj+1∥2 = ∥X⊤
Ij+1

λj + gIj+1∥2,

where we use the fact that supp(b∗) ⊆ Ij+1. By the triangle inequality, we then have

∥bj+1 − b∗∥2 ≤ ∥bj+1 − b∗ −X⊤
Ij+1

λj − gIj+1∥2 + ∥X⊤
Ij+1

λj + gIj+1∥2

≤ 2∥X⊤
Ij+1

λj + gIj+1∥2 ≤ 2∥X⊤
Ij+1

λj∥2 + 2∥gIj+1∥2.

We bound each of the latter two terms separately. For the first term, we use the definition
of λj and the eigenvalue bounds on the covariates to write the following:

∥X⊤
Ij+1

λj∥2 = ∥X⊤
Ij+1

(XX⊤)−1XIj+1(bj − b∗)∥2 ≤
Λ2m

λn
∥bj − b∗∥2.

We now focus on the second term. By the triangle inequality, we have

∥gIj+1∥2 = ∥WIj+1 −X⊤
Ij+1

(XX⊤)−1XW∥2

≤ ∥WIj+1∥2 + ∥X⊤
Ij+1

(XX⊤)−1XW∥2
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≤ G+ H√
λn
,

using the fact that WIj+1 is at most 2m-sparse and the bound

∥X⊤
Ij+1

(XX⊤)−1XW∥2 ≤
√

Λ2mH

λn
≤ H√

λn
.

Combining the inequalities yields the bound

∥bj+1 − b∗∥2 ≤
2Λ2m

λn
∥bj − b∗∥2 + e0 ≤

1
2∥b

j − b∗∥2 + e0, (C.21)

where e0 := 2G + 2 H√
λn

and we have used the assumption that 2Λ2m

λn
≤ 1

2 . Iterating the
bound, we see that ∥bj − b∗∥ ≤ 3e0 whenever j ≥ log2

(
∥b0−b∗∥2

e0

)
.

To bound the final error between βj and β∗, we note that βj − β∗ = (XX⊤)−1X(W +
b∗ − bj). Using the definitions of G and H , we have

∥βj − β∗∥2 = ∥(XX⊤)−1X(W + b∗ − bj)∥2 ≤
∥X(W + (b∗ − bj))∥2

λn

≤ ∥XW∥2 + ∥X(b∗ − bj)∥2

λn
≲

H +
√

Λn

(
G+ H√

λn

)
λn


≲
H +G

√
Λn

λn
,

completing the proof.

C.9 Least Absolute Deviation
In this appendix, we provide additional proof details for the results in Section 5.5.

C.9.1 Auxiliary Results

Proposition C.9.1. Suppose Z satisfies EZ2 = 1 and EZ4 <∞. Then E |Z| > 1/
√
E |Z|4.

Proof. We apply Hölder’s inequality, which states that

E |XY | ≤ (E |X|p)1/p(E |Y |q)1/q,
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for p ∈ (1,∞) and q = p
p−1 . Taking X = Z4/3, Y = Z2/3, and p = 3, we have

1 = EZ2 ≤ (E(|Z|4/3)3)1/3(E(|Z|2/3)3/2)2/3 = (E |Z|4)1/3(E |Z|)2/3.

Lemma C.9.2. Let X1, . . . , Xn be i.i.d. nonnegative random variables and let ϵ ∈ (0, 1). Then with
probability 1− 2 exp(−cnϵ), the trimmed sum satisfies

(1−ϵ)n∑
i=1

X(i) = O

(
nEXi

ϵ

)
,

where {X(i)}ni=1 are order statistics.

Proof. Let F be the cdf of the Xi’s, and let F−1 be its inverse, so F−1(1 − ϵ) = inf{t :
P(Xi > t) ≤ ϵ} for ϵ ∈ [0, 1]. Let a := F−1

(
1− ϵ

3

)
and define Zi = min(Xi, a). Note that∑n

i=1 Zi ≤ an.
Now let Yi = I{Xi > a} and define the event

E :=
{

n∑
i=1

Yi < ϵn

}
.

We have
EYi = P(Xi > a) = P

(
Xi > F−1

(
1− ϵ

3

))
≤ ϵ

3 .

Applying a Chernoff bound, we therefore have

n∑
i=1

Yi ≤
2ϵn
3 ,

with probability at least 1− exp(−cnϵ), implying that P(E) ≥ 1− exp(−c2nϵ).
Finally, note that on the event E , we have

(1−ϵ)n∑
i=1

X(i) ≤
n∑
i=1

Zi ≤ an.

Applying Markov’s inequality, we have P
(
Xi ≥ 4EXi

ϵ

)
≤ ϵ

4 < ϵ
3 . Therefore, a ≤ 4EXi

ϵ
,

completing the proof.

Lemma C.9.3. Suppose the covariates x1, . . . , xn are sampled i.i.d. from a distribution satisfying
Assumption 5.2.1. With probability 1− 2 exp(−cnϵ), we have that for any unit vector v and any



490

S ⊆ [n] with |S| ≥ (1− ϵ)n, the following holds:

1
n

∑
i∈S
|x⊤
i v| ≥

1
σ2
x,4
−O

(√
ϵ+

√
p

n

)
.

Proof. Let Q be the threshold C
(√

1
ϵ

+ 1
ϵ

√
p
n

)
from Lemma C.4.3. Let E denote the event

from Lemma C.4.3, stating that for any unit vector v, we have
∣∣∣{i : |x⊤

i v| ≥ Q}
∣∣∣ ≤ ϵn. By

the lemma, we know that P(E) ≥ 1− exp(−cnϵ).
We will now assume that the event E holds and incur an additional failure probability

of exp(−cnϵ) by a union bound. Define the function f : R+ → R+, as follows:

f(x) =

x, if x ∈ [0, Q],

Q, otherwise,
,

and let g(x) = −f(x). For any v ∈ Sp−1, on the event E , we have the following bound:

min
S:|S|≥(1−ϵ)n

∑
i∈S
|x⊤
i v| ≥

n∑
i=1

f(|x⊤
i v|)− ϵQn

= −
(

n∑
i=1

g(|x⊤
i v|)− E g(|x⊤

i v|)
)

+ nE f(|x⊤
i v|)− ϵQn.

Taking an infimum over v, we then have

inf
v∈Sp−1

min
S:|S|≥(1−ϵ)n

∑
i∈S
|x⊤
i v|

≥ −ϵQn− sup
v∈Sp−1

(
n∑
i=1

g(|x⊤
i v|)− E g(|x⊤

i v|)
)

+ n
(

inf
v∈Sp−1

E f(|x⊤
i v|)

)
. (C.22)

Now define the random variable

N := sup
v∈Sp−1

n∑
i=1

g(|x⊤
i v|)− E g(|x⊤

i v|).

We first bound the expectation of N using symmetrization and contraction of Rademacher
averages [LT91; BLM13]:

EN ≤ 2E sup
v∈Sp−1

∣∣∣∣∣
n∑
i=1

ξig(|x⊤
i v|)

∣∣∣∣∣ ≤ 4E sup
v∈Sp−1

∣∣∣∣∣
n∑
i=1

ξix
⊤
i v

∣∣∣∣∣
≤ 4E

(∥∥∥∥∥
n∑
i=1

ξixi

∥∥∥∥∥
2

sup
v∈Sp−1

∥v∥2

)
≤ 4

√√√√√E

∥∥∥∥∥
n∑
i=1

ξixi

∥∥∥∥∥
2

2
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= 4

√√√√E
(

n∑
i=1

x⊤
i xi

)
= 4

√√√√ n∑
i=1

E
(
tr(x⊤

i xi)
)

= 4
√√√√ n∑
i=1

E
(
tr(xix⊤

i )
)

= 4
√√√√ n∑
i=1

tr
(
E
(
xix⊤

i

))
= 4√pn,

where the ξi’s are i.i.d. Rademacher random variables. We now bound the following term
(which is usually called the wimpy variance [BLM13]):

σ2 := sup
v
nVar(g(|x⊤

i v|)) ≤ sup
v
nE |x⊤

i v|2 = n .

Using Talagrand’s inequality for bounded empirical processes (cf. Lemma C.4.2), we
therefore have

N = O(√pn+
√
n
√
nϵ+Qnϵ) = O(√pn+ n

√
ϵ+ n

√
ϵ+√pn) = O(√pn+ n

√
ϵ), (C.23)

with probability at least 1− exp(−c′nϵ).
Finally, note that for any v ∈ Sp−1, the Cauchy-Schwarz inequality gives

E
∣∣∣f(|x⊤

i v|)− |x⊤
i v|

∣∣∣ ≤ E
(
|x⊤
i v| I{|x⊤

i v| > Q}
)

≤
√
E(x⊤

i v)2
√
P(|x⊤

i v| ≥ Q) ≤

√√√√E(x⊤
i v)2

Q2

= O(
√
ϵ),

where the last two steps use Markov’s inequality and the fact that Q = Ω(1/
√
ϵ). Thus,

E f(|x⊤
i v|) ≥ E |x⊤

i v| −O(
√
ϵ) ≥ 1

σ2
x,4
−O(

√
ϵ), (C.24)

where the second inequality follows from Proposition C.9.1.
Combining inequalities (C.22), (C.23), and (C.24), we obtain the bound

1
n

inf
v∈Sp−1

min
S:|S|≥(1−ϵ)n

∑
i∈S
|x⊤
i v| ≥ inf

v
E f(|x⊤

i v|)− ϵQ−
N

n

≥ 1
σ2
x,4
−O

(√
p

n
+
√
ϵ
)
.

This completes the proof.
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C.9.2 Proof of Theorem 5.5.1

Our main result relies on the following lemma from Karmalkar and Price [KP19], who
showed that if the covariates satisfy (ϵ,m,M, ℓ1)-stability, then the LAD estimator is robust
to corruption in responses. We provide a proof for completeness:

Lemma C.9.4. (Karmalkar and Price [KP19]) Suppose the covariates satisfy (m,M, ϵ, ℓ1)-stability
such that M > m. Then ∥β̂LAD − β∗∥2 = O

(∑(1−ϵ)n

i=1 |z|(i)
n(M−m)

)
.

Proof. We denote β̂ = β̂LAD for brevity. Let S be the set of (1− ϵ)n indices with the smallest
magnitudes of additive errors. We have the following:

0 ≥
∑
i∈S
|yi − x⊤

i β̂| −
∑
i∈S
|yi − x⊤

i β
∗|+

∑
i∈Sc

|yi − x⊤
i β̂| −

∑
i∈Sc

|yi − x⊤
i β

∗|

≥
∑
i∈S
|x⊤
i (β̂ − β∗)| − 2

∑
i∈S
|yi − x⊤

i β
∗| −

∑
i∈Sc

|x⊤
i (β̂ − β∗)|,

≥ nM∥β̂ − β∗∥2 − 2
∑
i∈S
|zi| − nm∥β̂ − β∗∥2,

where the first inequality follows by the optimality of β̂, the second inequality uses the
triangle inequality, and the third inequality uses the property of (ϵ,m,M, ℓ1)-stability.
Rearranging the inequality and using the fact that ∑i∈S |zi| ≤

∑(1−ϵ)n
i=1 |z|(i), we obtain the

desired result.

The following lemma shows that the filtered covariates satisfy (m,M, ϵ, ℓ1)-stability:

Lemma C.9.5. Let S be the data set described in Theorem 5.5.1. For an ϵ1 < c∗, let T be an
ϵ1-corrupted version of set S. Let T1 be the output of the filter algorithm on input T and ϵ′, where
ϵ′ = Θ(1). Then with probability at least 1 − O(exp(−Ω(n))), the set T1 satisfies (ϵ2,m,M, ℓ1)-
stability with ϵ2 = Θ(1), m = Θ(1), M = Θ(1), andM ≥ 2m, and these parameters do not depend
on ϵ1. Moreover, |T1| ≥ n

2 .

Proof. We provide a sketch of the proof here; more details may be found in Appendix C.9.3.
We show that the lower bound (on M) in Definition 5.2.8 is satisfied due to the small-ball
property [Men15], and that the filtering algorithm removes the “outliers” in the data set,
leading to the upper bound (on m). The proof of the lower bound is given in Lemma C.9.3,
which follows similar calculations from previous work [KM15; DKP20]. These arguments
show that if n = Ω(p log p), the ℓ1-stability lower bound holds with M ≥ 1

2σ2
4
. For the upper

bound, we use the fact that the filtered set T1 is (ϵ, δ)-stable. Then Proposition C.6.5 implies
that for T ′ ⊆ T1 with |T ′| ≤ ϵ|T1|, and any unit vector v, we have 1

|T1|
∑
i∈T ′ |x⊤

i v| ≤ 2δ, so
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the stability upper bound holds with m ≤ 2δ. We choose the parameter values such that
M ≥ 1

2σ2
4
≥ 4δ ≥ 2m = Ω(1).

Lemma C.9.5 states that, with probability at least 1 − O(exp(−Ω(n)), the set T1 ob-
tained by running the filtering algorithm on T satisfies (ϵ2,m,M, ℓ1)-stability, where 2m ≤
M = Θ(m) and ϵ2 = Θ(1). We assume that ϵ is small enough such that ϵ2 > 4ϵ. Apply-
ing Lemma C.9.4, we claim that the ℓ2-estimation error is bounded by a constant times∑n−ϵ2n1
i=1 |y′ − X ′β∗|(i), where we denote the corrupted data set by T = {(x′

i, y
′
i)}ni=1 and

n1 = |T1| = (1− ϵ′)n. Indeed, the bound in Lemma C.9.4 involves a sum of the (1− ϵ2)n1

smallest residuals in the filtered data set. Each of these terms appears in the set of residuals
{|y′

i − x′⊤
i β

∗|}ni=1 for T , so the aforementioned sum is certainly upper-bounded by the sum
of all but the ϵ2n1 largest residuals for T . Furthermore, we have

n−ϵ2n1∑
i=1
|y′ −X ′β∗|(i) ≤

n−ϵ2n/2∑
i=1

|y′ −X ′β∗|(i) ≤
n−ϵ2n/2+ϵn∑

i=1
|y −Xβ∗|(i) ≤

n−ϵ2n/4∑
i=1

|y −Xβ∗|(i),

where the first inequality uses the fact that n1 ≥ n
2 , the second inequality uses the fact

that T differs from S in at most ϵn points, and the last inequality uses the fact that ϵ ≤ ϵ2
4 .

Applying Lemma C.9.2, we see that the final quantity is at most O
(
nκ
ϵ2

)
, with probability at

least 1−O(exp(−Ω(nϵ2))). Since ϵ2 = Ω(1), this completes the proof.

C.9.3 Proof of Lemma C.9.5

We follow the proof strategy from Koltchinskii and Mendelson [KM15] and Diakonikolas
et al. [DKP20].

Let T1 = {(x′
i, y

′
i)}n1

i=1 be the output of the filter algorithm with inputs T and ϵ′, where
ϵ1 < ϵ′. By Proposition C.6.3, with probability at least 1− 2 exp(−nϵ′), the set T1 is (ϵ2, δ2)-
stable, where ϵ2 = Θ(ϵ′) and δ2 = O

(√
p log p
n

+
√
ϵ′
)

, and T1 has cardinality n1 ≥ (1− c1ϵ
′)n.

Furthermore, we choose ϵ1 and ϵ′ sufficiently small to guarantee that n1 ≥ n
2 . Therefore, for

any T ′ ⊆ T1 such that |T ′| ≤ ϵ2|T1|, Proposition C.6.5 states that for all unit vectors v,

1
n1

∑
x′

i∈T ′

|v⊤x′
i| ≤ 2δ2. (C.25)

Let T2 ⊆ T1 be a set such that |T2| ≥ (1− ϵ2)|T1|. Since |T1| = n1 ≥ n
2 , we have

|T2 ∩ S| = |S| − |S \ T | − |T \ T1| − |T1 \ T2| ≥ n− ϵ1n− c1ϵ
′n− ϵ2n1 ≥ (1− ϵ1 − c1ϵ

′ − ϵ2)n

≥ (1− c3ϵ
′)n, (C.26)
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where c3 is a constant, using the facts that ϵ1 < ϵ′ and ϵ2 = Θ(ϵ′).
Now suppose n = Ω(pσ4

x,4) and ϵ0 = O
(

1
σ4

x,4

)
. By Lemma C.9.3, we know that, with

probability at least 1− exp(−Ω(nϵ0)), we have

1
n

∑
i∈S′
|x⊤
i v| ≥

1
2σ2

x,4
, (C.27)

for any S ′ ⊆ [n] such that |S ′| ≥ (1 − ϵ0)n and any v ∈ Sp−1. Hence, if c3ϵ
′ ≤ ϵ0, inequali-

ties (C.26) and (C.27) together imply that

1
|T1|

∑
x′

i∈T2

|v⊤x′
i| ≥

1
n

∑
xi∈T2∩S

|v⊤xi| ≥
1

2σ2
x,4
. (C.28)

From inequalities (C.25) and (C.28), we conclude thatT1 satisfies
(
ϵ2,m = 2δ2,M = 1

2σ2
x,4
, ℓ1

)
-

stability with the desired probability. Note that if we choose n = Ω(p log p) large enough
and ϵ′ to be a sufficiently small constant, we can guarantee that c2ϵ2 ≤ ϵ0 and δ2 is
sufficiently small, so 2m ≤M .

C.10 Postprocessing
In this appendix, we provide additional proof details for the results in Section 5.6. We will
use the following result from Diakonikolas et al. [DKP20], which gives a result correspond-
ing to Theorem C.1.3 when the distribution only has a finite variance:

Theorem C.10.1. (Diakonikolas et al. [DKP20]) Let S be a set of n i.i.d. points from a distribution
in Rp with mean µ and covariance Σ ⪯ σ2I for some σ ≥ 0. Let ϵ and τ be such that ϵ′ =
C
(
ϵ+ log(1/τ)

n

)
= O(1), for a large enough constant C. Then with probability at least 1− τ , there

exists a subset S ′ ⊆ S such that |S ′| ≥ (1− ϵ′)|S| and S ′ is (C1ϵ
′, δ)-stable with respect to µ and

σ2, where C1 > 2 is any large constant and δ = O
(√

p log p
n

+
√
ϵ+

√
log(1/τ)

n

)
, with prefactor

depending on C1.

C.10.1 Proof of Theorem 5.6.1

We will use the following result from Diakonikolas et al. [DKP20], which shows that
applying iterative filtering to {z1, . . . , zk} returns a sub-Gaussian estimate of the mean of
the original sample:

Theorem C.10.2. (Diakonikolas et al. [DKP20]) LetS be a set of n i.i.d. samples from a distribution
with mean µ and covariance Σ. Let T be an ϵ-corrupted version of S. For a probability τ , let
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ϵ′ = Θ
(
ϵ+ log(1/τ)

n

)
, where ϵ′ is less than a small constant. Let k = ⌈ϵ′n⌉. Let Tk := {z1, . . . , zk}

be the set obtained by median-of-means preprocessing on the set T . Then running the filtering
algorithm in Theorem C.1.1 with inputs Tk and ϵ′ = Θ(1) returns a set T ′ such that, with probability
at least 1− exp(−Ω(k)),

∥µ̂T ′ − µ∥2 = O

√tr(Σ)
n

+
√
∥Σ∥2ϵ+

√
∥Σ∥2 log(1/τ)

n

 ,
where µ̂T ′ is the empirical mean of the set T ′.

Turning to the proof of Theorem 5.6.1, we will condition on the value of the initial
estimator β̂1. Let S1 :=

{
β̂1 + (yi − x⊤

i β̂1)xi : (xi, yi) ∈ S
}

. Since β̂1 is independent of S
by assumption, the set S1 consists of i.i.d. samples when we condition on β̂1. It is easy
to see that T1 is an ϵ-corrupted version of S1 and E

[
β̂1 + (yi − x⊤

i β̂1)xi
]

= β∗. Thus, the
desired result follows from Theorem C.10.2 if we can show that the set S1 satisfies the
stated conditions. For simplicity, set

wi := β̂1 + (yi − x⊤
i β̂1)xi = β̂1 + x⊤

i xi(β∗ − β̂1) + xizi.

We will work conditionally on β̂1 in the remainder of the proof. Since β̂1 is independent
of S, the wi’s are then conditionally i.i.d. Set ∆ := β̂1− β∗, so ∥∆∥2 ≤ σ by assumption, and
observe that wi − β∗ = ∆− x⊤

i xi∆ + xizi. Therefore, for any unit vector v, we have

v⊤Σwi
v = E(v⊤(wi − β∗))2 = E(v⊤∆− (v⊤xi)(∆⊤xi) + v⊤xizi)2

≲ (v⊤∆)2 + E
(
(v⊤xi)2(∆⊤xi)2

)
+ E

(
(v⊤xi)2z2

i

)
≲ ∥∆∥2

2 +
√
E(v⊤xi)4

√
E(∆⊤xi)4 + σ2

≲ ∥∆∥2
2 + σ4

x,4∥∆∥2
2 + σ2

≲ σ2. (C.29)

Therefore, tr(Σw) ≲ σ2p and ∥Σw∥2 ≲ σ2. This completes the proof. (Observe that if
∥β̂1 − β∗∥2 were much larger than σ, this argument yields an error bound which depends
on

√
σ2 + ∥β̂ − β∗∥2

2.)

C.10.2 Proof of Theorem 5.6.2

Our approach differs from the proof of Theorem 5.6.1 in that the vectors in the set

S1 =
{
β̂1 + (yi − x⊤

i β̂1)xi : (xi, yi) ∈ S
}
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may no longer be i.i.d. when we condition on the initial estimator β̂1. Thus, we cannot
directly apply Theorem C.10.2 to obtain an error bound. On the other hand, recall from
Remark C.1.2 that if we can show the existence of a sufficiently large stable subset of the
set S1, Theorem C.1.1 implies a corresponding error bound.

For any fixed v ∈ Rp, define the random variables

W v
i := v + (yi − x⊤

i v)xi = v + xix
⊤
i (β∗ − v) + zixi, ∀1 ≤ i ≤ n,

and define the multiset Sv := {W v
1 , . . . ,W

v
n}. Note that each set Sv consists of n i.i.d. data

points, so that stability properties can be obtained easily; the additional challenge is that
we need to show the existence of a stable subset for all v ∈ Rp simultaneously, so that
we can apply the result when v = β̂1. To this end, we will use a covering argument. Let
r = Θ(σ) be such that ∥β̂1 − β∗∥2 ≤ r, and define the set T := {v : ∥β∗ − v∥2 ≤ r}. We
now define Cη ⊆ T to be an η-cover of T , i.e., for every v ∈ T , there exists v′ ∈ Cη such
that ∥v − v′∥2 ≤ η. Note that for η ≤ r, we can choose Cη such that log(|Cη|) ≤ p log

(
3r
η

)
(cf.

Corollary 4.2.13 of Vershynin [Ver18]).
For any v ∈ Cη, we have EW v

i = β∗. Let ∆ = v−β∗. As in inequality (C.29) in the proof
of Theorem 5.6.1, we can argue that ∥Cov(Wv)∥2 ≤ C0σ

2. Applying Theorem C.10.1 with
parameters τ ′ = τ exp(−C1p log(pn)) and ϵ′ = Θ

(
ϵ+ log(1/τ ′)

n

)
= Θ

(
ϵ+ log(1/τ)

n
+ p log(pn)

n

)
,

for a large constant C1 > 0 to be defined later, we see that with probability at least 1− τ ′,
there exists a set S ′

v ⊆ Sv such that |S ′
v| ≥ (1− ϵ′)n and S ′

v is (Cϵ′, δ)-stable with respect to
β∗ and σ2

∗ := C0σ
2, where δ := Θ

(√
p log(pn)

n
+
√
ϵ+

√
log(1/τ)

n

)
.

Suppose a stable set exists for every element of Cη (we will bound the error probability
later). Now consider an arbitrary v′ ∈ Rp, and let v ∈ Cη be such that ∥v′ − v∥2 ≤ η. We
know that there exists a set S ′

v ⊆ Sv which is (Cϵ′, δ)-stable with respect to β∗ and σ2
∗ ; we

will show how to obtain a stable set S ′
v′ ⊆ Sv′ using S ′

v. Note that S ′
v corresponds to a set of

indices which we define as Tv ⊆ [n], so S ′
v = {W v

i }i∈Tv .
Define the set

S2 :=
{

(xi, yi) : ∥xi∥2 ≤
√
p

ϵ′ and |yi − x⊤
i β

∗| ≤ σ√
ϵ′

}
.

By a Chernoff bound, we can argue that with probability at least 1− exp(−cnϵ′) = 1−O(τ),
we have |S2| ≥ (1− 4ϵ′)n. Indeed, define the indicator variables Ei = 1{(xi, yi) ∈ S2}. Then

E(Ei) = P
(
∥xi∥2 ≤

√
p

ϵ′ and |zi| ≤
σ√
ϵ′

)
≥ 1− P

(
∥xi∥2

2 ≥
p

ϵ′

)
− P

(
z2
i ≥

σ2

ϵ′

)
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≥ 1− E(∥xi∥2
2)

d/ϵ′ − E(z2
i )

σ2/ϵ′ = 1− 2ϵ′,

using Markov’s inequality. Applying the multiplicative Chernoff bound in Lemma C.4.1 to
the random variables (1− Ei), we then obtain

P (|S2| ≥ (1− 4ϵ′)n) ≥ P
(

1
n

n∑
i=1

(1− Ei) ≤ 4ϵ′
)
≥ 1− exp(−cnϵ′),

as claimed. We also define the set of indices T0 ⊆ [n] such that S2 = {(xi, yi)}i∈T0 .
Now let Tv′ := Tv ∩ T0 and consider the set S ′

v′ := {W v′
i }i∈Tv′ , which we will show is

stable with high probability. Note that |T ′
v′| ≥ (1 − 5ϵ′)n. We have the following lemma,

proved in Appendix C.10.3:

Lemma C.10.3. Suppose S ′
v is (Cϵ′, δ)-stable with respect to β∗ and σ2

∗ such that |S ′
v| ≥ (1− ϵ′)n,

and suppose |S2| ≥ (1− 4ϵ′)n. Suppose ∥v− v′∥2 ≤ η and η = r
√
ϵ′

f(d/ϵ′) , where f is an appropriately
defined second-degree polynomial. Then S ′

v′ is (Cϵ′/2, δ′)-stable with respect to β∗ and σ2
∗ , where

δ′ = Θ
(√

p log(pn)
n

+
√
ϵ+

√
log(1/τ)

n

)
.

Finally, we use a union bound to control the failure probability. Combining the error
probability for the Chernoff bound for S2 with the error probabilities for the elements of
Cη, we see that the overall probability of error is bounded by

exp(−cnϵ′) + τ ′|Cη| ≤ exp(−cnϵ′) + τ ′ exp
(
p log

(
3r
η

))

= exp(−cnϵ′) + τ exp
(
−C1p log(pn) + p log

(
3f(d/ϵ′)√

ϵ′

))

≤ exp(−cnϵ′) + τ exp
(
−C1p log(pn) + c1p log n+ p

2 log
( 1
ϵ′

))
≤ exp(−cnϵ′) + τ exp (−C1p log(pn) + c1p log n+ c2p log n) ,

using the choice of η in Lemma C.10.3 and the fact that ϵ′ = Ω
(
p
n

)
in the last two inequalities.

The final expression can be made smaller than 2τ for a sufficiently large choice of C1,
completing the proof.
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C.10.3 Proof of Lemma C.10.3

Consider any set T ′ ⊆ Tv′ such that |T ′| ≥
(
1− Cϵ′

2

)
|T ′
v′ |, and define ∆ := β∗ − v and

∆′ := β∗ − v′, so ∆′ −∆ = v − v′. Using the triangle inequality, we write
∥∥∥∥∥∥ 1
|T ′|

∑
i∈T ′

W v′

i − β∗

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1
|T ′|

∑
i∈T ′

v′ + xix
⊤
i (β∗ − v′) + xizi − β∗

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1
|T ′|

∑
i∈T ′

xix
⊤
i ∆′ + xizi −∆′

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥ 1
|T ′|

∑
i∈T ′

xix
⊤
i ∆ + xizi −∆

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1
|T ′|

∑
i∈T ′

xix
⊤
i (∆′ −∆)

∥∥∥∥∥∥
2

+ ∥∆′ −∆∥2

≤

∥∥∥∥∥∥ 1
|T ′|

∑
i∈T ′

xix
⊤
i ∆ + xizi −∆

∥∥∥∥∥∥
2

+ dη

ϵ′ + η, (C.30)

where we have used the facts that ∥xi∥2 ≤
√

p
ϵ′

for i ∈ T0 and ∥∆′ −∆∥2 ≤ η in the last line.
Furthermore, note that the first term on the right-hand side of inequality (C.30), which
can be written as

∥∥∥ 1
|T ′|

∑
i∈T ′ W v

i − β∗
∥∥∥

2
, can be upper-bounded by σ∗δ using the stability of

the set Tv, since T ′ ⊆ Tv and

|T ′| ≥
(

1− Cϵ′

2

)
|T ′
v′ | ≥

(
1− Cϵ′

2

)
(1− 5ϵ′)n ≥ (1− Cϵ)|Tv|,

if C ≥ 10. Thus, we conclude that∥∥∥∥∥∥ 1
|T ′|

∑
i∈T ′

W v′

i − β∗

∥∥∥∥∥∥
2

≤ 2σ∗δ,

by choosing η ≤ σ∗δ
1+d/ϵ′ . Note that since r = Θ(σ∗) and δ = Ω(

√
ϵ′), this may be accomplished

with the choice
η = O

(
r
√
ϵ′

1 + d/ϵ′

)
. (C.31)

We also need to establish a spectral norm bound on the second moment matrix. Denoting

ai := xix
⊤
i ∆ + xizi −∆,

bi := xix
⊤
i (∆′ −∆),

c := ∆−∆′,
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we see that ∥∥∥∥∥∥ 1
|T ′|

∑
i∈T ′

(
W v′

i − β∗
) (
W v′

i − β∗
)⊤
− σ2

∗I

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1
|T ′|

∑
i∈T ′

(xix⊤
i ∆′ + xizi −∆′)(xix⊤

i ∆′ + xizi −∆′)− σ2
∗I

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1
|T ′|

∑
i∈T ′

(ai + bi + c)(ai + bi + c)⊤ − σ2
∗I

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥ 1
|T ′|

∑
i∈T ′

aia
⊤
i − σ2

∗I

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1
|T ′|

∑
i∈T ′

bib
⊤
i

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1
|T ′|

∑
i∈T ′

cc⊤

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥ 1
|T ′|

∑
i∈T ′

aib
⊤
i

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥ 1
|T ′|

∑
i∈T ′

aic
⊤

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1
|T ′|

∑
i∈T ′

bic
⊤

∥∥∥∥∥∥
2

. (C.32)

By the stability of Tv, we have
∥∥∥∥∥∥ 1
|T ′|

∑
i∈T ′

aia
⊤
i − σ2

∗I

∥∥∥∥∥∥
2

≤ σ2
∗δ

2

Cϵ′ .

Further note that

∥ai∥2 ≤
dη

ϵ′ +
√
p

ϵ′ ·
σ√
ϵ′

+ η,

∥bi∥2 ≤
dη

ϵ′ ,

∥c∥2 ≤ η.

Thus, the right-hand expression in inequality (C.32) may be upper-bounded by

σ2
∗δ

2

Cϵ′ + p2η2

(ϵ′)2 + η2 + 2
(
dη

ϵ′ + η

)(
dη

ϵ′ +
√
p

ϵ′ ·
σ√
ϵ′

+ η

)
+ 2dη2

ϵ′

≤ σ2
∗δ

2

Cϵ′ + η

(
p2r

(ϵ′)2 + r + 2
(
p

ϵ′ + 1
)(

dr

ϵ′ +
σ
√
p

ϵ′ + r

)
+ 2dr

ϵ′

)

≤ σ2
∗δ

2

Cϵ′/2 ,

by choosing

η = O

(
r

p2/(ϵ′)2 + 1 + 2(d/ϵ′ + 1)(2d/ϵ′ + 1) + 2d/ϵ′

)
, (C.33)

using the facts that r = Θ(σ∗) and δ = Ω(
√
ϵ′).
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Therefore, we see that defining f appropriately and taking η = r
√
ϵ′

f(d/ϵ′) satisfies condi-
tions (C.31) and (C.33) simultaneously, completing the proof.

C.11 Additional Simulations
We include additional experiment details in this section. Figure C.1 shows how the choice
of the tuning parameter γ in the Huber loss affects the resulting error. We note that Huber
regression with filtering is quite robust to the choice of γ.

0 2 4 6 8 10 12 14
log2(1/ )

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Er
ro

r a
t c

on
fid

en
ce

 1

Huber Reg: : 2 3, no filter
Huber Reg: : 2 3, with filter
Huber Reg: : 2 2, no filter
Huber Reg: : 2 2, with filter
Huber Reg: : 2 1, no filter
Huber Reg: : 2 1, with filter
Huber Reg: : 20, no filter
Huber Reg: : 20, with filter
Huber Reg: : 21, no filter
Huber Reg: : 21, with filter
Ordinary Least Squares

Figure C.1: Plot showing the effect of covariate filtering on Huber regression (n = 200, p =
40) for different values of γ. The error is measured in terms of ℓ2-error, i.e., ∥β̂− β∗∥2. Solid
lines corresponds to “vanilla” version of the estimators (no filtering step), and dashed lines
correspond to filtered versions, where the filtering step removes 10 points out of 200 points.
We note that the performance of Huber regression with filtering is not greatly affected by
the choice of γ.

Figure C.2 shows how the choice of the thresholding parameter m in LTS affects the
resulting error. We note that the LTS with filtering is also quite robust to the choice of m.
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Figure C.2: Plot showing the effect of covariate filtering on LTS regression (n = 200, p = 40)
for different values of m. The error is measured in terms of ℓ2-error, i.e., ∥β̂ − β∗∥2. Solid
lines corresponds to “vanilla” version of the estimators (no filtering step), and dashed
lines correspond to filtered versions, where the filtering step removes 10 points out of 200
points. We note that the performance of LTS with filtering is not greatly affected by the
choice of m.
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d appendix to Chapter 6

Appendix

D.1 Additional Technical Facts
Our bounds in Lemma 6.3.7 required the fact below. Here we provide its proof for com-
pleteness.

Fact D.1.1. For any one-dimensional distribution P that matches the first m moments withN (0, 1)
and has χ2(P,N (0, 1)) <∞ the following identity is true

χ2(P,N (0, 1)) =
∞∑

i=m+1

(
E

X∼P
[hi(X)]

)2
.

Proof. Let ϕ denote the pdf of the standard one-dimensional Gaussian. For this
proof, we use a slightly different definition of the space L2(R,N (0, 1)). We define
it as the space of functions for which

∫
R f

2(x)/ϕ(x)dx < ∞ with the inner product
⟨f, g⟩ :=

∫
R f(x)g(x)/ϕ(x)dx (note the similarity with the definition of χ2-divergence). The

Hermite functions (or often called Hermite-Gauss functions) hi(x)ϕ(x) for i = 0, 1, . . . form a
complete orthonormal basis of the spaceL2(R,N (0, 1)) with respect to that inner product. It
is easy to check that this statement is equivalent to the statement that Hermite polynomials
{hi}N form a complete orthonormal basis of the space of all functions f : R→ R for which
Ex∼N (0,1)[f 2(x)] < ∞ (i.e., our old definition of L2(R,N (0, 1))). Since χ2(P,N (0, 1)) < ∞
we have P ∈ L2(R,N (0, 1)) and thus we can write P (x) = ∑∞

i=0 aihi(x)ϕ(x), where
ai = EX∼P [hi(X)]. Using the fact that P agrees with the first m moments of N (0, 1)
and the property of Hermite polynomials EX∼N (0,1)[hi(X)] = I(i = 0) we get that
a0 = EX∼N (0,1)[h0(X)] = 1 and ai = EX∼N (0,1)[hi(X)] = 0 for 0 < i ≤ m. Thus

P (x) = ϕ(x) +
∞∑

i=m+1
aihi(x)ϕ(x) .

The χ2-divergence can then be written as

χ2(P,N (0, 1)) =
∫
R

(P (x)− ϕ(x))2

ϕ(x) dx =
∫
R

1
ϕ(x)

 ∞∑
i=m+1

aihi(x)ϕ(x)
2

dx =
∞∑

i=m+1
a2
i ,

where the last part uses orthonormality of the functions hi(x)ϕ(x).
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We now turn to Claim 6.3.9 which is restated below.

Claim D.1.2. If P = ∑k
i=1 λiN(µi, σ2

i ) with µi ∈ R, σi <
√

2 and λi ≥ 0 such that ∑k
i=1 λi = 1,

we have that χ2(P,N (0, 1)) <∞.

For that we need the following two facts about χ2-distance between Gaussians. Their
proofs can be done by direct calculations.

Fact D.1.3. Let k ∈ Z+, distributions Pi and λi ≥ 0, for i ∈ [k] such that ∑k
i=1 λi = 1. We have

that χ2
(∑k

i=1 λiPi, D
)

= ∑k
i=1

∑k
j=1 λiλiχD(Pi, Pj).

Proof.

χ2
(

k∑
i=1

λiPi, D

)
+ 1 =

∫
R

(
k∑
i=1

λiPi(x)
)2

/D(x)dx =
k∑
i=1

k∑
j=1

λiλj

∫
R
Pi(x)Pj(x)/D(x)dx

=
k∑
i=1

k∑
j=1

λiλj (χD(Pi, Pj) + 1) =
k∑
i=1

k∑
j=1

λiλjχD(Pi, Pj) +
(

k∑
i=1

λi

)2

=
k∑
i=1

k∑
j=1

λiλjχD(Pi, Pj) + 1 .

Fact D.1.4.

χN (0,1)
(
N (µ1, σ

2
1),N (µ2, σ

2
2)
)

=
exp

(
−µ2

1(σ2
2−1)+2µ1µ2+µ2

2(σ2
1−1)

2σ2
1(σ2

2−1)−2σ2
2

)
√
σ2

1 + σ2
2 − σ2

1σ
2
2

− 1 .

The proof of Claim D.1.2 then consists of applying Fact D.1.3 and using Fact D.1.4 for
each one of the generated terms.
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e appendix to Chapter 7

E.1 Proofs of Preliminaries
In this appendix, we provide proofs for the preliminary lemma concerning properties of
radially symmetric distributions in Section 7.2, as well as the concentration results used in
the paper.

E.1.1 Proof of Lemma 7.2.5

1. Note that R(fx,r) can be written as convolution of P with indicator function of Br,
both of which are unimodal and radially symmetric. The desired result then follows
by Proposition 8 in Li et al. [LMM20], which implies that R(fx,r) is also unimodal
and radially symmetric.

2. This follows from the nonnegativity of the density.

3. As P is radially symmetric, let the density of P at x be given by p(∥x∥). R∗
r can be

written as R∗
r = C

∫ r
0 p(s)sd−1ds where C is a constant for a fixed dimension. Define

g(r) := R∗
r

Crd =
∫ r

0 p(s)sd−1ds

rd for r > 0. Property (iii) is equivalent to showing that
d
dr
g(r) < 0. By unimodality of p(·), it follows that g(r) > p(r)

d
. Differentiating g(·), we

get

d

dr
g(r) = p(r)rd−1rd − drd−1 ∫ r

0 p(s)sd−1ds

r2d = p(r)− dg(r)
r

< 0.

4. Note that any r1-packing of B(0, r2 − r1) has the property that all balls in the packing
must be entirely contained within the larger ball Br2 . Furthermore, by Lemma 7.2.5(i)
above, we know that R(fx,r1) ≥ R(fr2,r1) when ∥x∥2 ≤ r2. Hence, by summing up the
densities of all balls in the packing, we obtain

R(f0,r2) ≥ P (Br2−r1 , r1)R(fr2,r1),

from which the first inequality follows.

To obtain the second inequality, we use the sphere-packing lower bound

P (Br2−r1 , r1) ≥ N(Br2−r1 , 2r1) ≥
(
r2 − r1

2r1

)d
,
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where N(·, ·) denotes the covering number (cf. Proposition 4.2.12 of Ver-
shynin [Ver18]).

5. The proof of the first inequality is the same as the proof of the corresponding statement
in Lemma E.2.1. The second inequality follows by noting that E ∥Xi−µ∥2

2 = Tr(Σi) =
dσ2

i . By Chebyshev’s inequality, we have

R̃i(f0,2σi

√
d) = P(∥Xi − µ∥2 ≤ 2

√
dσi) ≥

3
4 ,

for each i. Thus, B2σ(2k)
√

d
covers at least 3

4 of the mass of at least 2k distributions,
implying the desired result.

E.1.2 Proof of Lemma 7.2.8

Recall that R̃i(f) = E f(Xi). We define the random variables

Yf,i := f(Xi)− R̃i(f).

Note that Ei[Yf,i] = 0 and |Yf,i| ≤ 1. Furthermore, the variables (Yf,i)ni=1 are independent
for each fixed f . Let

Z := sup
f∈Hr

(Rn(f)−R(f)) = sup
f∈Hr

1
n

n∑
i=1

Yf,i.

We will apply Lemma E.8.2 to obtain a high-probability upper bound on Z. Here
V = d+ 1, the VC dimension of balls.

Since its application requires a bound on the expectation, we first derive the following
lemma:

Lemma E.1.1. If nR∗
r ≥ 1300V log n with both n > 1 and d ≥ 1, then

EZ ≤ 72
√
V
R∗
r log n
2n .

Proof. We will use Theorem E.8.3 from Appendix E.8, with σ2 = supx,r′≤r R(fx,r′) = R∗
r . In

particular, note that since nσ2 ≥ 1300V log n, we have

log
(

4e2

σ

)
= 1

2 log
(

16e4

σ2

)
≤ 1

2 log
(

16e4n

1300V log n

)
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≤ log n
2 ,

so
24

√√√√ V

5n log
(

4e2

σ

)2

= 576V
5n log

(
4e2

σ

)

≤ 576V
5n · log n

2 = 57.6V log n
n
≤ σ2.

Thus, Theorem E.8.3 is applicable and leads to the following bound:36

EZ ≤ 72

√
R∗
r√
n

√√√√V log
(

4e2

σ

)
≤ 72

√
V R∗

r log n
2n .

We now apply Theorem 12.9 from Boucheron et al.[BLM13] (stated in Lemma E.8.2 in
Appendix E.8) with Wi,s = Yi,f and

ρ2 = sup
f∈Hr

n∑
i=1

EY 2
i,f = sup

f∈Hr

n∑
i=1

Var[f(Xi)]

≤ sup
f∈Hr

n∑
i=1

E[f(Xi)] = sup
f∈Hr

nR(f) = nR∗
r ,

where the inequality holds because the variance of a Bernoulli random variable is bounded
by its expectation. Hence, using Lemma E.1.1 and the assumption nR∗

r ≥ 1300V log n, we
have

v = 2nEZ + ρ2 ≤ 2nEZ + nR∗
r

≤ 144
√

0.5V nR∗
r log n+ nR∗

r ≤ nR∗
r

(
144

√
0.5V log n
nR∗

r

+ 1
)

≤ nR∗
r

(
144

√
0.5V log n

1300V log n + 1
)
< 6nR∗

r .

Thus, ntR
∗
r

2v > t
12 , so

log
(

1 + 2 log
(

1 + ntR∗
r

2v

))
≥ log

(
1 + 2 log

(
1 + t

12

))
≥ t

50 , (E.1)

36Note that the definition of Z in Theorem E.8.3 has a factor of 1/
√

n as opposed to the factor of 1/n here.
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using the fact that t ≤ 1.
Now suppose nR∗

r ≥ Ct
V
2 log n for the constant Ct =

(
144
t

)2
. Note that for t ≤ 1, we have

nR∗
r ≥ 1300V log n, so all the previous results are also valid. Moreover, we have

EZ
0.5tR∗

r

= nEZ
0.5tnR∗

r

≤
72
√

0.5V nR∗
r log n

0.5tnR∗
r

= 144
√

0.5V log n
t
√
nR∗

r

≤ 144
√

0.5V log n
t
√

0.5CtV log n
= 144
t
√
Ct

< 1.

Now we have all the ingredients required for the application of Theorem 12.9 :

P{Z ≥ tR∗
r} ≤ P{Z ≥ EZ + 0.5tR∗

r}

≤ exp
(
−ntR

∗
r

4 log
(

1 + 2 log
(

1 + ntR∗
r

2v

)))
≤ exp

(
− 1

200nt
2R∗

r

)
,

where the last inequality follows by inequality (E.1).
An identical argument can be used to upper-bound the quantity

sup
f∈Hr

(R(f)−Rn(f)) ,

concluding the proof.

E.1.3 Proof of Lemma 7.6.1

We begin by proving inequality (7.20). First consider the following peeling lemma, an
adaptation of Lemma 3 in Raskutti et al. [RWY10]:

Lemma E.1.2. Let A ⊆ Rp, and suppose {Yx}x∈A is a collection of random variables indexed by x.
Also suppose g : R → R+ is a strictly increasing function such that infx∈A g(h(∥x∥2)) ≥ µ, for
some µ > 0, and h : R+ → R+ is a constraint function, and the tail bound

P
(

sup
x∈A:h(∥x∥2)≤s

Yx ≥ g(s)
)
≤ 2 exp

(
− cg(s)

)

holds for all s ∈ range(h). Then

P
(
Yx ≤ 2g(h(∥x∥2)), ∀x ∈ A

)
≥ 1− 2 exp(−cµ)

1− exp(−cµ) . (E.2)
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Proof. We define the sets

Am :=
{
x ∈ A : 2m−1µ ≤ g(h(∥x∥2)) ≤ 2mµ

}
,

for m ≥ 1. By a union bound, we have

P
(
∃x ∈ A s.t. Yx > 2g(h(∥x∥2))

)
≤

M∑
m=1

P
(
∃x ∈ Am s.t. Yx > 2g(h(∥x∥2))

)
,

where M = supm≥1 g
−1(2m−1µ) ∈ range(h).

Further note that if x ∈ Am satisfies Yx > 2g(h(∥x∥2)), then g(h(∥x∥2)) ≥ 2m−1µ, so

P
(

sup
x∈Am

Yx > 2g(h(∥x∥2))
)
≤ P

(
sup
x∈Am

Yx > 2 · 2m−1µ

)

≤ P
(

sup
x∈A:g(h(∥x∥2))≤2mµ

Yx > 2mµ
)

= P
(

sup
x∈A:h(∥x∥2)≤g−1(2mµ)

Yx > 2mµ
)

≤ 2 exp (−c · 2mµ) ,

if m < M . If m = M , the same logic shows that

P
(

sup
x∈Am

Yx > 2g(h(∥x∥2))
)
≤ P

(
sup

x∈A:h(∥x∥2)≤ν
Yx > 2mµ

)
,

where ν = supx∈A h(∥x∥2). Furthermore, 2m−1µ ≤ g(ν) ≤ 2mµ, so the last probability is
upper-bounded by

P
(

sup
x∈A:h(∥x∥2)≤ν

Yx ≥ g(ν)
)
≤ 2 exp(−cg(ν)) ≤ 2 exp(−c · 2m−1µ).

It follows that
P
(

sup
x∈Am

Yx > 2g(h(∥x∥2))
)
≤ 2 exp(−c · 2m−1µ),

for all m ≥ 1, so summing up over m then gives

P
(
∃x ∈ A s.t. Yx > 2g(h(∥x∥2))

)
≤

∞∑
m=1

2 exp(−c · 2m−1µ) ≤ 2 exp(−cµ)
1− exp(−cµ) ,

implying inequality (E.2).
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We apply Lemma E.1.2 with A = {x : ∥x∥2 ≤ r̄}, and

Yx = |Rn(fx,r)−R(fx,r)|, h(∥x∥2) = R(fx,r), g(s) = ts,

for fixed values of r̄, r > 0 and t ∈ (0, 1]. Clearly, g is monotonically increasing and satisfies
infx∈A g(h(∥x∥2)) ≥ tR(fr̄,r). Note that for any s ∈ range(h), we have s = R(fxs,r) for some
xs, and

P
(

sup
x∈A:h(∥x∥2)≤s

|Rn(fx,r)−R(fx,r)| ≥ g(s)
)

= P
(

sup
∥xs∥2≤∥x∥2≤r̄

|Rn(fx,r)−R(fx,r)| ≥ tR(fxs,r)
)

≤ 2 exp(−cnR(fxs,r)t2)

= 2 exp(−cntg(s)),

assuming nR(fr̄,r) ≥ Ctd log n, where we use a slight modification of Lemma 7.2.8 where
Hr is the set of balls centered around points in {∥x∥2 ≥ ∥xs∥2}. Lemma E.1.2 then implies
the desired concentration inequality.

To establish inequality (7.21), note that we can simply use a modification of Theo-
rem 7.2.8, whereHr is now the set of balls centered around points in {∥x∥2 > r̄}.

E.2 Proofs for Univariate Estimators
We begin with the following lemma, also appearing as Lemma 1 in Pensia et al. [PJL19b].

Lemma E.2.1. We have the following properties:

(i) For any r > 0 and x, x′ ∈ R, if |x| < |x′|, then R(fx,r) ≥ R(fx′,r).

(ii) For any x ∈ R, if r < r′, then R(fx,r) ≤ R(fx,r′).

(iii) If 0 < r < r′, then R∗
r

r
>

R∗
r′
r′ .

(iv) If 0 < r, r′, then R(fr′,r) < r
r′R

∗
r′ .

(v) If 1 ≤ k ≤ n, then k
n
< R∗

q(2k)
and k

n
< R∗

2σ(2k)
.

Proof. The proofs proceed using simple calculus and algebraic manipulations, relying only
on the properties of symmetry and unimodality.
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(i) Property (i) follows directly by unimodality and symmetry of P .

(ii) Property (ii) is true by the non-negativity of density.

(iii) Let p(x) be the density of P . Then R∗
x = 2

∫ x
0 p(y)dy. Define g(x) := R∗

x

x
for x > 0.

Property (iii) is equivalent to showing that d
dx
g(x) < 0. By unimodality of p(·), we

have g(x) > 2p(x) for x > 0. By differentiation, we have

d

dx
g(x) = 2xp(x)− 2

∫ x
0 p(y)dy

x2 = 2p(x)− g(x)
x

< 0,

as wanted.

(iv) Note that r′ can be written as r′ = (K + α)r, where K ∈ N and α ∈ [0, 1). We need to
show that R∗

r′ > (K + α)R(fr′,r). We may write

R∗
r′ = 2

∫ r′

0
p(x)dx

= 2
∫ αr

0
p(x)dx+

K∑
k=1

2
∫ r′−(k−1)r

r′−kr
p(x)dx.

The second term is 0 if K = 0. By (iii) above, we have R∗
αr > αR∗

r . Therefore,

R∗
r′ > 2α

∫ r

0
p(x)dx+

K∑
k=1

2
∫ r′−(k−1)r

r′−kr
p(x)dx

> α
∫ r′+r

r′−r
p(x)dx+

K∑
k=1

∫ r′+r

r′−r
p(x)dx

= (α +K)R(fr′,r),

where the last inequality again uses unimodality of P , and the second term is 0 if
K = 0.

(v) Note that

R∗
q(2k)

= 1
n

n∑
i=1

P(|Xi| ≤ q(2k)) >
1
2 ·

2k
n

= k

n
.

Let R̃i(f) be the expectation of f under Pi, i.e., R̃i(f) = E f(Xi). For the second
inequality, note that by Chebyshev’s inequality,

R̃i(f0,2σi
) = P(|Xi − µ| ≤ 2σi) ≥

3
4 ,
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for all i. Therefore, an interval of length 4σ(2k) covers at least 3
4 mass of at least 2k

distributions, implying that

R∗
2σ(2k)

= R(f0,2σ(2k)) = 1
n

n∑
i=1

R̃i(f) ≥ 1
n
· 3× 2k

4 >
k

n
.

Lemma E.2.1 shows that we can use P as a measure of distance between two intervals.
In particular, if two intervals with the same center/radius are close under R, the respective
radii/centers must also be close.

E.2.1 Proof of Theorem 7.3.1

We begin with the following result, which follows from Lemma 7.2.8:

Lemma E.2.2. Let t ∈ (0, 1], and let r be such that R∗
r ≥ C0.5t

(
logn
n

)
. Then with probability at

least 1− 2 exp(−c′nR∗
rt

2), we have R(fµ̂M,r,r
) ≥ (1− t)R∗

r .

Proof. This will follow from Lemma 7.2.8 by choosing 0.5t instead of t. If R∗
r ≥ C0.5t

logn
n

,
then with probability 1− 2 exp(−cnR∗

rt
2/4), we have

|Rn(f)−R(f)| ≤ tR∗
r

2 ,

uniformly over f ∈ Hr. Assume that this event happens. Note that R(f0,r) = R∗
r and

Rn(fµ̂M,r,r
) ≥ Rn(f0,r) by maximality of the modal interval estimator. Since fµ̂M,r,r

, f0,r ∈ Hr,
we have

R(fµ̂M,r,r
) ≥ Rn(fµ̂M,r,r

)− tR∗
r

2 ≥ Rn(f0,r)−
tR∗

r

2
≥ R(f0,r)− tR∗

r = R∗
r − tR∗

r ,

as wanted.

Lemma E.2.2 states that if r is small, then R(fx,r) behaves like a (scaled) density of the
mixture distribution P . Indeed, the density of P at the empirical mode, µ̂M,r, is within a
constant factor of the density at µ∗.

Turning to the proof of the theorem, note that by Lemma E.2.1(i), we know that if
R(fr′,r) < R(fµ̂M,r,r

), then |µ̂M,r| ≤ r′. Furthermore, taking t = 1
2 in Lemma E.2.2, we have

R(fµ̂M,r,r
) ≥ R∗

r

2 , with probability at least 1− 2 exp(−c′nR∗
r/4). Thus, inequality (7.3) holds

provided R(fr′,r) < R∗
r

2 .
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Now suppose Let r′ = 2r
R∗

r
. By Lemma E.2.1(iv) and noting that R∗

r′ ≤ 1, we have

R(fr′,r) <
r

r′R
∗
r′ ≤

r

r′ = r
2r
R∗

r

= R∗
r

2 .

This establishes inequality (7.4).

E.2.2 Proof of Theorem 7.3.3

The proof of Theorem 7.3.3 is similar in spirit to the proof of Theorem 7.3.1. We begin by
proving a lemma, which replaces Lemma E.2.2:

Lemma E.2.3. For 2k ≥ C0.5t log n and t ∈ (0, 1], with probability at least 1− 2 exp(−c′kt2), we
have

R(fµ̂S,k,r2k
) ≥ (1− t)R∗

rk
= (1− t)k

n
.

Proof. By assumption, we have nR∗
r2k

= 2k ≥ C0.5t log n. Applying Lemma 7.2.8 with
t = 0.5t and r = r2k, we know that with probability at least 1− exp(−c2kt2/4), we have

sup
x,r≤r2k

Rn(fx,r)−R(fx,r) <
t

2R
∗
r2k
.

Combined with the guarantee of Lemma 7.4.4, we conclude that

Rn(fµ̂S,k,r̂k
)−R(fµ̂S,k,r̂k

) < t

2R
∗
r2k
,

with probability at least 1− exp(−ckt2/2)− exp(−k/8).
Furthermore, since all the distributions have densities, all the Xi’s are distinct with

probability 1, so Rn(fµ̂S,k,r̂k
) = k

n
. We thus conclude that

k

n
−R(fµ̂S,k,r̂k

) < t

2 ·
2k
n
,

so R(fµ̂S,k,r̂k
) > (1− t) k

n
= (1− t)R∗

rk
. Again using the fact that r̂k ≤ r2k, we can use Lemma

E.2.1(ii) to conclude that R(fµ̂S,k,r̂k
) ≤ R(fµ̂S,k,r2k

), so the required statement holds.

Let r′ = 2nr2k

k
. Taking t = 1

2 in Lemma E.2.3 and using Lemma E.2.1(i), it suffices to
show that R(fr′,r2k

) < k
2n , which follows by Lemma E.2.1(iv) and the fact that R∗

r′ ≤ 1.
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E.2.3 Proof of Theorem 7.3.5

We first prove the following result:

Lemma E.2.4. With probability at least 1− 4 exp(−ck2/n), both of the following statements hold:

1. Sk contains the origin in the sense that 0 ∈ [min(Sk),max(Sk)].

2. Diam(Sk) ≤ 2r2k

Proof. The k-median was defined using ψn. It is therefore instructive to study the properties
of the population-level quantity ψ(θ) := Eψn(θ). For θ > 0, we have

ψ(θ) := Eψn(θ) = 1
n

n∑
i=1

E[sign(θ −Xi)]

= 1
n

n∑
i=1

P(−θ ≤ Xi < θ) = R(f0,θ) = R∗
θ.

In particular ψ(rk) = R∗
rk

= k
n

. Similarly, for θ < 0, we have ψ(θ) = −R∗
|θ|.

1. It suffices to show the events θ̂med,k ≤ r2k and θ̂med,−k ≥ −r2k hold with the required
probability. We will focus only on the error on the positive side, i.e., θ̂med,k > r2k. The
analysis for θ̂med,−k < −r2k is similar by symmetry. Recall that ψn(θ̂med,k) = k

n
a.s., so

by monotonicity of ψn, it follows that

P
(
θ̂med,k > r2k

)
≤ P

(
ψn(r2k) ≤

k

n

)

= P
(
ψn(r2k)− ψ(r2k) ≤ −

k

n

)
.

Since ψn(·)− ψ(·) is a centered sum of independent bounded random variables, we
may apply Hoeffding’s inequality on its negative tail. Therefore,

P
(
θ̂med,k > r2k

)
≤ exp

−cn(k
n

)2
 ≤ exp(−ck2/n).

2. We bound the probability that max(Sk) < 0; the bound for min(Sk) > 0 is analogous.
If max(Sk) < 0, then ψn(0) ≥ k

n
by monontonicity of ψn and the fact that max(Sk) =

θ̂med,k and ψn(θ̂med,k) = k
n

. By Hoeffding’s inequality, we then have

P (max(Sk) < 0) ≤ P
(
ψn(0) ≥ k

n

)
= P

(
ψn(0)− ψ(0) ≥ k

n

)
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≤ exp
(
−cn · k

2

n2

)
= exp

(
−ck

2

n

)
.

By Lemma E.2.4 and Theorem 7.3.3, with probability with probability at least 1 −
4 exp(−c log2 n), both of the following events happen simultaneously:

1. 0 ∈ [min(Sk),max(Sk)].

2. Diam(Sk) ≤ 2rk1 .

As the set [min(Sk),max(Sk)] is convex and 0 belongs to the set, |µ̂k1,k2| ≤ |µ̂S,k2|. As
µ̂k1,k2 ∈ [min(Sk),max(Sk)], |µ̂k1,k2 | is less than the diameter of Sk. This proves the first
inequality of the statement.

Let r′ := 4
√
n logn
k2

r2k2 . To prove the second inequality, we break down the analysis in two
cases:

Case 1: Suppose R∗
r′ ≥ 2 logn√

n
. This implies that r2k1 ≤ r′ and thus desired holds. Since the

final prediction is always within the set spanned by Sk1 , we must have |µ̂k1,k2| ≤ r′ with
probability at least 1− 4 exp(−c log2 n).

Case 2: Suppose R∗
r′ < 2 logn√

n
. We will first show that |µ̂S,k2 | ≤ r′. Similar to the proof of

Theorem 7.3.3, it suffices to show that R(fr′,r2k2
) < k2

2n . Indeed, we have by Lemma E.2.1(iv)

R(fr′,r2k2
) < r2k2

r′ R
∗
r′ <

1
4
√
n logn
k2

2 log n√
n

= k2

2n,

with probability at least 1− 2 exp(−c′k2).
Altogether, we conclude that |µ̂k1,k2| ≤ r′, with probability at least 1− 2 exp(−c′k2)−

4 exp(−c log2 n).

E.3 Proofs for Examples
In this appendix, we provide the proofs for the propositions regarding the examples
discussed in Section 7.3.1.
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E.3.1 Proof of Proposition 7.3.9

Using the symmetry and unimodality of p, we have the following relation:

2p(0)r ≥ R(f[0,r]) ≥ 2rp(r).

Using the first inequality above and choosing r = rk, we obtain rk ≥ k
2p(0) . The second

inequality implies that if 2p(y)y ≥ k
n

, then rk ≤ y. In the remainder of the proof, we will
show the bounds for each example using this approach:

1. The lower bound follows by noting that the density at 0 is 1√
2πσ . As a result, rlogn ≥

√
2πσ logn

2n . The upper bound follows by noting that density at x = |σ| is within constant
factor of the density at 0. Let r = (σ

√
2πe log n)/n. For large enough n, we have that

r ≤ σ. Thus

2p(r)r ≥ 2p(σ)r = 2 e
−1/2
√

2πσ
σ
√

2πe log n
n

= 2 log n
n

.

Therefore, rk ≤ (σ
√

2πe log n)/n.

2. The lower bound follows by noting that the density at x = 0 is

p(0) =
(

n∑
i=1

1√
2πcin

)
= Θ

(
log n
cn

)
,

where we use that log n ≤ ∑n
i=1 i

−1 ≤ (log n + 1). Thus rlogn ≥ logn
2np(0) = Θ(1). The

upper bound follows by noting that the density at x = 1 is

p(1) =
 n∑
i=1

e− 1
i2c2

√
2πcin

 ≥ ( n∑
i=1

1√
2πcin

(
1− 1

i2c2

))
= p(0)− 1√

2πc3n

n∑
i=1

1
i3
,

where the inequality uses that for all x ∈ R, ex ≥ 1 + x. As ∑n
i=1 i

3 converges, we let
C = limn

∑n
i=1

1
i3

. We thus have that

2p(1)1 ≥ 2
(
p(0)− C

c3n

)
≥ 2 log n√

2πn

(
1
c
− C

c3 log n

)
.

This last expression is greater than (log n)/n, when c is less than (say)
√

1/2π and n

is large enough such that log n > 2C/c2.

3. We first consider the case α ≥ 1. The lower bound follows by noting that the density
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at 0 is
c log n
n

1√
2π

+ n− c log n
n

1
nα

= Θ
(

log n
n

)
.

The upper bound follows from the fact that at least c log n distributions have vari-
ance 1. Thus the interval [−1, 1] contains more than 0.6 probability of at least c log n
distributions. As R(f0,1) ≥ 0.6c(log n)/n, which is larger than (log n)/n for c ≥ 5/3,
implying that rlogn ≤ 1.

We now consider the case when α < 1. The density at 0 is

c log n
n

1√
2π

+ n− c log n
n

1
nα

= Θ
( 1
nα

)
,

which implies the desired upper bound. For the desired lower bound, we note that
the density at x = 1 is also Θ

(
1
nα

)
. Using a similar calculation to that of Example 1

above, we get the desired upper bound on rk.

E.3.2 Proof of Proposition 7.3.10

Since r = rC logn, we have R∗
r = C logn

n
. By inequality (7.4) of Theorem 7.3.1, we have

|µ̂M,r| ≤
2nrC logn

C log n , (E.3)

w.h.p.

1. Analogously to Proposition 7.3.9, we have rC logn = Θ
(
Cσ logn

n

)
. Inequality (E.3) then

gives the result.

2. The bound of Õ(n) follows by inequality (E.3) and noting that rC logn = O1) for a
fixed C and sufficiently small c > 0. We now focus on how to obtain the tighter bound
of Onϵ) for an ϵ > 0, using inequality (7.3).

Let R̃i(f) be the expectation of f under Pi, i.e., R̃i(f) = E f(Xi). Fix an ϵ > 0. Let
r′ = nϵ and r = 1. Then it suffices to show that R∗

r − R(fr′,r) ≥ C ′R∗
r where C ′ > 0

might depend on ϵ but not on n.

We will show that

a) R∗
r −R(fr′,r) ≥ c1

∑
i≤ r′

10c
R̃i(f0,r),

b) ∑
i≤ r′

5c
R̃i(f0,r) ≥ c2nR

∗
r .
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To derive the first inequality, note that

nR∗
r − nR(fr′,r) ≥

∑
i≤ r′

10c

R(f0,1)−R(fr′,1)

≥
∑
i≤ r′

10c

2
∫ 1

0

1√
2πci

(
e− x2

2c2i2 − e− (0.5r′+x)2

2c2i2

)
dx

≥
∑
i≤ r′

10c

2
∫ 1

0

(1− e− 0.25r′2
2c2i2 )√

2πci
e− x2

2c2i2 dx

≥ (1− e−10)
∑
i≤ r′

10c

R̃i(f0,r).

Now it remains to show that∑
i≤ r′

10c
R̃i(f0,r) ≥ c2R

∗
r . First note that nR∗

r ≤ logn
c

. Hence,

∑
i≤ r′

10c

R̃i(f0,1) ≥
∑

i: 1
c
<i≤ r′

10c

R̃i(f0,1) ≥
∑

i: 1
c
<i≤ r′

10c

2e−0.5
√

2πci
≥ c3 log

(
r′

10e

)
≥ c4 log nϵ ≥ c5ϵnR

∗
r .

3. For α < 1, let r′ = Θ (nα). Then it is easy that R(fr′,r) ≤ R∗
r

2 . This follows by observing
that the density of a Gaussian distribution decreases by more than half at a distance
of σ from the mean.

For α ≥ 1, let r′ = 10. Then R∗
r ≥ 0.5C logn

n
, as a Gaussian distribution contains about

0.68 mass within 1 standard deviation of the mean. Moreover,

R(fr′,r) ≤ 0.1C log n
n

+ n√
2πnα

≤ 0.2C log n
n

≤ R∗
r

2 .

Inequality (7.3) then implies the result.

E.3.3 Proof of Proposition 7.3.13

In the following, we will show the bounds on r2
√
n logn, which gives us the result:

1. As in the proof of Proposition 7.3.9, we have rk = Θ
(
σk
n

)
for small k.

2. By Lemma E.2.1(i), we have r2
√
n logn ≤ 2σ(4

√
n logn) = O (

√
n log n).

3. Note that for any fixed k, the value of rk for Example 7.3.8 is smaller than the value
of rk for Example 7.3.6 with σ = nα. Thus, we have r2

√
n logn = O

(
nα√

n logn
n

)
=

O (nα−0.5 log n).
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E.3.4 Proof of Proposition 7.3.16

We first provide the main steps of the proof. Proofs of supporting lemmas are contained in
further sub-sections.

E.3.4.1 Main Argument

Proof. (Proof of Proposition 7.3.16) Let W be a generic random variable with distribution
Qn as defined in Example 7.3.15. Let A = [−2, 2]. Consider two disjoint set of hypothesis
classes K and J , with K = {fx,1 : x ∈ A} and J = {fx,1 : x ̸∈ A}. The hypothesis class J
contains the intervals that are far from 0. Define the following random variables:

Z1 = sup
f∈K

Rn(f), Z2 = sup
f∈J

Rn(f).

We would show that with constant non-zero probability: (i) Z1 < Z2 and (ii) the maximum
is achieved in Z2 at intervals that are far from 0.

Note that R∗
1 = supf∈K R(f) = Θ (n−α). Define R∗

J := supf∈J R(f). Note that supre-
mum is achieved in both the cases and R∗

J < R∗
1. Moreover, we have the following straight-

forward relations:

1. 2R∗
1 ≥ P(W ∈ A) ≥ R∗

1.

2. nR∗
J = Θ (n1−α).

3. P(W ∈ A)
√
nR∗

J = O1).

4. For every constant C ′, there exists another constant C > 0 such that

R∗
J + C

√R∗
J
n

 ≥ R∗
1 + C ′

√R∗
1
n

 .
These relations suffice for showing that Z1 < Z2 with constant probability. To this end,
we would show that with constant probability both (1) Z1 = R∗

1 + O
(√

R∗
1
n

)
, and (2)

Z2 ≥ R∗
J + C

(√
R∗

J
n

)
, for any C > 0. Note that these events are dependent and thus we’d

use the following lemma, which shows that conditioned on the inclusion of points in each
of two disjoint intervals, the distributions of the histograms on each of the intervals behave
independently:

Lemma E.3.1. Let {x1, . . . , xn} be i.i.d. draws from a distribution with density pi. Consider two
disjoint intervals A and B. For any two disjoint subsets S, T ⊆ {1, . . . , n}, we use xS to denote the
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vector (xi : i ∈ S), and we define xT similarly. Let E denote the event that xi ∈ A for all i ∈ S,
and xi ∈ B for all ∈ T . Then for xS ⊆ A and xT ⊆ B, we have

pS,T (xS, xT | E) = pS(xS | E)pT (xT | E).

Furthermore,

pS(xS | E) =
∏
i∈S

pi(xi)
P(Xi ∈ A) , and

pT (xT | E) =
∏
i∈T

pi(xi)
P(Xi ∈ B)

are the joint densities of independent draws from the renormalized distributions of the points lying
in each interval.

Let S ⊂ {1, . . . , n} be an index set. For a fixed index set S, let the event ES be ES =
{XS ⊂ A,XSc ⊂ Ac}, where XS is the vector (Xi : i ∈ S) and A is defined above.

Conditioned on ES , Lemma E.3.1 states that Xi’s are independent. Thus conditioned
on ES , the random variables Z1 and Z2 are independent.

Lemma E.3.2. Consider the setting in Proposition 7.3.16. Let S ⊂ [n] be such that |S| ≤ nP(A).
Conditioned on the event ES , we have that for some C ′ > 0,

Z1 ≤ R∗
1 + C ′

√
R∗

1
n

with a constant nonzero probability.

Lemma E.3.3. Consider the setting in Proposition 7.3.16. Let S ⊂ [n] be such that |Sc| ≥ nP(Ac).
Conditioned on the event ES , we have that for all C > 0,

Z2 ≥ R∗
Jn

+ C

√R∗
Jn

n


with a constant, nonzero probability depending on the constant C.

Lemma E.3.4. Let X1, . . . , Xn
i.i.d.∼ P , where P is a uniform distribution over [−b,−a]⋃[a, b] for

some 0 ≤ a < b. For a r > 0, let Z = supf∈Hr
Rn(f) and k ∈ N such that E = {Z = k} is an

event of nonzero probability. If b−a
r
> C, then

1. P(|µ̂M,r| ≥ b−a
2 ) ≥ c > 0.

2. P(|µ̂M,r| ≥ b−a
2 |Z ≥ k) ≥ c > 0.
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Lemmas E.3.2, E.3.3, and E.3.4 give us the required lower bound on the probability of
error. Let µ̂M,1,J := arg maxf∈J Rn(f). Clearly, we can write

P
{
|µ̂M,1| ≥

nα

2

}
= P

{
Z1 < Z2, |µ̂M,1,J | ≥

nα

2

}
=

∑
S⊂[n]

P(ES)P
(
Z1 ≤ Z2, |µ̂M,1,J | ≥

nα

2

∣∣∣∣∣ES
)

≥
∑

S⊂[n]:|S|≤nP(A)
P(ES)P

(
Z1 ≤ nR∗

1 + C
√
nR∗, Z2 ≥ nR∗

1 + C
√
nR∗

1, |µ̂M,1,J | ≥
nα

2

∣∣∣∣∣ES
)
.

Furthermore, note that since Z1 is computed over the points lying in A and Z2 and µ̂M,1,J

is computed over the points lying in Ac, Lemma E.3.1 implies that

P
(
Z1 ≤ nR∗

1 + C
√
nR∗

1, Z2 ≥ nR∗
1 + C

√
nR∗

1, |µ̂M,1,J | ≥
nα

2

∣∣∣∣∣ES
)

= P
(
Z1 ≤ nR∗

1 + C
√
nR∗

1

∣∣∣∣∣ES
)
P
(
Z2 ≥ nR∗

1 + C
√
nR∗

1, |µ̂M,1,J | ≥
nα

2

∣∣∣∣∣ES
)

= P
(
Z1 ≤ nR∗

1 + C
√
nR∗

1

∣∣∣∣∣ES
)
P
(
Z2 ≥ nR∗

1 + C
√
nR∗

1

∣∣∣∣∣ES
)

· P
(
|µ̂M,1,J | ≥

nα

2

∣∣∣∣∣Z2 ≥ nR∗
1 + C

√
nR∗

1, ES

)
.

Finally, note that conditioned onES , the points inAc are certainly still uniformly distributed
by the construction. Hence, we can apply Lemmas E.3.2, E.3.3, and E.3.4 to lower-bound
each of the three factors by a constant. We conclude that

P
{
|µ̂M,r| ≥

nα

2

}
≥

∑
S⊂[n]:|S|≤nP(A)

P(ES)Θ(1) = Θ(1),

where the final equality uses the fact that for X ∼ Bin(n, p), we have P(X ≤ EX) = Θ(1).
This concludes the proof of Proposition 7.3.16.

E.3.4.2 Proof of Lemma E.3.1

Proof. (Proof of Lemma E.3.1) Clearly, we have

pS,T (xS, xT | E) = pS,T (xS, xT )
P(E) =

∏
i∈S pi(xi)

∏
j∈T pi(xj)

P(E) .
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Similarly, we may write

pS(xS | E) =
pi(xS)∏j∈T P(Xj ∈ B)

P(E) ,

pT (xT | E) = pi(xT )∏i∈S P(Xi ∈ A)
P(E) .

Using the fact that
P(E) =

∏
i∈S

P(Xi ∈ A)
∏
j∈T

P(Xj ∈ B)

implies the desired statements.

E.3.4.3 Proof of Lemma E.3.2

Proof. (Proof of Lemma E.3.2) Throughout the whole proof, we will condition on the set
ES . Conditioned on ES , Lemma E.3.1 states that XS is a vector of |S| i.i.d. points with
distribution, say, Qn|A. Under Qn|A, supf∈K R(f) = R∗

1
P(W∈A) ≥

1
2 .

Using Theorem E.8.4 (Theorem 8.3.23 in Vershynin[Ver18]), we get that

E
[∣∣∣∣∣sup
f∈K

∑
i∈S

f(Xi)− E[f(Xi)|ES]
∣∣∣∣∣
]
≤ C

√
|S| ≤ C

√
2|S| R∗

1
P(W ∈ A) ,

where the last step uses that 2R∗
1 ≥ P(W ∈ A). Thus, with constant positive probability,

Z1 = sup
f∈K

∑
i

f(Xi) ≤ |S|
R∗

1
P(A) + C ′

√
|S| R

∗
1

P(A)

≤ nR∗
1 + C ′

√
nR∗

1,

where we use Markov’s inequality and the assumption that |S| ≤ nP(A).

E.3.4.4 Proof of Lemma E.3.3

Proof. (Proof of Lemma E.3.3) We will condition on the event ES throughout the proof.
Once we have conditioned on ES , there are |Sc| points distributed over Ac according to
Lemma E.3.1, i.e., i.i.d. with a uniform distribution, say, Qn|Ac . Consider a fixed function
f ∈ J . As the distribution is uniform, R(f) = R∗

J .
For each i ∈ Sc, let Yi = f(Xi)−

R∗
J

P(Ac) . Yi’s are centered i.i.d. Bernoulli random variables.
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We calculate the following quantities required for the Berry-Esseen Theorem,

E[Yi] = 0

Var[Yi] = R∗
J

P(Ac)

(
1− R∗

J
P(Ac)

)
≥ R∗

J
2P(Ac)

E |Yi|3 = R∗
J

P(Ac)

∣∣∣∣∣1− R∗
J

P(Ac)

∣∣∣∣∣
3

+
(

1− R∗
J

P(Ac)

) ∣∣∣∣∣ R∗
J

P(Ac)

∣∣∣∣∣
3

≤ R∗
J

P(Ac) +
(

R∗
J

P(Ac)

)3

≤ 2 R∗
J

P(Ac)

By the Berry-Esseen Theorem [Ver18], we have

P


∑
i∈Sc Yi√

|Sc|Var[Yi]
≥ t

 ≥ ϕ(t)− E |Yi|3√
Var[Yi]3|Sc|

≥ ϕ(t)−
2R∗

J
P(Ac)√

(R∗
J )3

8P(Ac)3nP(Ac)

≥ ϕ(t)− c′√
nR∗

J
= ϕ(t)− on(1),

where ϕ(t) := P(g ≤ t) and g ∼ N (0, 1). Therefore,

P

Z2 ≥ R∗
J + C

√R∗
J
n

 ≥ P
{∑
i∈Sc

f(Xi) ≥ nR∗
J + C

√
nR∗

J

}

= P
{∑
i∈Sc

Yi ≥ |S|R∗
J + C

√
nR∗

J

}

= P

 1√
|Sc|Var[Yi]

∑
i∈Sc

Yi ≥
|S|R∗

J + C
√
nR∗

J√
|Sc|Var[Yi]


≥ ϕ

 |S|R∗
J + C

√
nR∗

J√
|Sc|Var[Yi]

− on(1)

≥ ϕ

nP(A)R∗
J + C

√
nR∗

J√
nP(Ac) R∗

J
2P(Ac)

− on(1)

≥ ϕ
(
P(A)

√
nR∗

J +
√

2C
)
− on(1) ≥ cϕ

(
C ′ +

√
2C
)

where we use that for α ≥ 1
3 , P(A)

√
nR∗

J = Θ
(
n−α+ 1−α

2
)

= O1).
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E.3.4.5 Proof of Lemma E.3.4

Proof. (Proof of Lemma E.3.4) LetH be the set of intervals of width equal to 2r. Currently,
the intervals near the endpoints have less probability mass. We will replace such intervals
with bigger intervals to make the process symmetric. First consider the intervals near
±a which have less probability mass: we can instead focus on bigger intervals to include
the middle interval [−a, a]. Let J := {⊮[x,y] : |x − y| = 2r + 2(b − a), |x + a| ≤ 2r}.
Next we can consider warping the number line and “joining” the two endpoints, i.e., let
K := {⊮[−∞,x]∪[y,∞] : 0 ≤ b− y ≤ 2r, 0 ≤ x+ b ≤ 2r, y − x = 2b− 2r}.

LetH′ := J ∪K∪H\{f ∈ H : R(f) < 2r
2(b−a)} and µ̂′

M,r = arg maxf∈H′ Rn(f). Note that
every function in H′ contains equal mass and the distribution is uniform. Moreover, for
|x| ∈ [ b−a2 , 3(b−a)

4 ], fx,r ∈ H′ ∩ H because b − a ≥ Cr. Thus we have not removed a lot of
functions fromH.

The problem of the location of µ̂′
M,r is equivalent to a uniform distribution on a cir-

cle of circumference 2(b − a), where we form the circle by joining −a and a at a single
point, and join −b to b. By symmetry, we obtain that |µ̂′

M,r| is uniform on [a, b]. Thus
P
(
|µ̂′
M,r| ∈ [ b−a2 , 3(b−a)

4 ]
)

= 1
4 .

P
(
|µ̂M,r| ≥

b− a
2

)
≥ P

(
|µ̂M,r| ∈

[
b− a

2 ,
3(b− a)

4

])

≥ P
(
|µ̂′
M,r| ∈

[
b− a

2 ,
3(b− a)

4

])
= 1

4 .

This proves the first statement. Now, we consider the case when we condition on the value
of Z. Note that if |µ̂′

M,r| ∈
[
b−a

2 , 3(b−a)
4

]
, then Z = Z ′.

P
(
|µ̂M,r| ≥

b− a
2

∣∣∣∣∣Z ≥ k

)
≥ P

(
|µ̂M,r| ∈

[
b− a

2 ,
3(b− a)

4

] ∣∣∣∣∣Z ≥ k

)

≥ P
(
|µ̂′
M,r| ∈

[
b− a

2 ,
3(b− a)

4

] ∣∣∣∣∣Z ≥ k

)

=
P
(
|µ̂′
M,r| ∈

[
b−a

2 , 3(b−a)
4

]
, Z ≥ k

)
P (Z ≥ k)

≥
P
(
|µ̂′
M,r| ∈

[
b−a

2 , 3(b−a)
4

]
, Z ≥ k

)
P (Z ′ ≥ k)

=
P
(
|µ̂′
M,r| ∈

[
b−a

2 , 3(b−a)
4

]
, Z ′ ≥ k

)
P (Z ′ ≥ k)

= P
(
|µ̂′
M,r| ∈

[
b− a

2 ,
3(b− a)

4

] ∣∣∣∣∣Z ′ ≥ k

)
= 1

4
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where we use the following Lemma E.3.5 for independence of µ̂′
M,r and Z ′.

Lemma E.3.5. Suppose X1, . . . , Xn are i.i.d. uniform points on a circle. Let E be the event that
the maximum number of points contained in an arc of a certain length is equal to k. Then the joint
distribution p(x1, . . . , xn) is rotationally invariant.

Proof. Suppose without loss of generality that the circle has circumference 1. Note that the
law of (X1, . . . , Xn) can be equivalently generated as follows: First generate Y1, . . . , Yn

i.i.d.∼
Unif [0, 1]. Next, generate R ∼ Unif [0, 1], and define Xi = Yi +R for all 1 ≤ i ≤ n, where
the addition is taken modulo 1. We want to show that

p(x1, . . . , xn | E) = p(x1 + r, . . . , xn + r | E) (E.4)

for any r ∈ [0, 1], where addition is again taken modulo 1. Clearly, it suffices to consider
configurations (x1, . . . , xn) that are consistent with E.

We can calculate

p(x1, . . . , xn | E) =
∫
E′ p(x1, . . . , xn, y1, . . . , yn)dy

P (E) ,

where the integral is taken over the region of [0, 1]n containing points (y1, . . . , yn) that can
be obtained from (x1, . . . , xn) via some rotation. Importantly, note that

p(x1, . . . , xn, y1, . . . , yn) = p(x1, . . . , xn | y1, . . . , yn)p(y1, . . . , yn) = p(y1, . . . , yn),

since R is uniform, so we have

p(x1, . . . , xn | E) =
∫
E′ p(y1, . . . , yn)dy

P (E) .

Similarly, we can write

p(x1 + r, . . . , xn + r | E) =
∫
E′ p(x1 + r, . . . , xn + r, y1, . . . , yn)dy

P (E) =
∫
E′ p(y1, . . . , yn)dy

P (E) .

This establishes the desired equality (E.4) and completes the proof.

E.4 Proofs for Multivariate Estimators
In this appendix, we provide proofs of the various theorems and lemmas for multivariate
mean estimation.
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E.4.1 Proof of Theorem 7.4.1

The initial steps in the proof parallel the proof of Theorem 7.3.1, where Lemma E.2.2 is
proved using the concentration inequality in Lemma 7.2.8. It then follows that if we choose
r such that R∗

r ≥ C0.5
(

(d+1) logn
n

)
, we have R(fµ̂M,r,r

) ≥ R∗
r

2 , w.h.p.

Now let r2 = 4r
(

2
R∗

r

) 1
d . By Lemma 7.2.5(i), the desired result will follow if we can show

that R(fr2,r) ≤
R∗

r

2 . By Lemma 7.2.5(iv), we have

R(fr2,r) ≤
R∗
r

2 ·R
∗
r2 ≤

R∗
r

2 .

To obtain inequality (7.7), note that using Lemma 7.2.5(v), we know that
r = 2

√
dσ(2Cd logn) satisfies the assumption on R∗

r . Plugging into inequality (7.6)
then produces the desired bound.

E.4.2 Proof of Theorem 7.4.3

Let j′ := min{j ∈ J : rj ≥ r∗}. Then

P(j∗ > j′) = P

 ⋃
i∈J :i>j′

∥µ̂M,ri
− µ̂M,rj′∥2 > 8ri

(
2n

C0.5(d+ 1) log n

)1/d



≤ P

∥µ̂M,rj′∥2 > 4rj′

(
2n

C0.5(d+ 1) log n

)1/d


+
∑

i∈J :i>j′
P

∥µ̂M,ri
∥2 > 4ri

(
2n

C0.5(d+ 1) log n

)1/d
 ,

using a union bound and the triangle inequality. We may use Theorem 7.4.1 to bound each
individual term, so that the probability of the bad event

E :=
⋃

i∈J :i>j′

∥µ̂M,ri
∥2 > 4ri

(
2n

C0.5(d+ 1) log n

)1/d


⋃∥µ̂M,rj′∥2 > 4rj′

(
2n

C0.5(d+ 1) log n

)1/d


is bounded by

P(E) ≤ (1 + |J |) · 2 exp(−c′d log n)

≤ 2
(

1 + log2

(2rmax

rmin

))
exp(−c′d log n).
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Finally, note that on the event Ec, we have j∗ ≤ j′ (establishing that j∗ is finite), so

∥µ̂M,rj∗ − µ̂M,rj′∥2 ≤ 8rj′

(
2n

C0.5(d+ 1) log n

)1/d

.

Combined with the inequality ∥µ̂M,rj′∥2 < 4rj′

(
2n

C0.5(d+1) logn

)1/d
, we conclude that

∥µ̂M,rj∗∥2 ≤ 8rj′

(
2n

C0.5(d+ 1) log n

)1/d

+ 4rj′

(
2n

C0.5(d+ 1) log n

)1/d

≤ 12rj′

(
2n

C0.5(d+ 1) log n

)1/d

≤ 24r∗
(

2n
C0.5(d+ 1) log n

)1/d

,

using the fact that rj′ < 2r∗.

E.4.3 Proof of Lemma 7.4.4

We first prove the upper bound. Note that R(f0,r2k
) = R∗

r2k
= 2k

n
. It suffices to show that

this ball contains at least k points, with high probability. By the multiplicative form of the
Chernoff bound (Lemma E.8.1 in Appendix E.8),

P
(
Rn(f0,r2k

) ≤ k

n

)
= P

(
Rn(f0,r2k

) ≤ 1
2R(f0,r2k

)
)

≤ exp
(
−n · k

n
· 18

)
= exp(−k/8).

Therefore, with probability at least 1 − exp(−k/8), a ball of radius r2k contains at least k
points, implying that the shortest gap, r̂k ≤ r2k.

We now turn to verifying the lower bound. We will prove that with high probability,
no ball of radius rk/2 contains at least k points, so that r̂k > rk/2. By definition, nR∗

rk/2
= k

2 .
Thus, assuming k ≥ C0.5d log n, we may apply Lemma 7.2.8 to conclude that

sup
f∈Hrk/2

Rn(f)−R(f) ≤
R∗
rk/2

2 ,

with probability at least

1− exp
(
−cn4 R

∗
rk/2

)
= 1− exp(−ck/8).
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This implies that

sup
f∈Hrk/2

Rn(f) ≤ 3
2 ·R

∗
rk/2

= 3
2 ·

k

2n <
k

n
,

which is exactly what we want.

E.4.4 Proof of Theorem 7.4.5

We parallel the proof of Theorem 7.3.3. Note that the guarantees of Lemma 7.4.4 and
Lemma E.2.3 continue to hold in d dimensions, except that we have the lower bound
k ≥ 2C0.5(d+ 1) log n instead. We then conclude that R(fµ̂S,k,r2k

) ≥ k
2n , with probability at

least 1− 2 exp(−c′d log n).
Setting r′ = 4r2k

(
2n
k

)1/d
, it thus suffices to show thatR(fr′,r2k

) ≤ k
2n . By Lemma 7.2.5(iv),

we have
R(fr′,r2k

) ≤ k

2n ·R
∗
r′ ≤

k

2n,

as wanted.

E.4.5 Proof of Theorem 7.4.6

We begin with the following result, which can be proved directly via a union bound on
Lemma E.2.4:

Lemma E.4.1. With probability at least 1− 4d exp(−ck2/n):

(i) The cuboid S∞
k contains the origin.

(ii) We have the bound Diam(S∞
k ) ≤ 2

√
dr2k,1.

Lemma E.4.1 will be critical in our analysis of the hybrid estimator proposed below. In
particular, the estimator will consist of projecting the modal interval/shorth estimator onto
the cuboid S∞

k , and Lemma E.4.1(i) guarantees that the estimation error of the projected
estimator will be no larger than the estimation error of the initial estimator without projec-
tion. On the other hand, Lemma E.4.1(ii) bounds the error of an estimator based on the
k-median alone.

We first derive an upper bound of
√
dr2

√
n logn,1. We begin by deriving the following

lemma, relating the statistics of marginal distributions to the statistics of the overall distri-
bution:

Lemma E.4.2. We have that r k
2 ,1
≤ C√

d
rk, for some absolute constant C > 0 and any k ≤ n.
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Proof. Consider a uniform distribution on a sphere (or shell) of radius r in Rd. Theorem
3.4.6 in Vershynin [Ver18] provides a concentration result which states that most of the
probability of such a distribution lies close to the equator; i.e., the set

[
−Cr√

d
, Cr√

d

]
× Rd−1

contains at least half the probability for some absolute constant C > 0. Notice that a
radially symmetric distribution is simply a weighted sum of uniform distributions on
spheres. Thus, given a radially symmetric distribution restricted to the ball of radius r, the
set

[
−Cr√

d
, Cr√

d

]
× Rd−1 will contain at least half the total probability assigned to the ball.

By our definition of rk, the ball of radius rk centered at origin, Brk
, contains k

n
probability

mass. The above argument implies that the set
[
−Crk√

d
, Crk√

d

]
× Rd−1 will contain at least half

the probability of the total probability contained in Brk
. Equivalently, r k

2 ,1
≤ C√

d
rk.

Since the output of the hybrid algorithm must lie within the cuboid S∞√
n logn, it is clear

that we have the error bound

∥µ̂k1,k2∥2 ≤
√
n

1/d ·
√
dr2

√
n logn,1.

To obtain the second upper bound expression, we parallel the proof of Theorem 7.3.5,
by splitting into two cases:

Case 1: r4
√
n logn ≤

√
n

1/d
r8d logn. By Lemma E.4.2, we therefore have

r2
√
n logn,1 ≤

C√
d
r4

√
n logn ≤

C√
d
·
√
n

1/d
r8d logn.

By Lemma E.4.1, w.h.p., the cuboid S∞√
n logn is entirely contained in the ℓ2-ball of ra-

dius
√
dr2

√
n logn,1 around the origin. This ball in turn lies inside the ℓ2-ball of radius

C
√
n

1/d
r8d logn around the origin. Since the output of the hybrid algorithm must also lie

within this ball, the desired result follows.

Case 2: r4
√
n logn >

√
n

1/d
r8d logn. Denoting r′ =

√
n

1/d
r8d logn, we therefore have the rela-

tion R∗
r′ <

4
√
n logn
2n . In particular, since

R(fµ̂S,8d log n,r8d log n
) ≥ Rn(fµ̂S,8d log n,r8d log n

)− 1
2R

∗
r8d log n

= 8d log n
4n ,

w.h.p., by Lemma 7.2.8, we have

R(fr′,r8d log n
) ≤

 1
√
n

1/d

dR∗
r′ <

1√
n
· 2 log n√

n
= 8d log n

4n ≤ R(fµ̂S,8d log n,r8d log n
).
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This implies that µ̂S,8d logn is within r′ of the origin.
Finally, we need to show that projecting the shorth estimator on the cuboid does not

increase its distance from the origin. Note that ℓ2-projection onto a cuboid is simply a
componentwise operation of projection on each interval defining an edge of the cuboid.
Furthermore, Lemma E.4.1 guarantees that the origin lies within the cuboid, w.h.p., in
which case each interval contains 0. As argued in the proof of Theorem 7.3.5, the distance
from the shorth estimator to the origin computed along any dimension will not increase
after the projection. Therefore, the ℓ2-norm of the projected estimator is also upper-bounded
by r′.

Hence, if we take C ′ = max{C, 1}, we have the desired bound in both cases. This
concludes the proof.

E.4.6 Proof of Theorem 7.6.2

We begin by deriving the proof for the modal interval estimator. Let s1 = r
2 , and define s2

such that R(fs2,r) = 1
3R(fs1,r). Note that

R(fs1,r) ≥ R(f0,r/2) ≥
3C1/6d log n

n
,

so R(fs2,r) ≥
C1/6d logn

n
. Applying Lemma 7.6.1 with r̄ = s1 and t = 1

6 , we conclude that

Rn(fx,r) ≥
2
3R(fx,r) ≥

2
3R(fs1,r), (E.5)

uniformly over ∥x∥2 ≤ s1, with probability at least 1− 2 exp(−cnR(fs1,r)/36)
1−exp(−cnR(fs1,r)/36) , which is in turn

lower-bounded by 1− 4 exp(−c1d log n).
Furthermore, inequality (7.21) implies that

Rn(fx,r) ≤ R(fx,r) + 1
3R(fs2,r) ≤

4
3R(fs2,r) = 4

9R(fs1,r), (E.6)

uniformly over ∥x∥2 > s2, with probability at least 1 − 2 exp(−cnR(fs2,r)/9) ≥
1− 2 exp(−c2d log n). Thus, combining inequalities (E.5) and (E.6), we conclude that

sup
∥x∥2>s2

Rn(fx,r) < inf
∥x∥2≤s1

Rn(fx,r), (E.7)

with probability at least 1− 6 exp(−c3d log n).
Now note that by inequality (E.5), we also have Rn(f0,s1) ≥ 2

3R(f0,s1) > 0, implying that
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{x1, . . . , xn} ∩B(0, s1) ̸= ∅. In particular,

sup
x∈{x1,...,xn}

Rn(fx,r) ≥ inf
∥x∥2≤s1

Rn(fx,r).

Together with inequality (E.7), we conclude that ∥µ̃M,r∥2 < s2.

Finally, we claim that s2 ≤ 4r
(

n
C1/6d logn

)1/d
. To see this, let s̃2 := 4r

(
n

C1/6d logn

)1/d
, and

note that by Lemma 7.2.5(iv), we have

R(fs̃2,r) ≤
C1/6d log n

n
·R∗

s̃2 ≤
C1/6d log n

n
.

Since the last quantity is upper-bounded by R(fs2,r), we conclude that s2 ≤ s̃2, as claimed.
Turning to the analysis of the computationally efficient shorth estimator, we adapt the

argument in the proof of Theorem 7.3.3. By Lemma 7.2.8, if R∗
2r2k
≥ C0.5(d+1) logn

n
, we have

sup
x

sup
r≤2r2k

(Rn(fx,r)−R(fx,r)) <
t

2R
∗
2r2k

,

with probability at least 1− 2 exp(−cnR∗
2r2k

t2) ≥ 1− 2 exp
(
−cnt2 · 2k

n

)
.

We know that k
n

= Rn(fµ̃S,k,r̃k
) ≤ Rn(fµ̃S,k,2r2k

). Let s be defined such thatR(fs,2r2k
) = k

2n .
By inequality (7.21), we know that

sup
∥x∥2≥s

|Rn(fx,2r2k
)−R(fx,2r2k

)| ≤ 1
2R(fs,2r2k

),

with probability at least 1− 2 exp(−ck), implying that for ∥x∥2 ≥ s, we have

Rn(fx,2r2k
) ≤ R(fx,2r2k

) + 1
2R(fs,2r2k

) ≤ 3
2R(fs,2r2k

) = 3k
4n.

Since this is strictly smaller than Rn(fµ̃S,k,2r2k
), we conclude that ∥µ̃S,k∥2 ≤ s, w.h.p. , which

also implies that R(fµ̃S,k,2r2k
) ≥ k

2n .

Finally, let r′ = 4r2k
(

2n
k

)1/d
. By Lemma 7.2.5(iv), we have

R(fr′,2r2k
) < k

2n ·R
∗
r′ ≤

k

2n < R(fµ̃S,k,2r2k
).

Applying Lemma 7.2.5(i), we conclude that ∥µ̃S,k∥2 ≤ r′.
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E.5 Proofs for Expected Error Bounds
In this appendix, we prove the results stated in Section 7.5.

E.5.1 Proof of Proposition 7.5.2

The proof sketch is that we will show that with finite probability, no interval contains
more than one low-variance point, and all the high-variance points lie far from origin.
Conditioned on this event, the modal interval estimator incurs a high error.

Let E = A ∩B, where we define the events

A = {Rn(fx,1) ≤ 1, ∀x : |x| ≤ 3C log n},

B = {Xi ̸∈ [−4C log n, 4C log n], ∀i > C log n}.

Hence, on the event E, no interval overlapping with [−3C log n, 3C log n] contains two
low-variance points or a single high-variance point. Then P(E) is lower-bounded by

P(E) ≥
C logn∏

i=1
P{Xi ∈ [3i− 3, 3i− 2]}

 ∏
i>C logn

P{Xi ̸∈ [−4C log n, 4C log n]}


=
C logn∏

i=1

1
6i

 ∏
i>C logn

(1− n−α − hn(8C log n− 2))


≥ 1
6C lognΓ(3C log n)e

−cn1−α

≥ exp
(
−cn1−α −O

(
log2 n

))
,

assuming hn log n≪ n−α, which happens for qn = Ω(n).
However, conditioned on E, the points {Xi}i>C logn are i.i.d. with the following distri-

bution:

pi,E(x) =


0, |x| ≤ 4C log n,

hn

(1−n−α−hn(8C logn−2)) , 4C log n < |x| ≤ qn,

0, otherwise.

We can now apply the symmetry arguments of Lemma E.3.4. Note that no interval lying
inside [−3C log n, 3C log n] can contain more than one point. Thus unless a tie occurs, the
mode will be located outside the interval [−3C log n, 3C log n], and hence a distance of Θ(qn)
away from the mean in expectation. Even if we were to break ties randomly, a large error
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would occur with probability at least 1
n

, since at most n ties can occur. Thus,

E[|µ̂M,1||E] ≥ P(E)E[|µ̂M,1||E] ≥ exp(−cn1−α)Θ(qn).

The bounds in high probability follow from Lemma E.2.2, by noting that nR∗
r = Ω (n−α) =

Ω(log n). Moreover, the density drops by at least half at x > 1.

E.5.2 Proof of Theorem 7.5.3

We begin by proving (i). By Theorem 7.4.1, we have

∥µ̂M,r∥2 = O

r( c

R∗
r

)1/d
 ,

with probability at least most 1 − O exp (−c′nR∗
r)). In the worst case, the modal interval

estimator returns the point which is furthest from the origin, which has expected value
bounded as

E
[
max
i
∥Xi∥2

]
≤ E

√√√√ n∑
i=1
∥Xi∥2

2

 ≤
√√√√ n∑
i=1

E[∥Xi∥2
2] ≤

√
n · dσ2

(n).

Using the assumption that σn ≤ r exp(CnR∗
r), for some constant C > 0, we then have

E ∥µ̂M,r∥2 ≤ O

r( c

R∗
r

)1/d
+O exp (−c′nR∗

r))
√
ndσ(n)

≤ O

r( c

R∗
r

)1/d
+O

(
exp (−c′nR∗

r) r
√
nd exp(CnR∗

r)
)

= O

r( c

R∗
r

)1/d
 ,

where in the last inequality, we use the facts that

exp(−c′nR∗
r)
√
nd = O(exp(−c′′nR∗

r))

and nR∗
r = Ω (d log n), and choose C < c′′.

Turning to (ii), we first prove the following concentration result, which may be viewed
as a refinement of Lemma 7.2.8 that is suitable for our settings. For example, note that
if R∗

J = O
(

1
n

)
, the derivations from Lemma 7.2.8 would not be meaningful since R∗

J =
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o
(

logn
n

)
. On the other hand, if KR∗

J = Θ
(

logn
n

)
, Lemma E.5.1 gives a vanishing upper

bound.

Lemma E.5.1. Let J be a set of intervals and define R∗
J := supf∈J R(f). If R∗

J ≤ 1
3 , then for any

K ≥ 8, we have

P
{

sup
f∈J

Rn(f) ≥ KR∗
J

}
≤ 2
R∗

J
exp

(
−cnR∗

JK logK
)
.

Proof. For a given f ∈ J , the desired bound follows from Chernoff’s inequality. We want
to upper-bound the probability that any one interval in J has too many points. In general,
the set J may be infinite, so a direct union bound is not feasible. We thus create a new
finite set of intervals F , not necessarily a subset of J , satisfying the following properties:

1. For each f ∈ F , we have R∗
J
2 ≤ R(f) ≤ R∗

J .

2. |F| ≤ 2
R∗

J
.

3. F covers J in the sense that ∀f ∈ J ,∃f1, f2 ∈ F : f(x) ≤ f1(x) + f2(x).

It follows that if any interval in J contains at least k points, then at least one interval in
F contains at least k

2 points. We construct F of cardinality |F| = ⌈ 1
R∗

J
⌉ ≤ 2

R∗
J

, as follows:
To create the first interval (i = 1), define x1 ∈ R such that R(⊮(−∞,x1])) = 1

|F| . (Such an
x1 exists because P is assumed to have a density.) Then iteratively, for each i ≥ 1, define
xi such that R(⊮(xi−1,xi]) = 1

|F| . For the final interval, add ⊮[xi−1,∞) to F and terminate
the construction. Note that for each f ∈ F , we have R(f) = 1

⌈1/R∗
J ⌉ , which clearly lies in[

R∗
J
2 , R

∗
J

]
under the assumptions.

We are now ready to apply the union bound on F using Lemma E.8.1(ii):

P
{

sup
f∈J

Rn(f) ≥ KR∗
J

}
≤ P

{
sup
f∈F

Rn(f) ≥ KR∗
J

2

}

≤ |F|P
{
Rn(f) ≥ KR∗

J
2 for a fixed f with R(f) ≤ R∗

J

}

≤ 2
R∗

J
exp

(
−cnR∗

JK logK
)
.

For an s ≥ 0, let Js = {fx,r : ∥x∥2 ≥ s}, i.e., the set of intervals which incur large error.
By assumption, the support of at least CnR∗

r points is contained in [−r, r], implying that
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Rn(f0,r) ≥ CR∗
r , a.s. If ∥µ̂M,r∥2 ≥ s, then supf∈Js

Rn(f) ≥ CR∗
r . However as s increases, the

quantity R∗
Js

:= supf∈Js
R(f) = R(fs,r) decreases. We can then use Lemma E.5.1 to control

this probability of error.
For s ≥ Kr

CR∗
r
, it follows from Lemma 7.2.5(iv) that R∗

Js
= R(fs,r) ≤ CR∗

r

K
. Taking K ≥ C ′,

we then have

P{|µ̂M,r| ≥ s} ≤ P
(

sup
f∈Js

Rn(f) ≥ CR∗
r

)

= P
(

sup
f∈Js

Rn(f) ≥ CR∗
r

R∗
Js

R∗
Js

)

≤ 2
R∗

Js

exp
(
−cnR∗

Js

CR∗
r

R∗
Js

log
(
CR∗

r

R∗
Js

))

= 2
R∗
r

exp
(
−cCnR∗

r log
(
CR∗

r

R∗
Js

)
+ log

(
R∗
r

R∗
Js

))

≤ 2
R∗
r

exp
(
−c′nR∗

r log
(
R∗
r

R∗
Js

))
,

where we have applied Lemma E.5.1 in the second inequality. Thus,

E |µ̂M,r| ≤
4r
CR∗

r

+
∫ ∞

4r
CR∗

r

P{|µ̂M,r| ≥ s}ds

≤ O

(
r

R∗
r

)
+ 2
R∗
r

∫ ∞

4r
CR∗

r

exp
(
−c′nR∗

r log
(
R∗
r

R∗
Js

))
ds

≤ O

(
r

R∗
r

)
+ 2
R∗
r

∫ ∞

4r
CR∗

r

exp
(
−c′nR∗

r log
(
sR∗

r

r

))
ds

≤ O

(
r

R∗
r

)
+ r

R∗
r

2
R∗
r

∫ ∞

4/C
exp (−c′nR∗

r log s1) ds1

= O

(
r

R∗
r

)
+ r

R∗
r

2
R∗
r

∫ ∞

4/C
s

−c′nR∗
r

1 ds1

≤ O

(
r

R∗
r

)
+ r

R∗
r

2
R∗
r

· 1
c′nR∗

r − 1(4/C)1−c′nR∗
r

= O

(
r

R∗
r

)
,

where the third inequality uses the fact that R∗
Js

= R(fs,r) ≤ r
s
, and the last equality follows

from an appropriately small choice of C.
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E.5.3 Proof of Theorem 7.5.5

Note that for any s > 0, Markov’s inequality gives

min
µ̂

max
{Pi}⊆P(σ1,σ2,p)

E[∥µ̂− µ∥2] ≥ min
µ̂

max
{Pi}⊆P(σ1,σ2,p)

s · P(∥µ̂− µ∥2 ≥ s).

Clearly, the right-hand expression is lower-bounded by the maximum over any specific
collection of distributions in the class P(σ1, σ2, p). In particular, let Pµm be the collection of
multivariate distributions where each distribution is either N(µ, σ2

1I) or N(µ, σ2
2I), with m

distributions of the latter type. We then have

min
µ̂

max
{Pi}⊆P(σ1,σ2,p)

P(∥µ̂− µ∥2 ≥ s) ≥ min
µ̂

max
µ

max
np≤m≤2np

P(∥µ̂− µ∥2 ≥ s | {Pi} = Pµm)

≥ min
µ̂

max
µ

∑
np≤m≤2np

P (∥µ̂− µ∥2 ≥ s | {Pi} = Pµm) pm,

where {pm} is any allocation of probabilities defined over {Pµnp, . . . ,P
µ
2np}, such that 0 ≤

pm ≤ 1 for all m and ∑
m pm ≤ 1. In particular, consider the probability mass function

{qm}nm=1 over {Pµ1 , . . . ,Pµn} corresponding to the Binomial(n, p) distribution, and define
pm = qm for all np ≤ m ≤ 2np.

Now let PµBin denote the probability distribution when the Pi’s are chosen i.i.d. in the
following manner: with probability p′ := 1.5p, the distribution is N(µ, σ2

2I), and with
probability 1− 1.5p, the distribution is N(µ, σ2

1I). Then

µ

P
Bin

(∥µ̂− µ∥2 ≥ s) =
n∑

m=1
P (∥µ̂− µ∥2 ≥ s | {Pi} = Pµm) qm.

Hence,∣∣∣∣∣∣
∑

np≤m≤2np
P (∥µ̂− µ∥2 ≥ s | {Pi} = Pµm) pm −

µ

P
Bin

(∥µ̂− µ∥2 ≥ s)

∣∣∣∣∣∣ ≤
∑
m<np

qm +
∑

m>2np
qm

≤ 2 exp(−cnp)

≤ 2 exp(−c′ log n),

where second inequality follows from the multiplicative Chernoff bound (Lemma E.8.1)
and the last inequality follows by the assumption p = Ω

(
logn
n

)
. Combining the inequalities,

we conclude that

min
µ̂

max
{Pi}⊆P(s1,s2,p)

E[∥µ̂− µ∥2] ≥ s

(
min
µ̂

max
µ

µ

P
Bin

(∥µ̂− µ∥2 ≥ s)− 2 exp(−c′ log n)
)
.
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Thus, it suffices to find s such that the expression minµ̂ maxµ PµBin(∥µ̂ − µ∥2 ≥ s) can be
lower-bounded by a constant.

For part (i), using standard techniques [Tsy09; Wai19], we may obtain such a lower
bound via Fano’s inequality. In particular, if we can construct a set {µ1, . . . , µM} ⊆ Rd such
that ∥µj − µk∥2 ≥ 2s and KL(Pµj

Bin,P
µk
Bin) ≤ α for all j ̸= k, then

min
µ̂

max
µ

µ

P
Bin

(∥µ̂− µ∥2 ≥ s) ≥
(

1− α + log 2
logM

)
.

Note that by tensorization and convexity of the KL divergence, we have the upper bound

KL(
µj

P
Bin
,
µk

P
Bin

) ≤ n(1− p′)KL
(
N(µj, σ2

1I), N(µk, σ2
1I)

)
+ np′KL

(
N(µj, σ2

2I), N(µk, σ2
2I)

)
,

(E.8)
where the KL divergences in the right-hand expression are computed with respect to
single samples from the respective multivariate normal distributions. Furthermore, the
right-hand side of inequality (E.8) is easily calculated to be

n(1− p′) · ∥µj − µk∥
2
2

2σ2
1

+ np′ · ∥µj − µk∥
2
2

2σ2
2

= n∥µj − µk∥2
2

(
1− p′

2σ2
1

+ p′

2σ2
2

)
.

In particular, suppose {µ1, . . . , µM} is a 2s-packing of the ball of radius 4s in ℓ2-norm,
with s = C

√
dmin

{
σ1√
n
, σ2√

np′

}
. Then logM ≥ cd and

KL(
µj

P
Bin
,
µk

P
Bin

) ≤ 4ns2
(

1− p′

2σ2
1

+ p′

2σ2
2

)
≤ 4C2d := α.

For a sufficiently small choice of C, we conclude that minµ̂ maxµ PµBin(∥µ̂ − µ∥2 ≥ s) ≥ 1
2 .

Hence, we arrive at the desired bound (7.10).
We now turn to part (ii). We derive the tighter lower bound (7.12) for the case d = 1

by evaluating KL(Pµ1
Bin,P

µ2
Bin) more directly. By Theorem 2.2 in Tsybakov [Tsy09], we know

that if we have a pair µ1, µ2 ∈ Rd such that ∥µ1 − µ2∥2 ≥ 2s and

KL(
µ1
P

Bin
,
µ2
P

Bin
) ≤ α <∞, (E.9)

then

min
µ̂

max
µ

µ

P
Bin

(∥µ̂− µ∥2 ≥ s) ≥ max

exp(−α)
4 ,

1−
√
α/2

2

 .
Again, since the KL divergence tensorizes, it suffices to compute the KL divergence be-



537

tween a single sample from the distributions Pµ1
Bin and Pµ2

Bin, which we denote by P1 and P2,
respectively.

We provide the details of the calculation for general d, with the assumption (7.11)
replaced by the condition (

σ1

σ2

)d
= O

(
1
np2

)
. (E.10)

By a straightforward calculation, we have

log
(
dP1(x)
dP2(x)

)
= log

(1− p′) 1
(
√

2πσ1)d exp
(−∥x−µ1∥2

2
2σ2

1

)
+ p′ 1

(
√

2πσ2)d exp
(−∥x−µ1∥2

2
2σ2

2

)
(1− p′) 1

(
√

2πσ1)d exp
(−∥x−µ2∥2

2
2σ2

1

)
+ p′ 1

(
√

2πσ2)d exp
(−∥x−µ2∥2

2
2σ2

2

)


=
(
−∥x− µ1∥2

2
2σ2

1
+ ∥x− µ2∥2

2
2σ2

1

)
+ log

(1 + y

1 + z

)
,

where

y := p′

1− p′

(
σ1

σ2

)d
exp

(
−∥x− µ1∥2

2
2σ2

2
+ ∥x− µ1∥2

2
2σ2

1

)
,

z := p′

1− p′

(
σ1

σ2

)d
exp

(
−∥x− µ2∥2

2
2σ2

2
+ ∥x− µ2∥2

2
2σ2

1

)
.

Hence,

KL(P
1
,P

2
) = E

x∼P1

[
−∥x− µ1∥2

2
2σ2

1
+ ∥x− µ2∥2

2
2σ2

1

]
+ E

x∼P1

[
log

(1 + y

1 + z

)]

≤ ∥µ1 − µ2∥2

2σ2
1

+ E
x∼P1

[y]− E
x∼P1

[z] + E
x∼P1

[z2],

using the fact that

log
(1 + y

1 + z

)
= log

(
1 + y − z

1 + z

)
≤ y − z

1 + z
≤ y − z + z2,

since y, z > 0. We now write

E
x∼P1

[y]

= p′

1− p′

(
σ1

σ2

)d(1− p′)
∫

exp
(
−∥x− µ1∥2

2
2σ2

2
+ ∥x− µ1∥2

2
2σ2

1

)
1

(
√

2πσ1)d
exp

(
−∥x− µ1∥2

2
2σ2

1

)
dx

+ p′
∫

exp
(
−∥x− µ1∥2

2
2σ2

2
+ ∥x− µ1∥2

2
2σ2

1

)
1

(
√

2πσ2)d
exp

(
−∥x− µ1∥2

2
2σ2

2

)
dx
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:= Ay +By,

and

E
x∼P1

[z]

= p′

1− p′

(
σ1

σ2

)d(1− p′)
∫

exp
(
−∥x− µ2∥2

2
2σ2

2
+ ∥x− µ2∥2

2
2σ2

1

)
1

(
√

2πσ1)d
exp

(
−∥x− µ1∥2

2
2σ2

1

)
dx

+ p′
∫

exp
(
−∥x− µ2∥2

2
2σ2

2
+ ∥x− µ2∥2

2
2σ2

1

)
1

(
√

2πσ2)d
exp

(
−∥x− µ1∥2

2
2σ2

2

)
dx


:= Az +Bz.

Now, we may calculate

Ay = p′
(

1√
2πσ2

)d ∫
exp

(
−∥x− µ1∥2

2
2σ2

2

)
dx = p′,

and

By = (p′)2

1− p′

(
σ1√
2πσ2

2

)d ∫
exp

(
−∥x− µ1∥2

2
σ2

2
+ ∥x− µ1∥2

2
2σ2

1

)
dx

= (p′)2

1− p′

(
σ1√
2πσ2

2

)d π
1
σ2

2
− 1

2σ2
1

d/2

≤ (p′)2

1− p′

(
σ1

σ2

)d
,

using the fact that 1
2σ2

1
≤ 1

2σ2
2
. Under the assumption (E.10), we get that By = O(1/n).

For ease of calculation, we now set

µ⊤
1 = (µ, 0, . . . , 0),

µ⊤
2 = (−µ, 0, . . . , 0). (E.11)

Using the formula

∫
exp

(
−x⊤Ax+ b⊤x+ c

)
dx =

√√√√ πd

det(A) exp
(1

4b
⊤A−1b+ c

)
, (E.12)

we have

Az = p′
(

1√
2πσ2

)d ∫
exp

(
−∥x− µ2∥2

2
2σ2

2
+ ∥x− µ2∥2

2
2σ2

1
− ∥x− µ1∥2

2
2σ2

1

)
dx
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= p′ exp
σ2

2
2

∥∥∥∥∥µ2

σ2
2
− µ2

σ2
1

+ µ1

σ2
1

∥∥∥∥∥
2

2
− µ⊤

2 µ2

2σ2
2

+ µ⊤
2 µ2

2σ2
1
− µ⊤

1 µ1

2σ2
1


= p′ exp

(
−2µ2

(
1
σ2

1
− σ2

2
σ4

1

))
.

In particular, using the fact that exp(−x) ≥ 1− x for x ≥ 0, we have

Ay − Az = p′ − Az ≤ p′ · 2µ2
(

1
σ2

1
− σ2

2
σ4

1

)
≤ 2µ2

σ2
1
.

We can use the simple fact that Bz ≥ 0 to ensure that By −Bz ≤ By = O1/n).
Combining the inequalities, we conclude that

E
x∼P1

[y]− E
x∼P1

[z] = O

(
µ2

σ2
1

)
+O

( 1
n

)
.

Finally, we compute

E
x∼P1

[z2] =
(

p′

1− p′

)2 (
σ1

σ2

)2d
(1− p′)

∫
exp

(
−∥x− µ2∥2

2
σ2

2
+ ∥x− µ2∥2

2
σ2

1

)

· 1
(
√

2πσ1)d
exp

(
−∥x− µ1∥2

2
2σ2

1

)
dx

+ p′
∫

exp
(
−∥x− µ2∥2

2
σ2

2
+ ∥x− µ2∥2

2
σ2

1

)
1

(
√

2πσ2)d
exp

(
−∥x− µ1∥2

2
2σ2

2

)
dx


:= A′

z +B′
z.

Again using the designation (E.11) and the formula (E.12), we have

A′
z = (p′)2

1− p′

(
σ1√
2πσ2

2

)d ∫
exp

(
−∥x− µ2∥2

2
σ2

2
+ ∥x− µ2∥2

2
σ2

1
− ∥x− µ1∥2

2
2σ2

1

)
dx

= (p′)2

1− p′

 σ1√
2σ2

2
√

1
σ2

2
− 1

2σ2
1

d exp

 1
4
(

1
σ2

2
− 1

2σ2
1

) ∥∥∥∥∥2µ2

σ2
2
− 2µ2

σ2
1

+ µ1

σ2
1

∥∥∥∥∥
2

2


× exp

(
−µ

⊤
2 µ2

σ2
2

+ µ⊤
2 µ2

σ2
1
− µ⊤

1 µ1

2σ2
1

)

= (p′)2

1− p′

 σ1√
2σ2

2
√

1
σ2

2
− 1

2σ2
1

d exp

(−2µ/σ2
2 + 3µ/σ2

1)2

4
(

1
σ2

2
− 1

2σ2
1

) − µ2

σ2
2

+ µ2

2σ2
1
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≤ (p′)2

1− p′

(
σ1

σ2

)d
exp

(−2µ/σ2
2 + 3µ/σ2

1)2

4
(

1
σ2

2
− 1

2σ2
1

) − µ2

σ2
2

+ µ2

2σ2
1

 ,

and

B′
z = (p′)3

1− p′

(
σ2

1√
2πσ3

2

)d ∫
exp

(
−∥x− µ2∥2

2
σ2

2
+ ∥x− µ2∥2

2
σ2

1
− ∥x− µ1∥2

2
2σ2

2

)
dx

= (p′)3

1− p′

 σ2
1√

2σ3
2
√

3
2σ2

2
− 1

σ2
1

d exp

 1
4
(

3
2σ2

2
− 1

σ2
1

) ∥∥∥∥∥2µ2

σ2
2
− 2µ2

σ2
1

+ µ1

σ2
2

∥∥∥∥∥
2

2


× exp

(
−µ

⊤
2 µ2

σ2
2

+ µ⊤
2 µ2

σ2
1
− µ⊤

1 µ1

2σ2
2

)

= (p′)3

1− p′

 σ2
1√

2σ3
2
√

3
2σ2

2
− 1

σ2
1

d exp

(−µ/σ2
2 + 2µ/σ2

1)2

4
(

3
2σ2

2
− 1

σ2
1

) − 3µ2

2σ2
2

+ µ2

σ2
1


≤ (p′)3

1− p′

(
σ1

σ2

)2d
exp

(−µ/σ2
2 + 2µ/σ2

1)2

4
(

3
2σ2

2
− 1

σ2
1

) − 3µ2

2σ2
2

+ µ2

σ2
1

 .
Considering the exponential terms in the expressions for A′

z and B′
z, note that for A′

z, we
have

(−2µ/σ2
2 + 3µ/σ2

1)2

4
(

1
σ2

2
− 1

2σ2
1

) − µ2

σ2
2

= µ2

σ2
2


(
2− 3σ2

2
σ2

1

)2

4
(
1− σ2

2
2σ2

1

) − 1

 < 0,

assuming σ2 ≤ σ1, whereas for B′
z, we have

(−µ/σ2
2 + 2µ/σ2

1)2

4
(

3
2σ2

2
− 1

σ2
1

) − 3µ2

2σ2
2

= µ2

σ2
2


(
1− 2σ2

2
σ2

1

)2

4
(

3
2 −

σ2
2
σ2

1

) − 3
2

 < 0,

using the fact that σ2 ≤ σ1. Thus, using the assumption (E.10), we obtain

E
x∼P1

[z2] = A′
z +B′

z = O
( 1
n

)
exp

(
µ2

2σ2
1

)
+O

(
1
n2p

)
exp

(
µ2

σ2
1

)

= O
( 1
n

)
exp

(
µ2

σ2
1

)
.

Finally, we take µ = σ1√
n

to obtain the desired bound (E.9). This completes the proof.
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E.5.4 Proof of Theorem 7.5.7

By a similar argument used to derive the bound in Theorem 7.5.3, the following expected
error bound may be derived from the high-probability bound in Theorem 7.4.6 for the
hybrid estimator:

E ∥µ̂k1,k2∥2 ≤ min
{√

dr2k1,1,
√
n

1/d
rk2

}
. (E.13)

In what follows, we will bound these expressions to obtain the desired results.
As shown in the proof of Lemma 7.2.5(v), a ball of radius Cσ2

√
d around the origin

will contain at least 1
2 of the mass of np distributions. Thus, if np ≥ 2k2, we will have

rk2 ≤ Cσ2
√
d.

We now claim that r2k1,1 ≤ Cσ1 logn√
n

:= r′, which we will show by integrating the marginal
densities on the interval [−r′, r′]. Note that νi ≤ σ1 for all i. We consider two cases: if
νi ≥ r′, then qi(r′) ≥ c

νi
≥ c

σ1
, using inequality (7.13), so

∫
[−r′,r′] qi(x)dx ≥ 2cr′

σ1
≥ 2 logn√

n
for

large enough C. If νi < r′, then
∫

[−νi,νi] q(x)dx ≥ c′ ≥ 2 logn√
n

, as well. Thus,

n∑
i=1

∫
[−r′,r′]

qi(x)dx ≥
n∑
i=1

2 log n√
n
≥ 2
√
n log n = 2k1. (E.14)

Combining the results with inequality (E.13) proves inequality (7.15).
We now consider the special cases:

(a) In the case when p = Ω
(√

n logn
n

)
, we can use fact that at least np = Ω(

√
n log n) points

have marginal variance at most σ2. Let r′ := Cσ2 logn
p
√
n

. By similar reasoning as above,
for at least np distributions, we have

∫
[−r′,r′] qi(x)dx ≥ logn

p
√
n

. Thus, we can replace
inequality (E.14) by

n∑
i=1

∫
[−r′,r′]

qi(x)dx ≥ np · 2 log n
p
√
n
≥ 2
√
n log n,

to conclude that r2k1,1 = O
(
σ2 logn
p
√
n

)
. This leads to the stated bound.

(b) In this case, we will obtain a better bound by showing that ∥µ̂S,k2∥2 ≤ r2k2 , w.h.p.,
rather than the looser bound ∥µ̂S,k2∥2 ≤ C ′√n1/d

rk2 used to derive inequality (E.13)
(cf. Theorem 7.4.6). Since r2k2 ≤ Cσ2

√
d, the tighter bound will then follow.

Let r′ := C ′√d log nσ2. As argued in the proof of Theorem 7.4.5, it suffices to show
that R(fr′,r2k

) ≤ k
2n , where k = k2. We will deal with low-variance and high-variance

points separately.
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First, consider i such that νi = Ω(σ1) = Ω(σ2n
1
d ) ≥ C ′′σ2n

1
d for large C ′′, and let vd

denote the volume of the ball of radius 1. Then

P (Xi ∈ B(r′, r2k)) ≤ P (Xi ∈ B(0, r2k)) ≤ fi(0)vdrd2k ≤
(

c′

C ′′σ2n1/d

)d
vdσ

d
2C

d
√
d
d
≤ 1
n
,

where we use condition (7.14) and the fact that vd

√
d

d

C̃d ≤ 1 for a sufficiently large
constant C̃.

Now consider i such that νi ≤ σ2. By condition (7.14), we have

P (Xi ∈ B(r′, r2k)) ≤ exp(−c1 log n) ≤ 1
nc1

.

For large enough C ′, we can ensure that c1 ≥ 1. Altogether, we conclude that

R(fr′,r2k
) = 1

n

n∑
i=1

P (Xi ∈ B(r′, r2k)) ≤
1
n
<
k2

2n,

which concludes the proof.

E.5.5 Details for Table 7.2

1. Large Heterogeneity

• Upper bound: We have σ1
σ2

= Ω(n1/d). Since σ2 = 1, Theorem 7.5.7(b) states that
the error of the hybrid estimator is bounded as follows:

E ∥µ̂− µ∥2 ≤ C ′′
u

√
d
√

log n.

• Lower bound: As remarked after Theorem 7.5.7, the lower bounds for the class
P(σ1, σ2, p) also hold for the class Q(σ1, σ2, p), because these families share the
class of distributions used in the proof of Theorem 7.5.5. Using Theorem 7.5.5(a),
the error of any estimator µ̂ is bounded from below as follows:

E ∥µ̂− µ∥2 ≥ Cℓ
√
dmin

(
1
√
np
,
σ1√
n

)
= Cℓ

√
d

√
np

min (1, σ1
√
p) = Ω

( √
d

√
np

)
,

where we use the fact that σ1
√
p = Ω(1) by assumption.

2. Mild Heterogeneity
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• Upper bound: Since σ2 = 1, inequality (7.15) in Theorem 7.5.7 states that the
error of the hybrid estimator is bounded as follows:

E ∥µ̂− µ∥2 ≤ C ′′
u

√
dσ1

log n√
n
.

• Lower bound: Using Theorem 7.5.5(a), the error of any estimator µ̂ is bounded
from below as follows:

E ∥µ̂− µ∥2 ≥ Cℓ
√
dmin

(
1
√
np
,
σ1√
n

)
= Cℓ

√
d√
n

min
(

1
√
p
, σ1

)
= Ω

(√
dσ1√
n

)
,

where we use the fact that σ1 = O(1/√p) by assumption.

3. Large p

• Upper bound: As p = Ω
(√

n logn
n

)
, Theorem 7.5.7(a) states that the error of the

hybrid estimator is bounded as follows:

E ∥µ̂− µ∥2 ≤ C ′
u

√
d log nmin

(
1

p
√
n
,
σ1√
n

)
.

• Lower bound: The lower bound follows directly from Theorem 7.5.5(a).

E.6 Proofs for Alternative Conditions
In this appendix, we prove the statements of the results in Section 7.7.

E.6.1 Proof of Theorem 7.7.1

We first prove claim (i). Note that the result of Lemma E.2.2 will still hold, since it only
depends on the uniform concentration bound and optimality of the modal interval estimator.
Thus, R(fµ̂M,r,r

) ≥ R∗
r

2 , w.h.p.
For a fixed value of r′, define µ̂′ = µ̂M,r

∥µ̂M,r∥2
· r′ to be the rescaled version of µ̂M,r. By

condition (C1), we will have ∥µ̂M,r∥2 ≤ r′ if we can show that R(fµ̂′,r) ≤ R(fµ̂M,r,r
). Note

that
R(fµ̂′,r) ≤ g(r′, r),

so if we choose r′ sufficiently large so that g(r′, r) < R∗
r

2 , the desired inequality will hold.
Turning to claim (ii), note that Lemma 7.4.4 continues to hold, since it only relies on the

uniform concentration bound and a Chernoff bound. We thus conclude that R(fµ̂S,k,r2k
) ≥
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k
4n = R∗

2k

4 , w.h.p. For a fixed value of r′, we define µ̂′ = µ̂M,r2k

∥µ̂M,r2k
∥2
·r′. By condition (C1) (which

we only need to assume holds for r = r2k), if R(fµ̂′,r2k
) ≤ R(fµ̂M,r2k

,r2k
), then ∥µ̂M,r2k

∥2 ≤ r′.
Furthermore, R(fµ̂′,r2k

) ≤ g(r′, r2k), so we simply need to choose r′ such that g(r′, r2k) < 1
4 .

For the hybrid estimator, note that Lemma E.4.1 shows that the output is always within√
dr4

√
n logn,1 of the output. Furthermore, the output of shorth estimator is always with r′ of

the origin by part (ii). If the shorth estimator lies outside the S∞√
n logn, then its ℓ2 projection

on S∞√
n logn will only decrease its distance from the origin because (1) the origin belongs to

S∞√
n logn; and (2) S∞√

n logn is convex.

E.6.2 Proof of Proposition 7.7.3

We first show that for each r > 0, the functions Ri(fx,r) are unimodal as functions of x ∈ Rd.
Let q be the uniform distribution on the Euclidean ball of radius r. Then pi ⋆ q, being
a convolution of two log-concave densities, is also log-concave. Log-concave densities
by definition are proportional to e−ϕ(x) for some convex function ϕ, and therefore they
are unimodal and monotonically decreasing along rays from the mode. Now note that if
condition (C3) holds, then Ri(fx,r) must also be symmetric around 0. Hence, if Ri(fx,r) is
unimodal, its unique mode must clearly occur at 0. This proves that conditions (C2) and
(C3) together imply condition (C1).

For the second statement, it suffices to verify the inequality

sup
∥x∥2=a

Ri(fx,r) ≤
1

⌊a/2r⌋ , ∀i. (E.15)

Indeed, we would then have

g(a, r) = sup
∥x∥2=a

1
n

n∑
i=1

Ri(fx,r) ≤
1
n

n∑
i=1

sup
∥x∥2=a

Ri(fx,r) ≤
1

⌊a/2r⌋ .

Thus, it remains to verify inequality (E.15). Focusing on a particular i, consider x ∈ Rd

such that ∥x∥2 = a. We know thatRi(fx,r) is decreasing on the ray from 0 to x. Furthermore,
we can pack ⌊ a2r⌋ balls of radius r on the ray, including the balls B(x∗

i , r) and B(x, r) at the
endpoints. The total mass of these balls is clearly upper-bounded by 1. Hence,

⌊
a

2r

⌋
·Ri(fx,r) ≤ 1,

implying the desired result.
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E.6.3 Proof of Proposition 7.7.5

LetX have an elliptically symmetric density defined as pX(x) = f(x⊤Σ−1x) for a decreasing
function f : R → R. Consider a point x0 ∈ Rd such that ∥x0∥2 = r2, and consider the
ball B(x0, r1) = {x ∈ Rd : ∥x − x0∥ ≤ r1}. For analysis purposes, we first transform the
elliptically symmetric density to a spherically symmetric, decreasing density. This may be
achieved by applying the linear transformation Σ−1/2 : Rd → Rd. Define Y := Σ−1/2X , let
Σ−1/2x0 = y0, and let B̂ be the image of B(x0, r1) under the transformation Σ−1/2. Note that

B̂ =
{
y ∈ Rd : (y − y0)⊤Σ(y − y0) ≤ r1

}
,

and further note that R(fx0,r1) is equal to the integral of pY (·) over B̂; i.e., P(Y ∈ B̂). It is
easy to see that B̂ ⊆ B

(
y0,

r1
λmin(Σ)

)
. Hence,

R(fx0,r1) = P(Y ∈ B̂) ≤ P(Y ∈ B
(
y0,

r1

λmin(Σ)

)
.

We may now use the strategy from Lemma 7.2.5, to obtain

1 ≥ P(Y ∈ B(0, ∥y0∥2))

≥ P

(
B(0, ∥y0∥2),

r1

λmin(Σ)

)
· P
(
Y ∈ B

(
y0,

r1

λmin(Σ)

))

≥ P

(
B

(
0, r2

λmax(Σ)

)
,

r1

λmin(Σ)

)
·R(fx0,r1).

Since this inequality holds for any x2 with ∥x2∥2 = r2, we conclude that

g(r2, r1) ≤
1

P
(
B
(
0, r2

λmax(Σ)

)
, r1
λmin(Σ)

)
≤ C

(
r1λmax(Σ)
r2λmin(Σ)

)d
.

E.6.4 Proof of Proposition 7.7.8

We index the distributions so that {Ri}si=1 are radially symmetric. Note that

g(a, r) = sup
∥x∥2=a

R(fx,r) ≤
1
n

n∑
i=1

sup
∥x∥2=a

Ri(fx,r).
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Furthermore, for each 1 ≤ i ≤ s, we have

sup
∥x∥2=a

Ri(fx,r) ≤
(
r

a

)d
Ri(f0,a) ≤

(
r

a

)d
.

On the other hand, for i > s, we have

sup
∥x∥2=a

Ri(fx,r) ≤
r

a
.

Hence,
g(a, r) ≤ s

n

(
r

a

)d
+ n− s

n

(
r

a

)
.

Now note that R∗
q(f(n))

≥ f(n)
2n . Thus,

g(r′, r) ≤ s

n
· 1

2dn + n− s
n
· 1

2n1/d ≤
1
n

+ n− s
n
· 1

2n1/d <
f(n)
4n ≤

R∗
r

2 ,

using the assumed lower bound on s.

E.7 Proofs for Regression
In this appendix, we provide the proofs of the statements in Section 7.8.

E.7.1 Proof of Proposition 7.8.1

We write
n∑
i=1

E
[
1
{
|yi − x⊤

i β| ≤ r
}]

=
n∑
i=1

P
(
|yi − x⊤

i β| ≤ r
)

=
n∑
i=1

P
(
|x⊤
i (β∗ − β) + ϵi| ≤ r

)
.

Note that conditioned on xi, each summand is maximized uniquely when x⊤
i (β∗ − β) = 0,

since the distribution of ϵi is symmetric and unimodal. Since

n∑
i=1

E
[
1
{
|yi − x⊤

i β| ≤ r
}]

= E
[
n∑
i=1

E
[
1
{
|yi − x⊤

i β| ≤ r
}
| {xi}ni=1

]]
, (E.16)

we see that the right-hand expression in equation (E.16) is therefore maximized when
β = β∗. On the other hand, we can also argue that the maximizer is unique. Indeed,
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suppose β ∈ Rd were such that β ̸= β∗. The set

S :=
{
{xi}ni=1 ⊆ (Rd)n : x⊤

i (β − β̂) = 0 ∀i
}

has Lebesgue measure 0. We can write

E
[
n∑
i=1

E
[
1
{
|yi − x⊤

i β| ≤ r
}
| {xi}ni=1

]]
=
∫

{xi}∈S
E
[
1
{
|yi − x⊤

i β| ≤ r
}
| {xi}ni=1

]
dP({xi})

+
∫

{xi}/∈S
E
[
1
{
|yi − x⊤

i β| ≤ r
}
| {xi}ni=1

]
dP({xi}).

Noting that

E
[
1
{
|yi − x⊤

i β| ≤ r
}
| {xi}ni=1

]
= E

[
1
{
|yi − x⊤

i β
∗| ≤ r

}
| {xi}ni=1

]
, ∀{xi} ∈ S,

E
[
1
{
|yi − x⊤

i β| ≤ r
}
| {xi}ni=1

]
< E

[
1
{
|yi − x⊤

i β
∗| ≤ r

}
| {xi}ni=1

]
, ∀{xi} /∈ S,

completes the proof.

E.7.2 Proof of Theorem 7.8.3

The proof follows the same approach used to prove estimation error bounds for the modal
interval estimator throughout the paper (e.g., Theorem 7.3.1). By Lemma 7.8.2, we know
that R

β̂
≥ Rβ∗

2 , w.h.p. We will be done if we can show that Rβ <
Rβ∗

2 for all β satisfying

∥β − β∥2 >
c′nσ(cd logn)

λmin
. (E.17)

First note that
Rβ∗ = 1

n

n∑
i=1

P(|ϵi| ≤ r).

Hence, as argued for mean estimation, we certainly have r ≤ C ′σ(Cd logn).
Also note that for any β ∈ Rd, we have

yi − x⊤
i β = ϵi + x⊤

i (β∗ − β) ∼ N
(
(β∗ − β)⊤µ′

i, (β∗ − β)⊤Σ′
i(β∗ − β)

)
.

Let J denote the set of indices of the smallest d log n of the σi’s. Note that

Rβ∗ ≥ 1
n

∑
i∈J

P(|ϵi| ≤ r) ≥ 2r · c
n

d logn∑
i=1

1√
2πσ(i)

,
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since the Gaussian pdf decreases by a factor of ≈ 68% within one standard deviation of 0.
Now suppose β ∈ Rd satisfies inequality (E.17). We have

Rβ ≤
1
n

n∑
i=1

P (|zi| ≤ r) ,

where zi ∼ N
(
0, σ2

i + (β∗ − β)⊤Σ′
i(β∗ − β)

)
. For i /∈ J , we write

P(|zi| ≤ r) ≤ 2r · 1
√

2π
√
σ2
i + (β∗ − β)⊤Σ′

i(β∗ − β)
≤ 2r
nσ(d logn)

√
2π
,

since by the choice of β, we have

(β∗ − β)⊤Σ′
i(β∗ − β) ≥ λmin∥β − β∗∥2

2 ≥ n2σ2
(d logn).

For i ∈ J , we write

P(|zi| ≤ r) ≤ 2r · 1
√

2π
√
σ2
i + (β∗ − β)⊤Σ′

i(β∗ − β)
≤ 2r

3σ2
i

√
2π
,

since by the choice of β, we have

(β∗ − β)⊤Σ′
i(β∗ − β) ≥ 2σ2

(d logn) ≥ 2σ2
i .

Thus, we conclude that

Rβ ≤
2r√
2π
· 1
n

∑
i∈J

1
3σ2

i

+
∑
i/∈J

1
nσ(d logn)

 ≤ Rβ∗

3 + c′

n
<
Rβ∗

2 ,

as wanted. This concludes the proof.

E.7.3 Proof of Theorem 7.8.4

For i ∈ [n], consider the sets

Ui := {β ⊆ Rd : −r ≤ x⊤
i β ≤ +r}.

The set Ui is sandwiched between the two hyperplanes x⊤
i β = yi − r and x⊤

i β = yi + r.
Denote these hyperplanes by H−(Ui) and H+(Ui), respectively. These 2n hyperplanes
partition Rd into a finite number of (possibly unbounded) convex regions, which we
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denote by {R1, . . . , RM}. Define the function f(β) := ∑n
i=1 ⊮Ui

(β). Our goal is to find
β̂ = argmaxβ∈Rd f(β), where ⊮Ui

is the indicator function of Ui. It is easy to see that f(·) is
constant when restricted to the interior of any fixed region Rj for j ∈ [M ]. Also, since ⊮Ui

is an upper-semicontinuous function for each i ∈ [n], so is f . Thus, the value of f(·) at the
vertices Rj is at least as large as the value of f in its interior. Thus, to find the maximum
of f(·), we may only consider β ∈ Rd that correspond to vertices of Rj for j ∈ [M ]. All
such vertices may be obtained by choosing any d (mutually non-parallel) hyperplanes
from among {H−(U1), . . . , H−(Un), H+(U1), . . . , H+(UM)} and considering their point of
intersection. The total number of such points is bounded above by

(
2n
d

)
, and our algorithm

may simply list such points and evaluate f at each point in the list.

E.8 Auxiliary Results
This appendix contains several technical results invoked throughout the paper.

We will employ the following multiplicative Chernoff bound, which is standard (cf.
Vershynin [Ver18] or Boucheron et al. [BLM13]):

Lemma E.8.1. Let X1, . . . , Xn be independent Bernoulli random variables with parameters {pi}.
Let Sn = ∑n

i=1 Xi and µ = E[Sn].

(i) For any δ ∈ (0, 1], we have

P (Sn ≥ (1 + δ)µ) ≤ exp
(
−µδ

2

3

)
.

and
P (Sn ≤ (1− δ)µ) ≤ exp

(
−µδ

2

2

)
.

(ii) For δ ≥ 4, we have
P (Sn ≥ δµ) ≤ exp (−cµδ log δ) .

We will also use the following result from Boucheron et al. [BLM13]:

Lemma E.8.2. (Theorem 12.9 from Boucheron et al. [BLM13]) Let W1, . . . ,Wn be independent
vector-valued random variables and let Z = sups∈T

∑n
i=1 Wi,s. Assume that for all i ≤ n and

s ∈ T , we have EWi,s = 0, and |Wi,s| ≤ 1. Let

v := 2EZ + ρ2,
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ρ2 := sup
t∈T

n∑
i=1

EW 2
i,s.

Then Var(Z) ≤ v and

P{Z ≥ EZ + t} ≤ exp
(
− t4 log

(
1 + 2 log

(
1 + t

v

)))
.

We now state and prove a generalization of Theorem 13.7 from Boucheron et al.[BLM13]:

Theorem E.8.3. Let A = {At : t ∈ T } be a countable class of measurable subsets of X with VC
dimension V , such that A0 = ∅ ∈ A. Let X1, . . . , Xn be independent random variables taking
values in X , with distributions P1, . . . , Pn, respectively. Assume that for some σ > 0, we have

1
n

n∑
i=1

Pi(At) ≤ σ2, for every t ∈ T .

Let Z and Z− be defined as follows:

Z = 1√
n

sup
t∈T

n∑
i=1

(⊮Xi∈At − Pi(At)) , and

Z− = 1√
n

sup
t∈T

n∑
i=1

(Pi(At)− ⊮Xi∈At) .

If σ ≥ 24
√

V
5n log

(
4e2

σ

)
, then

max
(
EZ,EZ−

)
≤ 72σ

√
V log 4e2

σ
.

Proof. The following proof is an adaptation of the proof of Theorem 13.7 in Boucheron et
al. [BLM13]. The generalization from identical to non-identical distributions is possible
because (1) independence suffices for symmetrization inequality; and (2) after conditioning
onX1, . . . , Xn, it is no longer relevant whether the distributions of the random variables are
identical. We include the initial steps of the proof for completeness and direct the reader to
Boucheron et al. [BLM13] for more details.

By the symmetrization inequalities of Lemma 11.4 in Boucheron et al. [BLM13], we
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have

E
1√
n

sup
t∈T

n∑
i=1

(⊮Xi∈At − P (At))

≤ 2E
[
E
[

1√
n

sup
t∈T

n∑
i=1

ϵi⊮Xi∈At

∣∣∣∣∣X1, . . . , Xn

]]
, (E.18)

where the ϵi’s are independent Rademacher variables. Define the random variable

δ2
n = max

(
sup
t∈T

1
n

n∑
i=1

⊮Xi∈At , σ
2
)
.

Clearly, δ2
n ≤ Z√

n
+ σ2, so by Jensen’s inequality,37

E δn ≤

√√√√E
(
Z√
n

)
+ σ2.

Now let Zt = 1√
n

∑n
i=1 ϵi⊮Xi∈At . Noting that the Rademacher averages are sub-Gaussian,

conditioned on the Xi’s, we have

logE
[
eλ(Zt−Zt′ )

∣∣∣∣X1, . . . , Xn

]

≤
λ2
(

1
n

∑n
i=1(⊮Xi∈At − ⊮Xi∈At′ )2

)
2

=
λ2
(

1
n

∑n
i=1(⊮Xi∈At ̸= ⊮Xi∈At′ )

)
2 .

Let d(t, t′) =
√

1
n

∑n
i=1(⊮Xi∈At ̸= ⊮Xi∈At′ ), and let H(δ, T ) denote the universal δ-metric

entropy (with respect to d(·, ·)). Since the zero function (corresponding to ∅) belongs to
the function class, we have

sup
t∈T

d(t, 0) = sup
t∈T

√√√√ 1
n

n∑
i=1

⊮Xi∈At ≤ δn.

Therefore, we can apply the discrete version of Dudley’s inequality (Lemma 13.1 in
Boucheron et al. [BLM13]) with δn as the maximum radius. Since δn ≥ σ, we can upper-
bound the random quantityH(aδn) by the fixed quantityH(aσ), for any a > 0. This implies

37Note that both Z and Z− are non-negative since ϕ ∈ A.
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that

E
[

1√
n

sup
t∈T

n∑
i=1

ϵi⊮Xi∈At

∣∣∣∣∣X1, . . . , Xn

]

≤ 3
∞∑
j=0

δn2−j
√
H(δn2−j−1, T )

≤ 3
∞∑
j=0

δn2−j
√
H(σ2−j−1, T ).

Taking the expectation with respect to X1, . . . , Xn and combining with inequality (E.18)
we then obtain

EZ ≤ 6E δn ·
∞∑
j=1

2−j
√
H(σ2−j−1, T )

≤ 6

√√√√E
(
Z√
n

)
+ σ2

 ∞∑
j=1

2−j
√
H(σ2−j−1, T )

 .
From this step onward, the proof is identical to the proof of Theorem 13.7 in Boucheron et
al. [BLM13].

Theorem E.8.4. (Theorem 8.3.23 in Vershynin[Ver18]) Let F be a class of Boolean functions on a
probability space (Ω,Σ, µ) with finite VC dimension V ≥ 1. Let X,X1, X2, . . . , Xn be independent
random points in Ω distributed according to the law µ. Then

E
[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E f(X)
∣∣∣∣∣
]
≤ C

√
V

n
.
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f appendix to Chapter 9

F.1 Omitted Proofs from Section 9.2: Technical Details
Regarding Stability

Lemma 9.2.11 (Certificate Lemma). Let G be an (ϵ, δ)-stable distribution with respect to µ ∈ Rd,
for some 0 < ϵ < 1/3 and δ ≥ ϵ. Let P be a distribution with dTV(P,G) ≤ ϵ. Denoting by µP ,ΣP

the mean and covariance of P , if λmax(ΣP ) ≤ 1+λ, for some λ ≥ 0, then ∥µP −µ∥2 = O(δ+
√
ϵλ).

Proof. Let dTV(P,G) = α. By Fact 9.2.4 we can write P = (1− α)G0 + αB. We may assume
without loss of generality α = ϵ, since we can always treat a part of the inliers as outliers.
Denoting by µP ,ΣP the mean and covariance of P , and using µG0 , µB,ΣG0 ,ΣB for the
corresponding quantities of the other two distributions, we have that

ΣP = (1− ϵ)ΣG0 + ϵΣB + ϵ(1− ϵ)(µG0 − µB)(µG0 − µB)⊤ .

Letting v be the unit vector in the direction of µG0 − µB, we have that

1 + λ ≥ v⊤ΣPv = (1− ϵ)v⊤ΣG0v + ϵv⊤ΣBv + ϵ(1− ϵ)(v⊤(µG0 − µB))2 . (F.1)

The second term of the left-hand side is nonzero and the third one is just ϵ(1−ϵ) ∥µG0−µB∥2
2.

We now focus on the first term, which by adding and subtracting µ (the vector realizing
the definition of stability for G) can be written as

(1− ϵ) E
X∼G0

[(v⊤(X − µG0))2] = (1− ϵ)
(

E
X∼G0

[(v⊤(X − µ))2]− (v⊤(µ− µG0))2
)
. (F.2)

We note that in the decomposition of Fact 9.2.4, we can write G0(x) = w0(x)G(x) with

w0(x) = 1
1− ϵ

P (x)/G(x) , if G(x) > P (x)

1 , otherwise .

Letting h(x) := (1− ϵ)w0(x) we have that h(x) ≤ 1 for all x and EX∼G[h(X)] = 1− ϵ, thus
G0(x) = h(x)G(x)/(

∫
h(x)G(x)dx) =: Gh(x). Returning to Equation (F.2), this means that

E
X∼G0

[(v⊤(X − µ))2] = E
X∼Gh

[(v⊤(X − µ))2] = v⊤Σh,Gv ≥ 1− δ2

ϵ
, (F.3)

by applying stability. Similarly, the other term in Equation (F.2) is (v⊤(µ − µG0))2 ≤ δ2.
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Putting everything together, Equation (F.1) becomes

1 + λ ≥ (1− ϵ)(1− δ2/ϵ− δ2) + ϵ(1− ϵ)∥µG0 − µB∥2
2

≥ 1− 3δ2/ϵ+ (ϵ/2)∥µG0 − µB∥2
2 ,

which yields ∥µG0 − µB∥2 ≲
√
λ/ϵ + δ/ϵ. Then, writing µP = (1− ϵ)µG0 + ϵµB and using

stability follows that ∥µP − µ∥2 ≲ δ +
√
λϵ.

Lemma 9.2.12. For any 0 < ϵ < 1/2 and δ ≥ ϵ, if a distribution G is (2ϵ, δ)-stable with respect to
µ ∈ Rd, and P is an ϵ-corrupted version of G in total variation distance, there exist distributions
G0 and B such that P = (1− ϵ)G0 + ϵB and G0 is (ϵ, δ)-stable with respect to µ.

Proof. By Fact 9.2.4, we have the decomposition P = (1 − ϵ)G0 + ϵB, where G0(x) =
min{G(x), P (x)}/(1− ϵ). We can write G0(x) = w0(x)G(x), where

w0(x) = 1
1− ϵ

P (x)/G(x) , if G(x) > P (x)

1 , otherwise .

To see why the final claim is true, we consider a weight function w : Rd → [0, 1] such that
EX∼G0 [w(X)] ≥ 1− ϵ and examine the adjusted distribution G0w. We have that

G0w(x) = w(x)G0(x)∫
Rd w(x)G0(x)dx = (1− ϵ)w(x)w0(x)G(x)∫

Rd(1− ϵ)w(x)w0(x)G(x)dx = h(x)G(x)
EX∼G[h(X)] = Gh(x) ,

where we let h(x) := (1 − ϵ)w(x)w0(x). We have that h(x) ≤ 1 point-wise and∫
Rd h(x)G(x)dx = (1− ϵ)EX∼G0 [w(X)] ≥ (1− ϵ)2 ≥ 1− 2ϵ. Recalling that G is (2ϵ, δ)-stable,

the conclusion follows.

Lemma 9.2.13. Fix 0 < ϵ < 1/2 and δ ≥ ϵ. Let w : Rd → [0, 1] such that EX∼G[w(X)] ≥ 1− ϵ
and let G be an (ϵ, δ)-stable distribution with respect to µ ∈ Rd. For any matrix U ∈ Rd×d and any
vector b ∈ Rd, we have that

E
X∼Gw

[
∥U(X − b)∥2

2

]
= ∥U∥2

F (1± δ2/ϵ) + ∥U(µ− b)∥2
2 ± 2δ ∥U∥2

F∥µ− b∥2 .

Proof. We can write

E
X∼Gw

[
∥U(X − b)∥2

2

]
= E

X∼Gw

[∥U(X − µ)∥2
2 + ∥U(µ− b)∥2

2 + 2(X − µ)⊤U⊤U(µ− b)]

= E
X∼Gw

[
∥U(X − µ)∥2

2

]
+ ∥U(µ− b)∥2

2 + 2(µw,G − µ)⊤U⊤U(µ− b) .

(F.4)
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We now focus on the first term. Let the spectral decomposition U⊤U = tr(U⊤U)∑d
i=1 αiviv

⊤
i ,

where ∑d
i=1 αi = 1 and αi ≥ 0. We have that

E
X∼Gw

[
∥U(X − µ)∥2

2

]
= tr

(
U⊤U E

X∼Gw

[(X − µ)(X − µ)⊤]
)

= tr(U⊤U)
d∑
i=1

αitr(viv⊤
i Σw,G)

= tr(U⊤U)
d∑
i=1

αiv
⊤
i Σw,Gvi = tr(U⊤U)(1± δ2/ϵ) = ∥U∥2

F (1± δ2/ϵ) ,

where the second from the end relation is due to stability. Regarding the last term of
Equation (F.4), we have that

|(µw,G − µ)⊤U⊤U(µ− b)| = |tr(U⊤U(µ− b)(µw,G − µ)⊤)| ≤ tr(U⊤U)∥(µ− b)(µw,G − µ)⊤∥2

= ∥U∥2
F∥µ− b∥2∥µw,G − µ∥2 ≤ ∥U∥2

F δ∥µ− b∥2 ,

where the last inequality uses stability condition for the mean.

Corollary 9.2.14. Fix 0 < ϵ < 1/2 and δ ≥ ϵ. Let G be an (ϵ, δ)-stable distribution with respect to
µ ∈ Rd. Let a matrix U ∈ Rd×d and a function w : Rd → [0, 1] with EX∼G[w(X)] ≥ 1− ϵ. For
the function g̃(x) = ∥U(x− b)∥2

2, we have that

(1− ϵ)∥U∥2
F (1− δ2/ϵ− 2δ∥b− µ∥2) ≤ E

X∼G
[w(X)g̃(X)]

≤ ∥U∥2
F

(
1 + δ2/ϵ+ ∥b− µ∥2

2 + 2δ∥b− µ∥2
)
.

Proof. Beginning with the upper bound, we have the following inequalities:

E
X∼G

[w(X)g̃(X)] = E
X∼G

[w(X)] E
X∼Gw

[g̃(X)]

≤ E
X∼Gw

[g̃(X)] (Using g̃(x) ≥ 0 and w(x) ≤ 1)

≤ ∥U∥2
F (1 + δ2/ϵ) + ∥U(µ− b)∥2

2 + 2δ∥U∥2
F∥b− µ∥2

≤ ∥U∥2
F

(
1 + δ2/ϵ+ ∥b− µ∥2

2 + 2δ∥b− µ∥2
)
,

where the second inequality from the end uses Lemma 9.2.13. The lower bound is derived
similarly:

E
X∼G

[w(X)g̃(X)] = E
X∼G

[w(X)] E
X∼Gw

[g̃(X)]

≥ (1− ϵ) E
X∼Gw

[g̃(X)]

≥ (1− ϵ)∥U∥2
F (1− δ2/ϵ− 2δ∥b− µ∥2) ,
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where we applied Lemma 9.2.13 in the last step.

F.2 Omitted Proofs from Section 9.3

F.2.1 Johnson-Lindenstrauss Sketch

Lemma 9.3.5. Fix a set of n points x1, . . . , xn ∈ Rd. For t ∈ [K], define gt(x) := ∥Mt(x− µt)∥2
2

and let g̃t(x), vt,j as in Algorithm 6. IfC is a sufficiently large constant and L = C log((n+d)K/τ),
with probability at least 1− τ , for every t ∈ [K] we have the following:

1. 0.8gt(xi) ≤ g̃t(xi) ≤ 1.2gt(xi) for every i ∈ [n],

2. 0.8∥Mt∥2
F ≤

(
1
L

∑L
j=1 ∥vt,j∥2

2

)
≤ 1.2∥Mt∥2

F .

Proof. We show that the claim holds for a fixed iteration t with probability τ/K. Recall that
g̃t(x) from Algorithm 6, can be written as

g̃t(x) = ∥Ut(x− µt)∥2
2 = 1

L

∑
j∈[L]

(v⊤
t,j(x− µt))2 = 1

L

∑
j∈[L]

(z⊤
t,jMt(xi − µt))2 .

Applying Fact 9.2.7 with γ = τ/K and ui = Mt(xi−µt), gives that choosingL = C log(nK/τ)
suffices to guarantee that g̃t(xi)/gt(xi) ∈ [0.8, 1.2] for every xi with probability 1− τ .

We now show the second claim. Again, fix a t ∈ [K]. Consider the orthonormal base
{ei}di=1 of Rd. We apply Fact 9.2.7 with γ = τ/K and ui = Mtei, i ∈ [d]. This yields that
choosing L = C log(dK/τ), we get that for all i ∈ [d]:

1
L

L∑
j=1

tr(zt,jz⊤
t,jMteie

⊤
i M⊤

t ) = 1
L

L∑
j=1

(z⊤
t,jui)2 = [0.8, 1.2] 1

L

L∑
j=1
∥ui∥2

= [0.8, 1.2]tr(M⊤
t Mteie

⊤
i ) ,

with probability 1− τ/K. Summing all these inequalities for i = 1, . . . , d and noting that∑d
i=1 eie

⊤
i = Id gives that

1
L

L∑
j=1

tr(zt,jz⊤
t,jM⊤

t Mt) = [0.8, 1.2]tr(M⊤
t Mt) ,

which precisely means that 1
L

∑L
j=1 ∥vt,j∥2 = [0.8, 1.2]∥Mt∥2

F . To have both claims hold
simultaneously, we can just apply Fact 9.2.7 for all n+ d points, giving the result.
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F.2.2 Proof of Lemma 9.3.6

It is more useful to think of the algorithm in the following equivalent form.

Algorithm 16 Downweighting Filter
1: function DownweightingFilter(P,w, τ̃ , R, T, ℓmax)
2: r ← CdR2+4 log d.
3: w′ ← w, ℓ← 1.
4: while EX∼P [w′(X)τ̃(X)] > 2T and ℓ ≤ ℓmax do
5: ℓ← ℓ+ 1
6: w′(x)← w(x)(1− τ̃(x)/r)
7: end while
8: return w′.
9: end function

Lemma 9.3.6. Let P = (1−ϵ)G+ϵB be the empirical distribution on n samples, as in Algorithm 6.
If (1 − ϵ)EX∼G[w(X)τ̃(X)] ≤ T , ∥τ̃∥∞ ≤ r, and ℓmax > r/T , then Algorithm 7 modifies the
weight function w to w′ such that

1. (1− ϵ)EX∼G[w(X)− w′(X)] < ϵEX∼B[w(X)− w′(X)],

2. EX∼P [w′(X)τ̃(X)] ≤ 2T ,

and the algorithm terminates after O(log(ℓmax)) iterations, each of which takes O(n) time.

Proof. We show correctness of Algorithm 16. We denote by wℓ the weight function at the
ℓ-th iteration of the filter, which is of the form wℓ(x) = w(x)(1− τ̃(x)/r)ℓ for every x ∈ Rd.
To show the first claim, we fix an iteration ℓ for which the algorithm has not stopped yet
and examine the loss in weight between that iteration and the (ℓ+ 1)-th iteration. From the
update rule wℓ+1(x) = wℓ(x)(1− τ̃(x)/r) we get that wℓ(x)− wℓ+1(x) = wℓ(x)τ̃(x)/r. Thus,
the weight removed in that iteration from the good distribution is

(1− ϵ) E
X∼G

[wℓ(X)− wℓ+1(X)] = 1− ϵ
r

E
X∼G

[wℓ(X)τ̃(X)] ≤ 1
r
T ,

while the weight removed from the bad distribution is

ϵ E
X∼B

[wℓ(X)− wℓ+1(X)] = 1
r
ϵ E
X∼B

[wℓ(X)τ̃(X)]

= 1
r

(
E

X∼P
[wℓ(X)τ̃(X)]− (1− ϵ) E

X∼G
[wℓ(X)τ̃(X)]

)
>

1
r
T ,
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where the last inequality uses that (1−ϵ)EX∼G[wℓ(X)τ̃(X)] ≤ (1−ϵ)EX∼G[w(X)τ̃(X)] ≤ T

and the fact that since the algorithm has not terminated in the ℓ-th iteration it must be true
that EX∼P [wℓ(X)τ̃(X)] > 2T . This completes the proof of the first claim.

Regarding runtime, it suffices to show that for any ℓ > r
eT

, EX∼P [wℓ(X)τ̃(X)] ≤ 2T .
This follows from the inequalities

E
X∼P

[wℓ(X)τ̃(X)] = E
X∼P

[
w(X)(1− τ̃(X)/r)ℓτ̃(X)

]
≤ E

X∼P
[w(X) exp(−ℓτ̃(X)/r)τ(X)]

≤ r

e · ℓ
E

X∼P
[w(X)] ≤ r

e · ℓ
≤ T ,

where we used the fact that xe−αx ≤ 1/(e ·α) for all x ∈ R. By noting that w(x)(1− τ̃(x)/r)ℓ

is monotonically decreasing as ℓ grows, we can improve the running time by using a binary
search implementation. This gives the logarithmic guarantee of our statement.

F.2.3 Proof of Lemma 9.3.7

We state and prove a more general version of Lemma 9.3.7 so that it can be also used
in Section 9.4. The difference is that we allow the scores to center points using a vector
different from the true mean µt of Pt, so long as this vector is O(δ)-close to µt in Euclidean
norm. Lemma 9.3.7 is obtained by using Lemma F.2.1 below with µ̂t = µt.

Lemma F.2.1. Consider the setting of Algorithm 6 and the deterministic Condition 9.3.4. Moreover,
let µ̂t be any vector in Rd with ∥µ̂t − µt∥ = O(δ) and define the functions

ft(x) := ∥Mt(x− µ̂t)∥2
2, f̃t(x) := ∥Ut(x− µ̂t)∥2

2 (F.5)

ht(x) := ft(x) I{ft(x) > C3∥Mt∥2
Fλt/ϵ}, h̃t(x) := f̃t(x) I{f̃t(x) > C3∥Ut∥2

F λ̂t/ϵ} .

We have that EX∼G[wt(X)ht(X)] and EX∼G[wt(X)h̃t(X)] are bounded from above by cλt∥Mt∥2
F

for some constant c of the form c = C/C2, where C2 is the constant used in Line 15 and C is some
absolute constant.

We prove the result by using the facts from Section 9.2.2. For brevity, we will prove
the results for h̃t by using the functions f̃t and the matrix Ut; the results for ht would
follow by replacing f̃t and Ut with ft and Mt respectively and using that ∥Ut∥F is close
to ∥Mt∥F (Item 2 of the deterministic condition). We begin with Lemma F.2.2, which is a
generalization of the following implication of stability: The (ϵ, δ)-stability of a distributionG
implies thatEX∼G[(v⊤(X−µ))2 I{X ∈ L}] ≤ 3δ2/ϵ for any setLwith mass PX∼G[X ∈ L] ≤ ϵ
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(see, for example, Proposition C.3 of [PJL20b]). The following lemma generalizes this to
having a matrix in place of v.

Lemma F.2.2. Under the setting of Algorithm 6, the deterministic Condition 9.3.4, and using the
notation of Equation (F.5), if Lt ⊆ Rd is a set with EX∼G[wt(X) I{X ∈ Lt}] ≤ ϵ, then we have
that

E
X∼G

[wt(X)f̃t(X) I{X ∈ L}] ≤ cλt∥Ut∥2
F ,

for some constant c of the form c = C ′/C2, where C ′ is a sufficiently large constant.

Proof. Define the new weight function w′
t(x) = wt(x) I{x ̸∈ Lt}. We have assumed that the

distributionG is (C ′′ϵ, δ)-stable. Let ϵ′ := C ′′ϵ for brevity. We have the following inequalities,
which we explain below.

E
X∼G

[wt(X)f̃t(X) I{X ∈ Lt}] = E
X∼G

[wt(X)f̃t(X)]− E
X∼G

[wt(X)f̃t(X) I{X ̸∈ Lt}]

= E
X∼G

[wt(X)f̃t(X)]− E
X∼G

[w′
t(X)f̃t(X)]

≤ ∥Ut∥2
F

(
1 + δ2

ϵ′ + ∥µ̂t − µ∥2
2 + 2δ∥µ̂t − µ∥2

)

− (1− 2ϵ)∥Ut∥2
F

(
1− δ2

ϵ′ − 2δ∥µ̂t − µ∥2

)

≤ ∥Ut∥2
F

(
3δ

2

ϵ′ + 4δ∥µ̂t − µ∥2 + ∥µ̂t − µ∥2
2

)

≤ ∥Ut∥2
F

(
3δ

2

ϵ′ + 4δ (∥µ̂t − µt∥2 + ∥µt − µ∥2) + 4∥µ̂t − µt∥2
2 + 4∥µt − µ∥2

2

)

≤ ∥Ut∥2
F

(
3δ

2

ϵ′ + δO(δ +
√
ϵ′λt) +O(δ2 + ϵ′λt)

)
≤ c∥Ut∥2

Fλt .

We note that the third line above follows by applying Corollary 9.2.14 with U = Ut and
b = µt on both terms of the previous line. The fifth line uses the triangle inequality. The
sixth line uses the assumption that ∥µ̂t − µt∥2 = O(δ) as well as the certificate lemma
(Lemma 9.2.11). Note that the required assumption dTV(Pt, P ) = O(ϵ) from that lemma is
satisfied because EX∼G[w′

t(X)] ≥ EX∼G[wt(X)]− ϵ ≥ 1−O(ϵ) (see Claim 9.3.13).
Regarding that last line, we recall Line 15 of Algorithm 6, which implies that λt ≳ C2δ

2/ϵ.
Thus the terms δ2/ϵ′ can be bounded as δ2/ϵ′ ≲ 1/C2. Using that, it can be seen that we can
choose c = C ′/C2 for some constant C ′ > 0.
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We are now ready to prove our result.

Proof of Lemma F.2.1. We first show the following.

Claim F.2.3. Consider the setting of Algorithm 6, the notation of Equation (F.5), and assume
that the deterministic Condition 9.3.4 holds. Let Lt = {x : f̃t(x) > C3∥Ut∥2

F λ̂t/ϵ}. We have that
EX∼G[wt(X) I{X ∈ Lt}] ≤ ϵ.

Proof. Let u∗ := arg max{u : EX∼G[wt(X) I{f̃t(X) > u}] ≥ ϵ} and the set L∗
t = {x : f̃t(x) >

u∗}. It suffices to show that u∗ ≤ C3∥Ut∥2
F λ̂t/ϵ (because this would mean that Lt ⊆ L∗

t ).
By Lemma F.2.2, we have that EX∼G[wt(X)f̃t(X) I{X ∈ L∗

t}] ≤ (C ′/C2)λt∥Ut∥2
F . If we

define the new weightsw′
t(x) = wt(x) I{x ∈ L∗

t} and use them to normalize the distribution,
we get that

E
X∼Gw′

t

[f̃t(X)] = 1
EX∼G[wt(X) I{X ∈ L∗

t}]
E

X∼G
[wt(X)f̃t(X) I{X ∈ L∗

t}] ≤ (C ′/C2)∥Ut∥2
F

λ̂t
ϵ
,

where we used that the denominator is ϵ. The fact that EX∼Gw′
t

[f̃t(X)] ≤ (C ′/C2)∥Ut∥2
F λ̂t/ϵ

means that at least one point in L∗
t has f̃t(X) ≤ (C ′/C2)∥Ut∥2

F λ̂t/ϵ, which shows that
u∗ ≤ (C ′/C2)∥Ut∥2

F λ̂t/ϵ. Since the algorithm uses the value C3 = (C ′/C2), the proof is
completed.

Lemma F.2.1 now follows by combining Claim F.2.3 with Lemma F.2.2:

E
X∼G

[wt(X)h̃t(X)] = E
X∼G

wt(X)f̃t(X) I

f̃t(X) > C3∥Ut∥2
F

λ̂t
ϵ




≤ (C ′/C2)λt∥Ut∥2
F ≤ 2(C ′/C2)λt∥Mt∥2

F ,

where the last inequality is due to Item 2 of Condition 9.3.4. Letting C = 2C ′ we have that
EX∼G[wt(X)h̃t(X)] ≤ C/C2 as claimed. As mentioned earlier, the same techniques lead to
a similar bound on EX∼G[wt(X)ht(X)].

F.2.4 Proof of Claim 9.3.11

Claim 9.3.11. Let the fraction of outliers be ϵ < 1/10 and a parameter 0 < τ < 1. Let the
distribution P = (1− ϵ)G+ ϵB. LetR > 0, µ ∈ Rd be such that PX∼G[∥X−µ∥2 > R] ≤ ϵ. There
is an estimator µ̂ on k = O(log(1/τ)) samples from P such that ∥µ̂− µ∥2 ≤ 4R with probability
at least 1− τ . Furthermore, µ̂ can be computed in time O(k2d) and memory O(kd).

We can use the following well-known fact (see, e.g., [DHL19], for a proof):
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Fact F.2.4. There is an algorithm NaivePrune with the following guarantees. Let ϵ′ < 1/2, and
τ > 0. Let S ⊂ Rd be a set of n points so that there exists a µ ∈ Rd and a subset S ′ ⊆ S so
that |S ′| ≥ (1− ϵ′)n, and ∥x− µ∥2 ≤ R for all x ∈ S ′. Then NaivePrune(S,R, τ) runs in time
O(nd log(1/τ)), uses memory O(nd), and with probability 1− τ outputs a set of points T ⊂ S so
that S ′ ⊆ T , and ∥x− µ∥2 ≤ 4R for all x ∈ T .

Proof of Claim 9.3.11. The estimator draws a set S = {X1, . . . , Xk} of k samples from the
distribution P . Letting Yi := I{∥Xi − µ∥2 > R} we have that E[Yi] ≤ 2ϵ ≤ 1/5. Thus, using
Hoeffding bound,

P
[

1
k

k∑
i=1

Yi > 1/4
]
≤ P

[
1
k

k∑
i=1

Yi < E
[

1
k

k∑
i=1

Yi

]
+ 0.05

]
≤ 2e−2k(0.05)2

.

Choosing k = 200 log(2/τ) makes this probability at most τ . Conditioning on that event, the
fraction of points outside the ball is at most ϵ′ := 1/4, thus running NaivePruning(S,R, τ)
algorithm of Fact F.2.4 and outputting any point from the returned set yields the desired
estimator.

F.2.5 Omitted Proofs from Section 9.3.4

Claim 9.3.13. Under Condition 9.3.4, Algorithm 6 maintains the following invariant:
EX∼G[wt(X)] ≥ 1− 3ϵ. In particular, if ϵ ≤ 1/8, then dTV(Pt, P ) ≤ 9ϵ.

Proof. For every iteration, we denote by ∆wt = wt − wt+1, that is for every point x ∈ Rd,
∆wt(x) = wt(x) − wt+1(x) is the difference between the weights for the two consecutive
iterations t and t+ 1.

E
X∼G

[wt(X)] = E
X∼G

[w1(X)]−
t−1∑
i=1

E
X∼G

[∆wi(X)]

≥ 1− ϵ−
t−1∑
i=1

E
X∼G

[∆wi(X)] (Claim 9.3.12)

≥ 1− ϵ− ϵ

1− ϵ

t−1∑
i=1

E
X∼B

[∆wi(X)] (Lemma 9.3.6)

≥ 1− ϵ− ϵ

1− ϵ

(
E

X∼B
[w1(X)]− E

X∼B
[wt(X)]

)
≥ 1− ϵ− ϵ

1− ϵ
≥ 1− 3ϵ ,
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where the last line uses that ϵ ≤ 1/2. The proof of the second conclusion follows from
Claim F.2.5 (stated below).

Claim F.2.5. Let ϵ ≤ 1/8. If EX∼G[wt(X)] ≥ 1− 3ϵ, then dTV(Pt, P ) ≤ 9ϵ.

Although we work with discrete distributions (the empirical distributions on the sam-
ples) in Section 9.3, we prove the claim for continuous distributions because it will be
useful in Section 9.4.

Proof. By definition Pt(x) = wt(x)P (x)/EX∼P [wt(X)]. Letting L :=
∫
Rd wt(x)P (x)dx =

EX∼P [wt(x)], we have that

∫
Rd
|Pt(x)− P (x)|dx = (1− ϵ)

∫
Rd
G(x)

∣∣∣∣wt(x)− L
L

∣∣∣∣dx+ ϵ
∫
Rd
B(x)

∣∣∣∣wt(x)− L
L

∣∣∣∣dx .
We note that 1 ≥ L ≥ (1 − ϵ)EX∼G[wt(x)] ≥ 1 − 4ϵ using Claim 9.3.13. The second term
can be bounded as

ϵ
∫
Rd
B(x)

∣∣∣∣wt(x)− L
L

∣∣∣∣dx ≤ ϵ

L

∫
Rd
B(x)(wt(x) + L) ≤ 2ϵ

1− 4ϵ ≤ 4ϵ .

For the first term, we have that

(1− ϵ)
∫
Rd
G(x)

∣∣∣∣wt(x)− L
L

∣∣∣∣dx ≤ 1− ϵ
L

∫
Rd
G(x)(|1− wt(x)|+ |1− L|)dx

≤ 1
1− 4ϵ

(
1− E

X∼G
[wt(X)] + 4ϵ

)
≤ 14ϵ .

Claim 9.3.14. Under Condition 9.3.4, if C1 ≥ 22, Bt ⪰ (0.5C1δ
2/ϵ)Id for every t ∈ [K].

Proof. Using the simple fact that for random variables X , Y it holds Var(Y ) ≥
EX [Var(Y |X)], we get that

Σt ⪰ (1− ϵ) E
X∼Gwt

[
(X − µGwt

)(X − µGwt
)⊤
]

= (1− ϵ)
(

E
X∼Gwt

[
(X − µ)(X − µ)⊤

]
− (µGwt

− µ)(µGwt
− µ)⊤

)
⪰ (1− ϵ)

(
(1− δ2/ϵ)Id − δ2Id

)
(by stability and Claim 9.3.13)

⪰ (1− ϵ)(1− 2δ2/ϵ)Id
⪰ (1− 3δ2/ϵ)Id ,
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where we used that ϵ ≤ δ. We recall the definition Bt = (EX∼Pt [wt(X)])2Σt− (1−C1δ
2/ϵ)Id

and bound the first term as follows(
E

X∼Pt

[wt(X)]
)2

Σt ⪰ (1− 3ϵ)2(1− 3δ2/ϵ)Id (Claim 9.3.13)

⪰ (1− 4δ2/ϵ− 6ϵ− 27δ2ϵ)Id
⪰ (1− 11δ2/ϵ)Id ,

where the last line uses ϵ < 1/6 and ϵ ≤ δ. Therefore, if we choose C1 ≥ 22, we get that
Bt ⪰ (0.5C1δ

2/ϵ)Id.

Claim 9.3.10. In the setting of Algorithm 6 and under the Condition 9.3.4, if x ∈ S, we have that
τt(x) ≤ 1.25τ̃t(x) + 3C3(λt/ϵ)tr(M2

t ), where C3 is the constant used in Algorithm 6.

Proof. By Condition 9.3.4 we have that for all the n samples, g̃t(x) ≥ 0.8gt(x). Recall the
definitions τ̃t(x) = g̃(x) I{g̃(x) > C3∥Ut∥2

F λ̂t/ϵ} and τt(x) = g(x) I{g(x) > C3∥Mt∥2
Fλt/ϵ}.

We split into cases based on whether each of gt, g̃t has been zeroed by its thresholding
operation:

• If τt(x) has been zeroed, (i.e., gt(x) < C3∥Mt∥2
Fλt/ϵ), the claim trivially holds since

the left-hand side is zero.

• If none of τ̃t(x), τt(x) has been zeroed, then τ̃t(x) = g̃t(x) and τt(x) = gt(x), thus the
claim holds by the aforementioned fact that g̃t(x) ≥ 0.8gt(x).

• If τ̃t(x) has been zeroed but τt(x) has not, then the worst case is gt(x) = (1/0.8)g̃t(x).
This means that in this case:

τt(x) ≤ 1
0.8C3

λ̂t
ϵ
|Ut∥2

F < 3C3
λt
ϵ
|Mt∥2

F ,

where we used that λ̂ ≤ 1.2λt and ∥Ut∥2
F ≤ 1.2∥Mt∥2

F , due to Condition 9.3.4.

F.3 Omitted Proofs from Section 9.4

F.3.1 Omitted Proofs from Section 9.4.2

Lemma 9.4.6. In the context of Algorithm 8, if (1 − ϵ)EX∼G[w(X)τ̃(X)] ≤ T , ∥τ̃∥∞ ≤ r,
and ℓmax > r/T , then Algorithm 9 modifies the weight function w to w′ such that (i)
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(1 − ϵ)EX∼G[w(X) − w′(X)] < ϵEX∼B[w(X) − w′(X)], and (ii) upon termination we have
EX∼P [w′(X)τ̃(X)] ≤ 54T . Furthermore, if the estimator of Line 3 is set to be that of Lemma 9.4.16,
the algorithm terminates after O(log(ℓmax)) iterations, each of which uses O((R2ϵ/δ2) log(1/τ))
samples, takes O(nd) time and memory O(log(1/τ)).

Proof. Let the set L∗ = {ℓ ∈ [ℓmax] : 6T ≤ EX∼P [w(X)(1 − τ̃(X)/r)ℓτ̃(X)] ≤ 18T}. The
invariant is that throughout Algorithm 9, the set L maintained has non-zero intersection
with L∗. This can be seen by examining cases about ℓ in Line 6. If ℓ ∈ L∗, then ℓ is
kept in L. If ℓ ̸∈ L∗, then all elements discarded are not members of L∗ (for example if
EX∼P [w(X)(1 − τ̃(X)/r)ℓτ̃(X)] > 18T , then by Lemma 9.4.16 f(ℓ) > 9T and we discard
the lower half of L). Thus, at the end, L has at most two elements with at least one of
them belonging in L∗. This element would satisfy 3T ≤ f(ℓ) ≤ 27T . Thus the algorithm
will definitely return some element. On the other hand, any element returned will satisfy
2T < EX∼P [w(X)(1− τ̃(X)/r)ℓτ̃(X)] < 54T . This has already shown part (ii) of the lemma.
For part (i), it is more convenient to imagine let ℓ increased by one at each step until it
reaches the value finally returned by the algorithm and consider the loss in weight between
that and the next iteration, exactly as in the proof of Lemma 9.3.6. That proof was using only
the facts that for all ℓ′ ≤ ℓ, 2T < EX∼P [w(X)(1 − τ̃(X)/r)ℓ′ τ̃(X)] (which we just showed
above) and EX∼G[w(X)(1− τ̃(X)/r)ℓ′ τ̃(X)] < T (which is true by assumption). The reason
why ℓmax = r/T suffices is also shown identically to the proof of Lemma 9.3.6.

F.3.2 Omitted Proofs from Section 9.4.2.1

We now focus on showing Lemma 9.4.9. In order to avoid confusion with the fraction
of outliers ϵ, we use ϵ′ for our accuracy parameter. We will use a uniform convergence
result from [AB99] combined with a powerful VC-dimension bound from [GJ95] for the
class of functions that are computable by a small number of arithmetic operations. [GJ95]
considers the class of concepts parameterized by k real numbers, F = {ha}a∈Rk , for which
there exists an algorithm A for calculating ha(x) that takes as input x, a and each line of A
is one of the following:

• an arithmetic operation +,−,×, and / on two inputs or previously computed values,

• a jump to a different line of the algorithm conditioned on whether an input or a
previously calculated value is greater than or equal to zero,

• output zero or one.
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The parameters a and the inputs x consist of real numbers, and the model of computation
assumed allows for arithmetic operations and the comparisons between reals to be done in
constant time. We refer the reader to [GJ95, Section 2] for more details and relation with
algebraic decision trees with bounded depths. The result from [GJ95] is that VCdim(F) =
O(mk) where k is the size of the parameterization and m is the runtime of the algorithm
A. Using the bound on the VC dimension, we have the following result for the uniform
convergence:

Proposition F.3.1 ([GJ95; AB99]). Let F be a class of functions of the form F = {ha : Rd →
[0, 1] | a ∈ Rk}, where for any (a, x) ∈ Rk × Rd, ha(x) can be computed by an algorithm A
with runtime m that takes as input a, x and is allowed to perform conditional jumps (conditioned
on equality and inequality of real values) and execute the standard arithmetic operations on real
numbers (+,−,×, /) in constant time. For any distribution D on Rd and any ϵ′ ∈ (0, 1), there
exist N = O

(
1

(ϵ′)2 (log(km) + km log(1/ϵ′))
)

points x1, . . . , xN in Rd such that

sup
h∈F

∣∣∣∣ E
X∼D

[h(X)]− 1
N

N∑
i=1

h(xi)
∣∣∣∣ ≤ ϵ′ . (F.6)

For completeness, we show at the end of this section how this is derived from the
statements of [AB99] and [GJ95]. We now apply this result to our case. We need to specify
a family F of functions broad enough to capture every wt+1τ̃t and wt+1τt that could be
encountered during the execution of Algorithm 8. The factor r used in the statement below
is a normalization factor to make sure that the functions are in [0, 1].

Lemma F.3.2. Consider the setting of Algorithm 8. Let r′ := (CdR2 + 1 + C1δ
2/ϵ)C log d. There

exists a family F of functions from Rd to [0, 1] such that:

1. For every iteration t of Algorithm 8, we have that 1
r′wt+1τt ∈ F and 1

r′wt+1τ̃t ∈ F .

2. Functions of F are parameterized by at most k = O(dK max(L, d)) real numbers, that is, F
has the form F = {ha : Rd → [0, 1] | a ∈ Rk}.

3. For every ha ∈ F and x ∈ Rd, ha(x) can be in m = dK max(L, d)(dRϵ/δ2)O(log d) steps in
the model that allows conditional jumps and standard arithmetic operations on real numbers.

Proof. Let L′
2 := max(L, d). Every function in our family will be parameterized by 2K + 1

scalars, {ut ∈ R : t ∈ [K + 1]} ∪ {ℓt ∈ R : t ∈ [K]}, and (K + 1)(L′
2 + 1) vectors in Rd,

{at : t ∈ [K + 1]} ∪ {vt,j : t ∈ [K + 1], j ∈ [L′
2]}. For brevity, we denote by V the tensor in

R(K+1)×L′
2×d having all the vectors Vt,j = vt,j and by A the tensor in R(K+1)×d with At = at,
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t ∈ [K + 1]. Similarly, denote by u the vector (u1, . . . , uK+1) and let ℓ = (ℓ1, . . . ℓK). We
define our class to be

F =
{
hℓ,u,V,A : Rd → [0, 1] : u ∈ RK+1, ℓ ∈ RK ,V ∈ R(K+1)×L′

2×d,A ∈ R(K+1)×d
}
,

which includes all functions of the form hℓ,u,V,A(x) = h̃ℓ,u,V,A I{h̃ℓ,u,V,A(x) ∈ (0, 1)}, where

h̃ℓ,u,V,A(x) = I {∥x− µ̂∥2 ≤ 5R} 1
r
·
∑L′

2
j=1(v⊤

K+1,j(x− aK+1))2

L′
2

I


∑L′

2
j=1(v⊤

K+1,j(x− aK+1))2

L′
2

> uK+1


·
K∏
t=1

1− 1
r

∑L′
2

j=1(v⊤
t,j(x− at))2

L′
2

I


∑L′

2
j=1(v⊤

t,j(x− at)))2

L′
2

> ut


ℓt . (F.7)

We note that the radius r′ := (CdR2 + 1 + C1δ
2/ϵ)C log d is an upper bound on the value

that the functions wt+1τt and wt+1τ̃t in Algorithm 8 can take: For τt(x) we have

τt(x) ≤ ∥Mt(x− µt)∥2
2 ≤ ∥Mt∥2

2∥x− µt∥2
2 ≤ ∥Σt∥2 log d

2 R2 = O(dR2+4 log d) ,

while for τ̃(x) we have the bounds

τ̃t(x) ≤ g̃t(x) ≤ ∥Ut(x− µt)∥2
2 ≲ R2∥Ut∥2

2 ≲ R2∥Ut∥2
F

≤ R2 1
L

L∑
j=1
∥Mtzt,j∥2

2 ≤ dR2∥Mt∥2
2 ≤ dR2∥Bt∥2 log d

2

≤ dR2
(
∥Σt∥2 + 1 + C1δ

2/ϵ
)2 log d

≤ dR2
(
CR2 + 1 + C1δ

2/ϵ
)2 log d

≤
(
CdR2 + 1 + C1δ

2/ϵ
)O(log d)

.

We check that F can indeed implement the functions wt+1τ̃t used in Algorithm 8 for any
t ∈ [K]: Note that the scores g̃t used in the algorithm are means of the form 1

L

∑L
j=1(v⊤

t,j(x−
at))2. Thus, the first line of Equation (F.7) implements I{∥x− µ̂∥2 ≤ 5R}1

r
τ̃t. The purpose

of the second line in Equation (F.7) is to match the operation of the Downweighting filter,
which, in the t-th round multiplies wt with (1− τ̃t(x)/r)ℓt for some power ℓt. Finally, we
note that wt+1τt are implemented in F by taking vt,j to be the rows of the matrix Mt (this is
why we need the sums to be on L′ = max(L, d) terms in Equation (F.7)).

We need to specify the arithmetic complexity m and the dimension of the parameteriza-
tion k of our family F . For the first, we have that for any h ∈ F and x ∈ Rd, the value h(x)
can be computed usingO(KdL′ℓmax) standard arithmetic operations and jumps, where ℓmax

is the maximum exponent that ℓt can have and is set to be ℓmax :=
(
dR
δ2/ϵ

)C log d
in Line 22 of
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Algorithm 8. The dL′ comes from the computation of the means (1/L′)∑L′

j=1(v⊤
t,j(x− at))2

and the K comes from the fact that we have K factors in the expression of h.
Regarding the other parameter k, we have that every h ∈ F is parameterized by O(K)

scalars and O(KL′) d-dimensional vectors. Thus, k = O(KL′d).

We are now ready to prove Lemma 9.4.9.

Lemma 9.4.9. Consider the setting of Algorithm 8, whereB is the distribution of outliers supported
in a ball of radius R around µ. Let r′ := (CdR2 + 1 + C1δ

2/ϵ)C log d for sufficiently large constant
C. Denote by ϵ the contamination rate and let an arbitrary ϵ′ ∈ (0, 1). There exists a set Scover of
N = 1

ϵ′3
d4K2L2(dRϵ/δ2)O(log d) points x1, . . . , xN lying in the ball of radius R around µ, such that

for all t ∈ [K], for all choices of the vectors zt,j of Line 24 of Algorithm 8 it holds

∣∣∣∣ E
X∼B

[ 1
r′wt+1(X)τ̃t(X)

]
− 1
N

N∑
i=1

1
r′wt+1(xi)τ̃t(xi)

∣∣∣∣ ≤ ϵ′

and
∣∣∣∣ E
X∼B

[ 1
r′wt+1(X)τt(X)

]
− 1
N

N∑
i=1

1
r′wt+1(xi)τt(xi)

∣∣∣∣ ≤ ϵ′ .

Proof of Lemma 9.4.9. We use Proposition F.3.1 for the family F of Lemma F.3.2 and plug
the upper bounds for the arithmetic complexity m and the dimension of the parameters k.
Proposition F.3.1 states that N can be chosen to be a multiple of

1
ϵ′2 (log(km) + km log(1/ϵ′)) .

Taking the much looser bound N = Θ(km
ϵ′3

) suffices for our purposes. Plugging in
k = O(dK max(L, d)), m = dK max(L, d)(dRϵ/δ2)O(log d) from Lemma F.3.2, we get
km = d2K2 max(d2, L2)(dRϵ/δ2)O(log d) ≲ d4K2L2(dRϵ/δ2)O(log d).

For completeness, we provide the proof of Proposition F.3.1.

Proof of Proposition F.3.1. We derive the result from the statements of [AB99] without ex-
plaining all of the definitions of the notions involved. Please see [AB99] for more details.
Applying Theorem 17.7 [AB99] with the loss function ℓh(x, y) = h(x) we obtain

P
[
sup
h∈F

∣∣∣∣ E
X∼D

[h(X)]− 1
N

N∑
i=1

h(Xi)
∣∣∣∣ > ϵ′

]
≤ 4N1(ϵ′/8,F , 2N) exp(−ϵ′2N/32) , (F.8)

where the probability is taken over a set of N i.i.d. points X1, . . . , XN drawn from D.
To bound from above the covering number N1(ϵ′/8,F , 2N), we use Theorem 18.4 from

[AB99] which gives that N1(ϵ′/8,F , 2N) ≤ e(d′ + 1)(16e/ϵ′)d′ where d′ = Pdim(F) is the



568

pseudo-dimension of F . From that, we conclude that choosing any

N >
32
ϵ′2 log(4e(d′ + 1)) + 32d′

ϵ′2 log(16e/ϵ′)

makes the probability in Equation (F.8) less than 1.
It remains to bound d′ from above, which can be done as follows. Define the subgraph

class associated to the family F

BF := {Bh | h ∈ F} ,

where for any h ∈ F , Bh : Rd+1 → {0, 1} is defined as Bh(x, y) = I{h(x) ≥ y}. The
pseudo-dimension is defined to be Pdim(F) = VCdim(BF) (see Section 11.2 in [AB99]).
By Theorem 2.3 in [GJ95], we have that VCdim(BF) = O(km) since it BF functions that are
parametrized by vectors of Rk (same as for family F) and the functions of Bh(x, y) can be
computed using at most m+ 2 operations (m to compute h and two to do the comparison
with y and threshold). Putting everything together, it suffices to choose

N = C
1
ϵ′2 (log(km) + km log(1/ϵ′))

in order to make the probability in Equation (F.8) less than 1. In that case, by probabilistic
argument, there exists at least one set of N points satisfying the desired event.

Claim 9.4.10. Let S be the cover of Lemma 9.4.9 with r′ and ϵ′ as defined above. Suppose that
the deterministic condition Condition 9.4.5 holds. If x ∈ Scover, then τt(x) ≤ 5τ̃t(x) + (18C3 +
12/C2)(λt/ϵ)∥Mt∥2

F , where C3 and C2 are the constants used in Algorithm 8.

Proof. By Condition 9.4.5 we have that for all the N samples of the cover, g̃t(x) ≥ 0.2gt(x)−
0.8(δ2/ϵ2)∥Mt∥2

F . Recall the definitions

τ̃t(x) = g̃(x) I{g̃(x) > C3∥Ut∥2
F λ̂t/ϵ}, τt(x) = g(x) I{g(x) > C3∥Mt∥2

Fλt/ϵ} .

We split into cases based on whether each of gt, g̃t has been zeroed by their thresholding
operation:

• If τt(x) has been zeroed, (i.e., gt(x) < C3∥Ut∥2
Fλt/ϵ), the claim trivially holds since

the left-hand side is zero.

• If none of τ̃t(x), τt(x) has been zeroed, then τ̃t(x) = g̃t(x) and τt(x) = gt(x), thus the
claim holds by the aforementioned fact that g̃t(x) ≥ 0.2gt(x)− 0.8(δ2/ϵ2)∥Mt∥2

F .
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• If τ̃t(x) has been zeroed but τt(x) has not, then the worst case is g̃t(x) = 0.2gt(x) −
0.8(δ2/ϵ2)∥Mt∥2

F . This means that in this case:

τt(x) ≤ 1
0.2C3

λ̂t
ϵ
∥Ut∥2

F + 4δ
2

ϵ2 ∥Mt∥2
F

< 18C3
λt
ϵ
∥Mt∥2

F + 4δ
2

ϵ2 ∥Mt∥2
F

≤ 18C3
λt
ϵ
∥Mt∥2

F + 12
C2

λt
ϵ
∥Mt∥2

F ,

where in the second inequality we used that λ̂t ≤ 3λt and ∥Ut∥2
F ≤ 1.2∥Mt∥2

F due to
Condition 9.4.5, and in the last inequality we used that δ2/ϵ < λ̂t/C2 and λ̂t ≤ 3λt
(Condition 9.4.5 again).

Remark F.3.3 (On the choice of K and L). We comment on how the values for the num-
ber of iterations K and L that are used in Algorithm 8 are derived. First, the derivation of
K = C log d log(dR/(δ2/ϵ)) for large enough constant C is identical to that of Section 9.3.4 (see
Equation (9.3)). We will thus focus on L. We note that in the proof of Lemma 9.4.7 we use
Lemma 9.4.9 with ϵ′ ≳ (δ2/ϵ)2 log d

ϵ(CdR2+1+C1δ2/ϵ)C log d . This means that the cover Scover of that lemma has
size bounded by

|Scover| ≤
1
ϵ′3d

4K2L2
(
dR

δ2/ϵ

)O(log d)

≲
(CdR2 + 1 + C1δ

2/ϵ)O(log d)

(δ2/ϵ)O(log d) L2 .

The analog of Lemma 9.3.5 thus requires that L is multiple of log
(

|Scover|+d
τ

)
, where τ is the desired

probability of failure. Note that we have the following (rough) bounds

log
(
|Scover|+ d

τ

)
≲ log

(
(L(CdR2 + 1 + C1δ

2/ϵ)O(log d)

τ(δ2/ϵ)O(log d)

)

≲ log2(d) log(CdR2 + 1 + C1δ
2/ϵ) log

( 1
τϵ

)
log(L) .

Thus, we want to choose L such that it holds L ≥ C log2(d) log(CdR2 +1+C1δ
2/ϵ) log

(
1
τϵ

)
logL.

Using the basic fact that for any a > 0, x ≥ 2a log a⇒ x ≥ a log xwith a = C log2(d) log(CdR2 +
1 + C1δ

2/ϵ) log
(

1
τϵ

)
), it suffices to choose any L satisfying the following

L ≥ C log2(d) log
(
CdR2 + 1 + C1

δ2

ϵ

)
log

( 1
τϵ

)
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× log
(

log2(d) log
(
CdR2 + 1 + C1

δ2

ϵ

)
log

( 1
τϵ

))
.

We see that the choice in Algorithm 8 satisfies this condition.

F.3.3 Omitted Proofs from Section 9.4.3

Lemma 9.4.14. Let A,B,B1, . . . ,Bp be symmetric d × d matrices and define M = Bp,MS =∏p
i=1 Bi. If ∥Bi −B∥2 ≤ δ∥B∥2, then ∥MS −Bp∥2 ≤ pδ(1 + δ)p∥B∥p2.

Proof. We have the following:

Bp −
p∏
i=1

Bi =
p−1∑
i=0

 i∏
j=1

Bj

Bp−i −

i+1∏
j=1

Bj

Bp−i−1


=

p−1∑
i=0

 i∏
j=1

Bj

 (B−Bi+1) Bp−i−1

 .

Using that ∥Bj∥2 ≤ (1 + δ)∥B∥2, we obtain the following bound:

∥∥∥∥∥Bp −
p∏
i=1

Bi

∥∥∥∥∥
2
≤

p−1∑
i=0

∥∥∥∥∥∥
 i∏
j=1

Bj

 (B−Bi+1) Bp−i−1

∥∥∥∥∥∥
2

≤
p−1∑
i=0

 i∏
j=1
∥Bj∥

 ∥B−Bi+1∥2∥B∥p−i−1
2


≤

p−1∑
i=0
∥B∥p2(1 + δ)iδ ≤ pδ(1 + δ)p∥B∥p2.

F.3.4 Omitted Proofs from Section 9.4.3.1

Lemma F.3.4. For any δ, τ ∈ (0, 1) and any distribution D on Rd with mean µ and covariance
matrix Σ, there exists an estimator µ̂ on n = O ((tr(Σ)/δ2) log(1/τ)) i.i.d. samples from D, such
that ∥µ̂−µ∥2 = O(δ). Moreover, this µ̂ can be computed in timeO(nd log(1/τ)) and using memory
O(d log(1/τ)).

Proof. Let X1, . . . , Xm be independent samples from D. We first show that the empirical
mean Y := (1/m)∑m

i=1 Xi, is δ-accurate with constant probability.

E[∥Y − µ∥2
2] =

d∑
j=1

E[(Yj − µj)2] = 1
m

d∑
j=1

Σjj = tr(Σ)
m

.
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By Markov’s inequality, we get that

P[∥Y − µ∥2
2 > δ2] ≤ tr(Σ)

mδ2 ≤
1
20 , (F.9)

where the last inequality is true if we choose m = 20tr(Σ)/δ2. Having Equation (F.9) at
hand, the probability of success of the above estimator can be boosted to 1− τ by using
Claim 9.3.11. We use that claim with G being the distribution of Y , B = G, ϵ = 1/20 and
R = δ. This completes the proof.

As a corollary of the above, we obtain the estimators µ̂t of Algorithm 8.

Lemma 9.4.11. In the setting of Algorithm 8, there exist estimators µ̂t such that, with probability at
least 1− τ , for all t ∈ [K] we have that ∥µ̂t − µt∥2 ≤ δ/100. Furthermore, each µ̂t can be computed
on a stream of n = O

(
R2

δ2/ϵ
log(K/τ) + d(1+δ2/ϵ)

δ2 log(K/τ)
)

independent samples from Pt, in time
O(nd log(K/τ)) and using memory O(d log(K/τ)).

Proof. We use the estimator of Lemma F.3.4 with τ/K in place of τ . It remains to bound
tr(Σt). We have that dTV(Pt, G) = 1−O(ϵ), thus, by Fact 9.2.4 we can write Pt = (1−α)G0 +
αB, with α = O(ϵ) and G0(x) = h(x)G(x)/(

∫
h(x)G(x)dx) some weighted version of the

inlier’s distribution with EX∼G[h(X)] = 1− α (same argument that we have used before in
the proof of Lemma 9.2.11). We have that

Σt = (1− α)ΣG0 + αΣB + α(1− α)(µG0 − µB)(µG0 − µB)⊤ .

Due to stability, the first term has ΣG0 ⪯ (1 + δ2/ϵ)Id. For the second term we use that

tr(ΣB) = E
X∼B

[tr((X − µB)(X − µB)⊤)] = E
X∼B

[∥X − µB∥2
2] ≤ O(R2) .

We also bound the trace of the last term by O(ϵR2). Therefore, we obtain that tr(Σt) ≲

d(1 + δ2/ϵ) + ϵR2.

F.4 Adaptive Choice of Upper Bound on Covariance
In this section, we show that a simple procedure can be used to make the algorithm
adaptive to the scale of covariance (such a procedure is useful for some of our applications
in Section 9.5).

As noted earlier, the definition of stability that we have used so far (Definitions 9.2.8
and 9.2.9) was designed for distributions with covariance matrix comparable to Id. In
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particular, if inliers satisfy Cov[X] ⪯ Id, then our algorithms result in error O(
√
ϵ). In

many practical cases, some of which are encountered in Section 9.5, the inliers are much
better concentrated, satisfying Cov[X] ⪯ σId, with σ much smaller than 1. In that case, the
optimal asymptotic error is Θ(σ

√
ϵ)). If σ is known beforehand, then a simple preprocessing

step allows our algorithms to obtain the error O(σ
√
ϵ). We now describe a procedure

using Lepski’s method [Lep91; Bir01a] that can adapt to the setting when σ is unknown.
Concretely, we consider the task of robustly estimating the mean µ of a distribution where
inliers have bounded covariance, Cov[X] ⪯ σ2Id, but σ is unknown to the algorithm.

Let RobustMean(σ̃, γ) be any black-box robust mean estimation algorithm, where σ̃ is a
guess for an upper bound on the covariance of inliers (ideally, we would like to use σ̃ = σ)
and γ is the probability of failure. The procedure below tries different values for σ̃ in order
to find a vector that is as good as the output of RobustMean when run with the best choice
of σ̃ = σ. The assumption made here is that σ belongs in some known interval [A,B].

As a small note, a more explicit notation would be RobustMean(S, σ̃, γ), where S is the
dataset used, but we omit S because this depends on the data-access model: If a streaming
model is assumed, then S necessarily has to be different in each call of the algorithm,
otherwise there is no need for using different datasets.

Algorithm 17 Adaptive search for σ
1: input: A,B, γ, r(·)
2: Denote σ̃j := B/2j for j = 0, 1, . . . , log(B/A) and set γ′ := γ/ log(B/A).
3: J ← 0
4: µ̂(0) ← RobustMean(σ̃0, γ

′)
5: while σ̃j ≥ A and ∥µ̂(J) − µ̂(j)∥2 ≤ r(σ̃J) + r(σ̃j) for all j = 0, 1, . . . , J − 1 do
6: J ← J + 1.
7: µ̂(J) ← RobustMean(σ̃J , γ′)
8: end while
9: Ĵ ← J − 1

10: return µ̂(Ĵ)

Theorem F.4.1. Let µ ∈ Rd A,B > 0, σ ∈ [A,B], and a non-decreasing function r : R+ → R+.
Suppose that RobustMean(σ̃, γ) is a black-box algorithm which is guaranteed to return a vector µ̂
such that ∥µ̂−µ∥2 ≤ r(σ̃) with probability 1−γ, whenever σ̃ ≥ σ. Then, Algorithm 17 returns µ̂(Ĵ)

such that, with probability at least 1−γ, we have that ∥µ̂(Ĵ)−µ∥2 ≤ 3r(2σ). Moreover, Algorithm 17
calls RobustMeanO(log(B/A)) times with desired failure probability set to γ/ log(B/A) and using
at most O(d log(B/A)) additional memory.

Proof. For j = 0, 1, . . . , log(B/A), denote by Ej the event that ∥µ̂(j) − µ∥2 ≤ r(σ̃j). Let J be
the index corresponding to the value of the unknown parameter σ, i.e., σ̃J+1 ≤ σ ≤ σ̃J .
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Conditioned on the event ∩Jj=0Ej , we have that ∥µ̂(j) − µ∥2 ≤ r(σ̃j) for all j = 0, 1, . . . , J .
Using the triangle inequality, this gives that ∥µ̂(J) − µ̂(j)∥2 ≤ r(σ̃J) + r(σ̃j). This means that
the stopping condition of Line 5 is satisfied on round J and thus, if µ̂(Ĵ) denotes the vector
returned by the algorithm, we have that

∥µ̂(Ĵ) − µ̂(J)∥2 ≤ r(σ̃
Ĵ
) + r(σ̃J) ≤ 2r(σ̃J) ≤ 2r(2σ) ,

where the first inequality uses that the condition of Line 5, the second uses that r is
non-decreasing and σ̃

Ĵ
≤ σ̃J , and the last one uses that J was defined to be such that

σ̃J+1 ≤ σ ≤ σ̃J so multiplying σ by 2 makes it greater than σ̃J . Using the triangle inequality
once more, we get ∥µ̂(Ĵ) − µ∥2 ≤ 3r(2σ). Finally, by union bound on the events Ej , the
probability of error is upper bounded by ∑J

j=0 γ
′ ≤ γ. The additional memory requirement

of this algorithm is to store {µ̂j : j ∈ {0, . . . , log(B/A)}}.

We now state the implications that Theorem F.4.1 has for Algorithms 6 and 8, given in
Sections 9.3 and 9.4:

Corollary F.4.2. Let A,B > 0. In the setting of Corollary 9.4.3, let σ > 0 be such that the scaled
version S ′ = {x/σ : x ∈ S} of the dataset S is (Cϵ, δ)-stable with respect to µ/σ. Assuming
that σ ∈ [A,B], there exists an algorithm that given S, ϵ, δ, τ, A,B (but not σ), accesses each point
of S at most polylog (d, 1/ϵ, 1/τ, B/A) times, runs in time nd polylog (d, 1/ϵ, 1/τ, B/A), uses
additional memory d polylog (d, 1/ϵ, 1/τ, B/A), and outputs a vector µ̂ such that, with probability
at least 1− τ , it holds ∥µ− µ̂∥2 = O(σδ).

Proof. In order to use the search method of Algorithm 17, we define the procedure
RobustMean(σ̃, γ) to be the following:

• Let S̃ = {x/σ̃ : x ∈ S}.

• Let µ̃ be the vector found by the estimator of Corollary 9.4.3 on S̃ using γ for the
desired probability of failure.

• Return σ̃µ̃.

Theorem F.4.1 with r(σ̃) = C ′σδ, for a sufficiently large C ′ > 0, implies the correctness. In
terms of resources used, Algorithm 17 calls the robust mean estimation algorithm at most
log(B/A) times, and thus the running time gets multiplied by log(B/A). We also need to
store one vector for each call, thus d log(B/A) additional memory suffices.



574

Corollary F.4.3. Let A,B > 0. In the setting of Theorem 9.4.2, let σ > 0 be such that the
distribution D′ of the points X/σ, X ∼ D is (Cϵ, δ)-stable with respect to µ. Assuming that
σ ∈ [A,B], there exists an algorithm that given

n = O

(
R2 max

(
d,

ϵ

δ2 ,
(1 + δ2/ϵ)d

δ2R2 ,
ϵ2d

δ4 ,
R2ϵ2

δ2 ,
R2ϵ4

δ6

)
polylog

(
d,

1
ϵ
,

1
τ
, R,

B

A

))
(F.10)

samples in a stream according to the model of Definition 9.1.1, and given the parameters ϵ, δ, τ, A,B
(but not σ), runs in time nd polylog (d, 1/ϵ, 1/τ, R,B/A), uses additional memory d polylog(
d, 1/ϵ, 1/τ, R,B/A), and returns a vector µ̂ such that, with probability at least 1 − τ , it holds
∥µ− µ̂∥2 = O(σδ).

Finally, we note that a similar search procedure can be used for designing algorithms
that are adaptive to the parameter δ when σ is known. However, we will not need this
generalization for our applications.

F.5 Omitted Details from Section 9.5

F.5.1 Proof Sketch of Theorem 9.5.3

We describe how Algorithm 8 can be plugged in the algorithm of [CDGW19]. We outline
the analysis and describe in more detail only the parts from [CDGW19] that need to be
changed. The algorithm is Algorithm 1 from [CDGW19], which remains unchanged. This
uses Algorithm 2 as a subroutine, which we replace by our estimator of Algorithm 8.

Regarding the analysis, the proof in [CDGW19] uses two claims that state correctness
of the black-box robust mean estimator: Lemma 3.4 and Lemma 3.5. For our case, Lemma
3.4 is replaced by our Theorem 9.4.2 specialized to bounded covariance distributions (also
see part 2 of Theorem 9.1.3 which says that the sample complexity of Algorithm 8 for that
case is Õ(d2/ϵ)).

Lemma 3.5 in [CDGW19] also holds when using our estimator. We restate this as a
claim below and provide a proof:

Claim F.5.1. Let D be a distribution supported on Rd with unknown mean µ∗ and covariance Σ.
Let 0 < γ < 1, 0 < ϵ < ϵ0 for some universal constant ϵ0 and δ = O(

√
τϵ+ ϵ log(1/ϵ)) for some

τ = O(
√
ϵ). Suppose that D has exponentially decaying tails and Σ is close to the identity matrix

∥Σ− Id∥2 ≤ τ . Denote R :=
√

(d/ϵ)(1 + δ2/ϵ). Algorithm 8 uses

n = Õ

(
R2 max

(
d,

ϵ

δ2 ,
(1 + δ2/ϵ)d

δ2R2 ,
ϵ2d

δ4 ,
R2ϵ2

δ2 ,
R2ϵ4

δ6

))
(F.11)
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samples drawn from D and outputs a hypothesis vector µ̂ such that ∥µ̂ − µ∗∥2 = O(δ), with
probability 1− γ. Moreover, this is done in nd polylog(d, 1/ϵ, 1/γ) time and d polylog(d, 1/ϵ, 1/γ)
space.

Proof. Since D has exponentially decaying tails, we know that D is stable with respect to
its mean µ∗ and covariance Σ ⪯ O(1)Id with parameter δ = O(ϵ log(1/ϵ)) (this follows
from the tails of the distribution and Definition 9.2.8). That is, for any weight function
w : Rd → [0, 1] with EX∼D[w(X)] ≥ 1− ϵ we have that

∥µw,D − µ∥2 ≤ δ and
∥∥∥Σw,D −Σ

∥∥∥
2
≤ δ2

ϵ
.

We claim that D is (ϵ, O(
√
τϵ+ ϵ log(1/ϵ)))-stable in the sense of Definition 9.2.8 (the differ-

ence from what written above is that Definition 9.2.8 uses identity matrix in place of Σ).
This can be seen by using triangle inequality:

∥∥∥Σw,D − Id
∥∥∥

2
≤
∥∥∥Σw,D −Σ

∥∥∥
2

+ ∥Σ− Id∥2 ≤
1
ϵ

(
δ +
√
ϵτ
)2

. (F.12)

The proof is concluded by recalling the guarantee of Algorithm 8 for (ϵ, O(
√
τϵ+ϵ log(1/ϵ)))-

stable distributions and using Claim 9.3.12 for the value of R.

We also note that [CDGW19] uses a fast matrix inversion and multiplication procedure
for calculating the rotated versions Y = Σ̂−1/2

i X of the samplesX . In our case, the run-time
of our robust mean-estimation procedure exceeds that of these methods, thus we do not
need to use them. We can instead use any numerically stable method that has running
time up to Õ(d6) and approximates the result within error poly(ϵκ/d) (see, e.g., [BGKS20]).
Finally, since Claim F.5.1 is essentially used for the d2-dimensional distributions of the
points Y ⊗ Y , we get the d4 factor in the final sample complexity, as well as the d2 factors in
the time and space complexity.

F.5.2 Omitted Proofs from Section 9.5.2

Corollary 9.5.6. In the setting of Theorem 9.5.5, suppose that the distribution of gradients satisfies
Cov[∇f(θ)] ⪯ σ2Id with σ2 = α2∥θ − θ∗∥2

2 + β2 for all θ ∈ Θ, where α
√
ϵ < τℓ. Assume

that the radius of the domain Θ, r := maxθ∈Θ ∥θ∥2 is finite. There exists a single-pass streaming
algorithm that given O(T (d2/ϵ) log(1 + αr/β)polylog(d, 1/ϵ, T/τ, 1 + αr/β)) samples, runs in
time Tnd polylog(d, 1/ϵ, T/τ, 1 + αr/β), uses memory d polylog(d, 1/ϵ, T/τ, 1 + αr/β), and
returns a vector θ̂ ∈ Rd such that ∥θ̂ − θ∗∥2 = O(

√
ϵβ/(1− κ)) with probability at least 1− τ .



576

Proof. This follows by using the estimator of Corollary F.4.3 in place of g(·) in Algorithm 10.
The known bounds for σ, A ≤ σ ≤ B are A = β and B = 2αr + β, thus B/A ≤ 1 + 2αr/β.
The distribution of the scaled gradients 1

σ
∇f(θ) is (Cϵ,O(

√
ϵ))-stable. For these parameters,

n from Equation (F.10) gives n = (d2/ϵ)polylog(d, 1/ϵ, τ ′, 1 + αr/β), where τ ′ is the desired
probability of failure for each call of the estimator. Setting τ ′ = τ/T ensures that the
estimates of all rounds are successful with probability 1 − τ . Successful estimates of
the gradients are within O(σδ) = O((α∥θ − θ∗∥2 + β)

√
ϵ) from the true one in Euclidean

norm, thus in every round we have an (
√
ϵα,
√
ϵβ)-gradient estimation (in the sense of

Definition 9.5.4). Finally, Theorem 9.5.5 requires the condition α
√
ϵ < τℓ. Assuming that

this is true, that theorem concludes the proof.

Theorem 9.5.12 (Robust Logistic Regression; full version of Theorem 9.1.6). Consider the
logistic regression model of Equation (9.26) with the domain Θ of the unknown regressor being
the ball of radius r, for some universal constant r > 0, and suppose that Assumption 9.5.10 holds.
Assume that 0 < ϵ < ϵ0 for a sufficiently small constant ϵ0. There is a single-pass streaming
algorithm that uses n = (d2/ϵ) polylog (d, 1/ϵ, 1/τ) samples, runs in time nd polylog(d, 1/ϵ, 1/τ),
uses memory d polylog(d, 1/ϵ, 1/τ), and returns a vector θ̂ ∈ Rd such that ∥θ̂ − θ∗∥2 = O(

√
ϵ)

with probability at least 1− τ .

Proof. The algorithm is that of Theorem 9.5.5 using the estimator of Algorithm 8 in
place of g(·) in Algorithm 10. The distribution of the gradients is (Cϵ,O(

√
ϵ))-stable

because of Lemma 9.5.11. For these stability parameters, a sufficient number of samples is
(d2/ϵ) polylog (d, 1/ϵ, T/τ) (see Equation (9.8) with δ = O(

√
ϵ) and R = O(

√
d)), where T

is the number of iterations over which take a union bound. It thus remains to specify the
parameters τℓ, τu, k, T .

Using Assumption 9.5.10, we can calculate bounds on the parameters τℓ, τu. For τℓ, let v
be a unit vector from Rd. Let the event Ev,θ := {(v⊤X)2 ≥ c1 and |θ⊤X| ≤ 2rC2/c2}, where
c1, c2, C are the constants from Assumption 9.5.10. The probability of the complement of
this event is

P[Ecv,θ] ≤ P[(v⊤X)2 < c1] + P[|θ⊤X| > 2rC2/c2] ≤ 1− c2 + c2/2 ≤ 1− c2/2 ,

where the first term is bounded using the anti-concentration property and the second is
bounded using the concentration property along with Markov’s inequality. Thus, using
the formula of Equation (9.27) for the Hessian, we have that

v⊤∇2f̄(θ)v ≥ P[Ev,θ] E
X∼Dx

[
eθ

⊤X

(1 + eθ⊤X)2 (v⊤X)2
∣∣∣∣∣ Ev,θ

]
≥ 0.5c2

e2rC2/c2

(1 + e2rC2/c2)2 c1 .
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Regarding the upper bound τu, using the bounded covariance property we get that
v⊤∇2f̄(θ)v ≤ C2 supa∈R e

a/(1 + ea)2 = C2/4. Therefore, we can choose the values

τℓ = 0.5c2
e2rC2/c2

(1 + e2rC2/c2)2 c1 and τu = C2/4 ,

for Algorithm 10. The guarantees of our mean estimator imply that we have an (0, O(
√
ϵ))-

gradient estimator (in the sense of Definition 9.5.4). Regarding the value of κ, we use
Equation (9.22) with a = 0. Since that τℓ, τu are positive constants, this means that κ is
bounded away from 1. Therefore, we have that the factor 1/(1− κ) appearing in the final
error (Equation (9.24)) is O(1) and the number of iterations from Equation (9.23) are
upper bounded by T ≲ log2(∥θ0 − θ∗∥2/

√
ϵ) ≲ log(1/ϵ), where we used that the radius of

the domain Θ is r = O(1).

F.6 Bit Complexity of Algorithm 8
Until this point, we have assumed that our algorithms could save real numbers exactly
in a single memory cell and perform calculations involving reals in O(1) time. Thus, by
saying that Algorithm 8 uses extra memory at most d polylog(d,R, 1/ϵ, 1/τ), we meant
that it needs to store only that many real numbers. We now describe how the algorithm
would work in the most realistic word RAM model, where finite precision numbers can be
stored in registers of predetermined word size and operations like addition, subtraction
and multiplication are performed in O(1) time. We now show that the previous bound of
d polylog(d,R, 1/ϵ, 1/τ), worsened only by another poly-logarithmic factor, holds for the
total number of bits that need to be stored. We begin by clarifying how the input is given
to the algorithm.

Definition F.6.1 (Single-Pass Streaming Model with Oracle Access for Real Inputs). Let S
be a fixed set of points in Rd. The elements of S are revealed one at a time to the algorithm as follows:
For each point of S that is about to be revealed, the algorithm is allowed to query as many bits as it
wants from that point with whatever order it wants. The process then continues with the next point
in the stream. Each point of S is presented only once to the algorithm in the aforementioned way.

In the reminder of this section, we use the same notation as in Theorem 9.4.2. We assume
R ≤M and that ∥µ∥2 ≤M , for some M = (d/ϵ)polylog(d/ϵ) (otherwise, the estimation of the
mean with extra memory of the order dpolylog(d/ϵ) becomes impossible). The modified
algorithm for this model is the following: Every input point X is ignored if found to have
norm greater than 2M . Otherwise, it is deterministically rounded to an X ′ so that their



578

difference X −X ′ := η(X) has norm at most η, for some η ≤ O(min{δ, δ2

ϵR
, R}) (see below

for more on this choice of η). The exact same algorithm as Algorithm 8 is run on these
rounded points.

Correctness First, we note the rejection step removes less than an ϵ-fraction of the input,
thus the resulting distribution has not changed more than ϵ in total variation distance from
the original one. Moreover, the distribution of the rounded points has essentially the same
stability property required by our theorem. Concretely, if we choose the rounding error η
to be η = O(min{δ, δ2

ϵM
,M}), then it can be seen (Lemma F.6.2 below) that the distribution

of the rounded points is (ϵ, O(δ))-stable and PX′ [∥X ′ − µ∥2 = O(R)] ≥ 1− ϵ, which are the
only assumptions needed for Algorithm 8 to provide an accurate estimate up to O(δ) error.

Lemma F.6.2. Fix 0 < ϵ < 1/2 and δ ≥ ϵ. Let G be an (ϵ, δ)-stable distribution with respect
to some vector µ ∈ Rd and assume G is a distribution such that ∥X − µ∥2 ≤ M almost surely
for some M > 0. For any deterministic function η : Rd → Rd with ∥η(x)∥2 ≤ η for all x in the
support of G, if G′ denotes the distribution of the points X ′ = X + η(X), where X ∼ G, then G′ is
(ϵ, O(δ + η +

√
ϵηM))-stable with respect to µ.

Proof. We check the two conditions for stability. Let a weight function w : Rd → [0, 1] with
EX∼G[w(X)] ≥ 1− ϵ and let δ′ = O(δ + η +

√
ϵηM). We have that

∥µw,G′ − µ∥2 ≤ ∥µw,G′ − µw,G∥2 + ∥µw,G − µ∥2

≤
∥∥∥∥∥
∫
Rd

(x+ η(x)) w(x)G(x)
EX∼G[w(X)]dx− µw,G

∥∥∥∥∥
2

+ δ

≤
∥∥∥∥∥
∫
Rd
η(x) w(x)G(x)

EX∼G[w(X)]dx
∥∥∥∥∥

2
+ δ

≤ η + δ ≤ δ′ ,

where first inequality uses the triangle inequality and the second one uses the stability of
G. Regarding the second stability condition, we have the following:

∥∥∥∥Σw,G′−Id
∥∥∥∥

2

≤
∥∥∥Σw,G′ −Σw,G

∥∥∥
2

+
∥∥∥Σw,G − Id

∥∥∥
2

≤
∥∥∥∥∥
∫
Rd

(x− µ+ η(x))(x− µ+ η(x))⊤ w(x)G(x)
EX∼G[w(X)]dx

∥∥∥∥∥
2

+ δ2

ϵ

≤
∥∥∥∥∥
∫
Rd

(x− µ)η(x)⊤ w(x)G(x)
EX∼G[w(X)]dx

∥∥∥∥∥
2

+
∥∥∥∥∥
∫
Rd

(x− µ)⊤η(x) w(x)G(x)
EX∼G[w(X)]dx

∥∥∥∥∥
2
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+
∥∥∥∥∥
∫
Rd
η(x)η(x)⊤ w(x)G(x)

EX∼G[w(X)]dx
∥∥∥∥∥

2
+ δ2

ϵ

≤ 2Mη + η2 + δ2

ϵ
≤ δ′2

ϵ
,

where we used stability of G, triangle inequality and the bounds ∥x− µ∥2 ≤M , ∥η(x)∥2 ≤
η.

Total Bits of Memory Used In order for the differencesX−X ′ := η(X) to have ∥η(X)∥2 ≤
η for all X , it is sufficient to round every coordinate to absolute error O(η/

√
d). Recall that

by our assumption on the a priori bound on the norm of the true mean and the way that we
reject input points of large norm, we know that all points surviving will have norm at most
2M . Thus, each coordinate of such points can be stored in a word of O(log(Md/η)) bits
after being rounded to accuracy η. Therefore, each d-dimensional point that the algorithm
will need to manipulate can be stored using d registers of size O(log(Md/η)). However,
we need to show that the results of all intermediate calculations can be calculated in low
memory. We show the following result to this end:

Claim F.6.3. In the context of Theorem 9.4.2, given a stream of d-dimensional points, where each
coordinate has bit complexity B, Algorithm 8 can be implemented in a word RAM machine using
d polylog(d, 1/ϵ, 1/τ, R) many of registers of size B polylog(d, 1/ϵ, 1/τ, R).

Proof Sketch. Multiplying two numbers of bit complexity B1 and B2 may result in bit com-
plexity B1 + B2. Adding k numbers of bit complexity B, may make the resulting bit
complexity B + log(k). We need to check that every step of the algorithm performs calcula-
tions that cannot cause the bit complexity to grow by more than poly-log factors.

Line 8 performs only comparisons and counting. Regarding Line 26: As pointed out
at the beginning of Section 9.4, the vector vt,j ← M̂tzt,j is calculated by multiplying zt,j by
B̂t,k for k = 1, . . . , log d iteratively. Consider a single iteration, say the first one. Performing
B̂t,kzt,j involves calculating 1

n

(∑
x xx

⊤
)
zt,j (see Section 9.4.3.2), which can be done as

1
n

∑
x x(x⊤zt,j), i.e., calculating the inner products x⊤zt,j first). A single inner product of

that form is just a sum of d numbers of bit complexity B with appropriate signs, thus the
bit complexity increases only by O(log d). Finally, multiplying by x and taking the mean
over for all of the x’s can add only another O(B + log(n)). Since the number of iterations of
such calculations is log d, the final result has the claimed bit complexity.

Regarding the Downweighting filter (Algorithm 9), there are a couple of places where
the weights wt are involved in calculations. We note that Algorithm 7 stores only the counts
ℓt, which fit in registers of size log(ℓmax) = polylog(d, 1/ϵ, R). These counts are used to



580

calculate wt(x) as wt(x) = ∏
t′≤t(1 − τ̃t′(x)/r)ℓt′ whenever there is such a need. An exact

calculation would require operations of the form xy, for some x ∈ [0, 1] and y ∈ [ℓmax], i.e.,
exponentiation of a real number. In fact, as we will show later on, instead of calculating
wt(x) with perfect accuracy, it suffices to use an approximate value ofwt(x)±η for some error
|η| < poly(1/d, 1/R, ϵ, τ)log d. This will allow us to calculate a good enough approximation
in polylog(d,R, 1/ϵ, 1/τ) bits as follows: we can use exponentiation by squaring algorithm
for calculating wt(x)’s and round the result in each step to make it fit into our registers. We
first explain this in more detail below.

Claim F.6.4. Let x ∈ [0, 1], y ∈ Z+, and assume that both x, y have bit complexity B. The power
xy can be calculated up to a rounding error of 2−Ω(B) in the word RAM model that uses registers of
size 2B. Furthermore, this can be done in O(B) standard arithmetic operations.

Proof. We can use exponentiation by squaring: This consists of writing x in binary as
bk · · · b0 for k = log y and calculating the sequence rk+1, . . . , r0 as rk+1 = 1, ri = r2

k+1x
bi for

i = k, . . . , 0. We assume every ri gets rounded to 2B bits. Because of the rounding, we
incur error 2−2B in each round. However, the error of the previous rounds gets amplified,
since the result of that round (true value plus error) gets squared. We consider one such
iteration to see how that sequence of errors grows: In the t-th iteration, let rest−1 denote
the true result (before rounding) from the previous round and ηt the rounding error of
that round (i.e., rt = rest + ηt). Then, we have that

rest + ηt := (rest−1 + ηt−1)2 + 2−2B ≤ res2
t−1 + η2

t−1 + 2ηt−1 + 2−2B ,

where w.l.o.g. we assume that rest ≤ 1 always. Thus, the rounding error grows as ηt ≤
η2
t−1 + 2ηt−1 + 2−2B ≤ 3ηt−1 + 2−2B . In the first round, we start with rounding error of 2−2B .

Thus, after k = log(y) = B rounds, the final error is ηk ≤ 2−Ω(B).

We continue with examining how fine approximations for wt are needed. First, in
Section 9.4.3.2, we use the estimator Ŵt = EX∼U(S0)[wt(X)], which we require to be η-
close to EX∼P [wt(X)] (Equation (9.16)) for some η > poly(1/d, 1/R, ϵ, τ). Therefore, when
calculating wt, it suffices to round the intermediate results to error η. This would mean
using Claim F.6.4 with B = O(log((1/d, 1/R, ϵ, τ)).

Second, the weights wt are also used in evaluating the stopping condition of the
Downweighting filter. Line 3 of that filter is implemented using the estimator of
Lemma 9.4.16. As it can be seen in Equation (9.19), it suffices to use rounded versions of
wt in (1/n)∑N

i=1 wt(Xi)τ̃t(Xi), as long as it does not change the result by an additive factor
of cλ̂t∥Ut∥2

F , for a small constant c. Since τ̃t(Xi) = O(dR2+4 log d) (Equation (9.1)) and
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λ̂t∥Ut∥2
F > (δ2/ϵ)Θ(log d) (otherwise, the algorithm has terminated), we can again round wt

up to error poly(1/d, 1/R, ϵ)log(d). This means that the results of these calculations fit into
polylog(d,R, 1/ϵ, R) bits.

Finally, there are two places in Algorithm 8 where we need to simulate samples from the
weighted distribution Pwt : (i) Line 19, whose implementation is outlined in Section 9.4.3
and (ii) Line 35. We focus on the first one since the argument for the other case is identical.
To simulate Pwt , we use rejection sampling, as described at the beginning of Section 9.4.3,
with the only difference that we use the rounded versions of the weights wt. We are thus
essentially simulating samples from a slightly different distribution Pŵt

. However, this is
close to Pwt in total variation distance, as shown below.

Claim F.6.5. Let P be a distribution on Rd and let Pw denote the weighted version of P according
to the function w : Rd → [0, 1], i.e., Pw(x) = w(x)P (x)/

∫
Rd w(x)P (x)dx. For any w, ŵ : Rd →

[0, 1] such that
∫
Rd w(x)P (x)dx ≥ 1/2 and supx∈Rd |ŵ(x)−w(x)| ≤ ξ with ξ ≤ 1/8, it holds that

dTV(Pŵ, Pw) ≤ 8ξ.

Proof. First, letting the normalization factors Ĉ :=
∫
Rd ŵ(x)P (x)dx and C :=∫

Rd w(x)P (x)dx, we note that |C − Ĉ| ≤ ξ. Letting ∆w(x) := ŵ(x) − w(x) and
∆C := Ĉ − C, we have that

dTV(Pŵ, Pw) = 1
2

∫
Rd
|Pŵ(x)− Pw(x)| dx = 1

2

∫
Rd

∣∣∣∣∣w(x) + ∆w(x)
C + ∆C − w(x)

C

∣∣∣∣∣P (x)dx

≤ 1
2

∫
Rd

∣∣∣∣∣Cw(x) + C∆w(x)− Cw(x)−∆Cw(x)
C2 + C∆C

∣∣∣∣∣P (x)dx

≤ 4
∫
Rd
|C∆w(x)−∆Cw(x)|P (x)dx ≤ 8ξ ,

where in the last line, we first use that C2 + C∆C ≥ 1/4− ξ ≥ 1/8 (since 1/2 ≤ C ≤ 1 and
0 ≤ ξ ≤ 1/8) and then we use that |C∆w(x)−∆Cw(x)| ≤ |∆w(x)|+ |∆C| ≤ 2ξ.

AsN (more than one) samples are drawn from Pt in the t-th iteration (see Section 9.4.3),
we require the joint distribution of these N samples from Pwt and Pŵt to be within total
variation τ (the probability under which the conclusion of Lemma 9.4.13 holds true).
This bound on the total variation distance implies that Lemma 9.4.13 continues to hold
for Pŵt with an additional failure probability of τ . To do this, we use Claim F.6.5 with
ξ = Θ(τ/N), which means that these rounded weights have bit complexity Θ(log ξ) =
polylog(d,R, 1/ϵ, 1/τ).
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g appendix to Chapter 10

G.1 Additional Details from Section 10.2
We will use the following additional fact that states the dependence on failure probability
for simple binary hypothesis testing:

Fact G.1.1 (Failure probability and sample complexity). Let ψ : ∪∞
n=1X n → {p, q} be the

optimal likelihood ratio test for two distributions p and q. If n ≳ log(1/δ)
d2

h(p,q) for δ ≤ 0.1, then the failure
probability of the test ψ with n samples is less than δ.

The fact above follows by the optimality of the likelihood ratio test and a boosting
argument using the median.

We now state upper bounds and lower bounds on the sample complexity of Scheffe’s
test.

Proposition G.1.2 (Sample complexity of Scheffe’s test (folklore)). The sample complexity
of Scheffe’s test is at most O (1/d4

h(p, q)). Furthermore, this is tight in the following sense: For
any ρ ∈ (0, 1), there exist p and q such that n∗(p, q) = O(1/ρ), whereas the sample complexity of
Scheffe’s test is Ω (1/ρ2).

Proof. We begin by showing the upper bound on sample complexity. Let p and q be the two
given distributions and let ρ = d2

h(p, q). Let T be the channel corresponding to Scheffe’s test.
Since Scheffe’s test preserves the total variation distance, we have dTV(p, q) = dTV(Tp,Tq).
By Fact 10.2.2, we have

dh(Tp,Tq) ≥ dTV(Tp,Tq) = dTV(p, q) ≥ 0.5d2
h(p, q) ≥ 0.5ρ.

Thus, by Fact 10.2.4, the sample complexity is at most O(1/d2
h(Tp,Tq)) = O(1/ρ2) =

O(1/d4
h(p, q)).

We now turn our attention to the tightness of the upper bound. Without loss of generality,
we consider the setting when ρ ≤ 0.01. Consider the following two distributions on ∆3:
p = (ρ, 1/2 − 2ρ, 1/2 + ρ) and q = (0, 1/2, 1/2). Let T be the channel corresponding to
Scheffe’s test. Then we have Tp = (1/2 + 2ρ, 1/2− 2ρ) and Tq = (1/2, 1/2). An elementary
calculation shows that d2

h(p, q) = Θ(ρ) and d2
h(Tp,Tq) = Θ(ρ2). Applying Fact 10.2.4, we

obtain the desired conclusion.
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G.2 Reverse Data Processing
In this section, we prove our results from Section 10.3. Appendix G.2.1 contains the proof
of the reverse data processing inequality (Theorem 10.3.2). We establish the tightness
of the reverse data processing inequality for Hellinger distance (Lemma 10.3.6) in Ap-
pendix G.2.2. We state and prove the generalized version of the reverse Markov inequality
in Appendix G.2.3. Finally, we establish the tightness of the reverse Markov inequality in
Appendix G.2.4.

Fix the distributions p and q over [k]. For 0 ≤ l < u <∞, we first define the following
sets38:

Al,u =
{
i ∈ [k] : pi

qi
∈ [l, u)

}
and

Al,∞ =
{
i ∈ [k] : pi

qi
∈ [l,∞]

}
. (G.1)

We will use the notation from Definition 10.2.8.

G.2.1 Reverse Data Processing: Proof of Theorem 10.3.2

Theorem 10.3.2 (Reverse data processing inequality). Let If be a well-behaved f -divergence
with (α, κ, C1, C2) as defined in Definition 10.3.1. Let p and q be two fixed distributions over [k]
such that for all i ∈ [k], we have qi ≥ νpi and pi ≥ νqi, for some ν ∈ [0, 1]. Then for any D ≥ 2,
there exists a channel T∗ ∈ T thresh

D (and thus in TD) such that

1 ≤ If (p, q)
If (T∗p,T∗q) ≤ 4 f(ν)

f(1/(1 + κ)) + 52C2

C1
max

{
1, R
D

}
, (10.6)

where R = min{k, k′} and k′ = 1 + log
(

4C2κα

If (p,q)

)
. Furthermore, given f , p, and q, there is a

poly(k,D)-time algorithm that finds a T∗ achieving the rate in inequality (10.6).

Proof. Let κ > 0 be as in Definition 10.3.1. By definition of the f -divergence, we have the
following:

If (p, q) =
∑

i∈A1+κ,∞

qif

(
pi
qi

)
+

∑
i∈A1,1+κ

qif

(
pi
qi

)

+
∑

i∈A1/(1+κ),1

qif

(
pi
qi

)
+

∑
i∈A0,1/(1+κ)

qif

(
pi
qi

)
, (G.2)

38When q(x) = 0 for some x and p(x) ̸= 0, we think of p(x)/q(x) =∞. Without loss of generality, we can
assume that for each x ∈ [k], at least one of p(x) or q(x) is non-zero.
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where the sets Al,u are defined as in equation (G.1). Note that the sets A1+κ,∞ and A0,1/(1+κ)

contain the elements that have a large ratio of probabilities under the two distributions.
We now consider two cases.

Case 1: Main contribution by large ratio alphabets: We first consider the case
when ∑

i∈A1+κ,∞∪A0,1/(1+κ)
qif

(
pi

qi

)
≥ If (p,q)

2 . As we will show later, this is the simple
case (D = 2 already achieves the claim). By symmetry of the If -divergence for the
well-behaved f -divergence (I.2 in Definition 10.3.1), it suffices to consider the case when∑
i∈A1+κ,∞ qif

(
pi

qi

)
≥ If (p,q)

4 .39

We will show that there exists T ∈ T thresh
2 such that If (Tp,Tq) ≥ f(1/(1+κ)

4f(ν) If (p, q).
Let T be the channel corresponding to the threshold 1 + κ, i.e., T corresponds to the
function i 7→ IA1+κ,∞(i). Note that p′ := Tp and q′ := Tq are distributions on {0, 1} with
(Tp)1 = ∑

i∈A1+κ,∞ pi and (Tq)1 = ∑
i∈A1+κ,∞ qi. Furthermore, p′ ≥ (1+κ)q′. Using convexity

and nonnegativity of f , and the fact that f(1) = 0 (see I.1), we have f(x) ≤ f(y) for
0 ≤ y ≤ x ≤ 1. Using the nonnegativity of f (I.1), symmetry of f (I.2), and monotonically
decreasing property of f on [0, 1], we obtain the following:

If (Tp,Tq) = p′f

(
q′

p′

)
+ (1− p′)f

(
1− q′

1− p′

)

≥ p′f

(
q′

p′

)

≥ p′f
( 1

1 + κ

)
. (G.3)

Moreover, by the assumption that ∑i∈A1+κ,∞ pif
(
qi

pi

)
≥ 0.25If (p, q) (where we use the

symmetry property of f in I.2), we have

0.25If (p, q) ≤
∑

i∈A1+κ,∞

pif

(
qi
pi

)
≤

∑
i∈A1+κ,∞

pif(ν) = p′f(ν), (G.4)

where we use the facts that qi/pi ∈ [ν, 1] and f is decreasing on [ν, 1]. Combining inequali-
ties (G.3) and (G.4), we obtain

If (Tp,Tq) ≥
f(1/(1 + κ))

4f(ν) If (p, q), (G.5)

39 That is, we can apply the following argument to the distributions p̃ := q and q̃ := p with Ã defined as in
equation (G.1) (with p̃ and q̃). There is a slight asymmetry because of the elements that have likelihood ratio
exactly 1 + κ or 1/(1 + κ), but note that if

∑
i∈A0,1/(1+κ)

qif
(

pi

qi

)
≥ If (p,q)

4 , we have
∑

i∈Ã1+κ,∞
q̃if
(

p̃i

q̃i

)
≥∑

i∈A0,1/(1+κ)
qif
(

pi

qi

)
≥ If (p,q)

4 , because A0,1/(1+κ) ⊆ Ã1+κ,∞, since the interval in A0,l is left-open.
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which implies that If (p,q)
If (Tp,Tq) ≤

4f(ν)
f(1/(1+κ)) , proving the desired result.

We now comment on the computational complexity of finding a T∗ that achieves the
rate (G.5). Since the channel T∗ only depends on κ, the algorithm only needs to check
whether the threshold should be 1+κ or 1/(1+κ), which requires at most poly(k) operations.

Case 2: Main contribution by small ratio alphabets: We now consider the case when∑
i∈A1,1+κ∪A1/(1+κ),1

qif
(
pi

qi

)
≥ If (p,q)

2 . By symmetry (I.2), it suffices to consider the case when∑
i∈A1,1+κ

qif
(
pi

qi

)
≥ If (p,q)

4 .40 This requires us to handle the elements where pi and qi are
close, and the following arguments form the main technical core of this section.

We first state a reverse Markov inequality, proved in Appendix G.2.3, whose role will
become clear later in the proof:

Lemma G.2.1 (Generalized reverse Markov inequality). Let Y be a random variable over [0, β)
with expectation E[Y ] > 0. Let k′ = 1 + log(β/E[Y ]). Then

sup
0≤ν1≤···≤νD=β

D−1∑
j=1

νj P (Y ∈ [νj, νj+1)) ≥
1
13 E[Y ] min

{
1, D
R

}
, (G.6)

where R = k′ := 1 + log(β/E[Y ]). Furthermore, the bound (G.6) can be achieved by νj’s such
that νj = min{β, x2j} for some x ∈ [0, β].

For the special case where Y is supported on k points, we may set R = min{k, k′}, and there is
a poly(k,D) algorithm to find νj’s that achieve the bound (G.6).

For any i ∈ A1,1+κ, both qi and pi are positive. Let δi = pi

qi
− 1, which lies in [0, κ)

by definition. Then pi = qi(1 + δi). Let X be a random variable over [0, κ) such that for
i ∈ A1,1+κ, we define P(X = δi) = qi and P(X = 0) = 1−∑i∈A1,1+κ

qi. We define Ω to be the
support of the random variable X .

We now apply Lemma G.2.1 to the random variable Y = Xα. Let β = κα and R2 =
min{k, 1 + log(κα/E[Xα])}. Let 0 ≤ ν ′

1 ≤ · · · ≤ ν ′
D = β be thresholds achieving the bound

(G.6). Let νj = (ν ′
j)1/α for all j ∈ [D]. We thus have

D−1∑
j=1

ναj P(X ∈ [νj, νj+1)) ≥
1
13 E[Xα] min

{
1, D
R2

}
. (G.7)

We now define the thresholds Γ = (γ1, . . . , γD−1) such that γj = 1 + νj for i ∈ [D − 1].
We set γ0 = 0 and γ∞ = 0. Recall that by definition, for j ∈ [D − 1], we have Aγj ,γj+1 =

40There is a slight asymmetry here as well, but similar to the previous footnote, it suffices to consider this
case.
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{i : pi/qi ∈ [γj, γj+1)}. Since 1 ≤ γ1 ≤ γD−1 = 1 + νD−1 ≤ 1 + κ, we have the following for
j ∈ [D − 2]:

Aγj ,γj+1 = {i : pi/qi ∈ [γj, γj+1)} = {i : δi ∈ [νj, νj+1)}.

Note that for any j ∈ [D − 2] and any function g, we have

∑
i∈Aγj ,γj+1

g(δi)qi =
∑

i∈Aγj ,γj+1

g(δi)P(X = δi)

=
∑

x∈Ω∩[νj ,νj+1)
g(x)P(X = x) = E

[
g(X) I

X∈[νj ,νj+1)

]
. (G.8)

Using I.3 and the fact that 0 ≤ δi ≤ κ, we further have

∑
i∈A1,1+κ

qif

(
pi
qi

)
=

∑
i∈A1,1+κ

qif(1 + δi) ≤
∑

i∈A1,1+κ

C2qiδ
α
i = C2 E[Xα], (G.9)

where the last equality uses the same arguments as in inequality (G.8). Finally, we note
that inequality (G.9) and the assumption If (p, q) ≤ 4∑i∈A1,1+κ

qif(pi/qi) implies that

If (p, q) ≤ 4C2 E[Xα], and

R2 ≤ min{k, 1 + log(4C2κ
α/If (p, q))} = R. (G.10)

We use p′ and q′ to denote the probability measures Tp and Tq, respectively, where T
corresponds to the thresholds Γ. Thus, for j ∈ [0 : D− 1], we have p′(j) = ∑

i∈Aγj ,γj+1
pi; we

have an analogous expression for q′(j). We now define the positive measure p′′, as follows:
p

′′
j = ∑

i∈Aγj ,γj+1
pi, for j ∈ [0 : D − 2],

p′′
j = ∑

i∈AγD−1,1+κ
pi, for j = D − 1,

and define q′′ similarly. Recall that γD−1 = 1 + νD−1 ≤ 1 + κ. Equivalently, we have
p′′
j := ∑

i∈A
γj ,min{γj+1,1+κ}

pi for each j ∈ [0 : D− 1], since γD =∞. Note that p′′ and q′′ might

not be probability measures, as their sums might be smaller than 1, but they are equal
to p′ and q′, respectively, on all elements except the last. Moreover, we may define the
“f -divergence” between p′′ and q′′ by mechanically applying the standard expression for f -
divergence, but replacing the probability measures by p′′ and q′′, instead. The f -divergence
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between p′′ and q′′ thus obtained is smaller than the f -divergence between p′ and q′, since

q′
D−1f

(
p′
D−1
q′
D−1

)
≥ q′′

D−1f

(
p′′
D−1
q′′
D−1

)
,

which follows by noting that q′′
D−1 ≤ q′

D−1, p′
D−1/q

′
D−1 ≥ p′′

D−1/q
′′
D−1 ≥ 1, and f(x) ≥ f(y) ≥

0 for any x ≥ y ≥ 1.41 We thus obtain the following relation:

If (p′, q′) ≥
D−1∑
j=0

q′′
j f

(
p′′
j

q′′
j

)
. (G.11)

Fix j ∈ [D − 1]. Using the facts that 0 ≤ p′′
j

q′′
j
− 1 ≤ κ and f(1 + x) ≥ C1x

α for x ∈ [0, κ]
(cf. I.3), we have the following for any j such that q′′

j > 0:

q′′
j f

(
p′′
j

q′′
j

)
= q′′

j f

(
1 +

p′′
j − q′′

j

q′′
j

)

≥ C1q
′′
j

(
p′′
j − q′′

j

q′′
j

)α

= C1q
′′
j


∑
i∈A

γj ,min{γj+1,1+κ}
qiδi∑

i∈A
γj ,min{γj+1,1+κ}

qi


α

≥ C1q
′′
j ν

α
j

(
using δi ≥ νj for i ∈ Aγj ,γj+1

)
≥ C1ν

α
j P(X ∈ [νj, νj+1)). (G.12)

We note that this inequality is also true if q′′
j = 0, because q′′

j = P (X ∈ [νj, νj+1)), and if
the former is zero, then the expression in inequality (G.12) is also zero, while q′′

j f
(
p′′

j

q′′
j

)
is

nonnegative.
Overall, we obtain the following series of inequalities:

If (p′, q′) ≥
D−1∑
j=1

q′′
j f

(
p′′
j

q′′
j

)
(using inequality (G.11) and f ≥ 0)

≥ C1

D−1∑
j=1

ναj P(X ∈ [νj, νj+1)) (using inequality (G.12))

≥ C1

13 E[Xα] min
{

1, D
R2

}
(using inequality (G.7))

41We briefly outline how p′
D−1/q′

D−1 ≥ p′′
D−1/q′′

D−1: Let p′
D−1 = p′′

D−1+x and q′
D−1 = q′′

D−1+y for x, y ∈ R.
By construction, we have that x, y ≥ 0 and x/y ≥ 1 + κ ≥ p′′

D−1/q′′
D−1. Expanding p′

D−1/q′
D−1 − p′′

D−1/q′′
D−1,

we get the desired conclusion.
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≥ C1

52C2
If (p, q) min

{
1, D
R

}
(using inequality (G.10)) .

This shows that there exists a T ∈ T thresh
D such that

If (p, q)
If (Tp,Tq)

≤ 52C2

C1
max

{
1, R
D

}
. (G.13)

We now comment on the computational complexity of finding a T∗ that achieves the
rate (G.13). Finding the thresholds Γ is equivalent to finding (ν ′

1, . . . , ν
′
D−1). As noted in

Lemma G.2.1 and its proof, the guarantee of inequality (G.6) can be achieved by choosing
ν ′
j in one of the following ways:

• Setting ν ′
j = min{κα, x2j} for all j and optimizing over x. As the random variable Y

has support of at most k, this algorithm runs in poly(k,D)-time.

• Choosing the topD−1 elements that maximize δiqi, and defining ν ′
j appropriately.

G.2.2 Tightness of Reverse Data Processing Inequality: Proof of
Lemma 10.3.6

Lemma 10.3.6 (Reverse data processing is tight). There exist positive constants c1, c2, c3, c4, c5,
and c6 such that for every ρ ∈ (0, c1) and D ≥ 2, there exist k ∈ [c2 log(1/ρ), c3 log(1/ρ)] and two
distributions p and q on [k] such that d2

h(p, q) ∈ [c4ρ, c5ρ] and

inf
T∈T thresh

D

d2
h(p, q)

d2
h(Tp,Tq) ≥ c6 ·

R′

D
, (10.8)

where R′ = max{k, k′} and k′ = log (1/ρ). Thus, R′ = Θ(k) = Θ(log(1/ρ)).

Proof. We will design p and q such that pi/qi ∈ [0.5, 1.5] for all i. Fix any set of thresholds Γ =
{γ1, . . . , γD−1}which, without loss of generality, lie in [0.5, 1.5]. Let T be the corresponding
channel. Let p′ and q′ be the distributions after using the channel T.

Note that k will depend on ρ, which will be decided later. For now, let k be even, equal
to 2m. Let q̃ be an arbitrary distribution on [m], to be decided later. Using this q̃, we define
a distribution q on [k], as follows:

qi =

0.5q̃i, if i ∈ [m]

0.5q̃i−m, if i ∈ [k] \ [m].
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Let δ̃ ∈ [0, 0.5]m, also to be decided later. Using δ̃, we define δ, as follows:

δi =

δ̃i, if i ∈ [m]

−δ̃i−m, if i ∈ [k] \ [m].

We now define p as follows: For i ∈ [k], define pi = qi(1 + δi). Equivalently,

pi =

0.5q̃i(1 + δ̃i), if i ∈ [m]

0.5q̃i−m(1− δ̃i−m), if i ∈ [k] \ [m].

Thus, p is a valid distribution if q is a valid distribution. Let X̃ be the random variable such
that P{X̃ = δ̃i} = q̃i. We will need the following results, whose proofs are given at the end
of this section:

Claim G.2.2. We have the following inequality:

0.02E[X̃2] ≤ d2
h(p, q) ≤ E[X̃2].

Claim G.2.3. Let T ∈ T thresh
D be a channel corresponding to a threshold test. Then

d2
h(Tp,Tq) ≤ sup

0<ν′
1<···<ν′

D=1

D−1∑
j=1

P
{
X̃ ≥ ν ′

j]
} (

E
[
X̃|X̃ ≥ ν ′

j

])2
. (G.14)

We will now show that there exist p and q (i.e., q̃ ∈ Rm and δ̃ ∈ Rm) such that the desired
conclusion holds. Defining q̃ and δ̃ is equivalent to showing the existence of a random
variable X̃ satisfying the desired properties. This is given in Claim G.2.4 below, showing
that there exists a distribution X̃ such that the following hold: (i) E[X̃2] = Θ(ρ); (ii) the
expression on the right-hand side of inequality (G.14), for any choice of thresholds Γ, is
upper-bounded by a constant multiple of E[X̃2]D

R′ ; and (iii) R′ = max{m, k′} = Θ(log(1/ρ)).

Claim G.2.4 (Tightness of reverse Markov inequality). There exist constants c1, c2, c3, c4, c5,
and c6 such that for every ρ ∈ (0, c5), there exists an integer k ∈ [c3 log(1/ρ), c4 log(1/ρ)] and a
probability distribution p, supported over k points in (0, 0.5], such that the following hold:

1. E[X2] ∈ [c1ρ, c2ρ], and for every D ≤ 0.1k,

sup
0<δ1<···<δD=1

D−1∑
j=1

P {X ≥ δj} (E [X|X ≥ δj])2 ≤ c6 · E[X2]D
R′ , (G.15)

where R′ = max{k, k′} and k′ = log(3/E[X2]).
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2. E[Y ] = [c1ρ, c2ρ], and

sup
0<δ′

1<···<δ′
D=1

D−1∑
j=1

δ′
j P
(
Y ∈ [δ′

j, δ
′
j+1)

)
≤ c6 · E[Y ]D

R′ , (G.16)

where R′ = max{k, k′} and k′ = log(3/E[Y ]). Moreover, R′ = Θ(log(1/ρ)).

We provide the proof of Claim G.2.4 in Appendix G.2.4. Using Claims G.2.2 to G.2.4,
we obtain the following for any threshold channel T:

d2
h(Tp,Tq) ≲ E[X̃2]D

R′ ≲ d2
h(p, q)D

R′ ,

completing the proof.

The omitted proofs of Claim G.2.2 and Claim G.2.3 are given below.

Proof. (Proof of Claim G.2.2) We have the following:

d2
h(p, q) =

∑
i∈[m]

(√
qi (1 + δi)−

√
qi

)2
+

∑
i∈[k]\[m]

(√
qi −

√
qi (1 + δi)

)2

= 0.5
∑
i∈[m]

(√
q̃i
(
1 + δ̃i

)
−
√
q̃i

)2

+ 0.5
∑
i∈[m]

(
√
q̃i −

√
q̃i
(
1− δ̃i

))2

= 0.5
∑
i∈[m]

q̃i

((√
1 + δ̃i − 1

)2
+
(

1−
√

1− δ̃i
)2
)
.

Using the fact that for x ∈ [0, 1], we have

√
1 + x− 1 ≥ 0.1x,

1−
√

1− x ≥ 0.1x,
√

1 + x ≤ 1 + x,

1− x ≤
√

1− x,

we obtain

E[X̃2] ≥ d2
h(p, q) ≥ 0.02E[X̃2].

Proof. (Proof of Claim G.2.3) Suppose T corresponds to a threshold test with thresholds
Γ = {γ1, . . . , γD−1} such that γj < γj+1. We define γ0 = mini pi/qi and γD = maxi pi/qi. It
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suffices to consider the case when all γj ∈ [0.5, 1.5] for j ∈ [0 : D]. Let p′ = Tp and q′ = Tq.
Let j∗ ∈ [D − 1] be such that γj∗−1 < 1 and γj∗ ≥ 1.

We now define the νj’s as follows for j ∈ [0 : D − 1]:

νj =

γj − 1, if j ≥ j∗

1− γj, otherwise.

Thus, νj ∈ [0, 1).
For j ∈ [0 : D − 1], define

Aj := {i ∈ [k] : (pi/qi) ∈ [γj, γj+1)} = {i : 1 + δi ∈ [γj, γj+1)} .

For j ≥ j∗, we have Aj = {i : δi ∈ [νj, νj+1)}. For j < j∗, we have

Aj = {i ∈ [k] : −δi ∈ (νj+1, νj]} =
{
i ∈ [k] : δ̃i−m ∈ (νj+1, νj]

}
.

For j ∈ [0 : D − 1], we have p′
j = ∑

i∈Aj
pi and q′

j = ∑
i∈Aj

qi.
We have the following decomposition of the squared Hellinger distance between p′ and

q′:

d2
h(p′, q′) =

∑
j<j∗

(√
p′
j −

√
q′
j

)2
+
∑
j≥j∗

(√
p′
j −

√
q′
j

)2
(G.17)

We analyze these two terms separately:

Case 1: j ≥ j∗: Let j be such that q′
j > 0. We have p′

j ∈ [q′
j, 1.5q′

j]. Using the fact that
√

1 + x− 1 ≤ x for x ∈ [0, 0.5], we have

(√
p′
j −

√
q′
j

)2
= q′

j

√√√√1 +
p′
γ − q′

j

q′
j

− 1
2

≤
(p′
i − q′

j)2

q′
j

. (G.18)

Since γj ≥ 1, note that

q′
j =

∑
i∈Aj

qi =
∑

i∈[m]:δ̃i∈[νj ,νj+1)

qi =
∑

i∈[m]:δ̃i∈[νj ,νj+1)

0.5q̃i = 0.5P{X̃ ∈ [νj, νj+1)}.

Similarly, we have

p′
j − q′

j =
∑
i∈Aj

δiqi =
∑

i∈[m]:δ̃i∈[νj ,νj+1)

δiqi = 0.5
∑

i∈[m]:δ̃i∈[νj ,νj+1)

δ̃iq̃i = 0.5E
[
X̃ I

X̃∈[νj ,νj+1)

]
.
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Combining the last two displayed equations with inequality (G.18) and using the
definition of conditional expectation, we then obtain

∑
j≥j∗

(√
p′
j −

√
q′
j

)2
≤ 0.5

∑
j≥j∗

P
{
X̃ ∈ [νj, νj+1)

} (
E
[
X̃|X̃ ∈ [νj, νj+1)

])2

≤ 0.5
∑
j≥j∗

P
{
X̃ ≥ νj

} (
E
[
X̃|X̃ ≥ νj)

])2
. (G.19)

Case 2 : j < j∗: Let j < j∗ be such that q′
j > 0. We have p′

j ∈ [q′
j/2, q′

j). Using the fact
that 1−

√
1− x ≤ x for x ∈ [0, 1], we have

(√
q′
j −

√
p′
j

)2
= q′

j

1−

√√√√1−
q′
j − p′

i

q′
j

2

≤
(q′
j − p′

i)2

q′
j

. (G.20)

Since γj < 1, we have

q′
j =

∑
i∈Aj

qi =
∑

i∈[k]\[m]:δ̃i−m∈(νj+1,νj ]

qi =
∑

i∈[k]\[m]:δ̃i−m∈(νj+1,νj ]

0.5q̃i−m

= 0.5P{X̃ ∈ (νj+1, νj]}.

Similarly, we have

q′
j − p′

i =
∑
i∈Aj

(−δiqi) =
∑

i∈[k]\[m]:δ̃i−m∈(νj+1,νj ]

δ̃i(0.5q̃i−m) = 0.5E
[
X̃ I

X̃∈(νj+1,νj ]

]
.

Combining the last two displayed equations with inequality (G.20) and using the definition
of conditional expectation, we then obtain

∑
j<j∗

(√
p′
j −

√
q′
j

)2
≤ 0.5

∑
j<j∗

P
{
X̃ ∈ (νj+1, νj]

} (
E
[
X̃|X̃ ∈ (νj+1, νj]

])2

≤ 0.5
∑
j<j∗

P
{
X̃ > νj]

} (
E
[
X̃|X̃ > νj]

])2
. (G.21)

Combining inequalities (G.19) and (G.21), we can complete the proof by noting that X̃ is
a discrete random variable, so the distinction between X̃ ≥ νj (cf. inequality (G.19)) and
X̃ > νj (cf. inequality (G.21)) does not matter when taking the supremum.
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G.2.3 Reverse Markov Inequality

Lemma G.2.1 (Generalized reverse Markov inequality). Let Y be a random variable over [0, β)
with expectation E[Y ] > 0. Let k′ = 1 + log(β/E[Y ]). Then

sup
0≤ν1≤···≤νD=β

D−1∑
j=1

νj P (Y ∈ [νj, νj+1)) ≥
1
13 E[Y ] min

{
1, D
R

}
, (G.6)

where R = k′ := 1 + log(β/E[Y ]). Furthermore, the bound (G.6) can be achieved by νj’s such
that νj = min{β, x2j} for some x ∈ [0, β].

For the special case where Y is supported on k points, we may set R = min{k, k′}, and there is
a poly(k,D) algorithm to find νj’s that achieve the bound (G.6).

Proof. We can safely assume that D ≤ R. Under this assumption on D, we will show
that the desired expression is lower-bounded by both of the following quantities (up to
constants): E[Y ]D

k
and E[Y ]D

k′ . We will also assume that β = 1; otherwise, it suffices to apply
the following argument to Y

β
.

Dependence on k: Suppose Y has support size k.42 Let the support elements be {δ′
i}ki=1,

such that δ′
1 < δ′

2 < · · · < δ′
k < 1. Let {pi}ki=1 be such that P(Y = δ′

i) = pi and ∑k
i=1 pi = 1.

It suffices to prove that there exists a labeling π : [D − 1]→ [k] such that π(1) < π(2) <
· · · < π(D − 1) and the following bound holds:

D−1∑
j=1

δ′
π(j)pπ(j) ≥ E[Y ]

(
D − 1
k

)
. (G.22)

This is true because for j ∈ [D − 1], we have

pπ(j) = P
{
Y ∈ [δπ(j), δπ(j)+1)

}
≤ P

{
Y ∈ [δπ(j), δπ(j+1))

}
,

where we define δk+1 := 1 and π(D) := 1, and the desired conclusion follows by setting
νj = δπ(j). In the rest of the proof, we will show that such a π exists.

Let σ : [k]→ [k] be a permutation such that pσ(i)δσ(i) ≥ pσ(i+1)δσ(i+1). Then we have

E[Y ]
k

=
∑k
i=1 piδi
k

=
∑k
i=1 pσ(i)δσ(i)

k
≤
∑D−1
i=1 pσ(i)δσ(i)

D − 1 =
∑D−1
i=1 pπ′(i)δπ′(i)

D − 1 ,

for some π′ : [D − 1] → [k] such that π′(1) < π′(2) < · · · < π′(D − 1). Thus, we have
established inequality (G.22). Note that the desired bound is achieved by choosing the νj’s,

42It is easy to see that if the support size is strictly smaller than k, we have a tighter bound.
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as follows: Let S be the set of top D − 1 elements among the support of Y that maximize
y P(Y = y), and let the νj’s have values in S such that they are increasing and distinct. It is
clear that this assignment can be implemented in poly(k,D) time.

Dependence on k′: We begin by noting that the desired expression can also be written as

D−1∑
j=1

(νj − νj−1)P {Y ≥ νj} ,

where ν0 := 0. We need to obtain a lower bound on the supremum of this expression over
the νj’s. In fact, we will show a stronger claim, where we fix the νj’s in a particular way: We
will take νj to be of the form x2j−1, for j ∈ [D − 1], and optimize over x ∈ (0, 1). Note that
we can allow νj ≥ 1 without loss of generality, because their contribution to the desired
expression would then be 0. In the rest of the proof, we will show the following claim for
c1 = 1

13 :

sup
x∈(0,1)

xP {Y ≥ x}+
D−1∑
j=2

(
x2j−1 − x2j−2

)
P
{
Y ≥ x2j−1

}
≥ c1 E[Y ]D

k′ . (G.23)

Suppose that the desired conclusion does not hold. We will now derive a contradiction.
Under the assumption that inequality (G.23) is false, we have the following, for each
x ∈ (0, 1):

c1 E[Y ]D
k′ > xP {Y ≥ x}+

D−1∑
j=2

x
(
2j−1 − 2j−2

)
P
{
Y ≥ x2j−1

}

= x

P {Y ≥ x}+
D−2∑
j=1

2j−1 P
{
2−jY ≥ x

} .
We thus obtain the following, for all x ∈ (0, 1):

P {Y ≥ x}+
D−2∑
j=1

2j−1 P
{
2−jY ≥ x

}
< c1 E[Y ] · D

k′ ·
1
x
. (G.24)

Using the fact that the probabilities are bounded by 1, we also have the following bound
on the expression on the left side of inequality (G.24):

P {Y ≥ x}+
D−2∑
j=1

2j−1 P
{
2−jY ≥ x

}
≤ 1 +

D−2∑
j=1

2j−1 = 2D−2. (G.25)
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Combining the two bounds in inequalities (G.24) and (G.25), the following holds for every
x ∈ (0, 1):

P {Y ≥ x}+
D−2∑
j=1

2j−1 P
{
2−jY ≥ x

}
≤ min

{
2D−1,

c1DE[Y ]
k′x

}
. (G.26)

Using the fact that Y ∈ [0, 1], we also have the following for every a > 1:

E
[
Y

a

]
=
∫ 1/a

0
P
(
Y

a
≥ t

)
dt =

∫ 1

0
P
(
Y

a
≥ t

)
dt,

implying that

∫ 1

0

P {Y ≥ t}+
D−2∑
j=1

2j−1 P
{
Y 2−j ≥ t

} dt = E[Y ] +
D−2∑
j=1

2j−1 E[2−jY ] = DE[Y ]
2 . (G.27)

Combining inequalities (G.26) and (G.27), we obtain the following, for an arbitrary x∗ ∈
(0, 1):

E[Y ] = 2
D

∫ 1

0

(
P {Y ≥ t}+

D−2∑
i=1

2i−1 P
{
Y 2−i ≥ t

})
dt

≤ 2
D

∫ 1

0
min

{
2D−1,

c1DE[Y ]
k′x

}
dt

≤ 2Dx∗

D
+ 2c1 E[Y ]

k′ log
( 1
x∗

)
. (G.28)

Let x∗ = 2−D (E[Y ]/k′). Then

log(1/x∗) = D + log(1/E[Y ]) + log(k′) ≤ 3k′,

where we use the fact that max{D, log(1/E[Y ])} ≤ k′. Using k′ ≥ 1 and D ≥ 2, the
expression on the right-hand side of inequality (G.28) can be further upper-bounded, to
obtain the following inequality:

E[Y ] ≤
(
E[Y ]
k′D

)
+ 2c1 E[Y ]

k′ (3k′) ≤ E[Y ]
2 + 6c1 E[Y ],

which is a contradiction, since E[Y ] > 0 and c1 <
1
12 . Thus, we conclude that inequality

(G.23) is true.
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G.2.4 Tightness of Reverse Markov Inequality

Claim G.2.4 (Tightness of reverse Markov inequality). There exist constants c1, c2, c3, c4, c5,
and c6 such that for every ρ ∈ (0, c5), there exists an integer k ∈ [c3 log(1/ρ), c4 log(1/ρ)] and a
probability distribution p, supported over k points in (0, 0.5], such that the following hold:

1. E[X2] ∈ [c1ρ, c2ρ], and for every D ≤ 0.1k,

sup
0<δ1<···<δD=1

D−1∑
j=1

P {X ≥ δj} (E [X|X ≥ δj])2 ≤ c6 · E[X2]D
R′ , (G.15)

where R′ = max{k, k′} and k′ = log(3/E[X2]).

2. E[Y ] = [c1ρ, c2ρ], and

sup
0<δ′

1<···<δ′
D=1

D−1∑
j=1

δ′
j P
(
Y ∈ [δ′

j, δ
′
j+1)

)
≤ c6 · E[Y ]D

R′ , (G.16)

where R′ = max{k, k′} and k′ = log(3/E[Y ]). Moreover, R′ = Θ(log(1/ρ)).

Proof. For now, let k ∈ N be arbitrary; we will choose k so that E[X2] ∈ [c1ρ, c2ρ]. Consider
the following discrete random variable Y supported on {2−i : i ∈ [k]}:

P
{
Y = 2−i

}
= r2i,

where r is chosen so that it is a valid distribution, i.e., r satisfies 1 = ∑k
i=1 r2i = 2r(2k − 1).

Let X =
√
Y . We then have

E[X2] = E[Y ] =
k∑
i=1

2−i
(
r2i
)

= rk. (G.29)

Consider a δ′
i ∈ [2−j, 2−(j−1)), for some j ∈ [k], and let δi =

√
δ′
i. For any such choice, we

obtain the following:

P(X ≥ δi) = P(Y ≥ δ′
i) = P(Y ≥ 2−j) =

∑
i∈[j]

P
{
Y = 2−i

}
=
∑
i∈[j]

r2i = 2r
(
2j − 1

)
≤ 2r2j.

(G.30)

Thus, for any δ′, we have δ′ P {Y ≥ δ′} ≤ 2r, showing that the expression in inequality
(G.16) is upper-bounded by 2(D − 1)r, which is equal to 2E[Y ](D−1)

k
, by equation (G.29). It

remains to show that R ≤ c6k/2.
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We first calculate bounds on k so that E[Y ] = Θ(ρ). Note that by construction, we have
r = 1/

(
2(2k − 1)

)
, implying that r ∈ [2−k+1, 2−k−1]. Since E[Y ] = rk, it suffices to choose

k such that f(k) ∈ [2c1ρ, 0.5c2ρ], where f(j) := 2−jj. As f(j+1)
f(j) ∈ (1/2, 1) for j > 1, we

have f(⌊ln(1/ρ)⌋) ≥ ρ⌈ln(1/ρ)⌉ and f(⌈2 ln(1/ρ)⌉) ≤ ρ2⌈log(1/ρ)⌉, so we know that such a
k exists in [ln(1/ρ), 2 ln(1/ρ)] when c1 = 0.5, c2 = 10, and c5 = 2−20.

We now calculate the quantity R. By the definition of k′, we have

k′ = log
(

3
E[X2]

)
= log

( 3
rk

)
≥ log

(
3 · 2k−1

k

)
= k log 2− log k + log(3/2).

As k is large enough, we have k′ ∈ [0.5k, 2k]. Since R = max{k, k′}, we have R ∈ [0.5k, 2k].
This completes the proof of the claim in inequality (G.16), with c6 = 4.

We now prove the claim in inequality (G.15). We begin with the following:

E[X I
X≥2−j/2

] =
∑
i∈[j]

2−0.5i
(
r2i
)

=
∑
i∈[j]

r20.5i = (r
√

2)
(

20.5j − 1√
2− 1

)
≤ 10r20.5j.

For δi ∈ [2−j/2, 2−(j−1)/2), for some j, we have the following:

P {X ≥ δi} (E [X|X ≥ δi])2 = P(X ≥ 2−j/2)
(
E[X|X ≥ 2−j/2]

)2

=

(
E[X IX≥2−j/2 ]

)2

P(X ≥ 2−j/2)

≤ 100r22j
2r(2j − 1) ≤ 100r.

Thus, the supremum over any arbitrary δi is also upper-bounded by 100r. Hence, we can
upper-bound the expression on the left-hand side of inequality (G.15) by 100(D − 1)r,
which is equal to 100 · E[X2](D−1)

k
. Using the same calculations as in the first part of the proof,

we prove inequality (G.15) with c6 = 200.

G.3 Simple Binary Hypothesis Testing
In this section, we prove results concerning binary hypothesis testing that were omitted
from Section 10.4. We prove the equivalence between identical and non-identical channels
for simple binary hypothesis testing (cf. Lemma 10.4.2) in Appendix G.3.1. Appendix G.3.2
focuses on robust binary hypothesis testing.



598

G.3.1 Equivalence between Identical and Non-identical Channels

Lemma 10.4.2 (Equivalence between identical and non-identical channels for simple hy-
pothesis testing). Let T be a collection of channels from X → Y . Let p and q be two distributions
on X . Then

n∗
non-identical (p, q, T ) = Θ (n∗

identical(p, q, T )) .

Proof. Recall that we use βh(p, q) to denote the Hellinger affinity between p and q. It suffices
to consider the case where n∗

identical(p, q,T) is larger than a fixed constant. Define the
following:

h∗ = sup
T∈T

dh(Tp,Tq), and β∗ := inf
T∈T

βh(Tp,Tq),

and note that β∗ = 1− 0.5h2
∗. Let n∗ := n∗

identical(p, q,T). Let T∗ be any channel such that
βh(T∗p,T∗q) ≤ β∗ + ϵβ∗, for some ϵ > 0 satisfying (1 + ϵ)n∗ ≤ 2. Let p∗ = T∗p and q∗ = T∗q.

Identical channels: Optimal T∗: If each channel is identically T∗, the joint distributions
of n∗ samples will either be p⊗n∗

∗ or q⊗n∗
∗ .

Let f(n) = dTV (p⊗n
∗ , q⊗n

∗ ). Note that the probability of error for p⊗n
∗ and q⊗n

∗ is equal to
1−f(n) (cf. Fact 10.2.4). Since the sample complexity ofB(p∗, q∗) is at leastn∗, the probability
of error with n∗− 1 samples must be greater than 0.1, i.e, f(n∗− 1) < 0.9. Using Fact 10.2.2,
we have d2

h

(
p

⊗(n∗−1)
∗ , q

⊗(n∗−1)
∗

)
≤ 1.8, and consequently, βh

(
p

⊗(n∗−1)
∗ , q

⊗(n∗−1)
∗

)
≥ 0.1. Using

the tensorization of Hellinger affinity (cf. Fact 10.2.2) and the relation between β∗ and
βh(p∗, q∗), we have

(β∗)n∗−1 ≥
(
βh(p∗, q∗)

1 + ϵ

)n∗−1

≥ 1
2βh

(
p⊗(n∗−1)

∗ , q⊗(n∗−1)
∗

)
≥ 0.05. (G.31)

Non-identical channels: We now show that even if n non-identical channels are allowed
but n ≤ 0.01n∗, the probability of error is at least 0.2. For a choice of T1, . . . ,Tn, let
P ′
n := ∏n

i=1 Tip and Q′
n := ∏n

i=1 Tiq be the resulting joint probability distributions under
p and q, respectively. As the probability of error of the best test is 1 − dTV (P ′

n, Q
′
n) (cf.

Fact 10.2.4), it suffices to show that if n ≤ 0.01n∗, then dTV(P ′
n, Q

′
n) ≤ 0.8.

Using Fact 10.2.2, it suffices to show that d2
h(P ′

n, Q
′
n) ≤ 0.64. Equivalently, it suffices to

show that βh(P ′
n, Q

′
n) ≥ 0.68. Using the tensorization of Hellinger affinity and optimality
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of β∗, we have

βh(P ′
n, Q

′
n) =

n∏
i=1

βh(Tip,Tiq) ≥ βn∗ = (βn∗−1
∗ )

n
n∗−1 ≥

(
(0.05) 1

50
) 50n

n∗−1 ≥ 0.9
50n

n∗−1 ,

where we use inequality (G.31). Thus, if n ≤ 0.01n∗, the Hellinger affinity is larger than
0.68, implying that the total variation is small and the probability of error is large.

G.3.2 Robust Binary Hypothesis Testing

In this section, we provide the proofs of Theorem 10.4.6, Proposition 10.4.8, and the other
claims that were omitted from Section 10.4.3. We begin by establishing Theorem 10.4.6.

Theorem 10.4.6 (Sample complexity of Brobust(p, q, TD)). There exists a constant c > 0 such
that for any p, q ∈ ∆k with ϵ < dTV(p,q)

2 and any D ≥ 2, we have

n∗
robust(p, q, ϵ, TD) ≤ c · n∗ ·max

{
1, min{k, log n∗}

D

}
, (10.16)

where n∗ := n∗
robust (p, q, ϵ). Furthermore, there is an algorithm which, given p, q, ϵ, and D, finds a

channel T∗ ∈ T thresh
D in poly(k,D) time that achieves the rate in inequality (10.16).

Proof. Consider the setting without any communication constraints. Let f(n, ϕ, p̃, q̃) be the
probability of error by using the test ϕ on n i.i.d. samples under p̃ and q̃. Concretely, we
define

f(n, ϕ, p̃, q̃) := P
(x1,...,xn)∼p̃⊗n

(ϕ(y1, . . . , yn) ̸= p) + P
(x1,...,xn)∼q̃⊗n

(ϕ(y1, . . . , yn) ̸= q).

Huber [Hub65] showed that when the corruption is in total variation distance, there exist
p1 ∈ P1 and q1 ∈ P2, called the least favorable distributions (LFDs), which maximize
infϕ f(n, ϕ, p̃, q̃) over p̃ and q̃ in P1 and P2, respectively. Moreover, the optimal test is a
likelihood ratio test, where the likelihoods are computed with respect to p1 and q1 (this
corresponds to a clipped likelihood ratio test when likelihoods are computed with respect
to p and q). Thus, the robust sample complexity is n∗ := n∗

robust(p, q, ϵ) = Θ(1/d2
h(p1, q1)).

For the communication-constrained setting, Veeravalli, Basar, and Poor [VBP94] showed
that p1 and q1 above are also LFDs for Brobust(p, q, ϵ, TD). By applying Corollary 10.3.4 to p1

and q1, we see that there exists a threshold channel T such that d2
h(Tp1,Tq1) ≥ d2

h(p1, q1) up
to a logarithmic factor. Let ϕ∗ be the likelihood ratio test between Tp1 and Tq1. Applying
Veeravalli, Basar, and Poor [VBP94, Theorem 1], we conclude that the probability of error
for this test, for any (p̃, q̃) ∈ P0 × P1, is less than the error on (p1, q1). Since the latter is
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less than 0.1 when n ≥ n0 = Θ(1/d2
h(Tp,Tq)) by Fact 10.2.4, the sample complexity is

at most n0. As T is computed using Corollary 10.3.4 and n∗ = Θ(1/d2
h(p1, q1)), we have

n∗
robust(p, q, ϵ, TD) ≤ n∗ max{1,min{k, log n∗}/D}.

Finally, we comment on the runtime of the algorithm. The LFDs can be calculated in
polynomial time, as outlined in Huber [Hub65; HS73], and given these LFDs, the optimal
channel T can again be computed in polynomial time, as mentioned in Corollary 10.3.4.

The following result shows that the optimal channels are moderately robust, i.e., they
are robust up to ϵ2-corruption (up to logarithmic factors):

Proposition 10.4.8 (Optimal channels are moderately robust). Let p and q be two distributions
over [k]. Define ϵ0 := cd2

TV(p, q) ·min
{
1, D

log(1/dTV(p,q))

}
for a small enough constant c.43 Let T∗

be a channel that maximizes d2
h(Tp,Tq) over T ∈ TD. Let n∗

D be the sample complexity of T∗ for p
and q (recall that n∗

D = Θ(n∗(p, q, TD))). Let ϕ∗ be the corresponding optimal test.44 Then there
exists a test ϕ′ that uses T∗ for each user and solves Brobust(p, q, ϵ0, TD) with sample complexity
Θ(n∗

D).

Proof. Let p̃ and q̃ be arbitrary distributions satisfying dTV(p, p̃) ≤ ϵ0 and dTV(q, q̃) ≤ ϵ0.
Suppose the following two conditions hold: (i) nϵ0 ≤ 0.01, and (ii) n ≥ C/d2

h(T∗p,T∗q)
for a large enough constant C. We will first demonstrate the existence of a test that works
under these two conditions.

Sub-additivity of the total variation distance (cf. Fact 10.2.2) implies that dTV(p⊗n, p̃⊗n) ≤
nϵ0 and dTV(q⊗n, q̃⊗n) ≤ nϵ0. Under condition (i) above, the probability of each event E
over the output of ϕ is the same under p⊗n (similarly, q⊗n) and p̃⊗n (similarly, q̃⊗n), up
to an additive error of 0.01. Thus, if (ϕ∗,R) succeeds with probability 0.92 for p and q

with at most n samples, they succeed with probability 0.9 under p̃ and q̃. The former
condition holds under condition (ii), by Fact G.1.1. Thus, when both of these conditions
hold simultaneously, the probability of error of (ϕ∗,R) under p̃ and q̃ is at most 0.1. These
two conditions on n are satisfied if n = n0 := C/d2

h(T∗,T∗q) and ϵ ≤ 0.01/n0.
We now defineϕ′ : ∪∞

n=1Yn → {p, q}, as follows: Ifn < n0, defineϕ′ arbitrarily; otherwise,
discard n − n0 samples45 and define ϕ′(y1, . . . , yn) to be ϕ∗(y1, . . . , yn0). By our previous
calculations, it follows that (ϕ′,R) solves Brobust(p, q, ϵ) as long as ϵ ≤ ϵ0 := 0.01/n0 =
Θ(1/d2

h(T∗p,T∗q)). By Corollary 10.3.4, we have d2
h(T∗p,T∗q) ≥ cd2

h(p, q)/ log(1/d2
h(p, q)).

Applying Fact 10.2.2, we obtain the desired result.
43This upper bound can be generalized to ϵ0 := cd2

h(T∗p, T∗q).
44The optimal test corresponds to a likelihood ratio test between T∗p and T∗q.
45A more efficient strategy is to divide the samples into ⌊n/n0⌋ buckets of size n0 (discarding samples if

necessary), apply ϕ∗ on each of those buckets individually, and then output the median.
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We now provide another explicit example that shows that (i) the robust sample com-
plexity has phase transitions with respect to the amount of corruption, and (ii) the sample
complexity of Scheffe’s test can be strictly suboptimal.

Example G.3.1 (Sample complexity of Brobust(p, q, ·)). Let 0 < α < β < δ < 1, satisfying
δ < 2β − α. Let p and q be the following two distributions:

p :=
(
1/2− 2ϵ− ϵ1+α + ϵ1+β − ϵ1+δ, 1/2 + 2ϵ, ϵ1+α − ϵ1+β, ϵ1+δ

)
,

q :=
(
1/2, 1/2− ϵ1+α, ϵ1+α, 0

)
,

where ϵ ≤ 0.01. Note that dTV(p, q) = Θ(ϵ). We have n∗(p, q) = Θ
(
1/ϵ1+δ

)
. For any fixed γ > 0,

the sample complexity n∗
robust(p, q, ϵ1+γ) satisfies the following growth condition for ϵ small enough,

where we omit constant factors for brevity:

n∗
robust(p, q, ϵ1+γ) =


1

ϵ1+δ , if γ > δ

1
ϵ1+2β−α , if γ ∈ (β, δ)
1
ϵ2
, if γ ∈ (0, β).

By Theorem 10.4.6, the sample complexity under communication constraints of D = 2 messages
satisfies the same result up to constants (note that the optimal channel may change with respect to
γ). On the other hand, for all γ > 0, the sample complexity of Scheffe’s test for Brobust(p, q, ϵ1+γ) is
Θ(1/ϵ2).

Proof. Note that

d2
h(p, q) = Θ

(
ϵ2 + ϵ2+2β−1−α + ϵ1+δ

)
= Θ

(
ϵ1+2β−α + ϵ1+δ

)
= Θ

(
ϵ1+δ

)
,

since δ < 2β − α, which leads to the claim on n∗(p, q) by Fact 10.2.4.
The lower bounds on n∗

robust(p, q, ϵ1+γ) follow by applying Fact 10.2.4 on the following
choices of p̃ and q̃, which lie within ϵ1+γ in total variation distance:

1. γ > δ: This follows directly by choosing p̃ = p and q̃ = q.

2. γ ∈ (β, δ): This follows by choosing p̃ = p and q̃ = (1/2− ϵ1+δ, 1/2− ϵ1+α, ϵ1+α, ϵ1+δ).

3. γ ∈ (0, β): This follows by choosing p̃ = p and

q̃ = (1/2− ϵ1+δ − ϵ1+β, 1/2− ϵ1+α, ϵ1+α − ϵ1+β, ϵ1+δ).
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We now discuss the channels that achieve the upper bound. We will choose T correspond-
ing to IA(·), as follows:

1. γ > δ: Take A = {4}. Then Ep̃(A) ≥ 2ϵ1+δ/3 and Eq̃(A) ≤ ϵ1+δ/3. As mentioned later,
this can be tested with O(1/ϵ1+δ) samples.

2. γ ∈ (β, δ): Take A = {3}. Then Ep̃(A) ≤ ϵ1+α − 2ϵ1+β/3 and Eq̃(A) ≥ ϵ1+α − ϵ1+β/3.
As mentioned later, this can be tested with O(1/ϵ1+2β−α) samples.

3. γ ∈ (0, β): This follows by taking A = {2} and using similar arguments as above.

Finally, we prove that the sample complexity of Scheffe’s test is Θ(1/ϵ2). Scheffe’s test
transforms p and q to Bernoulli distributions, with probabilities of observing 1 equal to(
1/2 + 2ϵ+ ϵ1+δ

)
and (1/2− ϵ1+α), respectively. It is easy to see that the Hellinger distance

between these two Bernoulli distributions is Θ(ϵ2), implying that the sample complexity of
Scheffe’s test is Θ(1/ϵ2). Its robustness to ϵ1+γ-corruption follows from similar arguments
as above.

For completeness, we outline the typical concentration argument that is needed to
perform the tests above. Let X be a mean of i.i.d. indicator random variables, i.e., X =
(∑i Yi)/n, where Yi ∈ {0, 1} and E[Yi] = µ ≤ 1/2. Then E[X] = µ and Var(X) ≤ µ/n.
Chebyshev’s inequality implies that with probability 0.01, we have X ∈ [µ− 10

√
µ/n, µ+

10
√
µ/n]. Thus, if n ≥ 104/µ, then with probability 0.01, we have X ∈ [2µ/3, 4µ/3]. By

similar logic, if n ≥ 104/δ2, then with probability 0.01, we have X ∈ [µ− δ, µ+ δ].

Finally, we provide additional details regarding Example 10.4.5 below:

Details regarding Example 10.4.5. Consider the setA = {2}. We have p(A) = 0.5+3ϵ and
q(A) = 0.5. Any valid p̃ and q̃ lying within ϵ in total variation distance of p and q, respectively,
satisfy p̃(A) ≥ 0.5 + 2ϵ and q̃(A) ≤ 0.5 + ϵ. Thus, estimating the mean of IA(X) up to error
ϵ/2 gives a valid test, which takes O(1/ϵ2) samples by the arguments outlined above. The
lower bound follows by applying Fact 10.2.4 to B(p̃, q̃), where p̃ = (0.5− 3ϵ, 0.5 + 3ϵ, 0) and
q̃ = (0.5, 0.5, 0). It can be seen that for this choice of p̃, we have T∗p̃ = (1, 0) and T∗q = (1, 0).

G.4 Upper Bounds for M -ary Hypothesis Testing
In this section, we prove upper bounds on the M -ary hypothesis testing problem under
communication constraints in various settings: Appendix G.4.1 focuses on non-identical
channels (both adaptive and non-adaptive) and Appendix G.4.2 focuses on identical
channels.
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G.4.1 A Tournament Procedure Using a Binary Test

We prove Proposition 10.5.2 below:

Proposition 10.5.2 (Upper bounds using threshold tests). Let P be set of M distributions
in ∆k such that ρ = minp,q∈P:p ̸=q dh(p, q). Let k′ = log(1/ρ) and define the blow-up factor
R := min{k,log(1/ρ)}

D
+ 1. Then the sample complexity of the simple M -ary hypothesis testing problem

satisfies the bounds

1. n∗
non-identical(P , TD) ≲ M2 logM

ρ2 ·R,

2. n∗
adaptive(P , TD) ≲ M logM

ρ2 ·R.

Proof. Let P =
{
p(1), . . . , p(M)

}
. We first prove the results for non-adaptive, non-identical

channels. Denote the set S = {{i, j} : i ̸= j, i ∈ [M ], j ∈ [M ]}. For each {i, j} ∈ S,
let T{i,j} ∈ T thresh

D be the channel achieving the guarantee in Corollary 10.3.4. Since
d2

h(p(i), p(j)) ≥ ρ2, Corollary 10.3.4 states that d2
h(T{i,j}p

(i),T{i,j}p
(j)) ≥ ρ2/R. Let m =

(CR logM)/ρ2, for a large enough constant C > 0 to be decided later.
Fix any ordering σ(·) of the set S. Consider the strategy where we take a total of

0.5M(M − 1)m users, such that rth user uses the channel Tσ(⌈r/m⌉), i.e., each channel is
repeated m times in a predetermined order. For any {i, j} ∈ S, let A{i,j} denote the set of
samples observed by the central server after passing through T{i,j}.

We now describe the strategy at the central server: For any {i, j} ∈ S, consider the
optimal test ψ{i,j} between

{
T{i,j}pi,T{i,j}pj

}
that uses the samplesA{i,j} and maps to either

{i} or {j}. We say this is a game between i and j, and call ψ{i,j}
(
A{i,j}

)
the winner of the

game. The central server outputs the unique hypothesis that wins all of its games against
other hypotheses, i.e., the unique element in the set {i : ∀j ̸= i, ψ{i,j}

(
A{i,j}

)
= i}.

Let i ∈ [M ] be the unknown true hypothesis. It suffices to show that i never loses a
game against any other hypothesis. For any j ̸= i, we have d2

h(T{i,j}p
(i),T{i,j}p

(j)) ≥ ρ2/R.
Thus, we have P(ψ(A{i,j}) ̸= i) ≤ 0.01/M2 by Fact G.1.1, since C is large enough. Taking a
union bound over all j ̸= i, we see that the probability of error is less than 0.01/M . Taking
the sum, we see that the sum of the probabilities of errors satisfies condition (10.3). Thus,
we obtain n∗

non-identical(P , TD) ≲M2m ≲ M2 logM
ρ2 ·R.

We now turn our attention to the adaptive setting. Consider the following strategy:

1. Set j = 2 and î = 1.

2. While j ≤M :

a) m users choose T{j,̂i}.



604

b) Let A{j,̂i} be the set of m observed samples.

c) Assign î← ψ
j,̂i

(A{j,̂i}) and j ← j + 1.

3. Output î.

First, it is easy to see that the procedure terminates after taking Mm samples. Turning to
the correctness of the algorithm, let i∗ be the true unknown probability distribution. It
suffices to show that i∗ never loses a game against any other j. The same arguments as
above show that this does not happen.

G.4.2 Upper Bounds for Identical Channels

This section contains the proof of Lemma 10.5.6 that was omitted from Section 10.5.

Lemma 10.5.6 (JL-sketch). There exists a constant c > 0 such that the following holds: Let{
p(1), . . . , p(M)

}
⊆ ∆k be M distributions such that mini ̸=j dTV(p(i), p(j)) > ϵ. Then

max
T∈TD

min
i ̸=j

dTV(Tp(i),Tp(j)) ≥ c · ϵ
√
kM

2
D−1

√
D log(Dk)

.

Proof. LetD′ := D−1. Consider a matrix H ∈ RD′×k that satisfies the following constraints:
Hi,j ≥ 0 for all (i, j), and ∑D′

i=1 Hi,j ≤ 1 for all j ∈ [k]. LetHD′ be the set of all such matrices.
It is easy to see that given any matrix H ∈ HD′ , it is possible to generate a unique matrix
T ∈ TD by adding an extra row to make the column sums 1. Consider such pairs (H,T)
in HD′ × TD, and note that

∥∥∥Hp(i) −Hp(j)
∥∥∥

1
≤
∥∥∥Tp(i) −Tp(j)

∥∥∥
1

= 0.5dTV
(
Tp(i),Tp(j)

)
.

We will generate H randomly such that, with positive probability, it belongs toHD′ and
mini ̸=j

∥∥∥Hp(i) −Hp(i)
∥∥∥

1
is large.

We will show the following result:

Lemma G.4.1. There exists a constant c > 0 such that, for any A = {a1, . . . , aN} ⊆ Rk such that
the sum of the components of each ai is equal to 0, there is a linear map H ∈ HD′ such that the
following holds:

∥Ha∥2 ≥ c∥a∥2
1√

D′ log(D′k)
N− 1

D′ , ∀a ∈ A.

Before giving the proof of Lemma G.4.1, we show how to use it to complete the proof
of Lemma 10.5.6. Let A =

{
p(i) − p(j) : 1 ≤ i < j ≤M

}
, and observe that A satisfies the

conditions of Lemma G.4.1 with N ≤M2. Using the H in Lemma G.4.1 and the fact that
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for x ∈ Rp, we have ∥x∥1 ≥ ∥x∥2 ≥ ∥x∥1/
√
p, we obtain

∥∥∥H (
p(i) − p(j)

)∥∥∥
1
≥
∥∥∥H (

p(i) − p(j)
)∥∥∥

2
≥ 2c ·

∥∥∥(p(i) − p(i)
)∥∥∥

2
· 1√

D log(Dk)
M− 2

D′

≥ 2c ·
∥∥∥(p(i) − p(i)

)∥∥∥
1
· 1√

k

1√
D log(Dk)

M− 2
D′

≥ c · ϵ√
k

1√
D log(Dk)

M− 2
D′ ,

where we use the fact that dTV
(
p(i), p(j)

)
= 1

2

∥∥∥p(i) − p(j)
∥∥∥

1
. This completes the proof of

Lemma 10.5.6.

We now provide the proof of Lemma G.4.1 that was omitted above.

Proof. (Proof of Lemma G.4.1) Let Q1, Q2 > 0 be numbers to be determined later. Let
J ∈ RD′×k be the matrix of all ones, and let G ∈ RD′×k be a matrix with i.i.d.N (0, 1) entries
{Gi,j}. We will choose H to be of the following form:

H := 1
Q1

(
J + G

Q2

)
.

The following claim shows that with probability at least 0.9, we have H ∈ HD′ (the proof is
given later).

Claim G.4.2. If Q2 ≥ 10
√

log(kD′) and Q1 ≥ D′ + 10
√
D′ log k/Q2, then with probability at

least 9/10, we have H ∈ HD′ .

We will now show that with high probability, H preserves the Euclidean norm of each
a ∈ A:

Claim G.4.3. There exists a constant c′ > 0 such that with probability at least 9/10, we have

∥Ha∥2 ≥ c′ ∥a∥2

Q1Q2

√
D′N− 1

D′ , ∀a ∈ A.

Given Claims G.4.2 and G.4.3, if we choose Q2 = 10
√

log(kD′) and Q1 = 11D′, then
with probability at least 0.8, we have H ∈ HD′ , and for all a ∈ A, we have

∥Ha∥2 ≥ c′∥a∥2
1√

log(Dk)

√
DN− 1

D′ .

This completes the proof of Lemma G.4.1.
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We now provide the proofs of intermediate results that we have used.

Proof. (Proof of Claim G.4.2) We need to ensure that the following two events hold simul-
taneously:

E1 := {∀(i, j) ∈ [D′]× [k] : Hi,j ≥ 0} ,

E2 :=

∀j ∈ [k] :
D′∑
i=1

Hi,j ≤ 1

 .
The event E1 holds when for all (i, j), we have 1 +Gi,j/Q2 ≥ 0 if and only if Gi,j ≥ −Q2.

Thus, it suffices to take Q2 > supi∈[D′],j∈[k] |Gi,j|. Taking Q2 = 10
√

log(kD′), standard results
on maxima of Gaussian random variables [Wai19] imply that E1 holds with probability at
least 0.95.

We now focus on E2. For j ∈ [k], letting Zj := ∑D′

i=1 Hi,j = ∑D′

i=1
1
Q1

(1 + Gi,j/Q2), we
have Zj − D′

Q1
∼ N

(
0, D′

Q2
1Q

2
2

)
. A union bound then implies that with probability 0.95, for all

Zj ∈ [k], we have

Zj ≤
D′

Q1
+ 10

√
D′

Q2
1Q

2
2

√
log(k) = 1

Q1

(
D′ + 10

√
D′ log k
Q2

)
.

For this to be at most 1, we need Q1 ≥ D′ + 10
√
D′ log k
Q2

. By a union bound, the events E1

and E2 hold simultaneously with probability at least 0.9. This completes the proof.

Proof. (Proof of Claim G.4.3) Without loss of generality, we will assume that ∥a∥2 = 1.
It suffices to show that for all a ∈ A, with probability at least 1 − 1

10N , we have ∥Ha∥2 ≥
c′ 1
Q1Q2

√
D′N− 1

D′ . Equivalently, we will show that P
(
∥Ha∥2 < c′ 1

Q1Q

√
D′N− 1

D′
)
≤ 1

10N . For
any a ∈ A, we note that Ja is a zero vector, so

Ha = 1
Q1

(
J + G

Q2

)
a = 1

Q1

(
Ja+ Ga

Q2

)
= 1
Q1Q2

Ga.

Letting G1, . . . , GD′ be the rows of G, and letting χ2
D′ be a chi-square random variable with

D′ degrees of freedom, we have

∥Ha∥2
2 =

(
1

Q1Q2

)2 D′∑
i=1

(G⊤
i a)2 ∼

(
1

Q1Q2

)2

χ2
D′ ,

sinceGi is an isotropic multivariate Gaussian and ahas unit norm. Standard approximations
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for χ2
D′

46 imply that

P
(
χ2
D′ ≤ t

)
≤
(
et

D′

)D′/2
.

Furthermore, for t∗ = D′

e

(
1

10N

) 2
D′ , the expression on the right-hand side is less than 0.1/N .

Then

P

∥Ha∥2
2 ≤

(
1

Q1Q2

)2

t∗

 = P
{
χ2
D′ ≥ t∗

}
≤ 1

10N .

Thus, with probability at least 1− 1
10N , we have

∥Ha∥ ≥
√

1
e

( 1
10

) 1
D′

·
√
D′N− 1

D′ · 1
Q1Q2

,

completing the proof of the claim with c′ = 1√
e101/D′ ≥ 0.001.

This completes the proof of Lemma G.4.1.

G.5 Lower Bounds for M -ary Hypothesis Testing
In this section, we provide the proof of Theorem 10.5.8. We prove the two bounds in Theo-
rem 10.5.8 separately: the Ω(M) lower bound from the strong data processing inequality is
proved in Appendix G.5.1 (see Corollary G.5.4), and the Ω(M1/3) lower bound from the
SQ lower bound is proved in Appendix G.5.2 (see Corollary G.5.9). Finally, we prove a
Ω(
√
M) lower bound for non-adaptive, non-identical channels from the impossibility of

ℓ1-embedding in Appendix G.5.3 (see Theorem G.5.12).
In this section, we abuse notation by using p1, p2, etc., and P1, P2, etc., to denote different

probability distributions.

G.5.1 Strong Data Processing

Preliminaries: We will closely follow the terminology of Braverman, Garg, Ma, Nguyen,
and Woodruff [BGMNW16], to which we refer the reader for more details. Let Q =
{Q0, Q1} be two distributions on X . For any i ∈ [M ], we define Pi to be the distribution
over (Z1, . . . , ZM), where the Zj’s are independent, and Zj ∼ Q0 for j ̸= i and Zi ∼ Q1. We

46This can be obtained by upper-bounding the pdf of the χ2 random variable and using Stirling’s approxi-
mation.
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use P0 to denote the distribution Q⊗n
0 . We define PM = {P0, P1, . . . , PM}. Our goal is to

perform statistical estimation using nmachines. The model generation process is as follows:
V is sampled uniformly from {0, . . . ,M}. Conditioned on V = v, for each j ∈ [n], machine
j receives an i.i.d. sample Xj from the distribution Pv. When it is clear from context, we
will use X as shorthand for (X1, . . . , Xn).

We will work in the blackboard protocol. Here, all machines simultaneously write the
first iteration of their messages on a “blackboard,” and the subsequent iterations of messages
are on subsequent blackboards and may depend on the contents of all past blackboards.
The combined content (in bits) of all blackboards is called the transcript of the protocol,
which is denoted by Π. The blackboard protocol is also called the “fully adaptive” or
simply “adaptive” protocol. Since it imposes the fewest constraints on permitted actions,
lower bounds proved for this protocol are valid for other protocols, as well. A special
case of interest is the “sequentially adaptive” protocol, where machines communicate
in a fixed order, with subsequent messages allowed to depend on past messages. In the
communication-constrained setting considered in this paper, we restrict the size of the
transcript |Π| to be at most n logD, as each machine is permitted to send at mostD messages
(logD bits).

The estimator v̂ maps each transcript Π to an element of PM . The failure probability
is then defined as R(Π, v̂,PM) := maxv∈{0,1,...,M} Pr[v̂(Π) ̸= v|V = v]. We use T (n,PM) to
denote the task of hypothesis testing among the distributions in PM with n machines, and
we say that (Π, v̂) solves T (n,PM) if the protocol works on n machines and R(Π, v̂,PM) ≤
0.1. We will use the definitions of IC(Π) (the information cost of Π) and min-IC(Π) (the
minimum information cost of Π) from Braverman, Garg, Ma, Nguyen, and Woodruff
[BGMNW16].

Lemma G.5.1 (Direct-sum for multiple hypothesis testing [BGMNW16]). Let M ≥ 1, and
let Q and PM be defined as above. If there exists a protocol estimator pair (Π, v̂) that solves the
detection task T (m,PM) with information cost I , then there exists a protocol estimator pair (Π′, v̂′)
that solves the detection task T (m,Q) with minimum information cost I ′ satisfying I ′ ≲ I

M
.

For the set of two distributions, we use the following hardness result:

Lemma G.5.2. There exists a constant c ≥ 1 such that for every β ∈ (0, 1), there exist two
distributions Q = {Q0, Q1} such that any (Π, v̂) that solves T (m,Q) with failure probability at
most 1/4 for any m satisfies min-IC(Π) ≥ c

β
. Moreover, dTV(Q0, Q1) = Θ(

√
β).

Proof. For two distributions p and q, we use β(p, q) to denote the SDPI constant, as defined
in Braverman, Garg, Ma, Nguyen, and Woodruff [BGMNW16]. We will use the following
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result, which shows that if p and q have bounded likelihood ratios, then the SDPI constant
is small:

Lemma G.5.3 ([DJWZ14]). Let β ∈ (0, 1). If two Bernoulli distributions with parameters p and
q satisfy

e−
√
βp ≤ q ≤ e

√
βp,

e−
√
β(1− p) ≤ 1− q ≤ e

√
β(1− p),

then β(p, q) ≤ (2e2)β.

Let Q0 and Q1 be binary distributions with probabilities of observing 1 equal to q0 and
q1, respectively. Set q0 = 1/2 and q1 = e−

√
β/2. Then

q0

q1
= e
√
β and 1− q0

1− q1
≤ 1

2− e−
√
β
,

and both ratios lie between e−
√
β and e

√
β . Thus, we have β(µ0, µ1) ≲ β from Lemma G.5.3.

Fix a constant c′ ≤ 0.1. Let the protocol be Π. Since the protocol is successful, using
Facts 10.2.2 and 10.2.4, we have d2

h(Π|V=0,Π|V=1) ≥ c′, for a constant c′. Applying Braverman,
Garg, Ma, Nguyen, and Woodruff [BGMNW16, Theorem 1.1], we obtain

d2
h(Π|V=0,Π|V=1) ≤ cβ ·min-IC(Π),

which yields the desired conclusion. Finally, the bound on total variation follows from
direct calculation and the fact that β ∈ (0, 1).

Combining Lemmata G.5.1 and G.5.2, we obtain the following result:

Corollary G.5.4. For every ϵ ∈ (0, 1), there exist M + 1 distributions {P0, . . . , PM} such that (i)
dTV(p, q) ≥ ϵ for all p ̸= q in PM , and (ii) n∗

adaptive(PM , TD) ≳ M
ϵ2 logD .

Proof. LetQ = {Q0, Q1} be the two distributions from Lemma G.5.2 such that dTV(Q0, Q1) ≥
ϵ and every successful protocol Π for T (n,Q) satisfies min-IC(Π) ≥ c

ϵ2
. Construct PM as

defined above using Q. It can be seen that dTV(p, q) ≥ ϵ for any distinct p and q in PM .
Suppose there exists a successful protocol Π̂ for T (n∗,PM) with each machine sending at
most logD bits. Then we have

I = sup
v∈[M+1]

Iv
(
Π̂;X|Rpub

)
≤ sup

v∈[M+1]
h(Π̂) ≤ n∗ logD,



610

where h(Π̂) denotes the entropy of the transcript Π̂. Thus, Lemma G.5.1 implies that there
exists a successful protocol Π̂′ for T (n∗,Q) such that min-IC(Π̂′) ≲ n∗ logD

M
. However, we

have min-IC(Π̂′) ≳ 1/ϵ2. Thus, we obtain 1
ϵ2

≲ n∗ logD
M

, or equivalently, n∗ ≳ M
ϵ2 logD . This

completes the proof of Corollary G.5.4 and the proof of the first claim in Theorem 10.5.8.

G.5.2 SQ Lower Bounds

Preliminaries: We will use the standard notations from the statistical query (SQ) complex-
ity literature [FGRVX17; Fel17]. In particular, we will use the following oracles: STAT(τ),
VSTAT(t), and 1-MSTAT(D).

For two square-integrable functions f, g : X → R and a distribution P on X , we define
⟨f, g⟩P := EP [f(X)g(X)]. For a distribution P , we will abuse notation by using P to refer to
both the distribution and its pmf. For two distributions P1 and P2, their pairwise correlation
with respect to the base measure P is defined as

χP (P1, P2) :=
∣∣∣∣〈P1

P
− 1, P2

P
− 1

〉
P

∣∣∣∣ =
∣∣∣∣〈P1

P
,
P2

P

〉
P
− 1

∣∣∣∣ .
The average correlation of a set of distributions P ′ relative to a distribution P is denoted by
ρ(P ′, P ) and defined as ρ(P ′, P ) := 1

|P ′|2
∑
P1,P2∈P ′ χP (P1, P2).

Definition G.5.5 (Decision problem). Let P be a fixed distribution and P a set of distributions
which does not contain P . Given access to the input distributionQ, which either equals P or belongs
to P , the goal is to identify whether Q = P or Q ∈ P . We refer to this problem as BS(P , P ).

We will use SDA(BS(P , P ), γ̄) to denote the average statistical dimension with average
γ̄ of the decision problem BS(P , P ) [FGRVX17, Definition 3.6]. Although our main focus
will be the STAT oracle and blackboard protocol, we also mention hardness results for
VSTAT and 1-MSTAT oracles, which follow from SDA.

Theorem G.5.6 ([FGRVX17, Theorem 3.7], [FPV18, Theorem 7.3] ). Let P be a distribution
and P be a set of distributions over a domain X , such that SDA(BS(P , P ), γ̄) = d for some γ̄. Any
(randomized) SQ algorithm that solves BS(P , P ) with success probability 9/10 must satisfy at
least one of the following conditions:

(i) performs 0.8d queries,

(ii) requires a single query to VSTAT(1/3γ̄), or

(iii) requires a single query to STAT(
√

3γ̄).



611

In particular, for any L, any (randomized) SQ algorithm that solves BS(P , P ) with success proba-
bility 9/10 requires at least m calls to 1-MSTAT(L), where m = Ω

(
1
L

min
{
d, 1

γ̄

})
.

Steinhardt, Valiant, and Wager [SVW16] show that an SQ lower bound also implies a
lower bound for blackboard protocols:

Theorem G.5.7 (Lower bounds for blackboard communication using SQ algorithms
[SVW16, Proposition 3], [Fel17, Section B.1]). Let BS(P , P ) be a decision problem that can be
solved with probability 0.95 by a communication-efficient algorithm that extracts at most b bits
from each of m machines. Then BS(P , P ) can be solved by an SQ algorithm, with probability at
least 0.9, which uses at most 2bm queries of STAT with tolerance τ = O

(
1

2bm

)
. In particular, for

some γ̄, let d = SDA(BS(P , P ), γ̄). Then either 1
2bm

≲
√
γ̄ or d ≤ 2bm.

We now describe a distribution family that has a large statistical dimension, on average.

Lemma G.5.8 (A decision problem with large SQ dimension). Let r ∈ N and fix an ϵ ∈ (0, 1).
For any M = 2r, there exist distributions PM := {P1, . . . , PM} ⊆ ∆M+1 and P ∈ ∆M such that
χP (Pi, Pj) = Ii=j for all (i, j). In particular, SDA (BS(PM , P ), γ̄) ≥ Mγ̄

ϵ2
for any γ̄ ≤ ϵ2. Moreover,

for any two distinct p, q ∈ PM ∪ {P}, we have dTV(p, q) ≥ 0.01ϵ.

Proof. Let k = M + 1. Let V = [v1, . . . , vk] ∈ Rk×k be the Walsh-Hadamard matrix. We
have V = V ⊤ and ⟨vi, vj⟩ = k Ii=j . Furthermore, we have vi ∈ {−1, 1}k, where v1 has all
entries 1, and for i > 1, vi has half positive entries and half negative entries. Define u
to be the uniform distribution in ∆k, and define ei to be the distribution that places all
its mass on the ith element. We also write vi = ∑k

j=1 vi,jej . Moreover, for i ̸= j, we have
∥vi − vj∥1 ≥ 0.1k [Hor07].

Define P = u, and for m ∈ [M ], define Pm = u+ ϵ(vm+1/k). Note that the Pm’s are valid
distributions. For notational purposes, we will also use Pm(i) to denote the probability of
element i ∈ [k] under Pm, i.e., Pm(i) = 1

k
(1 + ϵvm,i). Using the lower bound on ∥vi − vj∥1,

we have dTV(P, Pi) = ϵ/2 and dTV(Pi, Pj) = 0.5ϵ∥vi − vj∥1/k ≥ 0.01ϵ.
We now calculate χP (Pu, Pv): For a ̸= b, we have

χP (Pa, Pb) =
∣∣∣∣∣
k∑
i=1

kPa(i)Pb(i)− 1
∣∣∣∣∣

=
∣∣∣∣∣
k∑
i=1

k
1
k

(1 + ϵva,i)
1
k

(1 + ϵvb,i)− 1
∣∣∣∣∣

=
∣∣∣∣∣
k∑
i=1

1
k

(
1 + ϵva,i + ϵvb,i + ϵ2va,ivb,i

)
− 1

∣∣∣∣∣
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= 0,

where use the facts that ∑i vm,i = 0 for all m, and ∑
i va,ivb,i = 0 for all a ̸= b. We now

consider the setting where Pa = Pb:

χP (Pa, Pa) =
k∑
i=1

kP 2
a (i)− 1 =

k∑
i=1

k
1
k2 (1 + ϵva,i)2 − 1

=
k∑
i=1

1
k

(
1 + 2ϵva,i + ϵ2v2

a,i

)
− 1 = ϵ2,

where use the facts that ∑i va,i = 0 and |va,j| = 1 for all a and j. Overall, we obtain the
following bound on the average correlation for any subset P ′ ⊆ PM :

ρ(P ′, P ) = 1
|P ′|2

∑
P1,P2∈P ′

χP (P1, P2) = ϵ2

|P ′|
.

Thus, we have SDA(PM , P, γ) ≥Mγ̄/ϵ2 for any γ̄ ≤ ϵ2.

Corollary G.5.9. Consider any ϵ ∈ (0, 1), D ∈ N, and M ∈ N such that M ≳ logD
ϵD

. Let PM and
P be as defined in Lemma G.5.8. Then the following hold:

1. n∗(PM ∪ {P}) ≲ logM
ϵ2

.

2. (Blackboard communication model.) Consider the blackboard communication model with m
machines, each with an i.i.d. sample from Q (belonging to PM or P) and logD bits. Any
(randomized) algorithm that solves B(PM , P ) with success probability 9/10 requires

m ≳
M1/3

ϵ2/3D2/3(logD)1/3 .

Proof. The bound on n∗(PM ∪P ) follows from Fact 10.2.4 and the fact that the distributions
are separated in total variation distance.

We now turn our attention to the lower bound. Fix any γ̄ such that γ̄ ≤ ϵ2. Lemma G.5.8
implies that the SDA of this decision problem, denoted by d, is at least Mγ̄

ϵ2
. Thus, Theo-

rem G.5.7 states that m ≳ min
{

1
D

√
γ̄
, d

logD

}
≳ min

{
1

D
√
γ̄
, Mγ̄
ϵ2 logD

}
. Taking γ̄ =

(
ϵ2 logD
DM

)2/3
,

which satisfies γ̄ ≤ ϵ2, we have m ≳ M1/3

ϵ2/3D2/3(logD)1/3 . This completes the proof of Corol-
lary G.5.9 and the second claim in Theorem 10.5.8.

Remark G.5.10. Note that Lemma G.5.8 also implies a lower bound of Ω
(√

M
ϵD

)
for the special

case of sequentially-adaptive algorithms by using the lower bound for the 1-MSTAT(D) oracle in
Theorem G.5.6.
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G.5.3 Lower Bounds from Impossibility of ℓ1-embedding

The main result of this section is Theorem G.5.12. Before that, we first state the following
technical lemma, adapted from Lee, Mendel, and Naor [LMN05, Lemma 3.1] (also see
Charikar and Sahai [CS02]):

Lemma G.5.11. Let r ∈ N. For any M = 2r and ϵ ∈ (0, 1), there exists a set of distributions
P = {P, P1, . . . , PM} ⊆ ∆M such that for any D ∈ N and T ∈ TD, we have

1
M

M∑
i=1

dTV(TPi,TP ) ≤ ϵ
√
D√
M
,

and for any distinct p, q ∈ P , we have dTV(p, q) ≳ ϵ.

Proof. Let P, P1, . . . , PM be the distributions from Lemma G.5.8. We follow the proof
strategy in Lee, Mendel, and Naor [LMN05, Lemma 3.1]. We begin by writing

M∑
i=1
∥T(Pi − P )∥2

2 = ϵ2
M∑
i=1

∥∥∥∥T vi
M

∥∥∥∥2

2
(by definition of the Pi’s)

= ϵ2

M2

M∑
i=1

∥∥∥∥∥∥
M∑
j=1

vi,jTej

∥∥∥∥∥∥
2

2

= ϵ2

M2

M∑
i=1

M∑
j=1

M∑
l=1
⟨vi,jTej, vi,lTel⟩

= ϵ2

M2

M∑
j=1

M∑
l=1
⟨Tej,Tel⟩

(
M∑
i=1

vi,jvi,l

)

= ϵ2

M2

M∑
j=1

M∑
l=1
⟨Tej,Tel⟩ ⟨vj, vl⟩ (using symmetry of V )

= ϵ2

M2

M∑
j=1
∥Tej∥2

2∥vj∥2
2

= ϵ2

M

M∑
j=1
∥Tej∥2

2 (using V ⊤V = kI and k = M)

≤ ϵ2

M

M∑
j=1
∥Tej∥2

1 (using ∥x∥2 ≤ ∥x∥1)

= ϵ2,

where the last equality uses the fact that Tej ∈ ∆D. Applying Cauchy-Schwarz and using



614

the fact that ∥x∥1 ≤
√
D∥x∥2 for x ∈ ∆D, we obtain

1
M

M∑
i=1

dTV(TPi,TP ) ≤

√√√√ 1
M

M∑
i=1

(dTV(TPi,TP ))2

≤

√√√√ 1
M

M∑
i=1
∥T(Pi − P )∥2

1

≤

√√√√D

M

M∑
i=1
∥T(Pi − P )∥2

2

≤ ϵ
√
D√
M
.

We are now ready to prove the Ω(
√
M) lower bound for non-adaptive, non-identical

channels:

Theorem G.5.12. There exists a set P = {P, P1, . . . , PM} ⊆ ∆M such that the following hold:

1. n∗(P) ≲ logM
ϵ2

, and

2. n∗
non-identical(P , TD) ≳

√
M/D

ϵ
.

Proof. We will assume that M = 2r for some r ∈ N. Let P = {P, P1, . . . , PM} be the set of
distributions from Lemma G.5.11. The upper bound on n∗(P) follows by the lower bound
on the pairwise total variation distance and Fact 10.2.4. We now turn our attention to the
lower bound.

Fix any arbitrary choice of different {T1, . . . ,TN}, where Ti is the channel used by
the ith user. We use the following series of inequalities to upper-bound the minimum
separation in total variation distance, for any choice of T1, . . . ,TN :

max
Tl:l∈[N ]

min
p ̸=q∈P

dTV

(
N∏
l=1

Tlp,
N∏
l=1

Tlq

)

≤ max
Tl:l∈[N ]

min
i∈[M ]

dTV

(
N∏
l=1

TlPi,
N∏
l=1

TlP

)

≤ max
Tl:l∈[N ]

M∑
i=1

1
M
dTV

(
N∏
l=1

TlPi,
N∏
l=1

TlP

)
(minimum is less than the average)

≤ max
Tl:l∈[N ]

M∑
i=1

1
M

N∑
r=1

dTV (TlPi,TlP ) (subadditivity of dTV (Fact 10.2.2))
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= max
Tl:l∈[N ]

N∑
r=1

M∑
i=1

1
M
dTV (TlPi,TlP ) (exchanging the sum)

= N max
T∈TD

M∑
i=2

1
M
dTV (TPi,TP ) (N independent optimization problems)

≤ Nϵ
√
D√

M
(using Lemma G.5.11).

Thus, ifN ≲ 1
ϵ

√
M
D

, for any choice ofN channels, there existP ′, P ∈ P such that the total vari-
ation distance between the resulting product distributions is at most 0.001. Consequently,
Fact 10.2.4 implies that there exists no test with probability of success in distinguishing
between P and P ′ more than 0.95 (say). Hence, one must haveN ≳ 1

ϵ

√
M
D

for any successful
test. Since this holds for an arbitrary choice of channels, we have the desired lower bound
on n∗

non-identical(P , TD).

G.6 Auxiliary Details
We first mention that the class of well-behaved f -divergences included various well-known
f -divergences:

Claim G.6.1 (Examples of well-behaved f -divergences). The following are examples of well-
behaved f -divergences (cf. Definition 10.3.1):

1. (Hellinger distance) f(x) = (
√
x− 1)2 with κ = 1, C1 = 2−3.5, C2 = 1, and α = 2.

2. (Total variation distance) f(x) = 0.5|x− 1| with κ > 0, C1 = 0.5, C2 = 0.5, and α = 1.

3. (Symmetrized KL-divergence) f(x) = x log x − log x with κ = 1, C1 = 0.5, C2 = 1, and
α = 2.

4. (Triangular discrimination) f(x) = (x−1)2

1+x with κ = 1, C1 = 1/3, C2 = 1/2, and α = 2.

5. (Symmetrized χs-divergence) For s ≥ 1, f(x) = |x− 1|s + x1−s|x− 1|s with κ = 1, C1 = 1,
C2 = 3, and α = s.47

Proof. It is easy to see that these functions are nonnegative, convex, and satisfy the symmetry
property of Definition 10.3.1. In the remainder of the proof, we outline how they satisfy
the property I.3.

47The usual χs-divergence corresponds to f(x) = |x−1|s, for s ≥ 1 [Sas18]. We consider the symmetrized
version with f̃(x) = f(x) + xf(1/x).
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1. We will show that we can take κ = 1, C1 = 2−3.5, C2 = 1, and α = 2. The upper
bound f(1 + x) = (

√
1 + x− 1)2 ≤ x2 follows by noting that

√
1 + x ≤ 1 + x for any

x ≥ 0. For the lower bound, we define g(x) := f(1 + x) − C1x
2. Note that g(0) = 0,

g′(x) = 1− (1 +x)−0.5− 2C1x, and g′′(x) = 0.5(1 +x)−1.5− 2C1. We note that g′(0) = 0
and g′′(x) ≥ g′′(1) = 2−2.5 − 2C1 for all x ∈ [0, 1]. Thus, g′′(x) ≥ 0 for x ∈ [0, 1], so g(x)
is also nonnegative on x ∈ [0, 1].

2. The result follows by noting that for x ≥ 0, we have f(1 + x) = x.

3. We have f(1 + x) = x log(1 + x). We use the fact that x
1+x ≤ log(1 + x) ≤ x for x ≥ 0.

This directly gives us f(1+x) = x log(1+x) ≤ x2. The lower bound follows by noting
that log(1 + x) ≥ x

2 for x ∈ [0, 1], so f(1 + x) ≥ x2/2.

4. We have f(1 + x) = x2/(2 + x), which lies between x2/3 and x2/2 for x ∈ [0, 1].

5. We have f(1 + x) = |x|s(1 + (1 + x)1−s), which is larger than xs and less than 3xs for
x ∈ [0, 1].

Finally, we mention the following approximation for the Hellinger distance between
two Bernoulli distributions that was used earlier:

Claim G.6.2 (Approximation for Hellinger distance). For 0 ≤ p ≤ p′ ≤ 1/2, we have the
following:

√
p′ −√p ≤

√(√
p−

√
p′
)2

+
(√

1− p−
√

1− p′
)2
≤
√

2
(√

p′ −√p
)
.

Proof. The first inequality follows by the nonnegativity of the term
(√

1− p−
√

1− p′
)2

.

To prove the second inequality, it suffices to show that
(√

1− p−
√

1− p′
)2
≤
(√

p′ −√p
)2

,
which is equivalent to showing that

√
1− p−

√
1− p′ ≤

√
p′ −√p. For z ∈ [0, 0.5], define

f(z) :=
√
z+
√

1− z. The desired inequality is then equivalent to showing that f(p) ≤ f(p′),
which follows if f ′(z) ≥ 0 for z ∈ [0, 0.5]. Calculating the derivative, we obtain

f ′(z) = 1
2
√
z
− 1

2
√

1− z
= 1

2

√
1− z −

√
z√

z(1− z)
≥ 0,

since z ∈ [0, 0.5].



617

h appendix to Chapter 11

H.1 Randomized Response in Low-Privacy Regime
In this section, we prove Lemmata 11.3.5 and 11.3.6, which were used to prove Theo-
rem 11.1.13 in Section 11.3. Lemma 11.3.5 is proved in Appendix H.1.1 and Lemma 11.3.6
is proved in Appendix H.1.2.

H.1.1 Proof of Lemma 11.3.5

Recall the definitions of A and A′ from equation Equation (11.17).

Lemma 11.3.5 (Randomized response preserves contribution of comparable elements). Let
p and q be two distributions on [ℓ]. Suppose ∑i∈A

⋃
A′(√qi −

√
pi)2 ≥ τ . Then Tϵ,ℓ

RR, for ℓ ≤ eϵ,
satisfies

d2
h(Tϵ,ℓ

RRp,T
ϵ,ℓ
RRq) ≳ min

(
1, eϵ τ

ℓ

)
· τ .

Thus, when eϵ ≳ ℓ
τ
, the randomized response preserves the original contribution of comparable

elements.

Proof. Without loss of generality, we will assume that∑i∈A(√qi−
√
pi)2 ≥ τ

2 . Let p′ = Tϵ,ℓ
RRp

and q′ = Tϵ,ℓ
RRq. By the definition of the randomized response, each probability x is mapped

to (1 + x(eϵ − 1))/(k − 1 + eϵ). Thus, p′ and q′ are given by

p′
i = 1 + pi(eϵ − 1)

(ℓ− 1) + eϵ
, and q′

i = 1 + qi(eϵ − 1)
(ℓ− 1) + eϵ

, ∀i ∈ ℓ. (H.1)

Recall that δi = (pi − qi)/qi ∈ [0, 1]. For each i ∈ ℓ, we now define δ′
i := (p′

i − q′
i)/q′

i, which
has the following expression in terms of δi and qi:

δ′
i = p′

i − q′
i

q′
i

= (eϵ − 1)(pi − qi)
1 + qi(eϵ − 1) = (eϵ − 1)qi

1 + qi(eϵ − 1) · δi. (H.2)

Let r = 0.01 min
(
e−ϵ, τ

ℓ

)
. We define the following subsets of the domain:

E = {i : δi ∈ (0, 1] and qi ≥ e−ϵ} , (H.3)

E ′ = {i : δi ∈ (0, 1] and qi ∈ (r, e−ϵ)} . (H.4)

Observe that E ∪ E ′ ⊆ A.
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Since eϵ ≥ ℓ, equation Equation (H.1) implies that q′
i ≥ 1

4(e−ϵ + qi). In particular, on
i ∈ E ′, we have q′

i ≥ 0.25e−ϵ, and on i ∈ E , we have q′
i ≥ 0.25qi.

We now apply these approximations to equation Equation (H.2): we lower-bound the
numerator by 0.5eϵqiδi and upper-bound the denominator based on whether i ∈ E or i ∈ E ′.
On E ′, the denominator in equation Equation (H.2) is upper-bounded by 2, and on E , the
denominator is upper-bounded by 2qieϵ. This is summarized as follows: for i ∈ E ∪ E ′, we
have

δ′
i ≥

0.1δiqieϵ, i ∈ E ′

0.1δi, i ∈ E ,
q′
i ≥

0.25e−ϵ, i ∈ E ′

0.25qi, i ∈ E
.

By definition of δ′, it follows that δ′
i ∈ (0, 1] on i ∈ E ∪ E ′. Thus, the contribution from the

ith element to d2
h(p′, q′) is at least a constant times q′

i(δ′
i)2; see Claim 11.3.3. Applying this

element-wise, we obtain the following:

d2
h(p′, q′) ≳

∑
i∈E ′

q′
i(δ′

i)2 +
∑
i∈E

q′
i(δ′

i)2

≳
∑
i∈E ′

e−ϵ (0.1δiqieϵ)2 +
∑
i∈E

qi (0.1δi)2

≳ eϵr
∑
i∈E ′

qiδ
2
i +

∑
i∈E

qiδ
2
i . (H.5)

Now consider the set A = {i : i ∈ A and qi ≥ r}, which is equal to E ∪ E ′. The set A
preserves the contribution to Hellinger divergence from comparable elements, as shown
below:

∑
i∈A

(√qi −
√
pi)2 =

∑
i∈A

(√qi −
√
pi)2 −

∑
i:i∈A,qi≤r

(√qi −
√
pi)2 ≥ τ

2 − 2ℓr ≥ τ

4 ,

since r ≤ τ
10ℓ .

Since A = E1 ∪ E2, one of the two terms ∑i∈E ′(√qi −
√
pi)2 or ∑i∈E(√qi −

√
pi)2 must be

at least τ
8 .

Now consider the following two cases:

Case 1: ∑i∈E(√qi −
√
pi)2 ≳ τ . In this case, we are done by inequality Equation (H.5).

That is,
d2

h(p′, q′) ≳
∑
i∈E

(
√
q′
i −

√
p′
i)2 ≳

∑
i∈E

qiδ
2
i ≳

∑
i∈E

(√qi −
√
pi)2 ≳ τ,

where we use Claim 11.3.3 element-wise.
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Case 2: ∑i∈E ′(√qi −
√
pi)2 ≳ τ . By inequality Equation (H.5), we have

d2
h(p′, q′) ≳ eϵ · r

∑
i∈E ′

qiδ
2
i ≳ eϵ · rτ ≳ min

(
1, eϵ τ

ℓ

)
τ,

where we use the definition of r.
Thus, we obtain the desired lower bound in both of the cases.

H.1.2 Proof of Lemma 11.3.6

Lemma 11.3.6 (Reduction to base case). Let p and q be two distributions on [k]. Then there is a
channel T, which can be computed in time polynomial in k, that maps [k] to [ℓ] (for ℓ to be decided
below) such that for p′ = Tp and q′ = Tq, at least one of the following holds:

1. For any ℓ > 2 and ℓ ≤ min (k, 1 + log (1/d2
h(p, q))), we have

∑
i∈B

⋃
B′

(√
q′
i −

√
p′
i

)2
≳ d2

h(p, q) · ℓ

min (k, 1 + log (1/d2
h(p, q))) ,

where B and B′ are defined analogously to A and A′ in equation Equation (11.17), but with
respect to distributions p′ and q′.

2. ℓ = 2 and d2
h(p′, q′) ≳ d2

h(p, q).

Proof. Let us begin by considering the case when ∑i∈A
⋃
A′

(√
qi −
√
pi
)2
≤ d2

h(p,q)
2 . Follow-

ing Pensia, Jog, and Loh [PJL22, Theorem 2 (Case 1 in the proof)], there exists a binary
channel that preserves the Hellinger divergence up to constants. This completes the case
for ℓ = 2 above.

Suppose for now that ∑i∈A
⋃
A′

(√
qi −
√
pi
)2
≥ d2

h(p,q)
2 , i.e., the comparable elements

constitute at least half the Hellinger divergence. Consider the channel T′ that maps the
comparable elements of p and q to distinct elements, and maps the remaining elements
to a single super-element. Let α be the contribution to the Hellinger divergence from the
comparable elements in T′p and T′q (defined analogously to equation Equation (11.17)).
It can be seen that α ≥ d2

h(p,q)
2 . Let ℓ ≥ 3 be as in the statement. Now consider the

channel T′′ that compresses T′p and T′q into ℓ-ary distributions that preserve the Hellinger
divergence, from Pensia, Jog, and Loh [PJL22, Theorem 3.2 (Case 2 in the proof)]. Let βℓ
be the contribution to the Hellinger divergence from the comparable elements in T′′T′p

and T′′T′q. Then the result in Pensia, Jog, and Loh [PJL22, Theorem 3.2] implies that
βl ≳ α (ℓ/min(k, 1 + log(1/d2

h(p, q)))). This completes the proof in this setting.



620

H.2 Properties of Private Channels
Recall the definition of the set of channels J γ,ν

ℓ,k from Definition 11.5.1 below:

Definition 11.5.1 (LP family of channels). For any ℓ ∈ N, let ν = (ν1, ν2, . . . , νℓ) and γ =
(γ1, γ2, . . . , γℓ) be two nonnegative vectors in Rℓ

+. For k ∈ N, define the set of linear programming
(LP) channels J γ,ν

ℓ,k , a subset of Tℓ,k, to be the (convex) set of all channels from [k] to [ℓ] that satisfy
the following constraints:

For each row j ∈ [ℓ], and for each i, i′ ∈ [k], we have T(j, i) ≤ γjT(j, i′) + νj. (11.21)

We begin by an equivalent characterization of the constraints above. For a channel T
from [k] to [ℓ], let {m1, . . . ,mℓ} and {M1, . . . ,Mℓ} be the minimum and maximum entries
of each row, respectively. Then the channel T satisfies the conditions Equation (11.21) if
and only if for each j ∈ [ℓ], we have

Mj ≤ γjmj + νj. (H.6)

We first show that J γ,ν
ℓ,k satisfies Condition 11.5.3. For the special case of LDP channels,

the following claim was also proved in Holohan, Leith, and Mason [HLM17]:

Claim H.2.1. J γ,ν
ℓ,k satisfies Condition 11.5.3.

Proof. Let T be any extreme point of J γ,ν
ℓ,k . Let {m1, . . . ,mℓ} and {M1, . . . ,Mℓ} be as defined

above. Suppose that there exists c ∈ [k], such that there exist distinct r, r′ ∈ [ℓ] with
T(r, c) ∈ (mr,Mr) and T(r′, c) ∈ (mr′ ,Mr′). In particular, both T(r, c) and T(r′, c) are
strictly positive and less than 1.

We will now show that T is not an extreme point of J γ,ν
ℓ,k . For an ϵ > 0 to be decided

later, consider the channel T′ that is equal to T on all but two entries:

• On (r, c), T′ assigns probability T(r, c) + ϵ.

• On (r′, c), T′ assigns probability T(r′, c)− ϵ.

Now define T′′ similarly, with the difference being that on (r, c), T′′ assigns probability
T(r, c)− ϵ, and on (r′, c), T′′ assigns probability T(r′, c) + ϵ. Both T′ and T′′ are thus valid
channels for ϵ small enough. Let us show that T′ and T′′ belong to C. If we choose ϵ > 0
small enough, the row-wise maximum and minimum entries of T′ and T′′ are equal to
those of T. Here, we critically use the fact that the entries that were modified were “free.”
By inequality Equation (H.6), both T′ and T′′ belong to J γ,ν

ℓ,k . Since T is the average of T′

and T′′, it is not an extreme point of J γ,ν
ℓ,k .



621

We now show that J γ,ν
ℓ,k satisfies Condition 11.5.7.

Claim H.2.2. J γ,ν
ℓ,k satisfies Condition 11.5.7.

Proof. We follow the notation from Condition 11.5.7. Let T be an extreme point of J γ,ν
ℓ,k ,

and let r and r′ be the corresponding rows. We show that T′ (defined in the condition)
belongs to J γ,ν

ℓ,k by showing that entries of T′ satisfy the constraints of the rth row and the
r′th row (since the other rows are unchanged). In fact, we establish these arguments only
for the rth row, and the analogous arguments hold for the r′th row.

Let mr and Mr be the row-wise minimum and maximum entry of this row in T. Let us
first consider the case when Mr < γrmr + νr. Then there exist positive ϵ′ and δ′ such that
Mr + δ < γr(mr − ϵ) + νr. By inequality Equation (H.6), as long as the rth row of a channel
contains entries in [mr − ϵ,Mr + δ], the constraints of this particular row will be satisfied.
Since the entries in the rth row of T′ belong to this interval, the constraints of the rth row
are satisfied by T′.

Let us now consider the alternate case where Mr = γrmr + νr. Since m and M do
not correspond to the min-tight and max-tight entries, we have mr < M and m < Mr.
Consequently, even after perturbations by ϵ > 0 and δ > 0 small enough, the entries of T′

lie in [mr,Mr]. Thus, inequality Equation (H.6) implies that the constraints of the rth row
in T′ are satisfied.

Claim 11.5.9 (Closure under pre-processing). The set J γ,ν
ℓ,k satisfies the following closure

property under pre-processing:

J γ,ν
ℓ,k =

k⋃
ℓ′=1

{
T2 ×T1 : T2 ∈ J γ,ν

ℓ,ℓ′ and T1 ∈ Tℓ′,k
}
. (11.23)

Proof. We first show the simple direction that

J γ,ν
ℓ,k ⊆

k⋃
ℓ′=1

{
T2 ×T1 : T2 ∈ J γ,ν

ℓ,ℓ′ and T1 ∈ Tℓ′,k
}
.

Let Ik correspond to the identity channel on [k]. Then every channel T ∈ J γ,ν
ℓ,k , can be

written as T× I. Thus, J γ,ν
ℓ,k ⊆

{
T2 × Ik : T2 ∈ J γ,ν

ℓ,ℓ′

}
, and the desired conclusion follows.

We now show that every channel in the right-hand side belongs to J γ,ν
ℓ,k . For an arbitrary

ℓ′ ∈ [k], let T2 ∈ J γ,ν
ℓ,ℓ′ . Define {m1, . . . ,mℓ} and {M1, . . . ,Mℓ} to be the minimum and

maximum entries of each row in T2, respectively. By inequality Equation (H.6), for each
j ∈ [ℓ], we have Mj ≤ γjmj + νj . Let T1 ∈ Tℓ′,k be an arbitrary channel.



622

Let T = T2 × T1 be in Tℓ,k, and let {m1, . . . ,mℓ} and {M ′
1, . . . ,M

′
ℓ} be the minimum

and maximum entries of each row in T, respectively. In order to show that T ∈ J γ,ν
ℓ,k , we

need to show that for each j ∈ [ℓ], we have M ′
j ≤ γjm

′
j + νj . Since it already holds that

Mj ≤ γjmj + νj for all j, it suffices to show that M ′
j ≤Mj and m′

j ≥ mj for all j. Observe
that for any c ∈ [k] and r ∈ [ℓ], the (r, c)-entry of T is a convex combination of the rth row
in T2, where the weights in the convex combination correspond to the cth column in T1.
Since the maximum of a collection of items is always as large as any convex combination of
these items, we have M ′

j ≤ Mj for all j. Similarly, we have m′
j ≥ mj . This completes the

proof.

H.3 Other Notions of Privacy
We provide the proof of the following result, omitted from Section 11.6:

Claim 11.6.4 (Sample complexity of approximate LDP). For all δ ∈ (0, 1), we have

n∗(p, q, (ϵ, δ)) ≲ min
(
n∗(p, q, ϵ) · 1

1− δ , n
∗(p, q) · 1

δ

)
.

Moreover, this is tight (up to constant factors) when both p and q are binary distributions.

Proof. Let T be an ϵ-LDP channel that maximizes d2
h(Tp,Tq) among all ϵ-LDP channels.

Let T′ be the following channel that maps from [k] to [2k]: for any element i ∈ [k], use the
channel T, and with probability δ, map i to k + i. It can be seen that T′ satisfies (ϵ, δ)-LDP.
Let p′ and q′ be the corresponding distributions after transforming p and q using T′. It can
be seen that p′ is a distribution over [2k] such that the first k elements are equal to (1− δ)Tp
coordinate-wise, and the bottom k elements are equal to δp coordinate-wise. A similar
conclusion holds for q′, as well. Thus, we have

d2
h(T′p,T′q) = (1− δ) · d2

h(Tp,Tq) + δ · d2
h(p, q)

≍ max
(
(1− δ) · d2

h(Tp,Tq), δ · d2
h(p, q)

)
≍ max

(
(1− δ) · 1

n∗(p, q, ϵ) , δ ·
1

n∗(p, q)

)
.

By Fact 11.2.7, the sample complexity n∗(p, q, (ϵ, δ)) is at most 1/d2
h(T′p,T′q), which gives

the upper bound on n∗(p, q, (ϵ, δ)).
The tightness follows from the result of Kairouz, Oh, and Viswanath [KOV16, Theorem

18], which implies that T′ defined above is an optimal channel for binary distributions.
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H.4 Auxiliary Lemmas

H.4.1 Degenerate Conditions for Joint Range

We show in this section that we can safely rule out certain degenerate conditions for p and
q for our results. Let p and q be two distributions on [k]. In particular, we would like to
assume the following:

• Consider the likelihood ratio pi/qi, defined to be∞ if qi = 0 and pi ̸= 0, and undefined
if both pi and qi are 0. Assume that all the likelihood ratios are well-defined and
unique.

If these conditions do not hold, define p′ and q′ to be distributions over [k′] for some k′ ≤ k,
constructed as follows: start by removing elements that have zero probability mass under
both p and q, then merge the elements with the same likelihood ratios into super-elements.
Let T∗ ∈ Tk′,k be the corresponding deterministic map, which satisfies p′ = T∗p and
q′ = T∗q. We make the following claim:

Claim H.4.1. With the notation above, for any ℓ ∈ N and T ∈ Tℓ,k, there exists T′ ∈ Tℓ,k′ such
that (Tp,Tq) = (T′p′,T′q′). In particular, {(Tp,Tq) : T ∈ C} = {(Tp′,Tq′) : T ∈ C ′} for two
choices of C and C ′: (i) (C, C ′) = (Tℓ,k, Tℓ,k′) and (ii) (C, C ′) = (Pϵℓ,k,Pϵℓ,k′).

Claim H.4.1 ensures that the joint ranges of (p, q) and (p′, q′) are identical, so our struc-
tural and algorithmic results continue to hold when applied to p′ and q′. We will now prove
Claim H.4.1.

Proof of Claim H.4.1. Let {I0, I1, . . . , Ik′} be the smallest partition of [k] such that I0 contains
elements where both pi and qi are zero, and for each i ∈ [k′], the likelihood ratio of elements
in Ii are identical. Then the channel T∗ mentioned above has the following form: T∗(x) = i

if x ∈ Ii and i > 0, and T∗(x) = 1 if x ∈ I0. Observe that for each i ∈ [k′], we have
p′
i = ∑

j∈Ii
pj , q′

i = ∑
j∈Ii

qj , and at most one of them is zero.
Now consider a channel T ∈ Tℓ,k, and let {v1, . . . , vk} be the columns of T. It is easy

to see that columns belonging to indices in I0 do not affect (Tp,Tq). For i ∈ [k′], define
θ′
i := p′

i/q
′
i to be the likelihood ratio of the transformed distributions. Define T′ to be the

channel with columns v′
1, . . . , v

′
k such that

v′
i =


∑

j∈Ii
vjpj

p′
i

if p′
i > 0,∑

j∈Ii
vjqj

q′
i

otherwise.
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First consider the case when for all i ∈ [k′], we have 0 < θ′
i <∞. Then for all i ∈ [k′], we

have p′
i = θ′

iq
′
i and v′

i =
∑

j∈Ii
vjpj

p′
i

=
∑

j∈Ii
vjqj

q′
i

. Thus, we have

(Tp,Tq) =
∑
i∈[k′]

∑
j∈Ii

vjpj,
∑
i∈[k′]

∑
j∈Ii

vjqj


=
∑
i∈[k′]

p′
i ·
(∑

j∈Ii
vjpj

p′
i

)
,
∑
i∈[k′]

q′
i ·
(∑

j∈Ii
vjqj

q′
i

)
=
∑
i∈[k′]

p′
iv

′
i,
∑
i∈[k′]

q′
iv

′
i

 = (T′p′,T′q′) .

We now consider the case when there is an index a ∈ [k′] such that p′
a = 0 and an index

b ∈ [k′] such that q′
b = 0. Then it must be that θ′

a = 0 and θ′
b = ∞. Then v′

a =
∑

j∈Ii
vjqj

q′
i

and v′
b =

∑
j∈Ii

vjpj

p′
i

. Following the calculations above, we obtain ∑j∈Ii
vjpj = v′

ip
′
i for each

i ∈ [k] \ {a}. In fact, the same result is true for i = a, since both sides are 0. The same
conclusion holds for q and q′, as well. This completes the proof of the first claim.

We now turn to the final claim, regarding the joint range under the channel constraints
of C. The case C = Tℓ,k is immediate from the preceding discussion. Let T1 ∈ Tk,k′ be such
that (p, q) = (T1p

′,T1q
′) and T2 ∈ Tk′,k be such that (p′, q′) = (T2p,T2q). For C = Pϵℓ,k and

C ′ = Pϵℓ,k′ , we only need to show that (i) if T′ ∈ C ′, then T′T2 ∈ C; and (ii) if T ∈ C, then
TT1 ∈ C ′. Both of these conditions hold because privacy is closed under pre-processing.

H.4.2 Valid Choice of Parameters in Theorem 11.1.7

We now give the details that were omitted in the proof of Theorem 11.1.7 in Section 11.3.2.
We first reparametrize the problem by setting x = γ and y = γ1+δ. The constraint δ > 0

is equivalent to y < x. Then dTV(p, q) = x+ y, and

d2
h(p, q) = 2y +

(√
1/2 + x− y −

√
1/2

)2
+
(√

1/2− x− y −
√

1/2
)2
.

We begin by setting ν = x + y, which is possible since 0 ≤ y < x < 0.25 and ν ∈ (0, 0.5).
Then x = ν − y, where y ∈ (0, ν/2) and ν ∈ (0, 0.5). Our goal is now to show that there
exists a valid choice of y such that d2

h(p, q) = ρ, as long as 2ν2 ≤ ρ ≤ ν.
Define g(y) to be the Hellinger divergence between p and q given y, i.e.,

g(y) = 2y +
(√

1/2 + ν − 2y −
√

1/2
)2

+
(√

1/2− ν −
√

1/2
)2
.
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Since g is a continuous function, it suffices to show that g(0) < 2ν2 and g(ν/2) > ν, which
would imply that there is a choice of y ∈ (0, ν/2) such that g(y) = ρ. We have

g(0) =
(√

1/2 + ν −
√

1/2
)2

+
(√

1/2− ν −
√

1/2
)2
≤ 3ν2/2,

where we use the fact that
∣∣∣√1/2 + a−

√
1/2

∣∣∣ ≤ a for all a ≥ 0, and is less than |a|/2 for
a ≤ 0. On the other hand, g(ν/2) > ν, since ν < 1/2. Thus, there is a choice of y ∈ (0, ν/2)
such that d2

h(p, q) = ρ. Given these choices of x and y, we can infer the choice of γ ∈ (0, 0.25)
and δ > 0.

H.4.3 Taylor Approximation to Hellinger Divergence

Claim 11.3.3 (Additive approximation for
√
· ). There exist constants 0 < c1 ≤ c2 such that for

0 < y ≤ x, we have c1 · y
2

x
≤ (
√
x−
√
x− y)2 ≤ c2 · y

2

x
.

Proof. It suffices to prove that for δ ∈ (0, 1], we have 1 −
√

1− δ ≍ δ. We first start with
the upper bound: since 1− δ ≤

√
1− δ, we have 1−

√
1− δ ≤ δ. We now show the lower

bound and claim that 1−
√

1− δ ≥ 0.5δ for all δ ∈ [0, 1]. This inequality is equivalent to
showing 1 − 0.5δ ≥

√
1− δ, which is equivalent to showing that 1 + 0.25δ2 − δ ≥ 1 − δ,

which holds since δ2 ≥ 0.

Claim 11.3.2 (Approximation for Hellinger divergence of binary distributions). Let p, q ∈
[0, 1]. Let Ber(p) and Ber(q) be the corresponding Bernoulli distributions with min(p, q) ≤ 1/2.
Then

d2
h (Ber(p),Ber(q)) ≍ d2

TV(Ber(p),Ber(q))
max(p, q) .

Proof. Let q be the larger of the two quantities, so p satisfies p ≤ 1
2 . The total variation

distance is thus q − p. Let δ = (q − p)/q ∈ (0, 1]. Observe that p = q − qδ and the total
variation distance is δq.

We begin by noting that Claim 11.3.3 implies that

(√q −√p)2 =
(√

q −
√
q − δq

)2
≍ δ2q2

q
≍ d2

TV (Ber(p),Ber(q))
q

. (H.7)

We now split the analysis into two cases:

Case 1: q ≤ 1/2. Then Claim G.6.2 implies that d2
h(Ber(p),Ber(q)) ≍ (√q −√p)2. Thus,

Equation (H.7) implies the result.
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Case 2: q ≥ 1/2. Applying Claim 11.3.3 again to the second term, we obtain

(√
1− p−

√
1− q

)2
=
(√

1− p−
√

1− p− qδ
)2
≍ q2δ2

1− p ≍
q2δ2

q

≍ d2
TV(Ber(p),Ber(q))

q
, (H.8)

where we use the fact that 1− p ≍ q, since p, q ∈ [0.5, 1]. The desired conclusion follows
from equations Equation (H.7) and Equation (H.8).
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