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Estimating the mean of a probability distribution using i.i.d. samples is a classical problem in statis-
tics, wherein finite-sample optimal estimators are sought under various distributional assumptions. In
this paper, we consider the problem of mean estimation when independent samples are drawn from d-
dimensional non-identical distributions possessing a common mean. When the distributions are radially
symmetric and unimodal, we propose a novel estimator, which is a hybrid of the modal interval, shorth,
and median estimators, and whose performance adapts to the level of heterogeneity in the data. We show
that our estimator is near-optimal when data are i.i.d. and when the fraction of “low-noise” distributions
is as small as Ω

(
d logn

n

)
, where n is the number of samples. We also derive minimax lower bounds on

the expected error of any estimator that is agnostic to the scales of individual data points. Finally, we
extend our theory to linear regression. In both the mean estimation and regression settings, we present
computationally feasible versions of our estimators that run in time polynomial in the number of data
points.
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1. Introduction

Heterogeneity is prevalent in many modern data sets, leading to new challenges in estimation and
prediction. The i.i.d. assumption imposed in much of classical statistics is unlikely to hold in prac-
tice, creating a need to develop new theory under relaxed assumptions allowing for heterogeneous
data [32, 12, 40, 49, 15]. In this paper, we consider the problem of estimating a common mean when
independent data are drawn from non-identical distributions.

A version of this problem for Gaussian distributions was recently studied in Chierichetti et al. [8],
who motivated their work using the following crowdsourcing application: Suppose the quality of an
item is obtained by soliciting ratings from several agents, who are assumed to provide unbiased ratings.
However, the rating distributions may vary across agents depending, e.g., on their expertise. In the
Gaussian setting, this translates into data drawn from independent distributions with a common mean
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but possibly different variances. Chierichetti et al. [8] proposed a mean estimator based on calculating
the “shortest gap” between samples, and derived upper bounds on the estimation error of their algorithm.
Naturally, one might ask whether the estimators proposed by Chierichetti et al. [8] also perform provably
well for non-Gaussian settings; furthermore, although Chierichetti et al. [8] derived some lower bounds
for the behavior of the best possible estimator in the unknown variance setting, the optimality of their
proposed estimator was only partially addressed.

The work of this paper revisits the problem of common mean estimation and generalizes the case of
Gaussian mixtures considered in Chierichetti et al. [8] to settings where the component distributions are
only assumed to be symmetric and unimodal about a common mean. Although the estimators studied
in our paper resemble the estimators proposed by Chierichetti et al. [8], our method of analysis is
substantially different and allows us to obtain bounds without assuming Gaussianity, sub-Gaussianity,
or even finite variances of individual distributions. In the multivariate mean estimation setting, this leads
to sharper estimation error rates than those obtained in Chierichetti et al. [8] for isotropic Gaussian data.
The upper bounds we derive are stated in terms of percentiles of the overall mixture distribution and
may be finite even in the case of heavy-tailed distributions.

The aforementioned model of non-i.i.d. data has even older roots in the statistics literature, under
the name of sample heterogeneity. Initial research in sample heterogeneity focused on understand-
ing the asymptotic distribution of order statistics and linear functions thereof [18, 47, 37, 38, 41, 39].
More recent work has established necessary and sufficient conditions for consistency of the sample
median [16, 34, 17]. In particular, Hallin and Mizera [17] established the optimality of the median over
a certain class of M-estimators (having a bounded, non-decreasing, skew-symmetric score function).
However, as explained in more detail later (cf. Section 3.2), certain cases exist where the median itself
is not optimal in comparison to more complicated estimators. For example, redescending M-estimators
do not lie in the class studied by Hallin and Mizera [17]. We show that, under certain conditions, the
modal interval estimator (Estimator 1)—which may be viewed as an extreme case of a redescending M-
estimator—has smaller error than the median (cf. Table 1). Sample heterogeneity was also studied in the
linear regression setting, where previous work focused on the least absolute deviation estimator [13, 24].
Inspired by the modal estimator, we propose and analyze a related estimator for linear regression (cf.
Section 8). Note that we are chiefly interested in estimators which have minimal assumptions and allow
the fraction of low-variance points to be as small as logn

n , whereas the estimators studied in previous

work required the fraction to be Ω

(√
n

n

)
[17, 17, 13, 24, 34].

We also briefly mention classical work on the modal interval estimator [7] and shorth estimator [4],
which are used as building blocks for our hybrid estimator. Notably, previous analysis has focused
on asymptotic results for i.i.d. data, where both the modal interval and shorth estimators were proven
to have an n−

1
3 convergence rate [23], in contrast to the faster n−

1
2 convergence rate of the sample

mean. The results of this paper show the benefit of these estimators when a substantial fraction of
the component distributions have large (or even infinite) variances, underscoring the general fact that
robustness may need to be traded off for efficiency in clean-data settings.

The main contributions of our paper may be summarized as follows:

• Provide a rigorous analysis of the modal interval (Theorems 3.1, 4.1, and 4.2), shorth (Theo-
rems 3.2 and 4.3), and hybrid (Theorems 3.3 and 4.4) estimators for multivariate, radially sym-
metric distributions. We also show how to relax the symmetry conditions further (Theorem 7.1).
These estimation error guarantees hold with high probability.

• Derive upper bounds on the expected error of the estimators (Theorem 5.3). Along the way, we
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demonstrate the need for additional conditions on the tails of the mixture components in order to
derive expected error bounds of the same order as the high-probability results.

• Derive minimax lower bounds on the error rate of any estimator (Theorem 5.4), and prove that
the hybrid estimator is nearly optimal in various regimes of interest (Theorem 5.5).

• Extend the methodology for multivariate mean estimation to linear regression (Theorem 8.2).

• Provide computationally efficient versions of the multivariate mean estimator (Theorem 6.1) and
linear regression estimator (Theorem 8.3) in high dimensions.

We also note that while our work vastly generalizes the results of Chierichetti et al. [8] for mean esti-
mation in Gaussian mixtures, our derivations bypass some critical technical gaps in their proofs using
a very different approach via empirical process theory. Finally, we comment that preliminary work on
this topic appeared in our earlier conference paper [35], but was limited to the univariate case (Theo-
rems 3.1, 3.2, 3.3, and 4.2) and did not discuss optimality, regression, or any computational aspects1.
Furthermore, all examples and counterexamples illustrating various phenomena, including the detailed
theoretical derivations (Propositions 3.7–5.2), are new to this paper.

We end with a few remarks regarding parameter estimation in mixture models. The setting stud-
ied in our paper is markedly different from the canonical setting [31, 9, 5, 22, 2], since the number of
components in the mixture distribution is allowed to be as large as the number of observations. Further-
more, the parameters of the component mixtures are “entangled” in the sense that they share a common
mean, which we wish to estimate. Notably, this allows us to obtain meaningful error guarantees without
imposing strong distributional assumptions such as Gaussianity or log-concavity, which are prevalent in
the literature on parameter estimation for mixture models.

The roadmap of the paper is as follows: In Section 2, we define notation and the basic estimators
we will consider in the univariate case, which are subsequently analyzed in Section 3. In Section 4, we
present results for the multivariate analog of these estimators. In Section 5, we derive expected error
bounds on the performance of our estimators, and also present minimax lower bounds on the estimation
error of any estimator, thus providing settings in which our proposed estimators are provably optimal.
In Section 6, we present computationally feasible variants of our estimators in higher dimensions, and
prove that the error rates of these estimators are of the same order as those derived earlier. In Section 7,
we discuss various relaxations of the symmetry assumptions on the mixture components. In Section 8,
we describe our results for linear regression. Simulation results reporting the relative performance of
different estimators are contained in Section 9. All proofs are contained in the supplementary appendix.

Notation: We regularly use the standard big-O notation: For two real-valued non-negative functions
f (n) and g(n), we write f = O(g), when there exists constants n0 and C > 0 such that for all n > n0,
f (n)6Cg(n). We say f = Ω(g) if g = O( f ), and say f =Θ(g) when f = O(g) and g = O( f ). We write
f = ω(g) if for every real constant c > 0, there exists n0 > 1 such that f (n)> c ·g(n) for every integer
n > n0. We write f = o(g), when g = ω( f ). We use Õ(·), Ω̃ (·), and ω̃ (·) to hide polylogarithmic
factors. We write w.h.p., or “with high probability,” to mean with probability tending to 1 as the sample
size increases. We use C, c, C′, and c′ to represent absolute positive constants which may vary from
place to place, and their exact values can be found in the proofs. Similarly, we use Ct to represent
positive numbers that depend only on t. For a real-valued random variable X , we use VX to denote its
variance.

1We also mention follow-up papers by Liang and Yuan [30] and Devroye et al. [11], which appeared after the initial posting of
our conference paper.
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We will use ‖·‖2 to denote the Euclidean norm. We use B(x,r) to denote the Euclidean ball of radius
r centered around x, and we also write Br in place of B(0,r). We denote the d×d identity matrix by Id .
We use P(X ,ε) to denote the ε-packing number of a set X with respect to Euclidean distance, and we
use N(X ,ε) to denote the ε-covering number. We write Diam(X) to denote the diameter of the set with
respect to Euclidean distance, i.e., Diam(X) := supx,y∈X ‖x− y‖2.

2. Problem setup

We begin by introducing the entangled mean estimation problem. Suppose we have n independent
samples Xi ∼ Pi, where each Pi is a distribution in Rd with a density. Furthermore, we assume that each
density pi is radially symmetric and unimodal with a common mean (and median) µ∗. Our goal is to
estimate the location parameter µ∗ from the n samples, where the Pi’s are unknown a priori and may
even come from different classes of (non)parametric distributions. Since the estimators we consider are
translation-invariant, we can assume without loss of generality that µ∗ = 0, so the error of an estimator
µ̂ is measured by ‖µ̂‖2.

A natural estimator to use is the empirical mean, which is certainly an unbiased estimator of µ∗.
However, it is a well-known fact that the mean is not “robust,” in the sense that one outlying observation
can have a massive impact on the estimation error of the mean. In our setting, one Pi with a very large
variance can dramatically inflate the error of the mean, even if the remaining n− 1 distributions are
well-behaved. Due to the symmetry assumption on the Pi’s, we could consider a (multivariate) median
as a more robust alternative. Our theory in Section 3 below shows that using a median estimator can
somewhat improve the estimation error so that it depends only on the spread of the

√
n logn distributions

with the smallest quantiles; however, other more cleverly constructed estimators can reduce this depen-
dence to O(d logn) distributions, meaning that the remaining mixture components may have arbitrarily
large (or even infinite) variances, yet have a bounded effect on the behavior of the estimator.

Another potential estimator when the mixing components come from a sufficiently nice paramet-
ric family (e.g., Gaussians) is the maximum likelihood estimator. However, since we do not assume
knowledge of which observations are drawn from which mixture components, the MLE calculation
becomes considerably more complicated. Nonetheless, it is sometimes informative to compare the
error rate of the MLE—assuming side information of which observations correspond to which mixture
components—to the error rates obtained using various agnostic estimators. In particular, if the former
error rate diverges with n, we know that a diverging error rate for a proposed estimator is reasonable.

We will focus on the simple setting where the overall mixture distribution is radially symmetric,
e.g., we have multivariate Gaussian observations Xi ∼N (0d ,σ

2
i Id). Throughout this paper, we focus

on the setting where d = O(logn); as shown in Chierichetti et al. [8], when d = Ω(logn), the problem
reduces to the case of known variances, since these can be estimated accurately. We shall discuss how
to replace the spherical symmetry assumption by log-concavity in Section 7. As the covariance matrix
of a radially symmetric distribution is of the form σ2Id , we denote the covariance matrix of Xi by σ2

i Id .
We now define the central objects in our analysis:

DEFINITION 2.1 (Order statistics) Let the covariance of Xi be σ2
i Id . Define σ(i) to be the corresponding

order statistic. Let si denote the interquartile range of Xi, so that P(‖Xi−µ∗‖2 6 si) =
1
2 . Define s(i) to

be the corresponding order statistic.

DEFINITION 2.2 (Indicator functions on balls) For x ∈ Rd and r ∈ R, let fx,r(z) := 1‖x−z‖26r denote the
indicator function of the `2-ball B(x,r). For s ∈ R, we will also use fs,r(z) to denote the indicator of the
ball of radius r centered at the vector with first coordinate s and all other coordinates equal to 0.



ESTIMATING LOCATION PARAMETERS IN SAMPLE-HETEROGENEOUS DISTRIBUTIONS 5 of 77

Note that when d = 1, the function fx,r is simply the indicator function of the interval [x− r,x+ r].

DEFINITION 2.3 (Function class) Let

Hr := { fx,r′ : x ∈ Rd ,r′ ∈ R,06 r′ 6 r}.

Note that Hr has VC dimension d +1 [48].
As in prior analysis of sample heterogeneous models [39, 37], most of our arguments will be in

terms of the mixture distribution P := 1
n ∑

n
i=1 Pi, which is again unimodal and symmetric. We will write

Pn to denote the empirical distribution of X1, . . . ,Xn.

DEFINITION 2.4 (Risk) For a function f , we use Rn( f ) := 1
n ∑

n
i=1 f (Xi) to denote the expectation of f

with respect to the empirical distribution of X1, . . . ,Xn. Let

R( f ) :=
1
n

n

∑
i=1

E f (Xi).

Thus, R( f ) is the expectation of f with respect to P. Define

R∗r := sup
f∈Hr

R( f ) = R( f0,r),

where the second equality follows by symmetry and unimodality.

Note that R( f0,r) also equals the probability of the ball B(0,r) under P. The spherical symmetry
assumption readily gives R( fx,r) = R( fs,r) for all x such that ‖x‖2 = s.

We first state several useful properties of radially symmetric distributions. The proof of the following
result is contained in Appendix A.1.

LEMMA 2.1 Recall Definitions 2.1, 2.2, and 2.4 of σ(i),s(i), fx,r, and R∗r . Suppose the density of P is
radially symmetric and unimodal. We have the following properties:

(i) For any r > 0 and x,x′ ∈ Rd , if ‖x‖2 < ‖x′‖2, then R( fx,r)> R( fx′,r).

(ii) For any x ∈ Rd , if r < r′, then R( fx,r)6 R( fx,r′).

(iii) If 0 < r1 < r2, then
R∗r1
rd
1
>

R∗r2
rd
2

.

(iv) If 0 < r1 < r2, then

R( fr2,r1)<
1

P(Br2−r1 ,r1)
R∗r2
6

(
2r1

r2− r1

)d

R∗r2
,

where P(Br2−r1 ,r1) denotes the packing number of Br2−r1 with respect to Br1 . In particular, if

r1 6
r2
2 , then R( fr2,r1)6

(
4r1
r2

)d
R∗r2

.

(v) If 16 k 6 n/2, then k
n < R∗s(2k)

and k
n < R∗

2
√

dσ(2k)
.
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2.1 Estimators

We now proceed to define the estimators that will be studied in our paper.

Estimator 1 (r-modal interval) The r-modal interval estimator, introduced for the (univariate) i.i.d.
setting by Chernoff [7], outputs the center of the most populated ball of radius r, with ties broken
arbitrarily:

µ̂M,r ∈ argmax
x

Rn( fx,r). (2.1)

Estimator 2 (k-shortest gap / shorth estimator) For k > 2, the k-shortest gap (k-shorth) estimator,
µ̂S,k, outputs the center of the smallest ball containing at least k points. More precisely, we define

r̂k := inf
{

r : sup
x

Rn( fx,r)>
k
n

}
, µ̂S,k := µ̂M,r̂k . (2.2)

The traditional (univariate) shorth estimator [4, 23] corresponds to k = n
2 , whereas choosing k = 2

outputs the midpoint of the shortest interval between any two points. As we will see, the choice of
k =C logn will be convenient for our setting, and is more suitable than k = n

2 if data are not i.i.d.

Note that a type of “shortest interval” estimator has also been employed in the work on mean esti-
mation for contaminated i.i.d. data [25], but was used as an outlier screening step in that context, rather
than a mean estimator. Incidentally, our hybrid estimator to be introduced later will employ a different
screening approach based on the median, and then use the shorth estimator to return a more accurate
mean estimate.

DEFINITION 2.5 Recall Definitions 2.2 and 2.4 for the quantity R( fx,r). Define

rk := inf
{

r : sup
x

R( fx,r)>
k
n

}
= inf

{
r : R( f0,r)>

k
n

}
,

where the second equality follows from unimodality and radial symmetry.

The quantity rk measures the spread of P, and rn/2 is the interquartile range of P. Furthermore, since
P has a density, we have R∗rk

= k
n . Note that rk is problem-dependent, since its magnitude depends on

the relative dispersion of the mixing components; in particular, we will be interested in rΘ(d logn). As the
fraction of “nice” points increases, rk becomes smaller. However, rk does not depend too strongly on
the high-variance distributions (cf. Lemma (i) and Proposition 3.7).

The univariate k-median outputs an element from the centermost k points of the data. According
to our definition, the k-median outputs a set rather than a point estimator, which will be used as a
preprocessing step before applying the modal interval or shorth estimators to obtain a hybrid estimator
with superior rates.

Estimator 3 (k-median) In the univariate setting, the k-median estimator outputs an arbitrary element
µ̂med,k from the subset Sk, defined as Xi ∈ Sk if and only if θ̂med,−k 6 Xi 6 θ̂med,k, where

θ̂med,k := inf
{

θ : ψn(θ)>
k
n

}
,

θ̂med,−k := sup
{

θ : ψn(θ)6
−k
n

}
,
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and ψn(θ) =
1
n ∑

n
i=1 sign(θ −Xi). The sample median corresponds to taking k = 0.

Various multivariate extensions of the median exist, with different robustness properties and compu-
tational complexity; for our purposes, it will suffice to consider the simplest version of the multivariate
median, which simply operates componentwise on the data points.

DEFINITION 2.6 (Multivariate median) Define the set Sk,i as follows: For each dimension i, consider
the k median points in that dimension; i.e.,

Sk,i := {X j(i) : X j(i) belongs to the k-median of (X j(i))n
j=1},

where X j(i) denotes the ith coordinate of the vector X j. Define S∞
k to be the cuboid based on Sk,i, for

each dimension i:

S∞
k :=

d

∏
i=1

[min(Sk,i),max(Sk,i)].

Estimator 4 (Hybrid estimator) The hybrid algorithm consists of the following steps, summarized in
Algorithm 1:

(i) Compute the cuboid S∞
k1

with k1 =
√

n logn.

(ii) Compute the k2-shorth estimator µ̂S,k2 with k2 =Cd logn.

(iii) If µ̂S,k2 /∈ S∞
k1

, return the projection of µ̂S,k2 on S∞
k1

. Otherwise, return µ̂S,k2 .

Algorithm 1 Hybrid mean estimator (d-dimensional)

1: function HYBRIDMULTIDIMENSIONAL(X1:n,k1,k2,d)
2: S∞

k1
← kCuboid(X1:n,k1).

3: µ̂S,k2 ← Shorth(X1:n,k2).
4: if µ̂S,k2 ∈ S∞

k1
then

5: µ̂k1,k2 ← µ̂S,k2
6: else
7: µ̂k1,k2 ← argminx∈S∞

k1
‖x− µ̂S,k2‖2

8: end if
9: return µ̂k1,k2

10: end function

Note that the projection in step (iii) is easy to accomplish, since `2-projection onto the cuboid may
be done componentwise, hence computed in O(d) time. Our theoretical results show that replacing the
shorth estimator by the modal interval estimator produces similar statistical error rates.

2.2 Concentration inequality

The following concentration inequality will be a key technical ingredient for deriving results concerning
our estimators. The proof is contained in Appendix A.2.
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LEMMA 2.2 Recall the Definitions 2.3 and 2.4 of the terms Rn( f ),R( f ),R∗r , and Hr. For any fixed
t ∈ (0,1] and n > 1, we have

P

{
sup
f∈Hr

|Rn( f )−R( f )|> tR∗r

}
6 2exp

(
−cnR∗r t2) ,

provided r is large enough so that nR∗r >Ct
d+1

2 logn, where Ct =
( 144

t

)2
and c = 1

200 .

This theorem is useful because the bounds rely on R∗r ; i.e., they are adaptive to the problem, com-
pared to the traditional O

(
1√
n

)
distribution-independent bound. We also note that Lemma 2.2 requires

the mass R∗r lying around the true mode to be sufficiently large, and while the theorem requires R∗r to
increase with d, we will work in settings where d = O(logn).

3. Univariate mean estimation

We now state several theoretical guarantees for the aforementioned estimators in the univariate setting.
Some of these results appeared in our preliminary work [35], but we provide complete proofs of all
statements in Appendix B.

In the univariate setting, we assume that we have n independent samples Xi ∼ Pi, where each Pi is
a univariate distribution with a density pi which is symmetric and decreasing around µ∗. Let qi and σi
denote the interquartile range and standard deviation of Pi, respectively, and recall that the interquartile
range satisfies P(|Xi−µ∗| 6 qi) =

1
2 . We use q(i) and σ(i) to denote the ith smallest interquartile range

and standard deviation, respectively (cf. Definition 2.1). By Lemma A.1(v) below, we have rk 6 q(2k)
and rk 6 2σ(2k), although these bounds may be loose (for instance, rk could be finite even if σ(1) is
infinite). However, we are guaranteed that rk will be small if 2k points come from “nice” (low-variance)
distributions.

THEOREM 3.1 (Theorem 2 of Pensia et al. [35]) Recall Definitions 2.2 and 2.4 of the terms R∗r , R(·), and
fr′,r. Let r be a fixed number such that R∗r = Ω

(
logn

n

)
. Then with probability at least 1−2exp(−c′nR∗r ),

the modal interval estimator (Estimator 1) satisfies

|µ̂M,r|6 r′, (3.1)

for any r′ that satisfying R( fr′,r)<
R∗r
2 . In particular, we can always choose r′ = 2r

R∗r
to obtain the bound

|µ̂M,r|6
2r
R∗r

. (3.2)

The proof of Theorem 3.1 is contained in Appendix B.1, and proceeds by using Lemma 2.2 to bound
the ratio between R( fµ̂M,r ,r) and R∗r , and then using Lemma A.1 to turn this into a deviation bound on
|µ̂M,r|. Although the bound (3.2) in Theorem 3.1 is simple to state, it may be looser than the bound (3.1).

Remark 1 Importantly, by Lemma A.1(v), we know that the choice r = σ(C logn) always guarantees the

condition R∗r = Ω

(
logn

n

)
. Hence, inequality (3.2) implies that

|µ̂M,r|6
2σ(C logn)

R∗r
6

2nσ(C logn)

logn
, (3.3)
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with a similar inequality involving q(C′ logn). Note that this bound holds regardless of the magnitude of
the standard deviations of the latter n−C logn mixture components.

At the same time, one might be wary of the fact that the bound in inequality (3.3) could increase with
n if we fix σ(C logn) ; for i.i.d. data, R∗r = Θ(1), so even the first expression in the bound is of constant
order. This is rather alarming, compared to the O(n−1/2) error rate of the median. However, it should
be noted that if the variances of the mixture components increase sufficiently rapidly with n, even the
error rate of the MLE in the Gaussian case (which knows the distribution of each sample) will have a
diverging error rate. Thus, although the error bounds of the modal interval estimator in Theorem 3.1
may be rather unsatisfactory in the case of i.i.d. data, they can lead to more meaningful error bounds
when the mixture distribution involves a sizable portion of high-variance points. We will explore the
question of optimality in more detail in Section 5.2 below.

Guarantees for the shorth estimator are similar to the modal interval estimator. Further note that
as the proofs of the results in this section reveal, the technical machinery we have developed to derive
guarantees for the error of the modal interval estimator may also be used to derive estimation error
bounds for the shorth estimator.

The proof of the following result is provided in Appendix B.2.

THEOREM 3.2 (Theorem 4 of Pensia et al. [35]) Recall Definitions 2.1 and 2.5 of the terms σ(i),q(i), and
rk. Suppose 2k>C0.25 logn. With probability at least 1−2exp(−c′k), the shorth estimator (Estimator 2)
satisfies

|µ̂S,k|6
2nr2k

k
<

2nmin
(
q(4k),2σ(4k)

)
k

.

Remark 2 Lemma A.1(iii) shows that the upper bound is actually tighter for small k: for k′ > k, we
have kr2k′ > k′r2k. The smallest value permissible from our theory would be k = Θ(logn). Also note
that the upper bound in Theorem 3.2 for the shorth estimator resembles the bound in Theorem 4.2,
except for the fact that the bound for the modal interval estimator involves the quantity rC0.25 logn rather
than r2C0.25 logn, and the latter could be larger depending on the spread of P. Furthermore, both upper
bounds in Theorem 3.2 may sometimes be loose: In particular, if the Xi’s were i.i.d., r2k would be of
order Θ

( k
n

)
for small k, so the bound nr2k

k would be of constant order, whereas it is known [23] that the
shorth estimator is consistent for k = 0.5n.

We now turn to theoretical guarantees from the hybrid estimator, which combines the shorth and
k-median in order to obtain superior performance for both fast and slow decay of P. Recall from Table 1
that the median has superior performance when there is less heterogeneity in the data and P decays
fast enough. However, the superior performance of the modal interval estimator is apparent in the
presence of large number of high-variance points. It is then desirable to have an estimator that adapts
to the problem and enjoys the best of both worlds without any prior information. Indeed, as outlined
in Proposition 3.10, the hybrid estimator achieves this rate. The key point is that if the true mean lies
inside a convex set (defined with respect to the k-median), then projecting any other point (e.g., the
shorth) onto the set will only move the point closer to the mean, so the hybrid estimator can leverage
the better of the two rates enjoyed by the median and shorth.

Algorithm 2 specializes the hybrid estimator of Algorithm 1 to the univariate setting. The algorithm
proceeds by separately computing the k1-shorth estimator and k2-median. If the shorth estimator lies
within the median interval, the algorithm outputs the shorth; otherwise, it outputs the closest endpoint of
the median interval. Note that this estimator resembles the estimator proposed by Chierichetti et al. [8]



10 of 77 A. PENSIA, V. JOG, P. LOH

since it employs the median as a screening step for points with very large variance. However, the shorth
estimator is computed separately and then projected onto an interval around the median. In contrast, the
estimator proposed by Chierichetti et al. [8] first computes the k2-median and then computes the shorth
on the remaining points, leading to a delicate conditioning argument in the analysis and creating some
technical gaps in the proofs.

Algorithm 2 Hybrid mean estimator

1: function HYBRIDMEANESTIMATOR(X1:n,k1,k2)
2: Sk1 ← kMedian(X1:n,k1).
3: µ̂S,k2 ← Shorth(X1:n,k2).
4: if µ̂S,k2 ∈ [min(Sk1),max(Sk1)] then
5: µ̂k1,k2 ← µ̂S,k2
6: else
7: µ̂k1,k2 ← closestPoint(Sk1 , µ̂S,k2)
8: end if
9: return µ̂k1,k2

10: end function

THEOREM 3.3 (Theorem 5 of Pensia et al. [35]) Recall the Definition 2.5and Estimator 3 for the terms
rk, Sk, and µ̂S,k. If k1 =

√
n logn and k2 > C logn, the error of the hybrid estimator (Estimator 4) in

Algorithm 2 is bounded by

|µ̂k1,k2 |6min
(
Diam(Sk1), |µ̂S,k2 |

)
6

4
√

n logn
k2

r2k2 ,

with probability at least 1−2exp(−c′k2)−4exp(−c log2 n).

The proof of Theorem 3.3 is provided in Appendix B.3. Importantly, the bound in Theorem 3.3 is
finite even for heavy-tailed distributions with infinite variance. Finally, note that in Algorithm 2, we
could replace the shorth estimator by the modal interval estimator with adaptively chosen interval width
to obtain similar error guarantees.

3.1 Examples

We illustrate this below in several cases for rlogn, assuming Gaussian distributions for simplicity. The
following examples will reappear throughout the paper to illustrate the error of our proposed estimators
in various regimes of interest:

EXAMPLE 3.4 (i.i.d. observations). Pi = N (0,σ2), so P is again N (0,σ2).

EXAMPLE 3.5 (quadratic variance). Pi = N (0,c2i2), for some small c > 0.

EXAMPLE 3.6 (α-mixture distributions).

Pi =

{
N (0,1), if i6 cdlogne,
N (0,n2α), otherwise,

for some α > 0 and some large c > 0.
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Example 3.6 is similar to the “contamination model” in prior work [39, 41], but with a specific
scaling of variances to highlight the difference between multiple estimators by varying α . The following
proposition, proved in Appendix C.1, will be useful in our development:

PROPOSITION 3.7 We have the following bounds for rlogn when n = Ω(1):

1. For Example 3.4 (i.i.d. observations), we have rlogn =Θ

(
σ logn

n

)
.

2. For Example 3.5 (quadratic variance) and sufficiently small c > 0, we have rlogn =Θ(1).

3. For Example 3.6 (α-mixture distributions) and sufficiently large c > 0, we have

rlogn =

{
Θ

(
logn
n1−α

)
, if α < 1,

Θ(1), if α > 1.

Note that these bounds are tighter than the ones provided by Lemma 2.1(v); the latter states that rk 6
σ(2k). This is because Lemma 2.1(v) is a worst-case bound which does not account for the contributions
of high-variance points.

3.1.1 Guarantees for individual estimators. We now revisit the examples above and calculate the
bounds that follow from Theorem 3.1 by choosing r = rC logn for a large constant C > 0. We also
mention the cases where the bound (3.2) is weaker than the bound (3.1). The proof of the following
proposition is contained in Appendix C.2.

PROPOSITION 3.8 Recall Definition 2.5 of rk. Suppose r = rC logn. We have the following bounds for
the modal interval estimator |µ̂M,r| (Estimator 1):

1. For Example 3.4 (i.i.d. observations), we have |µ̂M,r|6Θ(σ), w.h.p.

2. For Example 3.5 (quadratic variance), we have |µ̂M,r| 6 O(nε), w.h.p., for any ε > 0. Inequal-
ity (3.2) results in a weaker bound of the form O(n), w.h.p.

3. For Example 3.6 (α-mixture distributions), we have

|µ̂M,r|=

{
O(nα), if α < 1
O(1), if α > 1,

w.h.p. For α > 1, inequality (3.2) results in a weaker bound of the form O(nα).

Remark 3 As discussed in Remark 1 above, the guarantees for the modal interval estimator are some-
what unsatisfactory for i.i.d. data, since Proposition 3.8(i) gives an error rate of Θ(σ), rather than the
optimal rate Θ

(
σ√

n

)
achievable by the sample mean. On the other hand, Proposition 3.8 shows that

for other problem settings with more widely varying variances—such as the α-mixture with α > 1—the
modal interval estimator results in constant error, whereas the sample mean would have Θ(nα−0.5) error.
These differences are summarized in more detail in Table 1 below.
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The modal interval estimator is a “local” estimator that only considers the value of Pn in small
windows. As we increase the variance of noisy points, the distribution P approaches 0 around µ∗. The
modal interval estimator makes mistakes when P is flat after normalization, meaning that the density at
x+ µ∗ is within a (1− ε)-factor of its density at µ∗, for ε = o(1). If this is the case, Pn might assign
higher mass at x+ µ∗ than µ∗ due to stochasticity introduced by sampling, so a local method would
mistakenly choose x+µ∗ over µ∗.

More concretely, consider the setting of Example 3.6. If an adversary tried to alter the estimator by
making the variance of the points very high (α� 1), then although P would approach 0, the normalized
density would not be flat. An extreme example of this can be seen when variance of noisy points is
“∞”: Near µ∗, the distribution P would behave like N (µ∗,1) scaled by O

(
logn

n

)
, which is not flat after

normalization although P approaches 0 very rapidly, so that the mean or median would behave poorly.
As Proposition 3.8 shows, the modal interval estimator would only suffer O(1) error in this case.

Remark 4 Examining the bound in Proposition 3.8 for Example 3.6, we see the possible emergence
of a “phase transition” phenomenon: For α < 1, the modal interval estimator has error growing with n,
whereas for α > 1, the modal interval estimator only incurs constant error. This suggests that for α < 1,
high-variance points are more effectively hidden within the mixture distribution, so the accuracy of the
modal interval estimator is more severely compromised than in the case when α > 1, where the modal
interval estimator can distinguish between low-variance and high-variance points. This phase transition
phenomenon is established rigorously in Section 3.1.2 below, where we prove a lower bound of Ω(nα)
in the case when α < 1.

The performance of the Θ(logn)-shorth estimator is similar to the modal interval estimator with
r = rΘ(logn) (cf. inequality (3.3) in Remark 1). Consequently, the error guarantees derived for the running
examples in Proposition 3.8 also hold for the Θ(logn)-shorth.

For completeness, we calculate the bounds of the (
√

n logn)-median estimator on the recurring
examples, proved in Appendix C.3:

PROPOSITION 3.9 We have the following bounds on the (
√

n logn)-median estimator (Estimator 3):

1. For Example 3.4 (i.i.d. observations), |µ̂med,
√

n logn|= O
(

σ logn√
n

)
, w.h.p.

2. For Example 3.5 (quadratic variance), |µ̂med,
√

n logn|= O(n0.5 logn), w.h.p.

3. For Example 3.6 (α-mixture distributions), |µ̂med,
√

n logn|= O(nα−0.5 logn), w.h.p.

The following proposition translates the error guarantees of Theorem 3.3 into our running examples.
These bounds are a direct result of Theorem 3.3 and Propositions 3.8 and 3.9.

PROPOSITION 3.10 When k1 and k2 are chosen as in Theorem 3.3, we have the following bounds on
the hybrid estimator (Estimator 4):

1. For Example 3.4 (i.i.d. observations), |µ̂k1,k2 |= O
(

σ logn√
n

)
, w.h.p.

2. For Example 3.5 (quadratic variance), |µ̂k1,k2 |= O(nε), w.h.p., for any ε > 0.
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3. For Example 3.6 (α-mixture distributions), with high probability,

|µ̂k1,k2 |=

{
O(nα−0.5), if α < 1,
O(1), if α > 1.

Mean Median Modal/Shorth Hybrid

Example 1 (i.i.d. samples) nnn−0.5 nnn−0.5 n−1/3 nnn−0.5

Example 2 (quadratic variances)
√

n
√

n nnnεεε nnnεεε

Example 3 (α < 1-mixture distributions) nnnα−0.5 nnnα−0.5 nα nnnα−0.5

Example 3 (α > 1-mixture distributions) nα−0.5 nα−0.5 ccc ccc

Table 1: The table above summarizes the performance of various estimators on our three running exam-
ples. We have ignored poly-logarithmic factors for simplicity, and we use nε to denote O(nε) error for
any ε > 0, and c to denote an error bounded by a constant. The radius for the modal estimator and the
k for the shorth estimator are adjusted to be optimal for each particular example; i.e., the estimators are
assumed to know which example data are coming from. Observe that mean and median estimators out-
perform the modal and shorth estimators when the outliers have relatively small variances. On the other
hand, the modal and shorth estimators are better when the outliers have large variances. Simulations
in Section 9 show that the rates provided above are indeed observed in practice. Our hybrid estimator
achieves the best performance in all cases without knowing which example is under consideration.

3.1.2 Phase transition behavior. In this subsection, we focus on verifying the statement in Remark 4
above, namely the existence of a phase transition for the modal interval estimator depending on whether
α < 1 or α > 1. This phenomenon is illustrated via simulations in the plots of Figure 1.

For ease of analysis, we tweak the setting of Example 3.6 slightly: Instead of having different
distributions for high variance and low variance points, we assume that the points are sampled i.i.d.
from a mixture distribution, with weights resembling their original fraction in Example 3.6. Moreover,
we assume that individual distributions are uniform rather than Gaussian.

EXAMPLE 3.11 (Modified α-mixture distributions). Let c > 0 be a large enough constant. For each i,
Pi = Qn, where

Qn =
c logn

n
U [−1,1]+

n− c logn
n

U [−nα ,nα ],

and U [−a,a] is the uniform distribution on [−a,a].

Note that if we sample X1, . . . ,Xn
i.i.d.∼ Qn, the number of points with variance Θ(1) is Θ(logn),

w.h.p. It is easy to see that the upper bounds for Example 3.11 are the same as that of Example 3.6 in
Proposition 3.8, i.e.,

|µ̂M,rC logn |=

{
O(nα), if α < 1
O(1), if α > 1,
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FIG. 1: Plots comparing average error of the mean, median, and modal interval estimators on Exam-
ple 3.6 (α-mixture distributions) for different values of α . As shown in Proposition 3.8, the modal
interval estimator undergoes a phase transition at α = 1, where the error of modal interval estimator
drops from the increasing function Ω(nα) to the constant function Θ(1). Moreover, as shown in Propo-
sition 3.9, the median has better performance than the modal interval estimator for α < 1, motivating
our hybrid estimator. The average error, 1

T ∑
T
i=1 |µ̂ − µ∗|, is calculated using T = 200 runs for each n.

Both of the axes are on the log scale. More details can be found in Section 9.

w.h.p. The following proposition, proved in Appendix C.4, establishes a lower bound of Ω(nα) on the
error:

PROPOSITION 3.12 For 1
3 6α < 1 in Example 3.11, the 1-modal interval estimator (Estimator 1) incurs

Ω(nα) error , with a constant non-zero probability.

Proposition 3.12 proves rigorously that the apparent phase transition of the modal interval estimator
is not simply an artifact of the argument used to prove Proposition 3.8. Indeed, the modal interval esti-
mator experiences a sharp phase transition depending on the relative variance of the mixture component
with the higher variance, which is governed by the parameter α . Moreover, this phase transition is not
specific to just modal interval estimator. As stated in Theorem 5.4, all agnostic estimators must have
error Ω(nα−0.5) for α < 1. Thus Example 3.6 is indeed a difficult problem for α < 1, but a surprisingly
easy one for α > 1.

As a final remark, note that in Examples 3.6 and 3.11, the sample median and even the mean would
have an error of Õ(nα−0.5). When α < 1, this rate is much better than the O(nα) guarantee of the modal
interval estimator. This motivates the hybrid estimator proposed above, which is able to combine the
“best of both worlds” for the modal interval and median estimators.

3.2 Comparison to common estimators

We briefly mention some common univariate estimators and contrast their performance with the perfor-
mance guarantees of our proposed estimators. For simplicity, we focus on mixtures of univariate Gaus-
sian distributions in which Θ(logn) of the samples are drawn from distributions with bounded variance.
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The primary reason why the estimators mentioned below have suboptimal guarantees is because they
are designed to guard against a constant fraction of arbitrarily corrupted or heavy-tailed points. In such
cases, the sample median is the optimal estimator; in contrast, the sample median can be shown to be
suboptimal in our setting (see Table 1 or Figure 2).
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hybrid

FIG. 2: Plot comparing the average error of various estimators on Example 3.6 with α = 1.3. Both of
the axes are on the log scale to show the rate. As mentioned in Table 1, both the mean and median have
an nα−0.5 error rate. The error rates of the α-trimmed mean, with α = 1

2 −
√

n
n and α = 1

2 −
logn

n , are
similar to the median. Note that the hybrid estimator has far superior performance. More simulations
and details are available in Section 9.

1. Sample median: Hallin and Mizera [17] established necessary and sufficient conditions for the
consistency of the median for sample heterogeneous distributions. Although the sample median
is more robust than the sample mean, this result shows that sample median is consistent if and
only if R∗ε = ω

(
1√
n

)
for every ε > 0. In particular, it implies that if the median is consistent,

then r√n→ 0. Focusing on particular Example 3.6, the error rate of the median is O(nα−0.5) (cf.
Table 1 and Figure 2).

Moreover, Hallin and Mizera [17] established the optimality of the median among all M-estimators
with score functions ψ(·) satisfying the following conditions:

(a) ψ(·) is non-decreasing and skew-symmetric.

(b) ψ(∞) = 1.

(c) The set of discontinuity points of ψ(·) is finite.

Therefore, one must consider broader classes of estimators beyond this family of M-estimators in
order to obtain better error guarantees than the median.
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2. Huber’s M-estimator: For any finite truncation parameter, Huber’s M-estimator [20, 19] falls
in the class of M-estimators considered by Hallin and Mizera [17], since normalizing the score
function of a bounded score function does not change the final estimate. Thus, the error rate of
Huber’s M-estimator cannot be any better than the error rate of the median.

3. k-median of means: This estimator [33] divides the n data points into k disjoint blocks (B1, . . . ,Bk)
of equal size (assuming n/k is an integer). For each i ∈ {1, . . . ,k}, we define Zi to be the mean of
the samples in Bi, and then define the estimator

µ̂ := Median16i6k(Zi) = Median16i6k

(X(i−1) n
k +1 + · · ·+Xi n

k

n/k

)
.

The median of means is robust to a constant fraction of outliers and sub-Gaussian tails even for
heavy tailed i.i.d. distributions [26, 33]; however, we argue that the median of means estima-
tor is also not robust to substantial sample heterogeneity. If each Xi ∼ N (µ,σ2

i ), then Zi ∼

N

(
µ,

∑
ik
l=(i−1)k+1 σ2

l

n2/k2

)
. Therefore, the final estimator behaves like the median of independent

Gaussian samples. Furthermore, a single “high-variance” point in the set Bi can increase the vari-
ance of Zi arbitrarily, hiding the signal from “low-variance” samples. The best case would thus be
when each block contains either all “low-variance” samples or all “high-variance” samples. How-
ever, in that case, µ̂ behaves essentially like the median of a smaller set with rescaled standard
deviations. As argued above, regimes exist where the median estimator is suboptimal.

4. α-trimmed mean: Let α ∈ [0,0.5) be such that αn is an integer. Given samples {X1, . . . ,Xn}, the
α-trimmed mean [19, 33] discards the largest and smallest αn samples and returns the mean of
the remaining (1−2α)n samples:

µ̂α =
1

(1−2α)n

n−αn

∑
i=αn+1

X(i).

The trimmed means estimator is robust to a constant fraction of outliers and has sub-Gaussian
tails even for heavy-tailed distributions [33]. As the fraction of “low-variance” points can be as
small as logn

n in our sample-heterogeneous setting, the estimator µ̂α would have a large variance
for any constant α > 0. Thus, our choice of α should depend on n, going to 0.5 as n→ ∞.

Recall that in the definition of the k-median (cf. Estimator 3), Sk was defined as the k centermost
points of the data. Thus, µ̂α is the mean of the set Sk with k = n(1−2α). In the extreme case of
α = 0.5− 1

2n , the trimmed means estimator µ̂α is the same as the median, which is not optimal.
As Figure 2 shows, the trimmed mean behaves like the median for large α , and decreasing α

(i.e., increasing k) degrades the performance. Note that we bound the error of the k-median by
bounding the range of Sk (cf. Lemma A.4). Therefore, the bounds for the k-median also imply
bounds for µ̂ n−k

2n
. However, the k-median primarily allows us to define a hybrid estimator by

projecting onto the set Sk, which performs better than the k-median alone.

4. Multivariate case

In the following sections, we derive the main results of our paper, which generalize the theorems in
Section 3 to d dimensions.
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4.1 Modal interval estimator

The following result provides an error bound for the modal interval estimator. The proof is in Appendix D.1.

THEOREM 4.1 Recall Definitions 2.1, 2.4, and Estimator 1. Suppose R∗r > C0.5

(
(d+1) logn

n

)
. The

multidimensional modal interval estimator satisfies the error bounds

‖µ̂M,r‖2 6 4r
(

2
R∗r

) 1
d
, (4.1)

‖µ̂M,r‖2 6 8
√

dσ(2Cd logn)

(
2

R∗r

) 1
d
6 8
√

d
(

n
C′d logn

) 1
d

σ(2Cd logn), (4.2)

with probability at least 1−2exp(−c′d logn).

As the proof of Theorem 4.1 reveals, inequality (4.2) could also be stated using s(2k) in place of
2
√

dσ(2k), since it is obtained from inequality (4.1) simply by substituting the bounds of Lemma 2.1(v).
Note that when d = 1, the bound (4.1) in Theorem 4.1 reduces to the bound (3.2) in Theorem 3.1, up to
constant factors.

Remark 5 Our bound (4.2) may be compared with Theorem 5.1 in Chierichetti et al. [8]: note that
we have removed a factor of polylog(n), although their bound depends on σ(logn) rather than σ(d logn).
Nonetheless, we emphasize the fact that our results hold for general radially symmetric distributions,
whereas the proofs in Chierichetti et al. [8] are Gaussian-specific.

Note that by Lemma 2.1(iii), the bound in Theorem 4.1 is tighter for smaller values of r. Thus, the
choice of r which optimizes the bound satisfies R∗r = C

(
d logn

n

)
. As discussed in Pensia et al. [35] for

the univariate setting, an estimator with near-optimal performance may be obtained via Lepski’s method
[28] even without knowledge of P: Define r∗ to be the interval radius satisfying R∗r∗ =C0.5

(
(d+1) logn

n

)
,

and suppose we have rough initial estimates rmin and rmax such that rmin6 r∗6 rmax. Define r j := rmin2 j,
and define

J :=
{

j > 1 : rmin 6 r j < 2rmax
}
.

We then define the index j∗ to be

min

{
j ∈J : ∀i > j s.t. i ∈J ,‖µ̂M,ri − µ̂M,r j‖2 6 8ri

(
2n

C0.5(d +1) logn

)1/d
}
,

which may be calculated using pairwise comparisons of the modal interval estimator computed over the
gridding of [rmin,rmax]. We then have the following result, proved in Appendix D.2:

THEOREM 4.2 Recall the definition of Estimator 1. With probability at least 1−2
(

1+ log2

(
2rmax
rmin

))
exp(−c′ logn),

we have j∗ < ∞ and

‖µ̂M,r j∗‖2 6 24r∗
(

2n
C0.5(d +1) logn

)1/d

. (4.3)

Note that the cost of using Lepski’s method is a factor of 6 in the estimation error. Finally, the
following lemma shows that the shorth estimator can be used to obtain rough initial bounds on r∗:
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LEMMA 4.1 Recall Definition 2.5 of rk. For k > C0.5d logn, with probability at least 1− 2exp(−ck),
we have rk/2 6 r̂k 6 r2k.

The proof of Lemma 4.1 is in Appendix D.3, and uses Lemma 2.2 to control the fluctuations of r̂k
from its empirical counterpart. In particular, the lemma shows that we may use rmin = r̂C0.5(d+1) logn/2
and rmax = r̂C0.5(d+1) logn.

4.2 Shorth estimator

We now derive error bounds for the multidimensional shorth estimator. The proof is contained in
Appendix D.4.

THEOREM 4.3 Recall Definition 2.5 of rk. Suppose k > C(d + 1) logn. The multidimensional shorth
estimator (Estimator 2) satisfies the error bound

‖µ̂S,k‖2 6 4r2k

(
2n
k

)1/d

,

with probability at least 1−2exp(−c′d logn).

As in the univariate case, the estimation error guarantees for the multidimensional modal interval
and shorth estimators are similar. In particular, for the “optimal” choice of r such that R∗r = cd logn

n ,

inequality (4.1) in Theorem 4.1 gives the bound ‖µ̂M,r‖2 = O
(

rc′d logn

(
n

Cd logn

)1/d
)

, which is of the

same form as the guarantee from Theorem 4.3 when k =C(d +1) logn.

4.3 Hybrid estimator

We now prove that the hybrid estimator produces an estimator with rates of O(
√

n1/d
), rather than

the rate O(n1/d) obtained in Theorems 4.1 and 4.3. Since the overall mixture distribution is radially
symmetric, all the marginal distributions are identical and symmetric about 0. Accordingly, we denote
the common marginal distribution by P1, and define rk,1 to be the smallest interval (centered at 0) that
contains k

n mass under P1.
We then have the following result, proved in Appendix D.5:

THEOREM 4.4 Recall Definition 2.6, Estimator 3, and Definition 2.5 of the terms S∞
k , µ̂S,k, and rk.

Suppose k1 =
√

n logn and k2>Cd logn. Then the error of the hybrid algorithm (Estimator 4) is bounded
by

‖µ̂k1,k2‖2 6min
{

Diam(S∞
k1
),‖µ̂S,k2‖2

}
6C′min

{√
dr2k1,1,

√
n1/drk2

}
,

with probability at least 1−2exp(−c′k2)−4d exp(−c log2 n).

Remark 6 Similar to the univariate case, the multivariate hybrid estimator achieves good error guar-
antees for both slow and fast decay of P. In particular, when data are i.i.d. Gaussian with distribution
N (0,σ2Id), as in Example 3.4, the error of the hybrid estimator is of the order O

(
σ
√

d logn√
n

)
. This is

within log factors of the optimal
√

dσ√
n error rate. At the same time, the worst-case error guarantee is of

the form O
(√

d
√

n1/d
σ(Cd logn)

)
.
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We also briefly comment on the error guarantees of the hybrid estimator on the multivariate analog
of Example 3.6. We can show that r2k1,1 = Õ

(
nα−0.5

)
and rk2 = Õ

(√
dnα− 1

d

)
, so Lemma A.1 implies

a bound of Õ(
√

dnα−0.5) for the median estimator. On the other hand, Theorem 4.3 leads to a bound
of Õ(

√
dnα) for the shorth estimator. This bound can be improved for α > 1

d : If α > 1
d , we have

‖µ̂S,k2‖2 = O(
√

d) (cf. Theorem 5.5). The second expression in Theorem 4.4 then implies that the error

of the hybrid estimator is Õ
(√

d min(nα−0.5,1)
)

for α > 1
d and Õ(

√
dnα−0.5) for α 6 1

d . This improves
upon the error rates of both the median and shorth estimators.

5. Bounds in expectation

Thus far, we have focused on high-probability bounds. We now briefly discuss how to convert the
upper bounds into bounds on the expected error of the estimator. We then derive lower bounds on the
estimation error of any estimator, thus addressing the question of optimality in certain regimes.

5.1 Imposing additional assumptions

We first show that unlike high-probability bounds, expected error bounds of a similar order cannot be
derived for modal interval estimator without any assumptions on the high-variance mixture components.
To illustrate this point, we provide a univariate example in which it is possible to derive high-probability
bounds of O(1) for the modal interval estimator without further assumptions, whereas bounds in expec-
tation of a similar order provably require additional tail assumptions, since E |µ̂M,1| → ∞ as qn→ ∞.

EXAMPLE 5.1 For any n, let the densities of the Pi’s be defined as follows: For i6C logn, let

pi(x) =

{
1
6i , |x|6 3i,
0, otherwise.

For i >C logn and α ∈ (0,1), let

pi(x) =


n−α , |x|6 1,
hn, 1 < |x|6 qn,

0, otherwise,

where the {hn} and {qn} are constrained such that the total area is 1, i.e., 2n−α +2(qn−1)hn = 1 and
hn 6 n−α

2 . In particular, for an α > 0, we can still choose qn arbitrarily large; we will take qn = Ω(n).

The proof of the following statement is contained in Appendix E.1:

PROPOSITION 5.2 For Example 5.1, we have E |µ̂M,1| →∞ as qn→∞. Moreover, |µ̂M,1|= O(1), w.h.p.

As seen by the example above, additional assumptions need to be imposed to prove the bounds in
expectation. Suppose the variances {σi} are all finite. We will consider two types of assumptions: either
(i) “high-noise” points do not have very large variances, or (ii) “low-noise” points have small support.

We state a result for the modal interval estimator in d dimensions; similar proofs hold for the shorth,
median, and hybrid estimators. The following result is proved in Appendix E.2.
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THEOREM 5.3 Recall Definitions 2.1, 2.4, and Estimator 1 for the terms R∗r ,σ(i), and µ̂M,r. Let nR∗r =
Ω (d logn). The following upper bounds hold for the expected error of the modal interval estimator:

(i) Suppose

log
(

σ(n)

r

)
= O(nR∗r ) . (5.1)

Then the modal interval estimator satisfies the expected error bound

E‖µ̂M,r‖2 = O

(
r
(

c
R∗r

)1/d
)
.

(ii) In the case d = 1, suppose the support of Ω(nR∗r ) points lies in [−r,r]. Then

E |µ̂M,r|= O
(

r
R∗r

)
.

Remark 7 The condition (5.1) in Theorem 5.3(i) can be translated into the inequality σ(n)6 r exp(CnR∗r ),
and provides an upper bound on the variance of the worst mixture components. If we choose r =
σ(d logn), we obtain the requirement that σ(n) is at most a factor of O(nCd) larger than the variance
σ(d logn) of the “good” points. This can be compared to the assumption σ(n) = σ(1)poly(n) imposed
by Chierichetti et al. [8] when proving upper bounds on expected error in the univariate case. As the
proof of Theorem 5.3 reveals, we could also convert the tighter version of the estimation error guar-
antee (cf. Theorem 3.1 in the univariate setting) into an expected error bound in a similar manner: If
condition (5.1) holds in Theorem 5.3 and we additionally assume that r′ = Ω(r), then E |µ̂M,r|= O(r′).

Note that the condition in Theorem 5.3(ii) imposes no constraints on the behavior of the large-
variance mixture components. The proof proceeds by integrating the tail probability of the modal inter-
val estimator, and showing that it must decay sufficiently quickly by considering the mass of intervals
lying far from the true mean. An extension to the multivariate case is possible, but would require some-
what more refined technical analysis.

5.2 Minimax bounds

We are now ready to discuss the optimality of our hybrid estimator, which we will consider in the context
of expected error bounds. We state our results in the case of a general dimension d > 1. The goal of
this section is to describe a general setting in which it is possible to show that the hybrid estimator is
(nearly) minimax optimal.

We will consider the class of distributions P(σ1,σ2, p), containing symmetric, unimodal distribu-
tions {Pi}n

i=1 with common mean µ , such that at least np distributions have marginal variance bounded
by σ2

2 and the remaining distributions have marginal variance bounded by σ2
1 . Note that σ1,σ2, and p

may all be functions of n, e.g., p = logn
n .

We call an algorithm agnostic if applying the algorithm does not require knowledge of the variance
of individual points (e.g., the sample mean or median). We have the following minimax lower bound,
proved in Appendix E.3:

THEOREM 5.4 Suppose p6 1
3 , σ2 6 σ1, and p = Ω

(
logn

n

)
.
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(i) The minimax error of any agnostic algorithm is

min
µ̂

max
{Pi}⊆P(σ1,σ2,p)

E [‖µ̂−µ‖2]>C`

√
d min

{
σ2√
np

,
σ1√

n

}
. (5.2)

(ii) In the case d = 1, suppose in addition we have

σ1

σ2
= O

(
1

np2

)
. (5.3)

Then the algorithm of any agnostic algorithm satisfies that

min
µ̂

max
{Pi}⊆P(σ1,σ2,p)

E [‖µ̂−µ‖2]>
C′`σ1√

n
. (5.4)

Remark 8 In the d = 1 case, the lower bound in Theorem 5.4 when condition (5.3) is satisfied matches
the lower bound derived by Chierichetti et al. [8]. On the other hand, our proof technique is somewhat
more direct and proceeds via a straightforward (albeit lengthy) calculation.

We now state our general upper bound, achieved by the hybrid estimator. Under the specific regimes,
we impose mild regularity conditions on the distributions to obtain cleaner expressions:

(i) Let qi(x) denote the marginal distribution of Pi, where qi : R→ R (since Pi is radially symmetric,
all marginals are equal). Let ν2

i denote the marginal variance of Pi. Then

qi(νi)>
c
νi
. (5.5)

(ii) Let each density be written as pi(x) = fi(‖x‖2), where fi : R→ R is a decreasing function on the
positive reals. Then

fi(0)6
(

c′

νi

)d

, and
∫

B(K
√

dνi,2
√

dνi)
pi(y)dy6C1 exp

(
−C2K2) , ∀K >C3 > 1. (5.6)

Condition (5.5) assumes that the marginal densities do not decrease too rapidly around the mean,
and implies the accuracy of the median filtering step. Condition (5.6) assumes that the joint densities
do not have too much mass concentrated around any single point (e.g., the mean), from which we may
derive tighter error bounds on the shorth estimator when we have sufficiently separated variances, i.e.,
σ1
σ2

= Ω
(
n1/d

)
. Note that conditions (i) and (ii) hold for Gaussian distributions; furthermore, condition

(ii) holds more broadly when the norm of pi(·) has right c′νi
√

d-sub-Gaussian tails around
√

dνi. Then
this expression can be upper bounded by P{‖X‖−

√
dνi > cK

√
dνi} 6 exp(−c′K2) using the sub-

Gaussian assumption.
We also define Q(σ1,σ2, p) to be the class of symmetric, unimodal distributions with {Pi}n

i=1 with
common mean µ , such that at least np distributions have marginal variances bounded by σ2

2 and remain-
ing distributions have marginal variance at least Ω(σ2

1 ) and at most σ2
1 . Thus, Q(σ1,σ2, p) is the class

of distributions with sufficient division between high-variance and low-variance points, and we clearly
have Q(σ1,σ2, p) ⊆P(σ1,σ2, p). Finally, in order to derive bounds in expectation, we impose the
additional growth condition (5.1) on the variance of the mixture components.

The following result is proved in Appendix E.4.
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THEOREM 5.5 If p = Ω

(
d logn

n

)
and condition (5.5) holds, then the hybrid estimator satisfies the upper

bound

max
{Pi}⊆P(σ1,σ2,p)

E [‖µ̂−µ‖2]6Cu
√

d min
{√

n1/d
σ2,

logn√
n

σ1

}
. (5.7)

We also have the following special cases if we impose additional assumptions:

(a) If p = Ω

(√
n logn

n

)
, we have the tighter bound

max
{Pi}⊆P(σ1,σ2,p)

E [‖µ̂−µ‖2]6C′u
√

d min
{

logn
p
√

n
σ2,

logn√
n

σ1

}
. (5.8)

(b) If σ1
σ2

= Ω

(
n

1
d

)
and condition (5.6) holds, then

max
{Pi}⊆Q(σ1,σ2,p)

E [‖µ̂−µ‖2]6C′′u
√

d min
{

σ2
√

logn,
logn√

n
σ1

}
. (5.9)

It is instructive to compare the upper bounds for the hybrid estimator in Theorem 5.5 with the
lower bounds derived in Theorem 5.4. (Note that the same class of distributions used to obtain the
minimax lower bounds over P falls into the class Q, so the upper bounds in Theorem 5.5 may be
directly compared with the lower bounds in inequality (5.9), as well.) In particular, we can see that the
hybrid estimator is nearly minimax optimal in three somewhat different regimes of interest, which can
be derived directly from the bounds in the theorems. The results are summarized in Table 2:

1. Large heterogeneity: When σ1 is very large compared to σ2 and p is very small (still satisfying
p = Ω( d logn

n )), a direct application of the median would lead to large error. However, the shorth
estimator is able to focus on the low-variance points due to the sufficiently large separation in
variances. As p becomes smaller, the gap between the upper and lower bounds reduces, reaching
within logn factors when p =Θ

(
d logn

n

)
.

2. Mild heterogeneity: Since σ1 is relatively small, the median and even mean are minimax optimal.
The hybrid estimator is able to achieve these rates (including the i.i.d. case).

3. Large p: As p increases, the number of good points increase and we expect to obtain vanish-
ing error for reasonable values of σ1 (e.g., under condition (5.1)). Indeed, the hybrid estimator
achieves vanishing error for large p = Ω

(√
n logn

n

)
irrespective of the magnitude of σ1. Also, the

gap between the upper bound and the lower bound decreases as either p→ 1 or σ1→ σ2.
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Large heterogeneity

Q
(

Ω

(
1√
p +n1/d

)
,1,o(n−0.5)

) Mild heterogeneity

P
(

O
(

1√
p

)
,1, p

) Large p

P
(
σ1,1,Ω

(
n−0.5 logn

))
Hybrid estimator

√
d σ1

√
d√

n

√
d min

{
1

p
√

n ,
σ1√

n

}
Lower bound

√
d√

np
σ1
√

d√
n

√
d min

{
1√
pn ,

σ1√
n

}
Table 2: Comparison of upper and lower bounds for estimation error, given by Theorems 5.4 and 5.5, in
three regimes of interest. In all of these cases, we assume p = Ω

(
d logn

n

)
. For simplicity, we set σ2 = 1

and ignore multiplicative factors which are logarithmic in n. We provide more details regarding these
calculations in Appendix E.5.

Remark 9 Although we have shown that the hybrid estimator is indeed optimal in several diverse
regimes, the preceding discussion leaves open the question of optimality in other settings. In particular,
although our general upper bounds (e.g., inequality (5.7)) suggests the presence of a

√
n1/d factor when

using the hybrid estimator, our lower bound techniques do not show that such a factor is unavoidable for
d > 2. As argued by Chierichetti et al. [8], a factor of

√
n is unavoidable in d = 1 (cf. Theorem 5.4).

6. Computation in high dimensions

We now discuss how to make our estimators computationally feasible when d is large. The main idea
is that both the modal interval and shorth estimators involve finding optimal balls in Rd . To save on
computation, we will show that restricting the search to balls centered at one of the n data points leads
to estimators with similar performance guarantees. This is an idea previously introduced in the literature
on mode estimation in i.i.d. scenarios [1, 10, 21].

Concretely, the modal interval and shorth estimators are replaced by:

Estimator 5 The computationally efficient modal interval estimator is defined by

µ̃M,r := arg max
x∈{x1,...,xn}

Rn( fx,r). (6.1)

Estimator 6 The computationally efficient shorth estimator is defined by

r̃k := inf
r

sup
x∈{x1,...,xn}

{
Rn( fx,r)>

k
n

}
, µ̃S,k := µ̃M,r̃k . (6.2)

In other words, we select the data point such that the smallest ball centered around that point containing
at least k points has the minimum radius.

Note that both estimators (6.1) and (6.2) may be computed in O(n2d) time. In contrast, computing
the modal interval or shorth estimators directly would correspond to solving the circle placement prob-
lem or smallest enclosing ball problem, for which the best-known exact algorithms are Ω(nd) [27, 14, 3].

Using a peeling argument [43], we can obtain a more refined concentration result than Theorem 2.2.
The proof of the following result is contained in Appendix A.3. Note that the proof critically leverages
radial symmetry of R, whereas the concentration inequality in Lemma 2.2 does not require R to be
radially symmetric.
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LEMMA 6.1 Recall Definitions 2.2, 2.4 for the terms fx,r, Rn(·), and R(·). For any t ∈ (0,1], radii
r̄,r > 0, and n > 1, we have the following inequalities:

P
(
|Rn( fx,r)−R( fx,r)|6 2tR( fx,r), ∀x s.t. ‖x‖2 6 r̄

)
> 1−

2exp(−cnt2R( fr̄,r))

1− exp(−cnt2R( fr̄,r))
, (6.3)

P

(
sup
‖x‖2>r̄

|Rn( fx,r)−R( fx,r)|> tR( fr̄,r)

)
6 2exp(−cnt2R( fr̄,r)), (6.4)

provided r̄ and r are such that R( fr̄,r)>
Ct d logn

n .

Using Lemma 6.1, we can derive the following results for the computationally efficient modal inter-
val and shorth estimators. The proof is contained in Appendix D.6.

THEOREM 6.1 Recall Definition 2.5 of the term rk. For the computationally efficient estimators, we
have the following error guarantees:

(i) Suppose r> 2r6Cd logn. Then the modal interval estimator satisfies the bound ‖µ̃M,r‖26 4r
(

n
Cd logn

)1/d
,

with probability at least 1−6exp(−c3d logn).

(ii) Suppose k> 2C0.5(d+1) logn. Then the shorth estimator satisfies the bound ‖µ̃S,k‖26 4r2k
( 2n

k

)1/d
,

with probability at least 1−2exp(−c′k).

Remark 10 Comparing Theorem 6.1(i) with Theorem 4.1, we see that the the computationally efficient
modal interval essentially incurs an additional factor of 2 in the error bound, since we require r >
2rC′d logn. If we take k =Cd logn, the error bound in Theorem 6.1(ii) is very similar to the error guarantee
for the modal interval estimator (4.2) derived in Theorem 4.3, except for an extra factor of 2.

Of course, the quality of the guarantee in Theorem 6.1(i) worsens as r increases. As discussed in
Section 4.1, we can use Lepski’s method to calibrate the modal interval radius. Note that we can again
use the shorth estimator to obtain rough upper and lower bounds. Using a similar argument as in the
proof of Lemma 4.1, we are guaranteed that 1

2 r̃3Cd logn 6 r6Cd logn 6 r̃6Cd logn, w.h.p. Essentially the
same argument as in Theorem 4.2 then shows that the error of the modal interval estimator with Lepski

calibration is guaranteed to be upper-bounded by 12r6Cd logn

(
n

Cd logn

)1/d
.

As discussed in Section 4.3, the projection step for the hybrid screening procedure can be computed
in O(d) time. The construction of the cuboid S∞

k itself can clearly be computed in O(nd) time. Thus, one
can also easily obtain the O(

√
n1/d

) rates using a computationally efficient hybrid estimator, as well.

7. Relaxing radial symmetry

We now consider the case when the population-level distribution P = 1
n ∑

n
i=1 Pi is not symmetric. In the

case d = 1, we can obtain the same estimation error rates only assuming that density pi is log-concave
with a unique mode at 0. In the case d > 1, we can obtain weaker estimation error guarantees of the order
O(
√

n) rather than O(
√

n1/d
) if we only assume that the mixture components are centrally symmetric.

Furthermore, it is possible to obtain O(n1/d) rates if we assume that a certain fraction of the components
are radially symmetric.

Although radial symmetry is a strict assumption, it provides us an O(
√

n
1
d ) error. Whereas if we just

assume central asymmetry, a union bound argument gives O(
√

dn) error. This factor of O(
√

dn) can not
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be improved in general. To see this, note that there exists a problem instance in single dimension where
the lower bound is a factor of Ω̃(

√
n). Central symmetry allows for having the same “hard” problem on

each dimension separately, forcing an Ω̃(
√

n) error in each dimension.
We can relax the radial symmetry assumptions slightly. In particular, Theorem 2.2 only relies on the

fact that R∗r , the mass of the interval centered around the true mode 0, is Ω

(
logn

n

)
(with no additional

symmetry assumptions). We do need R( fx,r) to satisfy some additional monotonicity assumptions along
rays as x moves away from 0.

7.1 General theory

In place of radial symmetry, we impose the following condition (stated with respect to a fixed radius r):

(C1) The population-level quantity R( fx,r) is maximized at x= 0, and otherwise monotonically decreas-
ing along rays from the origin.

Note that condition (C1) is satisfied if the same property holds for all components pi in the mixture. We
now define the function

g(a,r) := sup
‖x‖2=a

R( fx,r), (7.1)

for a,r > 0. By Lemma 2.1, we can argue that under radial symmetry of R, we have g(a,r)6 1
N(Ba,r)

6( r
a

)d , which can then be plugged into the argument of Theorem 4.1. The proof of the following statement
is contained in Appendix F.1.

THEOREM 7.1 Suppose condition (C1) holds.

(i) Recall Definition 2.4 of R∗r . Suppose r is such that R∗r = Ω

(
d logn

n

)
, and r′ is chosen sufficiently

large such that g(r′,r)< R∗r
2 . Then the modal interval estimator satisfies ‖µ̂M,r‖2 6 r′, w.h.p.

(ii) Recall Definition 2.5 of rk. Suppose r′ is chosen such that g(r′,r8d logn) 6
8d logn

4n . With high
probability, the error of the shorth estimator satisfies ‖µ̂S,k‖2 6 r′, and the error of the hybrid
algorithm with k2 = r8d logn is bounded by min(r′,

√
dr4
√

n logn,1).

Remark 11 For radially symmetric distributions, note that g(r′,r) 6
( r

r′
)d , so we can take r′ =

r
(

2
R∗r

)1/d
and r′ = r2k

(
4

R∗2k

)1/d
to obtain the results of Theorems 4.1 and 4.3 for the modal interval and

shorth estimators, respectively. Furthermore, by Lemma 2.1(iii), we have r√n logn 6
(√

n
8d

)1/d
r8d logn.

Thus, we also recover the analog of Theorem 4.4 for the hybrid estimator.

Finally, note that an analog of Theorem 7.1 holds when we use the computationally efficient modal
interval and shorth estimators described in Section 6, with minor proof modifications.

7.2 Sufficient conditions

Condition (C1) may be a bit difficult to interpret. We define two related conditions:

(C2) Each component density pi is log-concave with a unique mode at 0. Recall that a distribution with
density p is log-concave if p(x) ∝ e−φ(x) for a convex function φ : Rd → R.
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(C3) For all x ∈ Rd and all 16 i6 n, we have pi(x) = pi(−x).

Note that condition (C3) only requires symmetry of the density around 0, rather than radial symmetry;
in particular, it holds for Gaussian distributions that are not necessarily isotropic.

We have the following result, proved in Appendix F.2:

PROPOSITION 7.2 Suppose conditions (C2) and (C3) hold. Then condition (C1) also holds. Further-
more, g(a,r)6 1

ba/2rc .

In fact, we can even derive a result only assuming condition (C2) in the case d = 1. As argued
in the proof of Theorem 7.1, we may establish that R( fµ̂M,r

,r) > R∗r
2 , w.h.p. Thus, there exists some i

such that Ri( fµ̂M,r
,r)> R∗r

2 . By properties of log-concave convolutions (cf. proof of Proposition 7.2), we
know that Ri( fx,r) is decreasing along rays originating from some point x∗i , and also ‖µ̂M,r− x∗i ‖2 6 4r

R∗r
,

since we could otherwise pack too many intervals into the ray between x∗i and µ̂M,r, thus contradicting
the inequality Ri( fµ̂M,r

,r) > R∗r
2 . Finally, note that due to the unimodality of pi at 0, we clearly have

‖x∗i ‖2 6 r. Altogether, we obtain the error bound

‖µ̂M,r‖2 6
4r
R∗r

+ r,

which is of the same order as the guarantees in Theorem 3.1. A similar conclusion could be reached
if we replaced condition (C2) by the condition that each pi has a unique median and mode at 0, since
Ri( fx,r) is decreasing along rays originating from r (−r) in the positive (negative) direction.

7.3 Examples

We now describe two examples to illustrate concrete use cases of our more general theory.

EXAMPLE 7.3 (Elliptically symmetric distributions) We now consider the case where the components
of the mixture are not spherical, but have the same axes of symmetry. Concretely, suppose that for a
fixed matrix Σ � 0, the density of each Xi is of the form fi

(
(x−µ)T Σ−1(x−µ)

)
, where fi : R→ R is

a decreasing function defined on the positive reals. The goal is to estimate the common parameter µ ∈
Rd . As a specific example, we might have a mixture of nonisotropic Gaussian distributions where the
covariance matrices are all scalar multiples of Σ . This strictly generalizes the case of radially symmetric
distributions, which corresponds to the case Σ = I.

Suppose we employ the modal interval, shorth, or hybrid estimators described above. Note that these
estimators do not require knowledge of the matrix Σ . We wish to analyze the behavior of the quantity
g(a,r) defined in equation (7.1), which is relevant for Theorem 7.1. Indeed, we can derive an analog of
Lemma 2.1 that applies in this setting. The main step is to understand bound the quantity g(r2,r1) when
r1 < r2. We have the following result, proved in Appendix F.3:

PROPOSITION 7.4 Let r1 < r2. For an elliptically symmetric distribution, we have

g(r2,r1)6C
(

r1λmax(Σ)

r2λmin(Σ)

)d

.

Clearly, taking C = 1 and Σ = I in Proposition 7.4 recovers the result for radially symmetric distri-
butions.
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Remark 12 Similar arguments as in Example 7.3 could be applied in the case when the probability den-
sity functions of the distributions are proportional to exp(−‖x−µ‖/σ), for a different norm ‖·‖ besides
the squared `2-norm or the Mahalanobis norm. Also note that if the matrix Σ (accordingly, the norm
‖ · ‖) were known a priori, it might be possible to obtain better rates by using a modal interval/shorth
estimator based on the level sets of the norm rather than spheres of varying radii.

EXAMPLE 7.5 (Mixture of radially and centrally symmetric distributions) For another interesting spe-
cial case, suppose we have s points drawn from radially symmetric distributions, and n− s points
drawn from centrally symmetric distributions. Suppose we have f (n) points which are well-behaved
in the sense that the interquartile range of the corresponding distributions is small. (These distributions
need not coincide with the radially symmetric distributions.) We have the following result, proved in
Appendix F.4:

PROPOSITION 7.6 For r = q( f (n)) and r′ = 2rn1/d , we have

g(r′,r)6
R∗r
2
,

provided s> n−2n1/d( f (n)−4).

Thus, as the proportion of well-behaved points increases, the required proportion of radially sym-
metric distributions required to obtain a specific error guarantee becomes smaller. In particular, if f (n)=
Ω(n1−1/d), we do not need any radially symmetric distributions; recall, however, that the coordinatewise
median already performs well on a mixture of centrally symmetric distributions if f (n) = Ω(

√
n logn).

8. Linear regression

We now shift our focus to the problem of linear regression, and demonstrate how the methodology
developed thus far may be adapted to parameter estimation in multivariate regression. Suppose we have
observations {(xi,yi)}n

i=1 from the linear model

yi = xT
i β
∗+ εi, ∀16 i6 n, (8.1)

where the pairs {(xi,εi)}n
i=1 are independent but not necessarily identically distributed, and xi and εi are

independent for each i.
Following the theme of our paper, we assume that the probability density function of εi’s are sym-

metric and unimodal. We want to study the behavior of the modal interval regression estimator

β̂ ∈ argmax
β∈Rd

1
n

n

∑
i=1

1
{
|yi− xT

i β |6 r
}
, (8.2)

for an appropriate choice of r > 0.
A natural question is whether the true parameter β ∗ is the unique population-level maximizer in

the regression setting. As the following proposition shows, this is indeed the case when the densities
of the xi’s are absolutely continuous with respect to Lebesgue measure. The proof is contained in
Appendix G.1.

PROPOSITION 8.1 Consider the linear model in equation (8.1), where the distributions of xi’s and εi’s
have Lebesgue density. Then the population-level maximizer is given by

β
∗ = argmax

β

n

∑
i=1

E
[
1
{
|yi− xT

i β |6 r
}]

, ∀r > 0. (8.3)
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Importantly, Proposition 8.1, and the ensuing theory, does not require specific assumptions on the
form of the distribution of the xi’s. However, in order to derive easily interpretable error bounds on the
modal interval regression estimator, we will assume further distributional assumptions (cf. the statement
of Theorem 8.2 below).

8.1 Estimation error

In order to obtain error bounds on ‖β̂ −β ∗‖2, we need to analyze the behavior of the quantities

Rβ :=
1
n

n

∑
i=1

P
(
|yi− xT

i β |6 r
)
,

for a fixed value of r, chosen sufficiently large that Rβ ∗ >
Cd logn

n . In particular, we want to show that for

‖β −β ∗‖2 larger than a certain value, we will have Rβ <
Rβ∗

2 = 1
2n ∑

n
i=1 P(|εi|6 r).

As before, the key ingredient for deriving error bounds is a uniform concentration result. This is
proved in the following lemma:

LEMMA 8.1 Let t ∈ (0,1], and suppose r is large enough so that Rβ ∗ >
Cd logn

n . Then

P

(
sup

β∈Rd ,r′6r

∣∣∣∣∣1n n

∑
i=1

1
{
|yi− xT

i β |6 r′
}
− 1

n

n

∑
i=1

E
[
1
{
|yi− xT

i β |6 r′
}]∣∣∣∣∣> tRβ ∗

)
6 2exp(−cnRβ ∗t

2). (8.4)

Since the proof is directly analogous to the proof of Theorem 2.2, we only provide a sketch: The
key point is to consider the VC dimension of the class of functions f (x,y) = 1{|y− xT β |6 r}, indexed
by the pair (β ,r). Note that the subset of points in Rd+1 associated with the indicator function f (x,y)
is an intersection of two halfspaces. Using results on the VC dimension of an intersection of concept
classes [44], we see that the VC dimension of the desired hypothesis class is bounded by C′d. The
concentration result then follows by the same arguments used to derive Theorem 2.2.

It is generally difficult to state general bounds on estimation error that depend only on order statistics
of quantiles, since as in the case of mean regression, the error bounds one can derive will be largely
problem-dependent. In order to simplify our presentation, we will only discuss the case where the
εi’s and xi’s are Gaussian: εi ∼ N(0,σ2

i ) and xi ∼ N(µ ′i ,Σ
′
i ). We have the following result, proved in

Appendix G.2:

THEOREM 8.2 Let λmin := mini λmin(Σ
′
i ), and suppose λmin > 0. Suppose r > 0 is chosen such that

Rβ ∗ >
Cd logn

n . Then the regression estimator (8.2) satisfies

‖β̂ −β
∗‖2 6

c′nσ(cd logn)√
λmin

,

w.h.p.

We conjecture that it is possible to decrease this upper bound to O(
√

nσ(c logn)) by an appropriate
hybrid screening procedure, but we leave this to future work. Also note that in order for the bound in
Theorem 8.2 to be useful, the quantity λmin must either be a constant, or else not decrease too rapidly
with n.
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8.2 Computation

A natural question is whether the modal interval regression estimator (8.2) is actually computationally
feasible. We claim that an estimator may be obtained in O(nd) time, using Algorithm 3. The proof is in
Appendix G.3.

Algorithm 3 Modal interval regression estimator

1: function MODALINTERVALREGRESSION(X1:n,Y1:n,r,d)
2: Construct the set of hyperplanes

Sr = {yi = xT
i β + r}

⋃
{yi = xT

i β − r}.

3: Let {S1, . . . ,SN} denote the set of subsets of Sr of cardinality d.
4: for j = 1, . . . ,N do
5: Solve the system of linear equations given by S j. Let β j be a solution (if one exists).
6: end for
7: j∗← argmax16 j6N

1
n ∑

n
i=1 1

{
|yi− xT

i β j|6 r
}

.
8: return β j∗

9: end function

THEOREM 8.3 The output of Algorithm 3 is a maximizer of equation (8.2).

Remark 13 Correct application of Algorithm 3 would assume that r is chosen appropriately. It is less
clear how this parameter might be calibrated based on the data, perhaps using an appropriate variant of
Lepski’s method. We leave this important open question to future work.

9. Simulations

We now present the results of simulations on the recurring examples to validate our theoretical predic-
tions (cf. Table 1). Although our theorem statements involve large constants, we empirically observe
that smaller constants suffice to elicit the same behavior predicted by our theory. We run the k-shorth
estimator with k = 5d logn and k-median with k =

√
n logn. We use these estimators for the hybrid

estimator, i.e., the (
√

n logn,5d logn)-hybrid estimator. The mean estimator corresponds to the simple
average, whereas the median estimator refers to the (coordinatewise) sample median.

For each n, we run T = 200 simulations for univariate data and T = 20 simulation for multivariate
data and report the average error 1

T ∑
T
i=1 |µ̂−µ∗| of various estimators. Both axes in all of the plots are

in a log-scale. In particular, the slope of the curves indicates the power of n in the estimation error, and
vertical shifts correspond to constant prefactors.

9.1 Univariate data

We first present simulation results when d = 1. We use r = 1 for the simulations involving r-modal inter-
val estimators, since R∗1 = Ω

(
logn

n

)
in each of the recurring examples, although the constant prefactors

do not exactly align with our theory.
In the case of Example 3.4 (i.i.d. observations), we generate xi

i.i.d.∼ N (0,1). As seen in Figure 3(a),
the mean and median estimator perform optimally in this setting, giving an error rate of O(n−0.5). In
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contrast, the shorth estimator (with k = 5logn) has a flat trend line indicative of constant error, as
suggested by Remark 2 and the phase transition arguments in Section 3.1.2. On the other hand, the
error of the hybrid estimator decays at a rate more comparable to the mean and median. As discussed in
Remark 6, the hybrid estimator is indeed optimal up to log factors. We see that the performance of the
modal interval estimator is better than the shorth but worse than the hybrid estimator, and exhibits the
cube-root asymptotic decay encountered in classical statistics [23]. Furthermore, the estimation error
of the hybrid estimator behaves more like the error of the median estimator as n increases. Note that
although our bounds for the shorth and modal interval estimators are tighter for smaller values of k and
r, choosing larger values results in better performance when the data are homogeneous, which is not a
valid assumption in our general use case.

For Example 3.5 (quadratic variance), we generate xi∼N (0, i2). In Figure 4(a), we see that the both
the median and mean have similar slopes: Proposition 3.9 predicts that the median would have Õ(

√
n)

error, compared to the Θ

(√
1
n2 ∑

n
i=1 i2

)
= Θ (

√
n) error of the mean; indeed, the curves are roughly

parallel. However, the error rate of the modal interval, shorth, and hybrid estimators is significantly
smaller. As stated in Propositions 3.8 and 3.10, the error of these estimators is upper-bounded by O(nε),
for ε > 0.
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FIG. 3: Plot comparing average error of various estimators on Example 3.4. Both the mean and median
exhibit the familiar O(n−0.5) error rate. The modal interval has errors of order n−1/3. As suggested by
our theoretical bounds, the (logn)-shorth has constant error. The hybrid estimator improves the rate of
the shorth estimator, with a similar error decay as the median estimator as n increases.

For Example 3.6 (α-mixture distributions), we generate d10logne samples from a N (0,4×10−4)
distribution and the remaining samples from a N (0,nα) distribution, with α = 0.9 and 1.3. The plots
in Figure 5 add additional curves to the phase transition plots in Figure 1. As suggested by Proposi-
tions 3.8 and 3.10, the modal, shorth, and hybrid estimators have constant error for α > 1, whereas the
error increases with n when α < 1. Furthermore, the hybrid estimator performs better than the shorth
estimator when α < 1, with an error rate of O(nα−0.5) rather than O(nα), while the modal interval esti-
mator seems to perform comparably to the hybrid. Finally, note that the behavior of the hybrid estimator
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FIG. 4: Plot comparing average error of various estimators on Example 3.5. As mentioned in Table 1,
both the mean and median have

√
n error rate. The error rates of the modal interval, shorth (with

k = 5d logn), and hybrid estimators are superior to the median in the univariate case, and the hybrid
estimator is clearly superior when d = 3.

is similar to the behavior of the median estimator when α < 1 and to the modal interval/shorth estimator
when α > 1, showing that it indeed enjoys the better of the two rates in different regimes.

9.2 Multivariate

We now present simulation results for multivariate data, using d = 3. The data for all three recurring
examples are generated with the same parameters as in the univariate case, except with isotropic dis-
tributions. We run the computationally efficient versions of the shorth and modal interval estimators
described in Section 6, with k = 5d logn and r =

√
d.

The trends for i.i.d. data, shown in Figure 3(b), are analogous to the univariate case. Similarly, the
plots in Figure 4(b) for the quadratic variance example resemble the plots in Figure 4(a), with the hybrid,
shorth, and modal interval estimators performing noticeably better than the mean or median. Note that
for these experiments, the modal interval estimator appears to behave better than either the shorth or
hybrid estimators by a constant factor. For the multivariate version of the α-mixture distribution, we
run simulations with α = 1

2d < 1 and α = 1.3, where we have chosen the first value of α so that the

upper bound in Theorem 5.5 gives O
(

nα− 1
2

)
= O(n

1
2d−

1
2 ) error for the hybrid estimator, whereas the

derived bounds for the modal interval and shorth are O(nα) = O(n
1

2d ) (cf. Remark 6). Indeed, we see in
Figure 5(c) that the estimation error of the hybrid estimator decreases with n, like the mean and median
estimators, whereas the shorth estimator has an increasing trend line. The curve for the modal interval
estimator appears to be roughly constant (or possibly slightly increasing). The curves in Figure 5(d) are
very similar to the curves in Figure 5(b), suggesting the existence of a phase transition for α ∈

( 1
2d ,1

]
in the multivariate case, as well.
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FIG. 5: Plots comparing average error of various estimators on Example 3.6 for different values of α .
As suggested by Proposition 3.9, the median and mean have superior performance to the modal interval
and shorth estimators for α < 1. Moreover, the hybrid estimator exhibits similar behavior to the median
when α < 1 and to the shorth when α > 1.

10. Conclusion

We have studied the problem of mean estimation of a heterogeneous mixture when the fraction of
clean points tends to 0. We have shown that the modal interval and shorth estimator, which perform
suboptimally in i.i.d. settings, are superior to the sample mean in such settings. We have also shown
that these estimators and the k-median have complementary strengths that may be combined into a
single hybrid estimator, which adapts to the given problem and is nearly optimal in certain settings. An
important question for further study is whether the proposed hybrid estimator is always near-optimal, or
optimal, for more general collections of variances.

Our discussion of linear regression estimators has been fairly brief. Some issues that we have not
addressed include derivations for non-Gaussian error distributions and regression estimators in the case
of a fixed design matrix. We leave these questions, and a derivation of optimal error rates in the linear
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regression setting, for future work.
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Supplement to “Estimating location parameters in
sample-heterogeneous distributions”
By Ankit Pensia, Varun Jog, and Po-Ling Loh

A. Proofs of preliminaries

In this appendix, we provide proofs for the preliminary lemma concerning properties of radially sym-
metric distributions in Section 2, as well as the concentration results used in the paper.

A.1 Proof of Lemma 2.1

1. Note that R( fx,r) can be written as convolution of P with indicator function of Br, both of which
are unimodal and radially symmetric. The desired result then follows by Proposition 8 in Li et
al. [29], which implies that R( fx,r) is also unimodal and radially symmetric.

2. This follows from the nonnegativity of the density.

3. As P is radially symmetric, let the density of P at x be given by p(‖x‖). R∗r can be written as R∗r =

C
∫ r

0 p(s)sd−1ds where C is a constant for a fixed dimension. Define g(r) := R∗r
Crd =

∫ r
0 p(s)sd−1ds

rd for
r > 0. Property (iii) is equivalent to showing that d

dr g(r) < 0. By unimodality of p(·), it follows
that g(r)> p(r)

d . Differentiating g(·), we get

d
dr

g(r) =
p(r)rd−1rd−drd−1 ∫ r

0 p(s)sd−1ds
r2d =

p(r)−dg(r)
r

< 0.

4. Note that any r1-packing of B(0,r2− r1) has the property that all balls in the packing must be
entirely contained within the larger ball Br2 . Furthermore, by Lemma 2.1(i) above, we know
that R( fx,r1) > R( fr2,r1) when ‖x‖2 6 r2. Hence, by summing up the densities of all balls in the
packing, we obtain

R( f0,r2)> P(Br2−r1 ,r1)R( fr2,r1),

from which the first inequality follows.

To obtain the second inequality, we use the sphere-packing lower bound

P(Br2−r1 ,r1)> N(Br2−r1 ,2r1)>

(
r2− r1

2r1

)d

,

where N(·, ·) denotes the covering number (cf. Proposition 4.2.12 of Vershynin [45]).

5. The proof of the first inequality is the same as the proof of the corresponding statement in
Lemma A.1. The second inequality follows by noting that E‖Xi − µ‖2

2 = Tr(Σi) = dσ2
i . By

Chebyshev’s inequality, we have

R̃i( f0,2σi
√

d) = P(‖Xi−µ‖2 6 2
√

dσi)>
3
4
,

for each i. Thus, B2σ(2k)
√

d
covers at least 3

4 of the mass of at least 2k distributions, implying the
desired result.
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A.2 Proof of Lemma 2.2

Recall that R̃i( f ) = E f (Xi). We define the random variables

Yf ,i := f (Xi)− R̃i( f ).

Note that Ei[Yf ,i] = 0 and |Yf ,i|6 1. Furthermore, the variables (Yf ,i)
n
i=1 are independent for each fixed

f . Let

Z := sup
f∈Hr

(Rn( f )−R( f )) = sup
f∈Hr

1
n

n

∑
i=1

Yf ,i.

We will apply Lemma A.2 to obtain a high-probability upper bound on Z. Here V = d +1, the VC
dimension of balls.

Since its application requires a bound on the expectation, we first derive the following lemma:

LEMMA A.1 If nR∗r > 1300V logn with both n > 1 and d > 1, then

EZ 6 72

√
V

R∗r logn
2n

.

Proof. We will use Theorem A.1 from Appendix H, with σ2 = supx,r′6r R( fx,r′) = R∗r . In particular,
note that since nσ2 > 1300V logn, we have

log
(

4e2

σ

)
=

1
2

log
(

16e4

σ2

)
6

1
2

log
(

16e4n
1300V logn

)
6

logn
2

,

so (
24

√
V
5n

log
(

4e2

σ

))2

=
576V

5n
log
(

4e2

σ

)
6

576V
5n
· logn

2
= 57.6V

logn
n
6 σ

2.

Thus, Theorem A.1 is applicable and leads to the following bound:2

EZ 6 72
√

R∗r√
n

√
V log

(
4e2

σ

)
6 72

√
V R∗r logn

2n
.

�
We now apply Theorem 12.9 from Boucheron et al.[6] (stated in Lemma A.2 in Appendix H) with

Wi,s = Yi, f and

ρ
2 = sup

f∈Hr

n

∑
i=1

EY 2
i, f = sup

f∈Hr

n

∑
i=1

V[ f (Xi)]

6 sup
f∈Hr

n

∑
i=1

E[ f (Xi)] = sup
f∈Hr

nR( f ) = nR∗r ,

2Note that the definition of Z in Theorem A.1 has a factor of 1/
√

n as opposed to the factor of 1/n here.
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where the inequality holds because the variance of a Bernoulli random variable is bounded by its expec-
tation. Hence, using Lemma A.1 and the assumption nR∗r > 1300V logn, we have

v = 2nEZ +ρ
2 6 2nEZ +nR∗r

6 144
√

0.5V nR∗r logn+nR∗r 6 nR∗r

(
144

√
0.5V logn

nR∗r
+1

)

6 nR∗r

(
144

√
0.5V logn

1300V logn
+1

)
< 6nR∗r .

Thus, ntR∗r
2v > t

12 , so

log
(

1+2log
(

1+
ntR∗r
2v

))
> log

(
1+2log

(
1+

t
12

))
>

t
50

, (A.1)

using the fact that t 6 1.
Now suppose nR∗r > Ct

V
2 logn for the constant Ct =

( 144
t

)2
. Note that for t 6 1, we have nR∗r >

1300V logn, so all the previous results are also valid. Moreover, we have

EZ
0.5tR∗r

=
nEZ

0.5tnR∗r
6

72
√

0.5V nR∗r logn
0.5tnR∗r

=
144
√

0.5V logn
t
√

nR∗r

6
144
√

0.5V logn
t
√

0.5CtV logn
=

144
t
√

Ct
< 1.

Now we have all the ingredients required for the application of Theorem 12.9 :

P{Z > tR∗r}6 P{Z > EZ +0.5tR∗r}

6 exp
(
−ntR∗r

4
log
(

1+2log
(

1+
ntR∗r
2v

)))
6 exp

(
− 1

200
nt2R∗r

)
,

where the last inequality follows by inequality (A.1).
An identical argument can be used to upper-bound the quantity

sup
f∈Hr

(R( f )−Rn( f )) ,

concluding the proof.

A.3 Proof of Lemma 6.1

We begin by proving inequality (6.3). First consider the following peeling lemma, an adaptation of
Lemma 3 in Raskutti et al. [36]:
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LEMMA A.2 Let A ⊆ Rp, and suppose {Yx}x∈A is a collection of random variables indexed by x. Also
suppose g : R→ R+ is a strictly increasing function such that infx∈A g(h(‖x‖2)) > µ , for some µ > 0,
and h : R+→ R+ is a constraint function, and the tail bound

P

(
sup

x∈A:h(‖x‖2)6s
Yx > g(s)

)
6 2exp

(
− cg(s)

)
holds for all s ∈ range(h). Then

P
(

Yx 6 2g(h(‖x‖2)), ∀x ∈ A
)
> 1− 2exp(−cµ)

1− exp(−cµ)
. (A.2)

Proof. We define the sets

Am :=
{

x ∈ A : 2m−1
µ 6 g(h(‖x‖2))6 2m

µ
}
,

for m> 1. By a union bound, we have

P
(
∃x ∈ A s.t. Yx > 2g(h(‖x‖2))

)
6

M

∑
m=1

P
(
∃x ∈ Am s.t. Yx > 2g(h(‖x‖2))

)
,

where M = supm>1 g−1(2m−1µ) ∈ range(h).
Further note that if x ∈ Am satisfies Yx > 2g(h(‖x‖2)), then g(h(‖x‖2))> 2m−1µ , so

P

(
sup
x∈Am

Yx > 2g(h(‖x‖2))

)
6 P

(
sup
x∈Am

Yx > 2 ·2m−1
µ

)

6 P

(
sup

x∈A:g(h(‖x‖2))62mµ

Yx > 2m
µ

)

= P

(
sup

x∈A:h(‖x‖2)6g−1(2mµ)

Yx > 2m
µ

)
6 2exp(−c ·2m

µ) ,

if m < M. If m = M, the same logic shows that

P

(
sup
x∈Am

Yx > 2g(h(‖x‖2))

)
6 P

(
sup

x∈A:h(‖x‖2)6ν

Yx > 2m
µ

)
,

where ν = supx∈A h(‖x‖2). Furthermore, 2m−1µ 6 g(ν)6 2mµ , so the last probability is upper-bounded
by

P

(
sup

x∈A:h(‖x‖2)6ν

Yx > g(ν)

)
6 2exp(−cg(ν))6 2exp(−c ·2m−1

µ).

It follows that

P

(
sup
x∈Am

Yx > 2g(h(‖x‖2))

)
6 2exp(−c ·2m−1

µ),
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for all m> 1, so summing up over m then gives

P
(
∃x ∈ A s.t. Yx > 2g(h(‖x‖2))

)
6

∞

∑
m=1

2exp(−c ·2m−1
µ)6

2exp(−cµ)

1− exp(−cµ)
,

implying inequality (A.2). �
We apply Lemma A.2 with A = {x : ‖x‖2 6 r̄}, and

Yx = |Rn( fx,r)−R( fx,r)|, h(‖x‖2) = R( fx,r), g(s) = ts,

for fixed values of r̄,r > 0 and t ∈ (0,1]. Clearly, g is monotonically increasing and satisfies infx∈A g(h(‖x‖2))>
tR( fr̄,r). Note that for any s ∈ range(h), we have s = R( fxs,r) for some xs, and

P

(
sup

x∈A:h(‖x‖2)6s
|Rn( fx,r)−R( fx,r)|> g(s)

)
= P

(
sup

‖xs‖26‖x‖26r̄
|Rn( fx,r)−R( fx,r)|> tR( fxs,r)

)
6 2exp(−cnR( fxs,r)t

2)

= 2exp(−cntg(s)),

assuming nR( fr̄,r) > Ctd logn, where we use a slight modification of Lemma 2.2 where Hr is the set
of balls centered around points in {‖x‖2 > ‖xs‖2}. Lemma A.2 then implies the desired concentration
inequality.

To establish inequality (6.4), note that we can simply use a modification of Theorem 2.2, where Hr
is now the set of balls centered around points in {‖x‖2 > r̄}.

B. Proofs for univariate estimators

We begin with the following lemma, also appearing as Lemma 1 in Pensia et al. [35].

LEMMA A.1 We have the following properties:

(i) For any r > 0 and x,x′ ∈ R, if |x|< |x′|, then R( fx,r)> R( fx′,r).

(ii) For any x ∈ R, if r < r′, then R( fx,r)6 R( fx,r′).

(iii) If 0 < r < r′, then R∗r
r >

R∗r′
r′ .

(iv) If 0 < r,r′, then R( fr′,r)<
r
r′R
∗
r′ .

(v) If 16 k 6 n, then k
n < R∗q(2k)

and k
n < R∗2σ(2k)

.

Proof. The proofs proceed using simple calculus and algebraic manipulations, relying only on the
properties of symmetry and unimodality.

(i) Property (i) follows directly by unimodality and symmetry of P.

(ii) Property (ii) is true by the non-negativity of density.
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(iii) Let p(x) be the density of P. Then R∗x = 2
∫ x

0 p(y)dy. Define g(x) := R∗x
x for x > 0. Property (iii) is

equivalent to showing that d
dx g(x) < 0. By unimodality of p(·), we have g(x) > 2p(x) for x > 0.

By differentiation, we have

d
dx

g(x) =
2xp(x)−2

∫ x
0 p(y)dy

x2 =
2p(x)−g(x)

x
< 0,

as wanted.

(iv) Note that r′ can be written as r′ = (K +α)r, where K ∈ N and α ∈ [0,1). We need to show that
R∗r′ > (K +α)R( fr′,r). We may write

R∗r′ = 2
∫ r′

0
p(x)dx

= 2
∫

αr

0
p(x)dx+

K

∑
k=1

2
∫ r′−(k−1)r

r′−kr
p(x)dx.

The second term is 0 if K = 0. By (iii) above, we have R∗αr > αR∗r . Therefore,

R∗r′ > 2α

∫ r

0
p(x)dx+

K

∑
k=1

2
∫ r′−(k−1)r

r′−kr
p(x)dx

> α

∫ r′+r

r′−r
p(x)dx+

K

∑
k=1

∫ r′+r

r′−r
p(x)dx

= (α +K)R( fr′,r),

where the last inequality again uses unimodality of P, and the second term is 0 if K = 0.

(v) Note that

R∗q(2k)
=

1
n

n

∑
i=1

P(|Xi|6 q(2k))>
1
2
· 2k

n
=

k
n
.

Let R̃i( f ) be the expectation of f under Pi, i.e., R̃i( f ) = E f (Xi). For the second inequality, note
that by Chebyshev’s inequality,

R̃i( f0,2σi) = P(|Xi−µ|6 2σi)>
3
4
,

for all i. Therefore, an interval of length 4σ(2k) covers at least 3
4 mass of at least 2k distributions,

implying that

R∗2σ(2k)
= R( f0,2σ(2k)) =

1
n

n

∑
i=1

R̃i( f )>
1
n
· 3×2k

4
>

k
n
.

�
Lemma A.1 shows that we can use P as a measure of distance between two intervals. In particular,

if two intervals with the same center/radius are close under R, the respective radii/centers must also be
close.
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B.1 Proof of Theorem 3.1

We begin with the following result, which follows from Lemma 2.2:

LEMMA A.2 Let t ∈ (0,1], and let r be such that R∗r > C0.5t

(
logn

n

)
. Then with probability at least

1−2exp(−c′nR∗r t2), we have R( fµ̂M,r ,r)> (1− t)R∗r .

Proof.
This will follow from Lemma 2.2 by choosing 0.5t instead of t. If R∗r >C0.5t

logn
n , then with proba-

bility 1−2exp(−cnR∗r t2/4), we have

|Rn( f )−R( f )|6 tR∗r
2

,

uniformly over f ∈Hr. Assume that this event happens. Note that R( f0,r) = R∗r and Rn( fµ̂M,r ,r) >
Rn( f0,r) by maximality of the modal interval estimator. Since fµ̂M,r ,r, f0,r ∈Hr, we have

R( fµ̂M,r ,r)> Rn( fµ̂M,r ,r)−
tR∗r
2
> Rn( f0,r)−

tR∗r
2

> R( f0,r)− tR∗r = R∗r − tR∗r ,

as wanted. �
Lemma A.2 states that if r is small, then R( fx,r) behaves like a (scaled) density of the mixture

distribution P. Indeed, the density of P at the empirical mode, µ̂M,r, is within a constant factor of the
density at µ∗.

Turning to the proof of the theorem, note that by Lemma A.1(i), we know that if R( fr′,r)<R( fµ̂M,r ,r),

then |µ̂M,r|6 r′. Furthermore, taking t = 1
2 in Lemma A.2, we have R( fµ̂M,r ,r)>

R∗r
2 , with probability at

least 1−2exp(−c′nR∗r/4). Thus, inequality (3.1) holds provided R( fr′,r)<
R∗r
2 .

Now suppose Let r′ = 2r
R∗r

. By Lemma A.1(iv) and noting that R∗r′ 6 1, we have

R( fr′,r)<
r
r′

R∗r′ 6
r
r′

=
r
2r
R∗r

=
R∗r
2
.

This establishes inequality (3.2).

B.2 Proof of Theorem 3.2

The proof of Theorem 3.2 is similar in spirit to the proof of Theorem 3.1. We begin by proving a lemma,
which replaces Lemma A.2:

LEMMA A.3 For 2k >C0.5t logn and t ∈ (0,1], with probability at least 1−2exp(−c′kt2), we have

R( fµ̂S,k,r2k
)> (1− t)R∗rk

= (1− t)
k
n
.

Proof. By assumption, we have nR∗r2k
= 2k>C0.5t logn. Applying Lemma 2.2 with t = 0.5t and r = r2k,

we know that with probability at least 1− exp(−c2kt2/4), we have

sup
x,r6r2k

Rn( fx,r)−R( fx,r)<
t
2

R∗r2k
.
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Combined with the guarantee of Lemma 4.1, we conclude that

Rn( fµ̂S,k,r̂k
)−R( fµ̂S,k,r̂k

)<
t
2

R∗r2k
,

with probability at least 1− exp(−ckt2/2)− exp(−k/8).
Furthermore, since all the distributions have densities, all the Xi’s are distinct with probability 1, so

Rn( fµ̂S,k,r̂k
) = k

n . We thus conclude that

k
n
−R( fµ̂S,k,r̂k

)<
t
2
· 2k

n
,

so R( fµ̂S,k,r̂k
) > (1− t) k

n = (1− t)R∗rk
. Again using the fact that r̂k 6 r2k, we can use Lemma A.1(ii) to

conclude that R( fµ̂S,k,r̂k
)6 R( fµ̂S,k,r2k

), so the required statement holds. �

Let r′ = 2nr2k
k . Taking t = 1

2 in Lemma A.3 and using Lemma A.1(i), it suffices to show that
R( fr′,r2k)<

k
2n , which follows by Lemma A.1(iv) and the fact that R∗r′ 6 1.

B.3 Proof of Theorem 3.3

We first prove the following result:

LEMMA A.4 With probability at least 1−4exp(−ck2/n), both of the following statements hold:

1. Sk contains the origin in the sense that 0 ∈ [min(Sk),max(Sk)].

2. Diam(Sk)6 2r2k

Proof. The k-median was defined using ψn. It is therefore instructive to study the properties of the
population-level quantity ψ(θ) := Eψn(θ). For θ > 0, we have

ψ(θ) := Eψn(θ) =
1
n

n

∑
i=1

E[sign(θ −Xi)]

=
1
n

n

∑
i=1

P(−θ 6 Xi < θ) = R( f0,θ ) = R∗θ .

In particular ψ(rk) = R∗rk
= k

n . Similarly, for θ < 0, we have ψ(θ) =−R∗|θ |.

1. It suffices to show the events θ̂med,k 6 r2k and θ̂med,−k >−r2k hold with the required probability.
We will focus only on the error on the positive side, i.e., θ̂med,k > r2k. The analysis for θ̂med,−k <

−r2k is similar by symmetry. Recall that ψn(θ̂med,k) =
k
n a.s., so by monotonicity of ψn, it follows

that

P
(

θ̂med,k > r2k

)
6 P

(
ψn(r2k)6

k
n

)
= P

(
ψn(r2k)−ψ(r2k)6−

k
n

)
.
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Since ψn(·)−ψ(·) is a centered sum of independent bounded random variables, we may apply
Hoeffding’s inequality on its negative tail. Therefore,

P
(

θ̂med,k > r2k

)
6 exp

(
−cn

(
k
n

)2
)
6 exp(−ck2/n).

2. We bound the probability that max(Sk)< 0; the bound for min(Sk)> 0 is analogous. If max(Sk)<

0, then ψn(0)> k
n by monontonicity of ψn and the fact that max(Sk) = θ̂med,k and ψn(θ̂med,k) =

k
n .

By Hoeffding’s inequality, we then have

P(max(Sk)< 0)6 P

(
ψn(0)>

k
n

)
= P

(
ψn(0)−ψ(0)>

k
n

)
6 exp

(
−cn · k

2

n2

)
= exp

(
−c

k2

n

)
.

�
By Lemma A.4 and Theorem 3.2, with probability with probability at least 1− 4exp(−c log2 n),

both of the following events happen simultaneously:

1. 0 ∈ [min(Sk),max(Sk)].

2. Diam(Sk)6 2rk1 .

As the set [min(Sk),max(Sk)] is convex and 0 belongs to the set, |µ̂k1,k2 |6 |µ̂S,k2 |. As µ̂k1,k2 ∈ [min(Sk),max(Sk)],
|µ̂k1,k2 | is less than the diameter of Sk. This proves the first inequality of the statement.

Let r′ := 4
√

n logn
k2

r2k2 . To prove the second inequality, we break down the analysis in two cases:

CASE 1: Suppose R∗r′ >
2logn√

n . This implies that r2k1 6 r′ and thus desired holds. Since the final
prediction is always within the set spanned by Sk1 , we must have |µ̂k1,k2 | 6 r′ with probability at least
1−4exp(−c log2 n).

CASE 2: Suppose R∗r′ <
2logn√

n . We will first show that |µ̂S,k2 |6 r′. Similar to the proof of Theorem 3.2,

it suffices to show that R( fr′,r2k2
)< k2

2n . Indeed, we have by Lemma A.1(iv)

R( fr′,r2k2
)<

r2k2

r′
R∗r′ <

1
4
√

n logn
k2

2logn√
n

=
k2

2n
,

with probability at least 1−2exp(−c′k2).
Altogether, we conclude that |µ̂k1,k2 |6 r′, with probability at least 1−2exp(−c′k2)−4exp(−c log2 n).

C. Proofs for examples

In this appendix, we provide the proofs for the propositions regarding the examples discussed in Sec-
tion 3.1.
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C.1 Proof of Proposition 3.7

Using the symmetry and unimodality of p, we have the following relation:

2p(0)r > R( f[0,r])> 2rp(r).

Using the first inequality above and choosing r = rk, we obtain rk >
k

2p(0) . The second inequality implies

that if 2p(y)y> k
n , then rk 6 y. In the remainder of the proof, we will show the bounds for each example

using this approach:

1. The lower bound follows by noting that the density at 0 is 1√
2πσ

. As a result, rlogn >
√

2πσ logn
2n .

The upper bound follows by noting that density at x = |σ | is within constant factor of the density
at 0. Let r = (σ

√
2πe logn)/n. For large enough n, we have that r 6 σ . Thus

2p(r)r > 2p(σ)r = 2
e−1/2
√

2πσ

σ
√

2πe logn
n

=
2logn

n
.

Therefore, rk 6 (σ
√

2πe logn)/n.

2. The lower bound follows by noting that the density at x = 0 is

p(0) =

(
n

∑
i=1

1√
2πcin

)
=Θ

(
logn
cn

)
,

where we use that logn 6 ∑
n
i=1 i−1 6 (logn+1). Thus rlogn >

logn
2np(0) = Θ(1). The upper bound

follows by noting that the density at x = 1 is

p(1) =

 n

∑
i=1

e−
1

i2c2

√
2πcin

>( n

∑
i=1

1√
2πcin

(
1− 1

i2c2

))
= p(0)− 1√

2πc3n

n

∑
i=1

1
i3
,

where the inequality uses that for all x ∈ R, ex > 1 + x. As ∑
n
i=1 i3 converges, we let C =

limn ∑
n
i=1

1
i3 . We thus have that

2p(1)1> 2
(

p(0)− C
c3n

)
>

2logn√
2πn

(
1
c
− C

c3 logn

)
.

This last expression is greater than (logn)/n, when c is less than (say)
√

1/2π and n is large
enough such that logn > 2C/c2.

3. We first consider the case α > 1. The lower bound follows by noting that the density at 0 is

c logn
n

1√
2π

+
n− c logn

n
1

nα
=Θ

(
logn

n

)
.

The upper bound follows from the fact that at least c logn distributions have variance 1. Thus the
interval [−1,1] contains more than 0.6 probability of at least c logn distributions. As R( f0,1) >
0.6c(logn)/n, which is larger than (logn)/n for c> 5/3, implying that rlogn 6 1.
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We now consider the case when α < 1. The density at 0 is

c logn
n

1√
2π

+
n− c logn

n
1

nα
=Θ

(
1

nα

)
,

which implies the desired upper bound. For the desired lower bound, we note that the density at
x = 1 is also Θ

( 1
nα

)
. Using a similar calculation to that of Example 1 above, we get the desired

upper bound on rk.

C.2 Proof of Proposition 3.8

Since r = rC logn, we have R∗r =
C logn

n . By inequality (3.2) of Theorem 3.1, we have

|µ̂M,r|6
2nrC logn

C logn
, (A.1)

w.h.p.

1. Analogously to Proposition 3.7, we have rC logn = Θ

(
Cσ logn

n

)
. Inequality (A.1) then gives the

result.

2. The bound of Õ(n) follows by inequality (A.1) and noting that rC logn = O(1) for a fixed C and
sufficiently small c > 0. We now focus on how to obtain the tighter bound of O(nε) for an ε > 0,
using inequality (3.1).

Let R̃i( f ) be the expectation of f under Pi, i.e., R̃i( f ) = E f (Xi). Fix an ε > 0. Let r′ = nε and
r = 1. Then it suffices to show that R∗r −R( fr′,r)>C′R∗r where C′ > 0 might depend on ε but not
on n.

We will show that

(a) R∗r −R( fr′,r)> c1 ∑i6 r′
10c

R̃i( f0,r),

(b) ∑i6 r′
5c

R̃i( f0,r)> c2nR∗r .

To derive the first inequality, note that

nR∗r −nR( fr′,r)> ∑
i6 r′

10c

R( f0,1)−R( fr′,1)

> ∑
i6 r′

10c

2
∫ 1

0

1√
2πci

(
e−

x2

2c2i2 − e−
(0.5r′+x)2

2c2i2

)
dx

> ∑
i6 r′

10c

2
∫ 1

0

(1− e−
0.25r′2
2c2i2 )√

2πci
e−

x2

2c2i2 dx

> (1− e−10) ∑
i6 r′

10c

R̃i( f0,r).
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Now it remains to show that ∑i6 r′
10c

R̃i( f0,r)> c2R∗r . First note that nR∗r 6
logn

c . Hence,

∑
i6 r′

10c

R̃i( f0,1)> ∑
i: 1

c <i6 r′
10c

R̃i( f0,1)> ∑
i: 1

c <i6 r′
10c

2e−0.5
√

2πci
> c3 log

(
r′

10e

)
> c4 lognε > c5εnR∗r .

3. For α < 1, let r′ =Θ (nα). Then it is easy that R( fr′,r) 6
R∗r
2 . This follows by observing that the

density of a Gaussian distribution decreases by more than half at a distance of σ from the mean.

For α > 1, let r′ = 10. Then R∗r > 0.5C logn
n , as a Gaussian distribution contains about 0.68 mass

within 1 standard deviation of the mean. Moreover,

R( fr′,r)6 0.1
C logn

n
+

n√
2πnα

6 0.2
C logn

n
6

R∗r
2
.

Inequality (3.1) then implies the result.

C.3 Proof of Proposition 3.9

In the following, we will show the bounds on r2
√

n logn, which gives us the result:

1. As in the proof of Proposition 3.7, we have rk =Θ
(

σk
n

)
for small k.

2. By Lemma A.1(i), we have r2
√

n logn 6 2σ(4
√

n logn) = O(
√

n logn).

3. Note that for any fixed k, the value of rk for Example 3.6 is smaller than the value of rk for
Example 3.4 with σ = nα . Thus, we have r2

√
n logn = O

(
nα
√

n logn
n

)
= O

(
nα−0.5 logn

)
.

C.4 Proof of Proposition 3.12

We first provide the main steps of the proof. Proofs of supporting lemmas are contained in further
sub-sections.

C.4.1 Main argument. Proof. (Proof of Proposition 3.12) Let W be a generic random variable with
distribution Qn as defined in Example 3.11. Let A = [−2,2]. Consider two disjoint set of hypothesis
classes K and J , with K = { fx,1 : x ∈ A} and J = { fx,1 : x 6∈ A}. The hypothesis class J contains
the intervals that are far from 0. Define the following random variables:

Z1 = sup
f∈K

Rn( f ), Z2 = sup
f∈J

Rn( f ).

We would show that with constant non-zero probability: (i) Z1 < Z2 and (ii) the maximum is achieved
in Z2 at intervals that are far from 0.

Note that R∗1 = sup f∈K R( f ) = Θ (n−α). Define R∗J
def
= sup f∈J R( f ). Note that supremum is

achieved in both the cases and R∗J < R∗1. Moreover, we have the following straightforward relations:

1. 2R∗1 > P(W ∈ A)> R∗1.

2. nR∗J =Θ
(
n1−α

)
.
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3. P(W ∈ A)
√

nR∗J = O(1).

4. For every constant C′, there exists another constant C > 0 such that

R∗J +C

√R∗J
n

> R∗1 +C′
(√

R∗1
n

)
.

These relations suffice for showing that Z1 < Z2 with constant probability. To this end, we would show

that with constant probability both (1) Z1 = R∗1 +O
(√

R∗1
n

)
, and (2) Z2 > R∗J +C

(√
R∗J

n

)
, for any

C > 0. Note that these events are dependent and thus we’d use the following lemma, which shows
that conditioned on the inclusion of points in each of two disjoint intervals, the distributions of the
histograms on each of the intervals behave independently:

LEMMA A.1 Let {x1, . . . ,xn} be i.i.d. draws from a distribution with density pi. Consider two disjoint
intervals A and B. For any two disjoint subsets S,T ⊆ {1, . . . ,n}, we use xS to denote the vector (xi : i ∈
S), and we define xT similarly. Let E denote the event that xi ∈ A for all i ∈ S, and xi ∈ B for all ∈ T .
Then for xS ⊆ A and xT ⊆ B, we have

pS,T (xS,xT | E) = pS(xS | E)pT (xT | E).

Furthermore,

pS(xS | E) = ∏
i∈S

pi(xi)

P(Xi ∈ A)
, and

pT (xT | E) = ∏
i∈T

pi(xi)

P(Xi ∈ B)

are the joint densities of independent draws from the renormalized distributions of the points lying in
each interval.

Let S ⊂ {1, . . . ,n} be an index set. For a fixed index set S, let the event ES be ES = {XS ⊂ A,XSc ⊂
Ac}, where XS is the vector (Xi : i ∈ S) and A is defined above.

Conditioned on ES, Lemma A.1 states that Xi’s are independent. Thus conditioned on ES, the random
variables Z1 and Z2 are independent.

LEMMA A.2 Consider the setting in Proposition 3.12. Let S⊂ [n] be such that |S|6 nP(A). Conditioned
on the event ES, we have that for some C′ > 0,

Z1 6 R∗1 +C′
√

R∗1
n

with a constant nonzero probability.

LEMMA A.3 Consider the setting in Proposition 3.12. Let S ⊂ [n] be such that |Sc| > nP(Ac). Condi-
tioned on the event ES, we have that for all C > 0,

Z2 > R∗Jn
+C

√R∗Jn

n


with a constant, nonzero probability depending on the constant C.
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LEMMA A.4 Let X1, . . . ,Xn
i.i.d.∼ P, where P is a uniform distribution over [−b,−a]

⋃
[a,b] for some

06 a < b. For a r > 0, let Z = sup f∈Hr
Rn( f ) and k ∈ N such that E = {Z = k} is an event of nonzero

probability. If b−a
r >C, then

1. P(|µ̂M,r|> b−a
2 )> c > 0.

2. P(|µ̂M,r|> b−a
2 |Z > k)> c > 0.

Lemmas A.2, A.3, and A.4 give us the required lower bound on the probability of error. Let
µ̂M,1,J := argmax f∈J Rn( f ). Clearly, we can write

P

{
|µ̂M,1|>

nα

2

}
= P

{
Z1 < Z2, |µ̂M,1,J |>

nα

2

}
= ∑

S⊂[n]
P(ES)P

(
Z1 6 Z2, |µ̂M,1,J |>

nα

2

∣∣∣∣ES

)
> ∑

S⊂[n]:|S|6nP(A)
P(ES)P

(
Z1 6 nR∗1 +C

√
nR∗,Z2 > nR∗1 +C

√
nR∗1, |µ̂M,1,J |>

nα

2

∣∣∣∣ES

)
.

Furthermore, note that since Z1 is computed over the points lying in A and Z2 and µ̂M,1,J is computed
over the points lying in Ac, Lemma A.1 implies that

P

(
Z1 6 nR∗1 +C

√
nR∗1,Z2 > nR∗1 +C

√
nR∗1, |µ̂M,1,J |>

nα

2

∣∣∣∣ES

)
= P

(
Z1 6 nR∗1 +C

√
nR∗1

∣∣∣∣ES

)
P

(
Z2 > nR∗1 +C

√
nR∗1, |µ̂M,1,J |>

nα

2

∣∣∣∣ES

)
= P

(
Z1 6 nR∗1 +C

√
nR∗1

∣∣∣∣ES

)
P

(
Z2 > nR∗1 +C

√
nR∗1

∣∣∣∣ES

)
·P
(
|µ̂M,1,J |>

nα

2

∣∣∣∣Z2 > nR∗1 +C
√

nR∗1,ES

)
.

Finally, note that conditioned on ES, the points in Ac are certainly still uniformly distributed by the
construction. Hence, we can apply Lemmas A.2, A.3, and A.4 to lower-bound each of the three factors
by a constant. We conclude that

P

{
|µ̂M,r|>

nα

2

}
> ∑

S⊂[n]:|S|6nP(A)
P(ES)Θ(1) =Θ(1),

where the final equality uses the fact that for X ∼Bin(n, p), we have P(X 6EX)=Θ(1). This concludes
the proof of Proposition 3.12. �

C.4.2 Proof of Lemma A.1. Proof. (Proof of Lemma A.1) Clearly, we have

pS,T (xS,xT | E) =
pS,T (xS,xT )

P(E)
=

∏i∈S pi(xi)∏ j∈T pi(x j)

P(E)
.
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Similarly, we may write

pS(xS | E) =
pi(xS)∏ j∈T P(X j ∈ B)

P(E)
,

pT (xT | E) =
pi(xT )∏i∈S P(Xi ∈ A)

P(E)
.

Using the fact that
P(E) = ∏

i∈S
P(Xi ∈ A)∏

j∈T
P(X j ∈ B)

implies the desired statements. �

C.4.3 Proof of Lemma A.2. Proof. (Proof of Lemma A.2) Throughout the whole proof, we will con-
dition on the set ES. Conditioned on ES, Lemma A.1 states that XS is a vector of |S| i.i.d. points with
distribution, say, Qn|A. Under Qn|A, sup f∈K R( f ) = R∗1

P(W∈A) >
1
2 .

Using Theorem A.2 (Theorem 8.3.23 in Vershynin[45]), we get that

E

[∣∣∣∣∣ sup
f∈K

∑
i∈S

f (Xi)−E[ f (Xi)|ES]

∣∣∣∣∣
]
6C

√
|S|6C

√
2|S|

R∗1
P(W ∈ A)

,

where the last step uses that 2R∗1 > P(W ∈ A). Thus, with constant positive probability,

Z1 = sup
f∈K

∑
i

f (Xi)6 |S|
R∗1

P(A)
+C′

√
|S|

R∗1
P(A)

6 nR∗1 +C′
√

nR∗1,

where we use Markov’s inequality and the assumption that |S|6 nP(A).
�

C.4.4 Proof of Lemma A.3. Proof. (Proof of Lemma A.3) We will condition on the event ES throughout
the proof. Once we have conditioned on ES, there are |Sc| points distributed over Ac according to
Lemma A.1, i.e., i.i.d. with a uniform distribution, say, Qn|Ac . Consider a fixed function f ∈J . As the
distribution is uniform, R( f ) = R∗J .

For each i ∈ Sc, let Yi = f (Xi)−
R∗J

P(Ac) . Yi’s are centered i.i.d. Bernoulli random variables. We
calculate the following quantities required for the Berry-Esseen Theorem,

E[Yi] = 0

V[Yi] =
R∗J

P(Ac)

(
1−

R∗J
P(Ac)

)
>

R∗J
2P(Ac)

E |Yi|3 =
R∗J

P(Ac)

∣∣∣∣∣1− R∗J
P(Ac)

∣∣∣∣∣
3

+

(
1−

R∗J
P(Ac)

)∣∣∣∣∣ R∗J
P(Ac)

∣∣∣∣∣
3

6
R∗J

P(Ac)
+

(
R∗J

P(Ac)

)3

6 2
R∗J

P(Ac)
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By the Berry-Esseen Theorem [45], we have

P

{
∑i∈Sc Yi√
|Sc|V[Yi]

> t

}
> φ(t)− E |Yi|3√

V[Yi]3|Sc|
> φ(t)−

2R∗J
P(Ac)√ (

R∗J
)3

8P(Ac)3 nP(Ac)

> φ(t)− c′√
nR∗J

= φ(t)−on(1),

where φ(t) def
= P(g6 t) and g∼N (0,1). Therefore,

P

Z2 > R∗J +C

√R∗J
n

> P

{
∑
i∈Sc

f (Xi)> nR∗J +C
√

nR∗J

}

= P

{
∑
i∈Sc

Yi > |S|R∗J +C
√

nR∗J

}

= P

 1√
|Sc|V[Yi]

∑
i∈Sc

Yi >
|S|R∗J +C

√
nR∗J√

|Sc|V[Yi]


> φ

 |S|R∗J +C
√

nR∗J√
|Sc|V[Yi]

−on(1)

> φ

nP(A)R∗J +C
√

nR∗J√
nP(Ac)

R∗J
2P(Ac)

−on(1)

> φ

(
P(A)

√
nR∗J +

√
2C
)
−on(1)> cφ

(
C′+
√

2C
)

where we use that for α > 1
3 , P(A)

√
nR∗J =Θ

(
n−α+ 1−α

2

)
= O(1). �

C.4.5 Proof of Lemma A.4. Proof. (Proof of Lemma A.4) Let H be the set of intervals of width equal to
2r. Currently, the intervals near the endpoints have less probability mass. We will replace such intervals
with bigger intervals to make the process symmetric. First consider the intervals near ±a which have
less probability mass: we can instead focus on bigger intervals to include the middle interval [−a,a]. Let
J := {1[x,y] : |x− y|= 2r+2(b−a), |x+a|6 2r}. Next we can consider warping the number line and
“joining” the two endpoints, i.e., let K := {1[−∞,x]∪[y,∞] : 06 b−y6 2r,06 x+b6 2r,y−x = 2b−2r}.

Let H ′ :=J ∪K ∪H \{ f ∈H : R( f )< 2r
2(b−a)} and µ̂ ′M,r = argmax f∈H ′ Rn( f ). Note that every

function in H ′ contains equal mass and the distribution is uniform. Moreover, for |x| ∈ [ b−a
2 , 3(b−a)

4 ],
fx,r ∈H ′∩H because b−a>Cr. Thus we have not removed a lot of functions from H .

The problem of the location of µ̂ ′M,r is equivalent to a uniform distribution on a circle of circumfer-
ence 2(b− a), where we form the circle by joining −a and a at a single point, and join −b to b. By
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symmetry, we obtain that |µ̂ ′M,r| is uniform on [a,b]. Thus P
(
|µ̂ ′M,r| ∈ [ b−a

2 , 3(b−a)
4 ]

)
= 1

4 .

P

(
|µ̂M,r|>

b−a
2

)
> P

(
|µ̂M,r| ∈

[
b−a

2
,

3(b−a)
4

])
> P

(
|µ̂ ′M,r| ∈

[
b−a

2
,

3(b−a)
4

])
=

1
4
.

This proves the first statement. Now, we consider the case when we condition on the value of Z. Note
that if |µ̂ ′M,r| ∈

[
b−a

2 , 3(b−a)
4

]
, then Z = Z′.

P

(
|µ̂M,r|>

b−a
2

∣∣∣∣Z > k
)
> P

(
|µ̂M,r| ∈

[
b−a

2
,

3(b−a)
4

]∣∣∣∣Z > k
)

> P

(
|µ̂ ′M,r| ∈

[
b−a

2
,

3(b−a)
4

]∣∣∣∣Z > k
)

=
P
(
|µ̂ ′M,r| ∈

[
b−a

2 , 3(b−a)
4

]
,Z > k

)
P(Z > k)

>
P
(
|µ̂ ′M,r| ∈

[
b−a

2 , 3(b−a)
4

]
,Z > k

)
P(Z′ > k)

=
P
(
|µ̂ ′M,r| ∈

[
b−a

2 , 3(b−a)
4

]
,Z′ > k

)
P(Z′ > k)

= P

(
|µ̂ ′M,r| ∈

[
b−a

2
,

3(b−a)
4

]∣∣∣∣Z′ > k
)
=

1
4

where we use the following Lemma A.5 for independence of µ̂ ′M,r and Z′. �

LEMMA A.5 Suppose X1, . . . ,Xn are i.i.d. uniform points on a circle. Let E be the event that the maxi-
mum number of points contained in an arc of a certain length is equal to k. Then the joint distribution
p(x1, . . . ,xn) is rotationally invariant.

Proof. Suppose without loss of generality that the circle has circumference 1. Note that the law of
(X1, . . . ,Xn) can be equivalently generated as follows: First generate Y1, . . . ,Yn

i.i.d.∼ Uni f [0,1]. Next,
generate R∼Uni f [0,1], and define Xi = Yi +R for all 16 i6 n, where the addition is taken modulo 1.
We want to show that

p(x1, . . . ,xn | E) = p(x1 + r, . . . ,xn + r | E) (A.2)

for any r ∈ [0,1], where addition is again taken modulo 1. Clearly, it suffices to consider configurations
(x1, . . . ,xn) that are consistent with E.

We can calculate

p(x1, . . . ,xn | E) =
∫

E ′ p(x1, . . . ,xn,y1, . . . ,yn)dy
P(E)

,

where the integral is taken over the region of [0,1]n containing points (y1, . . . ,yn) that can be obtained
from (x1, . . . ,xn) via some rotation. Importantly, note that

p(x1, . . . ,xn,y1, . . . ,yn) = p(x1, . . . ,xn | y1, . . . ,yn)p(y1, . . . ,yn) = p(y1, . . . ,yn),
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since R is uniform, so we have

p(x1, . . . ,xn | E) =
∫

E ′ p(y1, . . . ,yn)dy
P(E)

.

Similarly, we can write

p(x1 + r, . . . ,xn + r | E) =
∫

E ′ p(x1 + r, . . . ,xn + r,y1, . . . ,yn)dy
P(E)

=

∫
E ′ p(y1, . . . ,yn)dy

P(E)
.

This establishes the desired equality (A.2) and completes the proof. �

D. Proofs for multivariate estimators

In this appendix, we provide proofs of the various theorems and lemmas for multivariate mean estima-
tion.

D.1 Proof of Theorem 4.1

The initial steps in the proof parallel the proof of Theorem 3.1, where Lemma A.2 is proved using the
concentration inequality in Lemma 2.2. It then follows that if we choose r such that R∗r >C0.5

(
(d+1) logn

n

)
,

we have R( fµ̂M,r ,r)>
R∗r
2 , w.h.p.

Now let r2 = 4r
(

2
R∗r

) 1
d . By Lemma 2.1(i), the desired result will follow if we can show that

R( fr2,r)6
R∗r
2 . By Lemma 2.1(iv), we have

R( fr2,r)6
R∗r
2
·R∗r2
6

R∗r
2
.

To obtain inequality (4.2), note that using Lemma 2.1(v), we know that r = 2
√

dσ(2Cd logn) satisfies
the assumption on R∗r . Plugging into inequality (4.1) then produces the desired bound.

D.2 Proof of Theorem 4.2

Let j′ := min{ j ∈J : r j > r∗}. Then

P( j∗ > j′) = P

 ⋃
i∈J :i> j′

{
‖µ̂M,ri − µ̂M,r j′‖2 > 8ri

(
2n

C0.5(d +1) logn

)1/d
}

6 P

(
‖µ̂M,r j′ ‖2 > 4r j′

(
2n

C0.5(d +1) logn

)1/d
)

+ ∑
i∈J :i> j′

P

(
‖µ̂M,ri‖2 > 4ri

(
2n

C0.5(d +1) logn

)1/d
)
,

using a union bound and the triangle inequality. We may use Theorem 4.1 to bound each individual
term, so that the probability of the bad event

E :=
⋃

i∈J :i> j′

{
‖µ̂M,ri‖2 > 4ri

(
2n

C0.5(d +1) logn

)1/d
}
∪

{
‖µ̂M,r j′‖2 > 4r j′

(
2n

C0.5(d +1) logn

)1/d
}
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is bounded by

P(E)6 (1+ |J |) ·2exp(−c′d logn)

6 2
(

1+ log2

(
2rmax

rmin

))
exp(−c′d logn).

Finally, note that on the event Ec, we have j∗ 6 j′ (establishing that j∗ is finite), so

‖µ̂M,r j∗ − µ̂M,r j′ ‖2 6 8r j′

(
2n

C0.5(d +1) logn

)1/d

.

Combined with the inequality ‖µ̂M,r j′‖2 < 4r j′
(

2n
C0.5(d+1) logn

)1/d
, we conclude that

‖µ̂M,r j∗‖2 6 8r j′

(
2n

C0.5(d +1) logn

)1/d

+4r j′

(
2n

C0.5(d +1) logn

)1/d

6 12r j′

(
2n

C0.5(d +1) logn

)1/d

6 24r∗
(

2n
C0.5(d +1) logn

)1/d

,

using the fact that r j′ < 2r∗.

D.3 Proof of Lemma 4.1

We first prove the upper bound. Note that R( f0,r2k) = R∗r2k
= 2k

n . It suffices to show that this ball contains
at least k points, with high probability. By the multiplicative form of the Chernoff bound (Lemma A.1
in Appendix H),

P

(
Rn( f0,r2k)6

k
n

)
= P

(
Rn( f0,r2k)6

1
2

R( f0,r2k)

)
6 exp

(
−n · k

n
· 1

8

)
= exp(−k/8).

Therefore, with probability at least 1−exp(−k/8), a ball of radius r2k contains at least k points, implying
that the shortest gap, r̂k 6 r2k.

We now turn to verifying the lower bound. We will prove that with high probability, no ball of radius
rk/2 contains at least k points, so that r̂k > rk/2. By definition, nR∗rk/2

= k
2 . Thus, assuming k>C0.5d logn,

we may apply Lemma 2.2 to conclude that

sup
f∈Hrk/2

Rn( f )−R( f )6
R∗rk/2

2
,

with probability at least
1− exp

(
−cn

4
R∗rk/2

)
= 1− exp(−ck/8).
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This implies that

sup
f∈Hrk/2

Rn( f )6
3
2
·R∗rk/2

=
3
2
· k

2n
<

k
n
,

which is exactly what we want.

D.4 Proof of Theorem 4.3

We parallel the proof of Theorem 3.2. Note that the guarantees of Lemma 4.1 and Lemma A.3 continue
to hold in d dimensions, except that we have the lower bound k > 2C0.5(d + 1) logn instead. We then
conclude that R( fµ̂S,k,r2k

)> k
2n , with probability at least 1−2exp(−c′d logn).

Setting r′ = 4r2k
( 2n

k

)1/d
, it thus suffices to show that R( fr′,r2k)6

k
2n . By Lemma 2.1(iv), we have

R( fr′,r2k)6
k

2n
·R∗r′ 6

k
2n

,

as wanted.

D.5 Proof of Theorem 4.4

We begin with the following result, which can be proved directly via a union bound on Lemma A.4:

LEMMA A.1 With probability at least 1−4d exp(−ck2/n):

(i) The cuboid S∞
k contains the origin.

(ii) We have the bound Diam(S∞
k )6 2

√
dr2k,1.

Lemma A.1 will be critical in our analysis of the hybrid estimator proposed below. In particular,
the estimator will consist of projecting the modal interval/shorth estimator onto the cuboid S∞

k , and
Lemma A.1(i) guarantees that the estimation error of the projected estimator will be no larger than the
estimation error of the initial estimator without projection. On the other hand, Lemma A.1(ii) bounds
the error of an estimator based on the k-median alone.

We first derive an upper bound of
√

dr2
√

n logn,1. We begin by deriving the following lemma, relating
the statistics of marginal distributions to the statistics of the overall distribution:

LEMMA A.2 We have that r k
2 ,1
6 C√

d
rk, for some absolute constant C > 0 and any k 6 n.

Proof. Consider a uniform distribution on a sphere (or shell) of radius r in Rd . Theorem 3.4.6 in
Vershynin [45] provides a concentration result which states that most of the probability of such a distri-
bution lies close to the equator; i.e., the set

[
− Cr√

d
, Cr√

d

]
×Rd−1 contains at least half the probability for

some absolute constant C > 0. Notice that a radially symmetric distribution is simply a weighted sum
of uniform distributions on spheres. Thus, given a radially symmetric distribution restricted to the ball
of radius r, the set

[
− Cr√

d
, Cr√

d

]
×Rd−1 will contain at least half the total probability assigned to the ball.

By our definition of rk, the ball of radius rk centered at origin, Brk , contains k
n probability mass. The

above argument implies that the set
[
−Crk√

d
, Crk√

d

]
×Rd−1 will contain at least half the probability of the

total probability contained in Brk . Equivalently, r k
2 ,1
6 C√

d
rk. �
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Since the output of the hybrid algorithm must lie within the cuboid S∞√
n logn, it is clear that we have

the error bound
‖µ̂k1,k2‖2 6

√
n1/d ·

√
dr2
√

n logn,1.

To obtain the second upper bound expression, we parallel the proof of Theorem 3.3, by splitting into
two cases:

CASE 1: r4
√

n logn 6
√

n1/dr8d logn. By Lemma A.2, we therefore have

r2
√

n logn,1 6
C√

d
r4
√

n logn 6
C√

d
·
√

n1/dr8d logn.

By Lemma A.1, w.h.p., the cuboid S∞√
n logn is entirely contained in the `2-ball of radius

√
dr2
√

n logn,1

around the origin. This ball in turn lies inside the `2-ball of radius C
√

n1/dr8d logn around the origin.
Since the output of the hybrid algorithm must also lie within this ball, the desired result follows.

CASE 2: r4
√

n logn >
√

n1/dr8d logn. Denoting r′ =
√

n1/dr8d logn, we therefore have the relation R∗r′ <
4
√

n logn
2n . In particular, since

R( fµ̂S,8d logn,r8d logn
)> Rn( fµ̂S,8d logn,r8d logn

)− 1
2

R∗r8d logn
=

8d logn
4n

,

w.h.p., by Lemma 2.2, we have

R( fr′,r8d logn)6

(
1

√
n1/d

)d

R∗r′ <
1√
n
· 2logn√

n
=

8d logn
4n

6 R( fµ̂S,8d logn,r8d logn
).

This implies that µ̂S,8d logn is within r′ of the origin.
Finally, we need to show that projecting the shorth estimator on the cuboid does not increase its

distance from the origin. Note that `2-projection onto a cuboid is simply a componentwise operation of
projection on each interval defining an edge of the cuboid. Furthermore, Lemma A.1 guarantees that the
origin lies within the cuboid, w.h.p., in which case each interval contains 0. As argued in the proof of
Theorem 3.3, the distance from the shorth estimator to the origin computed along any dimension will not
increase after the projection. Therefore, the `2-norm of the projected estimator is also upper-bounded
by r′.

Hence, if we take C′ = max{C,1}, we have the desired bound in both cases. This concludes the
proof.

D.6 Proof of Theorem 6.1

We begin by deriving the proof for the modal interval estimator. Let s1 = r
2 , and define s2 such that

R( fs2,r) =
1
3 R( fs1,r). Note that

R( fs1,r)> R( f0,r/2)>
3C1/6d logn

n
,
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so R( fs2,r)>
C1/6d logn

n . Applying Lemma 6.1 with r̄ = s1 and t = 1
6 , we conclude that

Rn( fx,r)>
2
3

R( fx,r)>
2
3

R( fs1,r), (A.1)

uniformly over ‖x‖2 6 s1, with probability at least 1− 2exp(−cnR( fs1 ,r)/36)
1−exp(−cnR( fs1 ,r)/36) , which is in turn lower-

bounded by 1−4exp(−c1d logn).
Furthermore, inequality (6.4) implies that

Rn( fx,r)6 R( fx,r)+
1
3

R( fs2,r)6
4
3

R( fs2,r) =
4
9

R( fs1,r), (A.2)

uniformly over ‖x‖2 > s2, with probability at least 1− 2exp(−cnR( fs2,r)/9) > 1− 2exp(−c2d logn).
Thus, combining inequalities (A.1) and (A.2), we conclude that

sup
‖x‖2>s2

Rn( fx,r)< inf
‖x‖26s1

Rn( fx,r), (A.3)

with probability at least 1−6exp(−c3d logn).
Now note that by inequality (A.1), we also have Rn( f0,s1)>

2
3 R( f0,s1)> 0, implying that {x1, . . . ,xn}∩

B(0,s1) 6= /0. In particular,
sup

x∈{x1,...,xn}
Rn( fx,r)> inf

‖x‖26s1
Rn( fx,r).

Together with inequality (A.3), we conclude that ‖µ̃M,r‖2 < s2.

Finally, we claim that s2 6 4r
(

n
C1/6d logn

)1/d
. To see this, let s̃2 := 4r

(
n

C1/6d logn

)1/d
, and note that

by Lemma 2.1(iv), we have

R( fs̃2,r)6
C1/6d logn

n
·R∗s̃2
6

C1/6d logn
n

.

Since the last quantity is upper-bounded by R( fs2,r), we conclude that s2 6 s̃2, as claimed.
Turning to the analysis of the computationally efficient shorth estimator, we adapt the argument in

the proof of Theorem 3.2. By Lemma 2.2, if R∗2r2k
> C0.5(d+1) logn

n , we have

sup
x

sup
r62r2k

(Rn( fx,r)−R( fx,r))<
t
2

R∗2r2k
,

with probability at least 1−2exp(−cnR∗2r2k
t2)> 1−2exp

(
−cnt2 · 2k

n

)
.

We know that k
n = Rn( fµ̃S,k,r̃k

)6 Rn( fµ̃S,k,2r2k
). Let s be defined such that R( fs,2r2k) =

k
2n . By inequal-

ity (6.4), we know that

sup
‖x‖2>s

∣∣Rn( fx,2r2k)−R( fx,2r2k)
∣∣6 1

2
R( fs,2r2k),

with probability at least 1−2exp(−ck), implying that for ‖x‖2 > s, we have

Rn( fx,2r2k)6 R( fx,2r2k)+
1
2

R( fs,2r2k)6
3
2

R( fs,2r2k) =
3k
4n

.
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Since this is strictly smaller than Rn( fµ̃S,k,2r2k
), we conclude that ‖µ̃S,k‖2 6 s, w.h.p. , which also implies

that R( fµ̃S,k,2r2k
)> k

2n .

Finally, let r′ = 4r2k
( 2n

k

)1/d
. By Lemma 2.1(iv), we have

R( fr′,2r2k)<
k

2n
·R∗r′ 6

k
2n

< R( fµ̃S,k,2r2k
).

Applying Lemma 2.1(i), we conclude that ‖µ̃S,k‖2 6 r′.

E. Proofs for expected error bounds

In this appendix, we prove the results stated in Section 5.

E.1 Proof of Proposition 5.2

The proof sketch is that we will show that with finite probability, no interval contains more than one
low-variance point, and all the high-variance points lie far from origin. Conditioned on this event, the
modal interval estimator incurs a high error.

Let E = A∩B, where we define the events

A = {Rn( fx,1)6 1, ∀x : |x|6 3C logn},
B = {Xi 6∈ [−4C logn,4C logn], ∀i >C logn}.

Hence, on the event E, no interval overlapping with [−3C logn,3C logn] contains two low-variance
points or a single high-variance point. Then P(E) is lower-bounded by

P(E)>

(
C logn

∏
i=1

P{Xi ∈ [3i−3,3i−2]}

)(
∏

i>C logn
P{Xi 6∈ [−4C logn,4C logn]}

)

=

(
C logn

∏
i=1

1
6i

)(
∏

i>C logn
(1−n−α −hn(8C logn−2))

)

>
1

6C lognΓ (3C logn)
e−cn1−α

> exp
(
−cn1−α −O

(
log2 n

))
,

assuming hn logn� n−α , which happens for qn = Ω(n).
However, conditioned on E, the points {Xi}i>C logn are i.i.d. with the following distribution:

pi,E(x) =


0, |x|6 4C logn,

hn
(1−n−α−hn(8C logn−2)) , 4C logn < |x|6 qn,

0, otherwise.

We can now apply the symmetry arguments of Lemma A.4. Note that no interval lying inside [−3C logn,3C logn]
can contain more than one point. Thus unless a tie occurs, the mode will be located outside the interval
[−3C logn,3C logn], and hence a distance of Θ(qn) away from the mean in expectation. Even if we
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were to break ties randomly, a large error would occur with probability at least 1
n , since at most n ties

can occur. Thus,
E[|µ̂M,1||E]> P(E)E[|µ̂M,1||E]> exp(−cn1−α)Θ(qn).

The bounds in high probability follow from Lemma A.2, by noting that nR∗r = Ω (n−α) = Ω(logn).
Moreover, the density drops by at least half at x > 1.

E.2 Proof of Theorem 5.3

We begin by proving (i). By Theorem 4.1, we have

‖µ̂M,r‖2 = O

(
r
(

c
R∗r

)1/d
)
,

with probability at least most 1−O(exp(−c′nR∗r )). In the worst case, the modal interval estimator
returns the point which is furthest from the origin, which has expected value bounded as

E

[
max

i
‖Xi‖2

]
6 E

[√
n

∑
i=1
‖Xi‖2

2

]
6

√
n

∑
i=1

E[‖Xi‖2
2]6

√
n ·dσ2

(n).

Using the assumption that σn 6 r exp(CnR∗r ), for some constant C > 0, we then have

E‖µ̂M,r‖2 6 O

(
r
(

c
R∗r

)1/d
)
+O(exp

(
−c′nR∗r

)
)
√

ndσ(n)

6 O

(
r
(

c
R∗r

)1/d
)
+O

(
exp
(
−c′nR∗r

)
r
√

nd exp(CnR∗r )
)

= O

(
r
(

c
R∗r

)1/d
)
,

where in the last inequality, we use the facts that

exp(−c′nR∗r )
√

nd = O(exp(−c′′nR∗r ))

and nR∗r = Ω (d logn), and choose C < c′′.
Turning to (ii), we first prove the following concentration result, which may be viewed as a refine-

ment of Lemma 2.2 that is suitable for our settings. For example, note that if R∗J = O
( 1

n

)
, the

derivations from Lemma 2.2 would not be meaningful since R∗J = o
(

logn
n

)
. On the other hand, if

KR∗J =Θ

(
logn

n

)
, Lemma A.1 gives a vanishing upper bound.

LEMMA A.1 Let J be a set of intervals and define R∗J := sup f∈J R( f ). If R∗J 6
1
3 , then for any

K > 8, we have

P

{
sup
f∈J

Rn( f )> KR∗J

}
6

2
R∗J

exp
(
−cnR∗J K logK

)
.
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Proof. For a given f ∈J , the desired bound follows from Chernoff’s inequality. We want to upper-
bound the probability that any one interval in J has too many points. In general, the set J may be
infinite, so a direct union bound is not feasible. We thus create a new finite set of intervals F , not
necessarily a subset of J , satisfying the following properties:

1. For each f ∈F , we have
R∗J

2 6 R( f )6 R∗J .

2. |F |6 2
R∗J

.

3. F covers J in the sense that ∀ f ∈J ,∃ f1, f2 ∈F : f (x)6 f1(x)+ f2(x).

It follows that if any interval in J contains at least k points, then at least one interval in F contains at
least k

2 points. We construct F of cardinality |F |= d 1
R∗J
e6 2

R∗J
, as follows: To create the first interval

(i = 1), define x1 ∈ R such that R(1(−∞,x1])) =
1
|F | . (Such an x1 exists because P is assumed to have a

density.) Then iteratively, for each i > 1, define xi such that R(1(xi−1,xi]) =
1
|F | . For the final interval,

add 1[xi−1,∞) to F and terminate the construction. Note that for each f ∈F , we have R( f ) = 1
d1/R∗J e

,

which clearly lies in
[

R∗J
2 ,R∗J

]
under the assumptions.

We are now ready to apply the union bound on F using Lemma A.1(ii):

P

{
sup
f∈J

Rn( f )> KR∗J

}
6 P

{
sup
f∈F

Rn( f )>
KR∗J

2

}

6 |F |P

{
Rn( f )>

KR∗J
2

for a fixed f with R( f )6 R∗J

}

6
2

R∗J
exp
(
−cnR∗J K logK

)
.

�
For an s> 0, let Js = { fx,r : ‖x‖2 > s}, i.e., the set of intervals which incur large error. By assump-

tion, the support of at least CnR∗r points is contained in [−r,r], implying that Rn( f0,r) > CR∗r , a.s. If
‖µ̂M,r‖2 > s, then sup f∈Js

Rn( f )>CR∗r . However as s increases, the quantity R∗Js
:= sup f∈Js

R( f ) =
R( fs,r) decreases. We can then use Lemma A.1 to control this probability of error.
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For s> Kr
CR∗r

, it follows from Lemma 2.1(iv) that R∗Js
= R( fs,r)6

CR∗r
K . Taking K >C′, we then have

P{|µ̂M,r|> s}6 P

(
sup
f∈Js

Rn( f )>CR∗r

)

= P

(
sup
f∈Js

Rn( f )>
CR∗r
R∗Js

R∗Js

)

6
2

R∗Js

exp

(
−cnR∗Js

CR∗r
R∗Js

log

(
CR∗r
R∗Js

))

=
2

R∗r
exp

(
−cCnR∗r log

(
CR∗r
R∗Js

)
+ log

(
R∗r

R∗Js

))

6
2

R∗r
exp

(
−c′nR∗r log

(
R∗r

R∗Js

))
,

where we have applied Lemma A.1 in the second inequality. Thus,

E |µ̂M,r|6
4r

CR∗r
+
∫

∞

4r
CR∗r

P{|µ̂M,r|> s}ds

6 O
(

r
R∗r

)
+

2
R∗r

∫
∞

4r
CR∗r

exp

(
−c′nR∗r log

(
R∗r

R∗Js

))
ds

6 O
(

r
R∗r

)
+

2
R∗r

∫
∞

4r
CR∗r

exp
(
−c′nR∗r log

(
sR∗r

r

))
ds

6 O
(

r
R∗r

)
+

r
R∗r

2
R∗r

∫
∞

4/C
exp
(
−c′nR∗r logs1

)
ds1

= O
(

r
R∗r

)
+

r
R∗r

2
R∗r

∫
∞

4/C
s−c′nR∗r

1 ds1

6 O
(

r
R∗r

)
+

r
R∗r

2
R∗r
· 1

c′nR∗r −1
(4/C)1−c′nR∗r

= O
(

r
R∗r

)
,

where the third inequality uses the fact that R∗Js
= R( fs,r) 6 r

s , and the last equality follows from an
appropriately small choice of C.

E.3 Proof of Theorem 5.4

Note that for any s > 0, Markov’s inequality gives

min
µ̂

max
{Pi}⊆P(σ1,σ2,p)

E[‖µ̂−µ‖2]>min
µ̂

max
{Pi}⊆P(σ1,σ2,p)

s ·P(‖µ̂−µ‖2 > s).

Clearly, the right-hand expression is lower-bounded by the maximum over any specific collection of dis-
tributions in the class P(σ1,σ2, p). In particular, let Pµ

m be the collection of multivariate distributions



REFERENCES 63 of 77

where each distribution is either N(µ,σ2
1 I) or N(µ,σ2

2 I), with m distributions of the latter type. We then
have

min
µ̂

max
{Pi}⊆P(σ1,σ2,p)

P(‖µ̂−µ‖2 > s)>min
µ̂

max
µ

max
np6m62np

P(‖µ̂−µ‖2 > s | {Pi}= Pµ
m)

>min
µ̂

max
µ

∑
np6m62np

P(‖µ̂−µ‖2 > s | {Pi}= Pµ
m) pm,

where {pm} is any allocation of probabilities defined over {Pµ
np, . . . ,P

µ

2np}, such that 0 6 pm 6 1 for
all m and ∑m pm 6 1. In particular, consider the probability mass function {qm}n

m=1 over {Pµ

1 , . . . ,P
µ
n }

corresponding to the Binomial(n, p) distribution, and define pm = qm for all np6 m6 2np.
Now let Pµ

Bin denote the probability distribution when the Pi’s are chosen i.i.d. in the following
manner: with probability p′ := 1.5p, the distribution is N(µ,σ2

2 I), and with probability 1− 1.5p, the
distribution is N(µ,σ2

1 I). Then

Pµ

Bin(‖µ̂−µ‖2 > s) =
n

∑
m=1

P(‖µ̂−µ‖2 > s | {Pi}= Pµ
m)qm.

Hence,∣∣∣∣∣ ∑
np6m62np

P(‖µ̂−µ‖2 > s | {Pi}= Pµ
m) pm−Pµ

Bin(‖µ̂−µ‖2 > s)

∣∣∣∣∣6 ∑
m<np

qm + ∑
m>2np

qm

6 2exp(−cnp)

6 2exp(−c′ logn),

where second inequality follows from the multiplicative Chernoff bound (Lemma A.1) and the last
inequality follows by the assumption p = Ω

(
logn

n

)
. Combining the inequalities, we conclude that

min
µ̂

max
{Pi}⊆P(s1,s2,p)

E[‖µ̂−µ‖2]> s
(

min
µ̂

max
µ

Pµ

Bin(‖µ̂−µ‖2 > s)−2exp(−c′ logn)
)
.

Thus, it suffices to find s such that the expression minµ̂ maxµ Pµ

Bin(‖µ̂−µ‖2 > s) can be lower-bounded
by a constant.

For part (i), using standard techniques [42, 46], we may obtain such a lower bound via Fano’s
inequality. In particular, if we can construct a set {µ1, . . . ,µM} ⊆ Rd such that ‖µ j − µk‖2 > 2s and
KL(P

µ j
Bin,P

µk
Bin)6 α for all j 6= k, then

min
µ̂

max
µ

Pµ

Bin(‖µ̂−µ‖2 > s)>
(

1− α + log2
logM

)
.

Note that by tensorization and convexity of the KL divergence, we have the upper bound

KL(P
µ j
Bin,P

µk
Bin)6 n(1− p′)KL

(
N(µ j,σ

2
1 I),N(µk,σ

2
1 I)
)
+np′KL

(
N(µ j,σ

2
2 I),N(µk,σ

2
2 I)
)
, (A.1)

where the KL divergences in the right-hand expression are computed with respect to single samples from
the respective multivariate normal distributions. Furthermore, the right-hand side of inequality (A.1) is
easily calculated to be

n(1− p′) ·
‖µ j−µk‖2

2

2σ2
1

+np′ ·
‖µ j−µk‖2

2

2σ2
2

= n‖µ j−µk‖2
2

(
1− p′

2σ2
1

+
p′

2σ2
2

)
.
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In particular, suppose {µ1, . . . ,µM} is a 2s-packing of the ball of radius 4s in `2-norm, with s =

C
√

d min
{

σ1√
n ,

σ2√
np′

}
. Then logM > cd and

KL(P
µ j
Bin,P

µk
Bin)6 4ns2

(
1− p′

2σ2
1

+
p′

2σ2
2

)
6 4C2d := α.

For a sufficiently small choice of C, we conclude that minµ̂ maxµ Pµ

Bin(‖µ̂− µ‖2 > s) > 1
2 . Hence, we

arrive at the desired bound (5.2).
We now turn to part (ii). We derive the tighter lower bound (5.4) for the case d = 1 by evaluating

KL(Pµ1
Bin,P

µ2
Bin) more directly. By Theorem 2.2 in Tsybakov [42], we know that if we have a pair µ1,µ2 ∈

Rd such that ‖µ1−µ2‖2 > 2s and
KL(Pµ1

Bin,P
µ2
Bin)6 α < ∞, (A.2)

then

min
µ̂

max
µ

Pµ

Bin(‖µ̂−µ‖2 > s)>max

{
exp(−α)

4
,

1−
√

α/2
2

}
.

Again, since the KL divergence tensorizes, it suffices to compute the KL divergence between a single
sample from the distributions Pµ1

Bin and Pµ2
Bin, which we denote by P1 and P2, respectively.

We provide the details of the calculation for general d, with the assumption (5.3) replaced by the
condition (

σ1

σ2

)d

= O
(

1
np2

)
. (A.3)

By a straightforward calculation, we have

log
(

dP1(x)
dP2(x)

)
= log

 (1− p′) 1
(
√

2πσ1)d exp
(
−‖x−µ1‖22

2σ2
1

)
+ p′ 1

(
√

2πσ2)d exp
(
−‖x−µ1‖22

2σ2
2

)
(1− p′) 1

(
√

2πσ1)d exp
(
−‖x−µ2‖22

2σ2
1

)
+ p′ 1

(
√

2πσ2)d exp
(
−‖x−µ2‖22

2σ2
2

)


=

(
−‖x−µ1‖2

2

2σ2
1

+
‖x−µ2‖2

2

2σ2
1

)
+ log

(
1+ y
1+ z

)
,

where

y :=
p′

1− p′

(
σ1

σ2

)d

exp
(
−‖x−µ1‖2

2

2σ2
2

+
‖x−µ1‖2

2

2σ2
1

)
,

z :=
p′

1− p′

(
σ1

σ2

)d

exp
(
−‖x−µ2‖2

2

2σ2
2

+
‖x−µ2‖2

2

2σ2
1

)
.

Hence,

KL(P1,P2) = E
x∼P1

[
−‖x−µ1‖2

2

2σ2
1

+
‖x−µ2‖2

2

2σ2
1

]
+ E

x∼P1

[
log
(

1+ y
1+ z

)]
6
‖µ1−µ2‖2

2σ2
1

+ E
x∼P1

[y]− E
x∼P1

[z]+ E
x∼P1

[z2],
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using the fact that

log
(

1+ y
1+ z

)
= log

(
1+

y− z
1+ z

)
6

y− z
1+ z

6 y− z+ z2,

since y,z > 0. We now write

E
x∼P1

[y] =
p′

1− p′

(
σ1

σ2

)d
(
(1− p′)

∫
exp
(
−‖x−µ1‖2

2

2σ2
2

+
‖x−µ1‖2

2

2σ2
1

)
1

(
√

2πσ1)d
exp
(
−‖x−µ1‖2

2

2σ2
1

)
dx

+ p′
∫

exp
(
−‖x−µ1‖2

2

2σ2
2

+
‖x−µ1‖2

2

2σ2
1

)
1

(
√

2πσ2)d
exp
(
−‖x−µ1‖2

2

2σ2
2

)
dx

)
:= Ay +By,

and

E
x∼P1

[z] =
p′

1− p′

(
σ1

σ2

)d
(
(1− p′)

∫
exp
(
−‖x−µ2‖2

2

2σ2
2

+
‖x−µ2‖2

2

2σ2
1

)
1

(
√

2πσ1)d
exp
(
−‖x−µ1‖2

2

2σ2
1

)
dx

+ p′
∫

exp
(
−‖x−µ2‖2

2

2σ2
2

+
‖x−µ2‖2

2

2σ2
1

)
1

(
√

2πσ2)d
exp
(
−‖x−µ1‖2

2

2σ2
2

)
dx

)
:= Az +Bz.

Now, we may calculate

Ay = p′
(

1√
2πσ2

)d ∫
exp
(
−‖x−µ1‖2

2

2σ2
2

)
dx = p′,

and

By =
(p′)2

1− p′

(
σ1√
2πσ2

2

)d ∫
exp
(
−‖x−µ1‖2

2

σ2
2

+
‖x−µ1‖2

2

2σ2
1

)
dx

=
(p′)2

1− p′

(
σ1√
2πσ2

2

)d
 π

1
σ2

2
− 1

2σ2
1

d/2

6
(p′)2

1− p′

(
σ1

σ2

)d

,

using the fact that 1
2σ2

1
6 1

2σ2
2

. Under the assumption (A.3), we get that By = O(1/n).

For ease of calculation, we now set

µ
T
1 = (µ,0, . . . ,0),

µ
T
2 = (−µ,0, . . . ,0). (A.4)

Using the formula

∫
exp
(
−xT Ax+bT x+ c

)
dx =

√
πd

det(A)
exp
(

1
4

bT A−1b+ c
)
, (A.5)
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we have

Az = p′
(

1√
2πσ2

)d ∫
exp
(
−‖x−µ2‖2

2

2σ2
2

+
‖x−µ2‖2

2

2σ2
1
− ‖x−µ1‖2

2

2σ2
1

)
dx

= p′ exp

(
σ2

2
2

(∥∥∥∥ µ2

σ2
2
− µ2

σ2
1
+

µ1

σ2
1

∥∥∥∥2

2
− µT

2 µ2

2σ2
2

+
µT

2 µ2

2σ2
1
− µT

1 µ1

2σ2
1

))

= p′ exp
(
−2µ

2
(

1
σ2

1
− σ2

2

σ4
1

))
.

In particular, using the fact that exp(−x)> 1− x for x> 0, we have

Ay−Az = p′−Az 6 p′ ·2µ
2
(

1
σ2

1
− σ2

2

σ4
1

)
6

2µ2

σ2
1
.

We can use the simple fact that Bz > 0 to ensure that By−Bz 6 By = O(1/n).
Combining the inequalities, we conclude that

E
x∼P1

[y]− E
x∼P1

[z] = O
(

µ2

σ2
1

)
+O

(
1
n

)
.

Finally, we compute

E
x∼P1

[z2] =

(
p′

1− p′

)2(
σ1

σ2

)2d
(
(1− p′)

∫
exp
(
−‖x−µ2‖2

2

σ2
2

+
‖x−µ2‖2

2

σ2
1

)
· 1
(
√

2πσ1)d
exp
(
−‖x−µ1‖2

2

2σ2
1

)
dx

+ p′
∫

exp
(
−‖x−µ2‖2

2

σ2
2

+
‖x−µ2‖2

2

σ2
1

)
1

(
√

2πσ2)d
exp
(
−‖x−µ1‖2

2

2σ2
2

)
dx

)
:= A′z +B′z.

Again using the designation (A.4) and the formula (A.5), we have

A′z =
(p′)2

1− p′

(
σ1√
2πσ2

2

)d ∫
exp
(
−‖x−µ2‖2

2

σ2
2

+
‖x−µ2‖2

2

σ2
1

− ‖x−µ1‖2
2

2σ2
1

)
dx

=
(p′)2

1− p′

 σ1√
2σ2

2

√
1

σ2
2
− 1

2σ2
1

d

exp

 1

4
(

1
σ2

2
− 1

2σ2
1

) ∥∥∥∥2µ2

σ2
2
− 2µ2

σ2
1
+

µ1

σ2
1

∥∥∥∥2

2
− µT

2 µ2

σ2
2

+
µT

2 µ2

σ2
1
− µT

1 µ1

2σ2
1


=

(p′)2

1− p′

 σ1√
2σ2

2

√
1

σ2
2
− 1

2σ2
1

d

exp

 (−2µ/σ2
2 +3µ/σ2

1 )
2

4
(

1
σ2

2
− 1

2σ2
1

) − µ2

σ2
2
+

µ2

2σ2
1


6

(p′)2

1− p′

(
σ1

σ2

)d

exp

 (−2µ/σ2
2 +3µ/σ2

1 )
2

4
(

1
σ2

2
− 1

2σ2
1

) − µ2

σ2
2
+

µ2

2σ2
1

 ,
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and

B′z =
(p′)3

1− p′

(
σ2

1√
2πσ3

2

)d ∫
exp
(
−‖x−µ2‖2

2

σ2
2

+
‖x−µ2‖2

2

σ2
1

− ‖x−µ1‖2
2

2σ2
2

)
dx

=
(p′)3

1− p′

 σ2
1√

2σ3
2

√
3

2σ2
2
− 1

σ2
1

d

exp

 1

4
(

3
2σ2

2
− 1

σ2
1

) ∥∥∥∥2µ2

σ2
2
− 2µ2

σ2
1
+

µ1

σ2
2

∥∥∥∥2

2
− µT

2 µ2

σ2
2

+
µT

2 µ2

σ2
1
− µT

1 µ1

2σ2
2


=

(p′)3

1− p′

 σ2
1√

2σ3
2

√
3

2σ2
2
− 1

σ2
1

d

exp

 (−µ/σ2
2 +2µ/σ2

1 )
2

4
(

3
2σ2

2
− 1

σ2
1

) − 3µ2

2σ2
2
+

µ2

σ2
1


6

(p′)3

1− p′

(
σ1

σ2

)2d

exp

 (−µ/σ2
2 +2µ/σ2

1 )
2

4
(

3
2σ2

2
− 1

σ2
1

) − 3µ2

2σ2
2
+

µ2

σ2
1

 .

Considering the exponential terms in the expressions for A′z and B′z, note that for A′z, we have

(−2µ/σ2
2 +3µ/σ2

1 )
2

4
(

1
σ2

2
− 1

2σ2
1

) − µ2

σ2
2
=

µ2

σ2
2


(

2− 3σ2
2

σ2
1

)2

4
(

1− σ2
2

2σ2
1

) −1

< 0,

assuming σ2 6 σ1, whereas for B′z, we have

(−µ/σ2
2 +2µ/σ2

1 )
2

4
(

3
2σ2

2
− 1

σ2
1

) − 3µ2

2σ2
2
=

µ2

σ2
2


(

1− 2σ2
2

σ2
1

)2

4
(

3
2 −

σ2
2

σ2
1

) − 3
2

< 0,

using the fact that σ2 6 σ1. Thus, using the assumption (A.3), we obtain

E
x∼P1

[z2] = A′z +B′z = O
(

1
n

)
exp
(

µ2

2σ2
1

)
+O

(
1

n2 p

)
exp
(

µ2

σ2
1

)
= O

(
1
n

)
exp
(

µ2

σ2
1

)
.

Finally, we take µ = σ1√
n to obtain the desired bound (A.2). This completes the proof.

E.4 Proof of Theorem 5.5

By a similar argument used to derive the bound in Theorem 5.3, the following expected error bound
may be derived from the high-probability bound in Theorem 4.4 for the hybrid estimator:

E‖µ̂k1,k2‖2 6min
{√

dr2k1,1,
√

n1/drk2

}
. (A.6)

In what follows, we will bound these expressions to obtain the desired results.



68 of 77 REFERENCES

As shown in the proof of Lemma 2.1(v), a ball of radius Cσ2
√

d around the origin will contain at
least 1

2 of the mass of np distributions. Thus, if np> 2k2, we will have rk2 6Cσ2
√

d.
We now claim that r2k1,1 6

Cσ1 logn√
n := r′, which we will show by integrating the marginal densities

on the interval [−r′,r′]. Note that νi 6 σ1 for all i. We consider two cases: if νi > r′, then qi(r′) >
c
νi
> c

σ1
, using inequality (5.5), so

∫
[−r′,r′] qi(x)dx > 2cr′

σ1
> 2logn√

n for large enough C. If νi < r′, then∫
[−νi,νi]

q(x)dx> c′ > 2logn√
n , as well. Thus,

n

∑
i=1

∫
[−r′,r′]

qi(x)dx>
n

∑
i=1

2logn√
n
> 2
√

n logn = 2k1. (A.7)

Combining the results with inequality (A.6) proves inequality (5.7).
We now consider the special cases:

(a) In the case when p = Ω

(√
n logn

n

)
, we can use fact that at least np = Ω(

√
n logn) points have

marginal variance at most σ2. Let r′ := Cσ2 logn
p
√

n . By similar reasoning as above, for at least np

distributions, we have
∫
[−r′,r′] qi(x)dx> logn

p
√

n . Thus, we can replace inequality (A.7) by

n

∑
i=1

∫
[−r′,r′]

qi(x)dx> np · 2logn
p
√

n
> 2
√

n logn,

to conclude that r2k1,1 = O
(

σ2 logn
p
√

n

)
. This leads to the stated bound.

(b) In this case, we will obtain a better bound by showing that ‖µ̂S,k2‖2 6 r2k2 , w.h.p., rather than
the looser bound ‖µ̂S,k2‖2 6C′

√
n1/drk2 used to derive inequality (A.6) (cf. Theorem 4.4). Since

r2k2 6Cσ2
√

d, the tighter bound will then follow.

Let r′ :=C′
√

d lognσ2. As argued in the proof of Theorem 4.3, it suffices to show that R( fr′,r2k)6
k

2n , where k = k2. We will deal with low-variance and high-variance points separately.

First, consider i such that νi = Ω(σ1) = Ω(σ2n
1
d ) >C′′σ2n

1
d for large C′′, and let vd denote the

volume of the ball of radius 1. Then

P
(
Xi ∈ B(r′,r2k)

)
6 P(Xi ∈ B(0,r2k))6 fi(0)vdrd

2k 6

(
c′

C′′σ2n1/d

)d

vdσ
d
2 Cd
√

d
d
6

1
n
,

where we use condition (5.6) and the fact that vd
√

d
d

C̃d 6 1 for a sufficiently large constant C̃.

Now consider i such that νi 6 σ2. By condition (5.6), we have

P
(
Xi ∈ B(r′,r2k)

)
6 exp(−c1 logn)6

1
nc1

.

For large enough C′, we can ensure that c1 > 1. Altogether, we conclude that

R( fr′,r2k) =
1
n

n

∑
i=1

P
(
Xi ∈ B(r′,r2k)

)
6

1
n
<

k2

2n
,

which concludes the proof.
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E.5 Details for Table 2

1. Large Heterogeneity

• Upper bound: We have σ1
σ2

= Ω(n1/d). Since σ2 = 1, Theorem 5.5(b) states that the error of
the hybrid estimator is bounded as follows:

E‖µ̂−µ‖2 6C′′u
√

d
√

logn.

• Lower bound: As remarked after Theorem 5.5, the lower bounds for the class P(σ1,σ2, p)
also hold for the class Q(σ1,σ2, p), because these families share the class of distributions
used in the proof of Theorem 5.4. Using Theorem 5.4(a), the error of any estimator µ̂ is
bounded from below as follows:

E‖µ̂−µ‖2 >C`

√
d min

(
1
√

np
,

σ1√
n

)
=C`

√
d

√
np

min(1,σ1
√

p) = Ω

( √
d

√
np

)
,

where we use the fact that σ1
√

p = Ω(1) by assumption.

2. Mild Heterogeneity

• Upper bound: Since σ2 = 1, inequality (5.7) in Theorem 5.5 states that the error of the
hybrid estimator is bounded as follows:

E‖µ̂−µ‖2 6C′′u
√

dσ1
logn√

n
.

• Lower bound: Using Theorem 5.4(a), the error of any estimator µ̂ is bounded from below
as follows:

E‖µ̂−µ‖2 >C`

√
d min

(
1
√

np
,

σ1√
n

)
=C`

√
d√
n

min
(

1
√

p
,σ1

)
= Ω

(√
dσ1√

n

)
,

where we use the fact that σ1 = O(1/
√

p) by assumption.

3. Large p

• Upper bound: As p = Ω

(√
n logn

n

)
, Theorem 5.5(a) states that the error of the hybrid esti-

mator is bounded as follows:

E‖µ̂−µ‖2 6C′u
√

d lognmin
(

1
p
√

n
,

σ1√
n

)
.

• Lower bound: The lower bound follows directly from Theorem 5.4(a).

F. Proofs for alternative conditions

In this appendix, we prove the statements of the results in Section 7.
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F.1 Proof of Theorem 7.1

We first prove claim (i). Note that the result of Lemma A.2 will still hold, since it only depends on
the uniform concentration bound and optimality of the modal interval estimator. Thus, R( fµ̂M,r ,r)>

R∗r
2 ,

w.h.p.
For a fixed value of r′, define µ̂ ′ =

µ̂M,r
‖µ̂M,r‖2

· r′ to be the rescaled version of µ̂M,r. By condition (C1),

we will have ‖µ̂M,r‖2 6 r′ if we can show that R( fµ̂ ′,r)6 R( fµ̂M,r ,r). Note that

R( fµ̂ ′,r)6 g(r′,r),

so if we choose r′ sufficiently large so that g(r′,r)< R∗r
2 , the desired inequality will hold.

Turning to claim (ii), note that Lemma 4.1 continues to hold, since it only relies on the uniform
concentration bound and a Chernoff bound. We thus conclude that R( fµ̂S,k,r2k

)> k
4n =

R∗2k
4 , w.h.p. For a

fixed value of r′, we define µ̂ ′ =
µ̂M,r2k
‖µ̂M,r2k‖2

· r′. By condition (C1) (which we only need to assume holds

for r = r2k), if R( fµ̂ ′,r2k
)6 R( fµ̂M,r2k ,r2k

), then ‖µ̂M,r2k‖2 6 r′. Furthermore, R( fµ̂ ′,r2k
)6 g(r′,r2k), so we

simply need to choose r′ such that g(r′,r2k)<
1
4 .

For the hybrid estimator, note that Lemma A.1 shows that the output is always within
√

dr4
√

n logn,1
of the output. Furthermore, the output of shorth estimator is always with r′ of the origin by part (ii).
If the shorth estimator lies outside the S∞√

n logn, then its `2 projection on S∞√
n logn will only decrease its

distance from the origin because (1) the origin belongs to S∞√
n logn; and (2) S∞√

n logn is convex.

F.2 Proof of Proposition 7.2

We first show that for each r > 0, the functions Ri( fx,r) are unimodal as functions of x ∈ Rd . Let q be
the uniform distribution on the Euclidean ball of radius r. Then pi ?q, being a convolution of two log-
concave densities, is also log-concave. Log-concave densities by definition are proportional to e−φ(x)

for some convex function φ , and therefore they are unimodal and monotonically decreasing along rays
from the mode. Now note that if condition (C3) holds, then Ri( fx,r) must also be symmetric around 0.
Hence, if Ri( fx,r) is unimodal, its unique mode must clearly occur at 0. This proves that conditions (C2)
and (C3) together imply condition (C1).

For the second statement, it suffices to verify the inequality

sup
‖x‖2=a

Ri( fx,r)6
1

ba/2rc
, ∀i. (A.1)

Indeed, we would then have

g(a,r) = sup
‖x‖2=a

1
n

n

∑
i=1

Ri( fx,r)6
1
n

n

∑
i=1

sup
‖x‖2=a

Ri( fx,r)6
1

ba/2rc
.

Thus, it remains to verify inequality (A.1). Focusing on a particular i, consider x ∈ Rd such that
‖x‖2 = a. We know that Ri( fx,r) is decreasing on the ray from 0 to x. Furthermore, we can pack b a

2r c
balls of radius r on the ray, including the balls B(x∗i ,r) and B(x,r) at the endpoints. The total mass of
these balls is clearly upper-bounded by 1. Hence,⌊ a

2r

⌋
·Ri( fx,r)6 1,

implying the desired result.



REFERENCES 71 of 77

F.3 Proof of Proposition 7.4

Let X have an elliptically symmetric density defined as pX (x) = f (xT Σ−1x) for a decreasing function
f : R→ R. Consider a point x0 ∈ Rd such that ‖x0‖2 = r2, and consider the ball B(x0,r1) = {x ∈
Rd : ‖x− x0‖ 6 r1}. For analysis purposes, we first transform the elliptically symmetric density to a
spherically symmetric, decreasing density. This may be achieved by applying the linear transformation
Σ−1/2 : Rd → Rd . Define Y := Σ−1/2X , let Σ−1/2x0 = y0, and let B̂ be the image of B(x0,r1) under the
transformation Σ−1/2. Note that

B̂ =
{

y ∈ Rd : (y− y0)
T

Σ(y− y0)6 r1

}
,

and further note that R( fx0,r1) is equal to the integral of pY (·) over B̂; i.e., P(Y ∈ B̂). It is easy to see that

B̂⊆ B
(

y0,
r1

λmin(Σ)

)
. Hence,

R( fx0,r1) = P(Y ∈ B̂)6 P(Y ∈ B
(

y0,
r1

λmin(Σ)

)
.

We may now use the strategy from Lemma 2.1, to obtain

1> P(Y ∈ B(0,‖y0‖2))

> P
(

B(0,‖y0‖2),
r1

λmin(Σ)

)
·P
(

Y ∈ B
(

y0,
r1

λmin(Σ)

))
> P

(
B
(

0,
r2

λmax(Σ)

)
,

r1

λmin(Σ)

)
·R( fx0,r1).

Since this inequality holds for any x2 with ‖x2‖2 = r2, we conclude that

g(r2,r1)6
1

P
(

B
(

0, r2
λmax(Σ)

)
, r1

λmin(Σ)

)
6C

(
r1λmax(Σ)

r2λmin(Σ)

)d

.

F.4 Proof of Proposition 7.6

We index the distributions so that {Ri}s
i=1 are radially symmetric. Note that

g(a,r) = sup
‖x‖2=a

R( fx,r)6
1
n

n

∑
i=1

sup
‖x‖2=a

Ri( fx,r).

Furthermore, for each 16 i6 s, we have

sup
‖x‖2=a

Ri( fx,r)6
( r

a

)d
Ri( f0,a)6

( r
a

)d
.

On the other hand, for i > s, we have
sup
‖x‖2=a

Ri( fx,r)6
r
a
.
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Hence,

g(a,r)6
s
n

( r
a

)d
+

n− s
n

( r
a

)
.

Now note that R∗q( f (n))
> f (n)

2n . Thus,

g(r′,r)6
s
n
· 1

2dn
+

n− s
n
· 1

2n1/d 6
1
n
+

n− s
n
· 1

2n1/d <
f (n)
4n
6

R∗r
2
,

using the assumed lower bound on s.

G. Proofs for regression

In this appendix, we provide the proofs of the statements in Section 8.

G.1 Proof of Proposition 8.1

We write

n

∑
i=1

E
[
1
{
|yi− xT

i β |6 r
}]

=
n

∑
i=1

P
(
|yi− xT

i β |6 r
)

=
n

∑
i=1

P
(
|xT

i (β
∗−β )+ εi|6 r

)
.

Note that conditioned on xi, each summand is maximized uniquely when xT
i (β

∗− β ) = 0, since the
distribution of εi is symmetric and unimodal. Since

n

∑
i=1

E
[
1
{
|yi− xT

i β |6 r
}]

= E

[
n

∑
i=1

E
[
1
{
|yi− xT

i β |6 r
}
| {xi}n

i=1
]]

, (A.1)

we see that the right-hand expression in equation (A.1) is therefore maximized when β = β ∗. On the
other hand, we can also argue that the maximizer is unique. Indeed, suppose β ∈ Rd were such that
β 6= β ∗. The set S :=

{
{xi}n

i=1 ⊆ (Rd)n : xT
i (β − β̂ ) = 0 ∀i

}
has Lebesgue measure 0. We can write

E

[
n

∑
i=1

E
[
1
{
|yi− xT

i β |6 r
}
| {xi}n

i=1
]]

=
∫
{xi}∈S

E
[
1
{
|yi− xT

i β |6 r
}
| {xi}n

i=1
]

dP({xi})

+
∫
{xi}/∈S

E
[
1
{
|yi− xT

i β |6 r
}
| {xi}n

i=1
]

dP({xi}).

Noting that

E
[
1
{
|yi− xT

i β |6 r
}
| {xi}n

i=1
]
= E

[
1
{
|yi− xT

i β
∗|6 r

}
| {xi}n

i=1
]
, ∀{xi} ∈S ,

E
[
1
{
|yi− xT

i β |6 r
}
| {xi}n

i=1
]
< E

[
1
{
|yi− xT

i β
∗|6 r

}
| {xi}n

i=1
]
, ∀{xi} /∈S ,

completes the proof.
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G.2 Proof of Theorem 8.2

The proof follows the same approach used to prove estimation error bounds for the modal interval
estimator throughout the paper (e.g., Theorem 3.1). By Lemma 8.1, we know that R

β̂
>

Rβ∗
2 , w.h.p. We

will be done if we can show that Rβ <
Rβ∗

2 for all β satisfying

‖β −β‖2 >
c′nσ(cd logn)

λmin
. (A.2)

First note that

Rβ ∗ =
1
n

n

∑
i=1

P(|εi|6 r).

Hence, as argued for mean estimation, we certainly have r 6C′σ(Cd logn).
Also note that for any β ∈ Rd , we have

yi− xT
i β = εi + xT

i (β
∗−β )∼ N

(
(β ∗−β )T

µ
′
i ,(β

∗−β )T
Σ
′
i (β
∗−β )

)
.

Let J denote the set of indices of the smallest d logn of the σi’s. Note that

Rβ ∗ >
1
n ∑

i∈J
P(|εi|6 r)> 2r · c

n

d logn

∑
i=1

1√
2πσ(i)

,

since the Gaussian pdf decreases by a factor of ≈ 68% within one standard deviation of 0.
Now suppose β ∈ Rd satisfies inequality (A.2). We have

Rβ 6
1
n

n

∑
i=1

P(|zi|6 r) ,

where zi ∼ N
(
0,σ2

i +(β ∗−β )T Σ ′i (β
∗−β )

)
. For i /∈J , we write

P(|zi|6 r)6 2r · 1
√

2π

√
σ2

i +(β ∗−β )T Σ ′i (β
∗−β )

6
2r

nσ(d logn)
√

2π
,

since by the choice of β , we have

(β ∗−β )T
Σ
′
i (β
∗−β )> λmin‖β −β

∗‖2
2 > n2

σ
2
(d logn).

For i ∈J , we write

P(|zi|6 r)6 2r · 1
√

2π

√
σ2

i +(β ∗−β )T Σ ′i (β
∗−β )

6
2r

3σ2
i

√
2π

,

since by the choice of β , we have

(β ∗−β )T
Σ
′
i (β
∗−β )> 2σ

2
(d logn) > 2σ

2
i .

Thus, we conclude that

Rβ 6
2r√
2π
· 1

n

(
∑

i∈J

1
3σ2

i
+ ∑

i/∈J

1
nσ(d logn)

)
6

Rβ ∗

3
+

c′

n
<

Rβ ∗

2
,

as wanted. This concludes the proof.
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G.3 Proof of Theorem 8.3

For i ∈ [n], consider the sets
Ui := {β ⊆ Rd :−r 6 xT

i β 6+r}.

The set Ui is sandwiched between the two hyperplanes xT
i β = yi− r and xT

i β = yi + r. Denote these
hyperplanes by H−(Ui) and H+(Ui), respectively. These 2n hyperplanes partition Rd into a finite num-
ber of (possibly unbounded) convex regions, which we denote by {R1, . . . ,RM}. Define the function
f (β ) := ∑

n
i=1 1Ui(β ). Our goal is to find β̂ = argmax

β∈Rd f (β ), where 1Ui is the indicator function
of Ui. It is easy to see that f (·) is constant when restricted to the interior of any fixed region R j
for j ∈ [M]. Also, since 1Ui is an upper-semicontinuous function for each i ∈ [n], so is f . Thus,
the value of f (·) at the vertices R j is at least as large as the value of f in its interior. Thus, to find
the maximum of f (·), we may only consider β ∈ Rd that correspond to vertices of R j for j ∈ [M].
All such vertices may be obtained by choosing any d (mutually non-parallel) hyperplanes from among
{H−(U1), . . . ,H−(Un),H+(U1), . . . ,H+(UM)} and considering their point of intersection. The total num-
ber of such points is bounded above by

(2n
d

)
, and our algorithm may simply list such points and evaluate

f at each point in the list.

H. Auxiliary results

This appendix contains several technical results invoked throughout the paper.
We will employ the following multiplicative Chernoff bound, which is standard (cf. Vershynin [45]

or Boucheron et al. [6]):

LEMMA A.1 Let X1, . . . ,Xn be independent Bernoulli random variables with parameters {pi}. Let
Sn = ∑

n
i=1 Xi and µ = E[Sn].

(i) For any δ ∈ (0,1], we have

P(Sn > (1+δ )µ)6 exp
(
−µδ 2

3

)
.

and

P(Sn 6 (1−δ )µ)6 exp
(
−µδ 2

2

)
.

(ii) For δ > 4, we have
P(Sn > δ µ)6 exp(−cµδ logδ ) .

We will also use the following result from Boucheron et al. [6]:

LEMMA A.2 (Theorem 12.9 from Boucheron et al. [6]) Let W1, . . . ,Wn be independent vector-valued
random variables and let Z = sups∈T ∑

n
i=1 Wi,s. Assume that for all i6 n and s ∈T , we have EWi,s = 0,

and |Wi,s|6 1. Let

v := 2EZ +ρ
2,

ρ
2 := sup

t∈T

n

∑
i=1

EW 2
i,s.
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Then V(Z)6 v and

P{Z > EZ + t}6 exp
(
− t

4
log
(

1+2log
(

1+
t
v

)))
.

We now state and prove a generalization of Theorem 13.7 from Boucheron et al.[6]:

THEOREM A.1 Let A = {At : t ∈ T } be a countable class of measurable subsets of X with VC
dimension V , such that A0 = /0 ∈ A . Let X1, . . . ,Xn be independent random variables taking values in
X , with distributions P1, . . . ,Pn, respectively. Assume that for some σ > 0, we have

1
n

n

∑
i=1

Pi(At)6 σ
2, for every t ∈T .

Let Z and Z− be defined as follows:

Z =
1√
n

sup
t∈T

n

∑
i=1

(1Xi∈At −Pi(At)) , and

Z− =
1√
n

sup
t∈T

n

∑
i=1

(Pi(At)−1Xi∈At ) .

If σ > 24
√

V
5n log

(
4e2

σ

)
, then

max
(
EZ,EZ−

)
6 72σ

√
V log

4e2

σ
.

Proof. The following proof is an adaptation of the proof of Theorem 13.7 in Boucheron et al. [6].
The generalization from identical to non-identical distributions is possible because (1) independence
suffices for symmetrization inequality; and (2) after conditioning on X1, . . . ,Xn, it is no longer relevant
whether the distributions of the random variables are identical. We include the initial steps of the proof
for completeness and direct the reader to Boucheron et al. [6] for more details.

By the symmetrization inequalities of Lemma 11.4 in Boucheron et al. [6], we have

E
1√
n

sup
t∈T

n

∑
i=1

(1Xi∈At −P(At))

6 2E

[
E

[
1√
n

sup
t∈T

n

∑
i=1

εi1Xi∈At

∣∣∣∣X1, . . . ,Xn

]]
, (A.1)

where the εi’s are independent Rademacher variables. Define the random variable

δ
2
n = max

(
sup
t∈T

1
n

n

∑
i=1

1Xi∈At , σ
2

)
.
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Clearly, δ 2
n 6

Z√
n +σ2, so by Jensen’s inequality,3

Eδn 6

√
E

(
Z√
n

)
+σ2.

Now let Zt =
1√
n ∑

n
i=1 εi1Xi∈At . Noting that the Rademacher averages are sub-Gaussian, conditioned

on the Xi’s, we have

logE
[
eλ (Zt−Zt′ )

∣∣∣X1, . . . ,Xn

]
6

λ 2
( 1

n ∑
n
i=1(1Xi∈At −1Xi∈At′ )

2
)

2

=
λ 2
( 1

n ∑
n
i=1(1Xi∈At 6= 1Xi∈At′ )

)
2

.

Let d(t, t ′) =
√

1
n ∑

n
i=1(1Xi∈At 6= 1Xi∈At′ ), and let H(δ ,T ) denote the universal δ -metric entropy

(with respect to d(·, ·)). Since the zero function (corresponding to /0) belongs to the function class, we
have

sup
t∈T

d(t,0) = sup
t∈T

√
1
n

n

∑
i=1

1Xi∈At 6 δn.

Therefore, we can apply the discrete version of Dudley’s inequality (Lemma 13.1 in Boucheron et al. [6])
with δn as the maximum radius. Since δn > σ , we can upper-bound the random quantity H(aδn) by the
fixed quantity H(aσ), for any a > 0. This implies that

E

[
1√
n

sup
t∈T

n

∑
i=1

εi1Xi∈At

∣∣∣∣X1, . . . ,Xn

]

6 3
∞

∑
j=0

δn2− j
√

H(δn2− j−1,T )

6 3
∞

∑
j=0

δn2− j
√

H(σ2− j−1,T ).

Taking the expectation with respect to X1, . . . ,Xn and combining with inequality (A.1) we then obtain

EZ 6 6Eδn ·
∞

∑
j=1

2− j
√

H(σ2− j−1,T )

6 6

√
E

(
Z√
n

)
+σ2

(
∞

∑
j=1

2− j
√

H(σ2− j−1,T )

)
.

From this step onward, the proof is identical to the proof of Theorem 13.7 in Boucheron et al. [6]. �

3Note that both Z and Z− are non-negative since φ ∈A .
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THEOREM A.2 (Theorem 8.3.23 in Vershynin[45]) Let F be a class of Boolean functions on a prob-
ability space (Ω ,Σ ,µ) with finite VC dimension V > 1. Let X ,X1,X2, . . . ,Xn be independent random
points in Ω distributed according to the law µ . Then

E

[
sup
f∈F

∣∣∣∣∣1n n

∑
i=1

f (Xi)−E f (X)

∣∣∣∣∣
]
6C

√
V
n
.


