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Abstract—We study simple binary hypothesis testing un-
der communication constraints, a.k.a. “decentralized detection”.
Here, each sample is mapped to a message from a finite set of
messages via a channel before being revealed to a statistician. In
the absence of communication constraints, it is well known that
the sample complexity is characterized by the Hellinger distance
between the distributions. We show that the sample complexity
of hypothesis testing under communication constraints is at most
a logarithmic factor larger than in the unconstrained setting, and
demonstrate that distributions exist in which this characterization
is tight. We also provide a polynomial-time algorithm which
achieves the aforementioned sample complexity. Our proofs rely
on a new reverse data processing inequality and a reverse
Markov’s inequality, which may be of independent interest.

Index Terms—hypothesis testing, communication constraints,
reverse data processing inequality, reverse Markov’s inequality,
f -divergences

A full version of this paper is accessible here [1].

I. INTRODUCTION

Statistical inference has been studied under various con-
straints such as memory, privacy, and communication [2]–
[10], designed to model physical or economical constraints.
Our work focuses on communication constraints, where the
statistician does not have access to the original sample, but
only collects observations passed through a communication-
constrained channel. For example, instead of observing the
original sample x ∈ X , the statistician might observe a single
bit f(x) ∈ {0, 1}, for some function f : X → {0, 1}. The
choice of the channel (here, the function f ) crucially affects
the quality of statistical inference and is the topic of study in
our paper.

A recent line of work has established minimax optimal rates
of communication-constrained channels [10]–[12] for a variety
of problems, including distribution estimation and identity
testing. However, previous work on communication constraints
for simple hypothesis testing is fairly limited. Recall the
simple hypothesis testing framework: Let P be a given finite
set of distributions over the domain X . Given i.i.d. samples
X1, . . . , Xn from an unknown distribution P ∈ P , the goal is
to correctly identify P with high probability, with n as small
as possible. We denote this problem as B(P) and use n∗(P) to
denote its sample complexity; i.e, the necessary and sufficient
number of samples to solve B(P).
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When P = {p, q}, this is referred to as the binary hypothesis
testing problem and has a rich history in statistics [13]–[16].
Given its historical and practical significance, we have a very
good understanding of this problem (cf. Section II for details).
In particular, it is known that n∗(P) = Θ(1/d2

h(p, q)), where
dh(p, q) refers to the Hellinger distance between p and q.

Hypothesis testing under communication constraints was
studied in detail in the 1980s and 1990s under the name
“decentralized detection” [2]. Briefly, the setup involves n
users and a central server. Each user i observes an i.i.d. sample
Xi from an unknown distribution p′ ∈ P , generates a D-
valued message Yi ∈ {0, 1, . . . , D − 1} using a channel Ti

(chosen by the statistician), and transmits Yi to the central
server. The central server observes (Y1, . . . , Yn) and produces
an estimate p̂ ∈ P . The goal is to choose (T1, . . . ,Tn) so
that the central server can identify p′ correctly with high
probability, while keeping n as small as possible. We call
this problem “simple hypothesis testing under communication
constraints” and denote it by B(P, D). We denote the corre-
sponding sample complexity by n∗(P, D).

We will focus on the binary hypothesis testing problem,
i.e., P = {p, q}. It is known that the central server should
perform a likelihood ratio test. Furthermore, an optimal choice
of channels can be achieved using (deterministic) threshold
tests, i.e., Yi = fi(Xi) for some fi : X → {0, 1, . . . , D − 1},
such that fi is characterized by D intervals that partition R+

and fi(x) = j if and only if p(x)/q(x) lies in the jth interval.
The optimality of threshold tests crucially relies on the fi’s
being possibly non-identical across users.

Despite such progress, fundamental statistical and compu-
tational questions have remained unanswered. We begin with
the following statistical question:

For P = {p, q}, what is the sample complexity
of B(P, D), and what is n∗(P,D)

n∗(P) ?
Let n∗ = n∗(P) and n∗bin = n∗(P, 2) for notational con-
venience. A folklore result using Scheffe’s test implies that
n∗bin/n

∗ . n∗ (cf. Proposition A.3). Our main result is
an exponential improvement in this guarantee, showing that
n∗bin/n

∗ . log(n∗), i.e., communication constraints only lead
to at most a logarithmic increase in sample complexity. More
specifically, we show the following sample complexity bound:

n∗(P, D) . n∗(P) max

(
1,

log(n∗(P))

D

)
. (1)



Furthermore, there exist cases where the bound (1) is tight (cf.
Theorem IV.2). The bound can further be improved when the
support size of p and q is smaller than log(n∗(P)).

Turning to computational considerations, let p and q be
distributions over k elements. The optimality of threshold tests
implies that each user can search over kΩ(D) possible such
channels, which is prohibitive for large D. This exponential-
time barrier has been highlighted as a major computational
bottleneck in decentralized detection [2], leading to the fol-
lowing question:

Is there a poly(k,D)-time algorithm to
compute channels (T1, . . . ,Tn) that achieve the

sample complexity bound (1)?
We answer this question affirmatively by showing that it
suffices to consider threshold tests parameterized by a single
quantity (cf. equation (3)). In fact, we show that it suffices to
use an identical channel across the users.

We summarize our main contributions as follows:
1) We establish the minimax optimal sample complexity (cf.

inequality (1)) of binary simple hypothesis testing under
communication constraints (Theorems IV.1 and IV.2).

2) We provide an efficient algorithm, running in poly(k,D)
time, to find a channel that achieves the minimax optimal
sample complexity.

3) Along the way, we prove the following two technical
results which may be of independent interest: (i) a reverse
data processing inequality for general f -divergences and
communication-constrained channels (Theorem III.2),
and (ii) a reverse Markov inequality for bounded random
variables (Lemma III.6).

The remainder of the paper is organized as follows: we define
notation, formally state the problem, and recall useful facts
in Section II. Section III contains a reverse data processing
inequality for f -divergences. Section IV then derives the
statistical and computational guarantees for binary hypothesis
testing. More technical proofs are deferred to the Appendix.

II. PRELIMINARIES

Notation: Throughout this paper, we will focus on discrete
distributions. For n ∈ N, we use [n] to denote {1, . . . , n}
and [0 : n] to denote {0, 1, . . . , n}. We use ∆k to denote
the set of distributions over k elements. For a distribution
p ∈ ∆k and i ∈ [k], we use both pi and p(i) to denote
the probability of element i under p. For two distributions p
and q, let dTV(p, q) denote the total variation distance, and let
dh(p, q) =

√∑
i(
√
p
i
−√q

i
)2 denote the Hellinger distance.

Given n distributions p1, . . . , pn, we use
∏n
i=1 pi to denote

their product distribution. When each pi = p, we use p⊗n

to denote the n-fold product distribution. For a set A ⊆ X ,
we use IA : X → {0, 1} to denote the indicator function of
A. We consider [a, b) to be an empty set when b ≤ a. We
will denote channels by bold capital letters, such as T. For a
channel T : X → Y and a distribution p over X , we use Tp
to denote the distribution over Y when X ∼ p passes through
the channel T. We use c, c1, c2, . . . to denote absolute positive

constants, whose values might change from line to line, but
with values which can be inferred by careful bookkeeping. We
also use C,C1, C2, . . . to denote absolute positive constants
that remain the same throughout the proof. We use . and & to
hide positive constants. We also use the standard asymptotic
notation O(·), Ω(·), and Θ(·). We use poly(·) to denote a
quantity that is polynomial in its arguments.

A. Definitions and basic facts

Definition II.1 (f -divergence). For a convex function f :
R+ → R with f(1) = 0, we use If (p, q) to denote
the f -divergence between p and q, defined as If (p, q) :=∑
i qif (pi/qi).1

We now define the binary hypothesis testing problem:

Problem II.2 (Simple binary hypothesis testing). Let p and q
be two distributions over X . Given p and q, we say a function
(test) φ : ∪∞n=1Xn → {p, q} solves the simple hypothesis
testing problem with sample complexity n if it is the smallest
n′ that satisfies

Px∼p⊗n′ {φ(x) = q}+ Px∼q⊗n′ {φ(x) = p} ≤ 0.1.

We define the sample complexity of hypothesis testing to be
the largest n such that for any n′ < n, no test exists with
sample complexity n′. We use B(p, q) to denote the binary
hypothesis testing problem and n∗(p, q) to denote the sample
complexity of B(p, q).

Fact II.3 (Hellinger distance and B(p, q) [18]). n∗(p, q) =
Θ(1/d2

h(p, q)).

We now define Scheffe’s test.

Definition II.4 (Scheffe’s test). For two distributions p and
q, consider the set A = {x : p(x) ≥ q(x)}. Let p′ and q′

denote the distributions of IA(X) when X is distributed as p
and q, respectively. Given (x1, . . . , xn) ∈ Xn, Scheffe’s test
transforms each individual point xi to IA(xi) and then applies
the optimal test between p′ and q′ to the transformed points.2

It is easy to see that dTV(p′, q′) = dTV(p, q), which implies
that dh(p′, q′) ≥ 0.5d2

h(p, q) (using Fact A.1), leading to
an O(1/d4

h(p, q)) sample complexity of Scheffe’s test. This
dependence is tight, see, for example, [19]. Formally, see
Proposition A.3 in Appendix A.

B. Simple hypothesis testing under communication constraints

Definition II.5 (Channels with communication constraints).
Let X be the domain, P a family of distributions over X , and
T a family of channels from X to Y . Let {Ui}ni=1 denote a
set of n users who choose channels {Ti}ni=1 ⊆ T according
to a rule R : [n] → T n.3 Each user Ui then observes a

1We use the following convention [17]: f(0) = limt→0+ f(t), 0f(0/0) =
0, and for a > 0, 0f(a/0) = a limu→∞ f(u)/u.

2Note that p′ and q′ are Bernoulli distributions with probability of observing
1 equal to p(A) and q(A), respectively. The optimal test between p′ and q′
corresponds to a threshold on

∑
i IA(xi).

3We consider deterministic rules for simplicity.



random variable Xi i.i.d. from an (unknown) p′ ∈ P , and
generates Yi = Ti(Xi) ∈ Y . The central server U0 observes
(Y1, . . . , Yn) and constructs an estimate p̂ = φ(Y1, . . . , Yn).

Let TD denote the set of all channels from X to [0 : D−1].
We now formally define the problem of simple binary hypoth-
esis testing under communication constraints.

Definition II.6 (Simple hypothesis testing under communica-
tion constraints). For D ≥ 2, we define simple binary hypoth-
esis testing under communication constraints of D-messages,
denoted by B(p, q, TD), to be the problem in Definition II.5
when P = {p, q}, Y = [0 : D − 1], and T = TD.

Definition II.7 (Sample complexity of B(p, q, T ). For a given
test-rule pair (φ,R) with φ : ∪∞j=1Yj → P , we say that
(φ,R) solves B(p, q, TD) with sample complexity n if it
is the smallest n so that P(x1,...,xn)∼p⊗n(φ(y1, . . . , yn) =
q) + P(x1,...,xn)∼q⊗n(φ(y1, . . . , yn) = p) ≤ 0.1. We use
n∗(p, q, T ) to denote the sample complexity of this task,
i.e., the smallest n so that there exists a (φ,R)-pair that
solves B(p, q, T ). We use n∗identical(p, q, T ) to denote the
setting where each channel is identical. We sometimes use
n∗non-identical(p, q, T ) to denote n∗(P, T ), to emphasize the
setting where the channels need not be identical.

For a fixed rule R, an optimal φ corresponds to the
likelihood ratio test. Thus, our focus will be on designing the
rule R, while choosing the test φ implicitly, such that the
test-rule pair (φ,R) has minimal sample complexity.

A subset of channels called threshold channels plays a key
role in our theory. Consider a set Γ = {γ1, . . . , γD−1} such
that 0 < γ1 ≤ · · · ≤ γD−1 < ∞. Let γ0 := 0 and γD := ∞.
Define the function wΓ : [k] → [0 : D − 1] as follows4: if
q(x) = 0, then wΓ(x) = D − 1; otherwise,

wΓ(x) = j if and only if p(x)/q(x) ∈ [γj , γj+1). (2)

We are now ready to define the threshold test:

Definition II.8 (Threshold test). We say that a channel T ∈
TD corresponds to a threshold test for two distributions p and
q over [k] if there exists Γ = {γ1, . . . , γD−1} such that 0 <
γ1 ≤ · · · ≤ γD−1 <∞ and wΓ(X) ∼ Tp′ when X ∼ p′ (cf.
equation (2)). Any such Γ is called the set of thresholds of
the test T. We use T thresh

D to denote the set of all channels
T ∈ TD that correspond to threshold tests.

Note that a priori, searching for an optimal channel over
T thresh
D seems to require kΩ(D) time, as it requires searching

over all possible values of Γ. By restricting our attention to a
special class of thresholds parametrized by a single quantity,
we will obtain a poly(k,D)-time algorithm. In particular, we
will focus on channels with thresholds in the following set:

C := {Γ = (γ1, . . . , γD−1) : ∀j ∈ [D − 2], γj+1/γj = 2} .
(3)

4When q(x) = 0 for some x and p(x) 6= 0, we take p(x)/q(x) = ∞.
Without loss of generality, we can assume that for each x ∈ [k], at least one
of p(x) or q(x) is non-zero.

A classical result states that threshold tests (cf. Defini-
tion II.8) are optimal tests under communication constraints:

Theorem II.9. [2, Proposition 2.4]
n∗non-identical(p, q, T thresh) = n∗non-identical(p, q, TD).

Our lower bounds on the sample complexity of hypothesis
testing under communication constraints crucially rely on the
optimality of threshold tests.

III. REVERSE DATA PROCESSING INEQUALITY FOR
QUANTIZED CHANNELS

We first prove a reverse data processing inequality for a class
of f -divergences for communication-constrained channels. We
begin by defining a suitable family of f -divergences:

Definition III.1 (Well-behaved f -divergences). We say If (·, ·)
is a well-behaved f -divergence if it satisfies the following:

I.1 f is a convex non-negative function with f(1) = 0.
I.2 xf(y/x) = yf(x/y).5

I.3 There exist α > 0, κ > 0, C1 > 0, and C2 > 0 such that
for all x ∈ [0, κ], we have

C1x
α ≤ f(1 + x) ≤ C2x

α.

Some examples include the total variation distance, squared
Hellinger distance, symmetrized χ2-divergence, symmetrized
KL-divergence, and triangular discrimination (see Claim D.1
for more details). If an f -divergence is symmetric, f is
differentiable at 1, and f ′(1) = 0, then f satisfies I.2 [20],
[21]. Given an f -divergence that does not satisfy I.2, we can
construct a new f -divergence with f̃(x) := f(x) + xf(1/x),
which is also a convex function6 satisfying f̃(1) = 0 and I.2.

Theorem III.2. Let If be a well-behaved f -divergence. Let
p and q be two fixed distributions over [k] such that for all
i ∈ [k], qi ≥ νpi and pi ≥ νqi, for some ν ∈ [0, 1]. Then for
any D ≥ 2, there exists a channel T∗ ∈ T thresh

D (and thus in
TD) such that

1 ≤ If (p, q)

If (T∗p,T∗q)
≤ 4

f(ν)

f(1/(1 + κ))
+

52C2

C1
max

(
1,
R

D

)
,

(4)

where R = min(k, k′) and k′ = 1 + log
(

4C2κ
α

If (p,q)

)
. Further-

more, given f , p, and q, there is a poly(k,D)-time algorithm
that finds a T∗ achieving the rate in inequality (4).

We provide a brief proof sketch for the special case of D =
2 and Hellinger distance below, and defer the full proof to
Appendix B-A. As our main focus will be on the Hellinger
distance, we state the following corollary which will be used
later (see Appendix D):

5This implies If (p, q) = If (q, p).
6This can be checked by noting that f̃ ′′(x) = f ′′(x) + 1

x3
f ′′(x), which

is non-negative, as f is convex.



Corollary III.3 (Preservation of Hellinger distance). For any
p ∈ ∆k, q ∈ ∆k, and D ≥ 2, there exists a T∗ ∈ T thresh

D

such that the following holds:

1 ≤ d2
h(p, q)

d2
h(T∗p,T∗q)

≤ 1800 max

(
1,

min(k′, k)

D

)
, (5)

where k′ = log(4/d2
h(p, q)). Given p and q, there is a

poly(k,D)-time algorithm that finds T∗ achieving the rate (5).

Remark III.4. Corollary III.3 can be interpreted as saying that
the effective support size of p and q for the Hellinger distance
is at most k′ := log(4/d2

h(p, q)), because the distributions
could be mapped to a k′-sized alphabet, with the pairwise
Hellinger distance preserved up to constant terms.

The following result states that Corollary III.3 is also tight:

Lemma III.5 (Reverse data processing is tight). There ex-
ist positive constants c1, c2, c3, and c such that for every
ρ ∈ (0, c1) and D ≥ 2, there exist (i) k ∈ N and (ii) two
distributions p and q on [k] such that the following hold:
d2
h(p, q) ∈ [c1ρ, c2ρ], k = Θ(log(1/ρ)), and

inf
T∈T thresh

D

d2
h(p, q)

d2
h(Tp,Tq)

≥ cR
D
, (6)

where R = max(k, k′) and k′ = log (1/ρ). Moreover, k =
R = Θ(log(1/ρ)).

The proof of Lemma III.5 is given in Appendix B-B.

Proof of Theorem III.2 (sketch). We will focus on the case
of the Hellinger distance and D = 2. We first establish the
following result:

Lemma III.6 (Reverse Markov inequality). Let X be a
random variable over [0, 1), supported on at most k points,
with E[X] > 0. Let k′ = 1 + log(1/E[X]). Then

sup
δ∈[0,1)

δP (X ≥ δ) ≥ E[X]

13

1

R
, where R = min(k, k′). (7)

The generalized version of Lemma III.6 for the case D > 2,
along with its proof, is given in Lemma B.1.

Remark III.7. Note that Lemma III.6 is tight, as shown in
Claim B.4, which is crucially used in the proof of Lemma III.5.

Remark III.8 (Comparison with existing results). The guaran-
tees of Lemma III.6 can be exponentially better than the Paley-
Zygmund inequality and a standard version of the reverse
Markov inequality. See Remark D.2 for details.

We now sketch the proof that there exists a channel T ∈
T thresh

2 achieving d2
h(Tp,Tq) & d2

h(p, q)/R. For simplicity
of notation, we assume that for all i ∈ [k], we have pi > 0
and qi > 0. We first define the sets

Al,u =
{
i ∈ [k] :

pi
qi
∈ [li, ui)

}
,

Al,∞ =
{
i ∈ [k] :

pi
qi
∈ [li,∞]

}
. (8)

Then d2
h(p, q) can be decomposed as follows:

d2
h(p, q) =

∑
i∈A0,1/2

(
√
pi −

√
qi)

2
+

∑
i∈A1/2,1

(
√
pi −

√
qi)

2

+
∑
i∈A1,2

(
√
pi −

√
qi)

2
+

∑
i∈A2,∞

(
√
pi −

√
qi)

2
.

We note that at least one of these terms must be at least
d2
h(p, q)/4. By symmetry, it suffices to consider the case when

either the expression containing A2,∞ is at least d2
h(p, q)/4,

or the expression with A1,2 is at least d2
h(p, q)/4.7

a) Case 1:
∑
i∈A2,∞

(√
pi −

√
qi
)2 ≥ d2

h(p, q)/4: Let
T ∈ T thresh

2 be a threshold test with threshold Γ = {2}, i.e.,
T is a deterministic channel that corresponds to the function
i 7→ Ipi/qi≥2. We note that Tp and Tq are binary distributions,
characterized by p′ =

∑
i∈A2,∞

pi and q′ =
∑
i∈A2,∞

qi,
respectively. Then

d2
h(p, q) ≤ 4

∑
i∈A2,∞

(
√
pi −

√
qi)

2 ≤ 4
∑

i∈A2,∞

pi ≤ 4p′.

Using the fact that p′ ≥ 2q′, we also have

d2
h(Tp,Tq) ≥ (

√
p′ −

√
p′/2)2 ≥ 0.01p′.

Combining the two displayed equations, we obtain
d2
h(Tp,Tq) ≥ d2

h(p, q)/400. This completes the proof.
b) Case 2:

∑
i∈A1,2

(√
pi −

√
qi
)2 ≥ d2

h(p, q)/4: For
i ∈ A1,2, let δi := (pi − qi)/qi, which lies in [0, 1). Consider
the random variable X over [0, 1) such that for i ∈ A1,2, we
define P(X = δi) = qi and P(X = 0) = 1 −

∑
i∈A1,2

qi.
Let δ ∈ [0, 1) be arbitrary (to be decided later). Consider the
channel T that corresponds to the threshold 1 + δ. Suppose
for now that the following inequalities hold:

d2
h(p, q) . EX2 and d2

h(Tp,Tq) & δ2P(X ≥ δ), (9)

which we will establish shortly using a Taylor approximation.
Letting Y = X2 and δ′ = δ2, we obtain the following
inequality using the bounds (9):

d2
h(Tp,Tq)

d2
h(p, q)

&
δ2P(X ≥ δ)

E[X2]
=
δ′P(Y ≥ δ′)

E[Y ]
, (10)

which allows us to apply a reverse Markov inequality
(Lemma III.6) to the random variable Y . Fix

R = log(1/E[Y ]) = log(1/E[X2]) = log(O(1/d2
h(p, q)).

By Lemma III.6, we note that there exists δ′ such that
δ′P(Y ≥ δ′) & E[Y ]/R, which yields the desired lower bound
(d2
h(Tp,Tq))/(d2

h(p, q)) & 1
R using inequality (10).

We now provide a brief proof sketch of the bounds (9). We
derive the first bound using the following arguments:

d2
h(p, q) ≤ 4

∑
i∈A1,2

(
√
pi −

√
qi)

2
= 4

∑
i∈A1,2

qi(
√

1 + δi − 1)2

≤ 4
∑
i∈A1,2

qiδ
2
i = 4E[X2],

7An astute reader might note that the situation is not fully symmetric, as
the set A1,2 is right-open, while A1/2,1 is left-closed. However, as shown
in the full proof later, the desired conclusion still holds.



where the first inequality uses the assumption and the second
inequality uses the fact that

√
1 + x ≤ 1 + x for x ≥ 0.

We now turn our attention to the second bound (9). Recall
that T is a channel corresponding to the threshold 1 + δ. Let
p′ =

∑
i:δi∈[δ,1) pi and q′ =

∑
i:δi∈[δ,1) qi. Note that q′ =

P(X ≥ δ) and p′ − q′ =
∑
i:δi∈[δ,1) δiqi = E[XIX≥δ]. Thus,

(p′ − q′)/q′ = E[X|X ≥ δ].
It can be shown that d2

h(Tp,Tq) ≥ (
√
p′ −

√
q′)2 (cf.

Appendix B), which leads to the following inequalities:

d2
h(Tp,Tq) ≥ (

√
p′ −

√
q′)2 = q′

(√
1 +

p′ − q′
q′

− 1

)2

& q′
(
p′ − q′

q′

)2

≥ δ2P(X ≥ δ),

since (
√

1 + x− 1) & x for x ∈ [0, 1).

IV. SIMPLE BINARY HYPOTHESIS TESTING

We will now apply the results of previous sections to simple
hypothesis testing under communication constraints. Let T be
a fixed channel and suppose all users use the same channel
T. In this setting, Fact II.3 implies that the sample complexity
would be Θ(1/(d2

h(Tp,Tq))). Without any communication
constraints, the sample complexity of the best test is known
to be Θ(1/(d2

h(p, q))). Thus, the additional (multiplicative)
penalty of using the channel T is d2

h(p, q)/d2
h(Tp,Tq), which

is at least 1 by the data processing inequality. As we are
allowed to choose any channel T ∈ TD, we would like to
choose the channel that minimizes this quantity, which was
precisely studied in Section III.

A. Upper bound for simple hypothesis testing

Theorem IV.1. There exists a constant c > 0 such that the
following holds: Let p and q be any two distributions over ∆k

and define n∗ := n∗ ({p, q}) .8 Then for any D ≥ 2,

n∗identical(p, q, TD) ≤ c · n∗ ·max

(
1,

min(k, log n∗)

D

)
.

(11)

Furthermore, there is an algorithm which, given p, q, and
D, finds a channel T∗ ∈ T thresh

D in poly(k,D) time that
achieves the rate in inequality (11).

Proof. As noted earlier, for a fixed T, the sample complex-
ity is Θ

(
1

d2h(Tp,Tq)

)
. Our proof strategy will be to upper-

bound the quantity infT∈TD g(T), where g(T) :=
d2h(p,q)

d2h(Tp,Tq)
.

By Corollary III.3, there exists a T∗ such that g(T∗) .
max(1,min(k, n∗)/D), since n∗ = Θ(log(1/d2

h(p, q))). Thus,
the proof of Theorem IV.1 follows from Corollary III.3 by
choosing the optimal T∗ achieving the bound in Corol-
lary III.3. As mentioned in Corollary III.3, the channel T∗

can be found efficiently.

8Recall that Fact II.3 implies n∗ = Θ(1/d2h(p, q)).

B. Lower bounds

We now prove our lower bounds, showing that there exist
distributions p and q such that the sample complexity must
increase by a factor of log(n∗(p, q)). As discussed in Sec-
tion II-B, an optimal test that minimizes the probability of
error under the communication constraints is one that thresh-
olds based on p(i)/q(i) [2]. However, this notion of optimality
is conditioned on the fact that the channels are potentially
non-identical; examples exist where this is necessary even for
D = 2,M = 2, and n = 2 [22].

We will show that, up to constants in the sample complexity,
it suffices to consider identical channels for simple hypoth-
esis testing. In fact, we prove a much more general result,
Lemma C.1 in Appendix C, that does not rely on restricting
the function class to threshold tests. We have the following
lower bound on n∗non-identical(p, q, T ):

Theorem IV.2. There exist positive constants c1, c2, and c3
such that for every n0 ∈ N and D ≥ 2, there exist (i) k ∈ N
and (ii) two distributions p and q on [k] such that the following
hold:

1) c1n0 ≤ n∗(p, q) ≤ c2n0, and
2) n∗non-identical(p, q, TD) ≥ n0

log(n0)
D .

Moreover, k = Θ(log n0), i.e., the domain of the two distri-
butions is not too large.

Proof. (Sketch) Using Lemma C.1 and Theorem II.9, it suf-
fices to consider the setting with identical threshold channels.
With identical channels, say T, the problem reduces to that of
B(Tp,Tq), and thus to dh(Tp,Tq) using Fact II.3. Tightness
of Lemma III.5 then gives the desired result.

V. DISCUSSION

In this paper, we studied the problem of simple binary hy-
pothesis testing under communication constraints. We showed
that communication constraints may lead to an at most log-
arithmic increase in the sample complexity of the test. At a
technical level, our results rely on a reverse data processing
inequality for communication-constrained channels.

Interesting questions for further study include charac-
terizing the sample complexity for a robust version of
simple binary hypothesis testing, i.e., the distribution p′

in Definition II.5 may only be constrained to satisfy
min{dTV(p, p′), dTV(q, p′)} ≤ ε, for some ε < dTV(p, q)/2.
Although Scheffe’s test is both robust and communication-
efficient, it is not clear whether the test is optimal. In a
different research direction, it is not clear if adaptivity in
the choice of channels, i.e., Ti is selected after observing
(Y1, . . . , Yi−1) in Definition II.5, would have any effect on the
sample complexity of the problem. Finally, studying the simple
hypothesis testing problem between M > 2 distributions
would be a worthwhile endeavor.
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[12] Y. Han, A. Özgür, and T. Weissman, “Geometric lower bounds for dis-
tributed parameter estimation under communication constraints,” IEEE
Transactions on Information Theory, vol. 67, no. 12, pp. 8248–8263,
Dec. 2021.

[13] J. Neyman and E. S. Pearson, “On the problem of the most efficient
tests of statistical hypotheses,” Philosophical Transactions of the Royal
Society of London. Series A, Containing Papers of a Mathematical or
Physical Character, vol. 231, pp. 289–337, 1933.

[14] A. Wald, “Sequential tests of statistical hypotheses,” The Annals of
Mathematical Statistics, vol. 16, no. 2, pp. 117–186, Jun. 1945.

[15] P. J. Huber and V. Strassen, “Minimax tests and the Neyman-Pearson
lemma for capacities,” The Annals of Statistics, vol. 1, no. 2, Mar. 1973.

[16] L. L. Cam, Asymptotic Methods in Statistical Decision Theory, ser.
Springer Series in Statistics. New York, NY: Springer New York,
1986.

[17] I. Sason, “On f -divergences: Integral representations, local behavior,
and inequalities,” Entropy, vol. 20, no. 5, p. 383, May 2018.

[18] C. L. Canonne, G. Kamath, A. McMillan, A. Smith, and J. Ull-
man, “The structure of optimal private tests for simple hypotheses,”
arXiv:1811.11148 [cs, math, stat], Nov. 2018.

[19] A. T. Suresh, “Robust hypothesis testing and distribution estimation in
hellinger distance,” in The 24th International Conference on Artificial
Intelligence and Statistics, AISTATS 2021, 2021.

[20] G. L. Gilardoni, “On the minimum f -divergence for given total varia-
tion,” Comptes Rendus Mathematique, vol. 343, no. 11-12, pp. 763–766,
Dec. 2006.

[21] I. Sason, “Tight bounds for symmetric divergence measures and a new
inequality relating f -divergences,” in 2015 IEEE Information Theory
Workshop (ITW). Jerusalem, Israel: IEEE, Apr. 2015, pp. 1–5.

[22] J. N. Tsitsiklis, “Decentralized detection by a large number of sensors,”
Mathematics of Control, Signals, and Systems, vol. 1, no. 2, pp. 167–
182, Jun. 1988.

[23] A. B. Tsybakov, Introduction to Nonparametric Estimation, ser. Springer
Series in Statistics. New York, NY: Springer New York, 2009.

[24] J. Ziv and M. Zakai, “On functionals satisfying a data-processing
theorem,” IEEE Transactions on Information Theory, vol. 19, no. 3,
pp. 275–283, May 1973.

[25] M. Wainwright, High-Dimensional Statistics: A Non-Asymptotic View-
point, ser. Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge ; New York, NY: Cambridge University Press, 2019, no. 48.
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Additional Notation: Let βh(p, q) denote the Hellinger
affinity, i.e., βh(p, q) := 1− 0.5d2

h(p, q).

APPENDIX A
ADDITIONAL DETAILS FROM SECTION II

Fact A.1. (see, e.g., [23], [24]) For any distributions
p, p1, . . . , pn and q, q1, . . . , qn in ∆k:

1) d2
TV(p, q) ≤ d2

h(p, q) ≤ 2dTV(p, q).

2) (Hellinger tensorization) βh (
∏n
i=1 pi,

∏n
i=1 qi) =∏n

i=1 βh(pi, qi).

3) (Data processing) For any channel T and any distribu-
tions p and q, we have If (Tp,Tq) ≤ If (p, q).

Fact A.2. (see, e.g., [18], [25])

1) (Total variation and hypothesis testing) For any random
variable Z over Z and a test φ : Z → {P,Q},
define the probability of error to be 1

2PP (φ(Z) = Q) +
1
2PQ(φ(Z) = P ). The minimum probability of error over
all tests is (1 − dTV(P,Q))/2 and is achieved by the
following test: let A∗ ⊆ Z be any set that maximizes
P (A) − Q(A) over A ⊆ Z , and define φ(z) := P iff
z ∈ A∗ and Q otherwise.

2) (Hellinger distance and B(p, q)) The sample complexity
for the simple binary hypothesis test between p and q is
Θ(1/d2

h(p, q)), i.e., n∗(p, q) = Θ(1/d2
h(P,Q)).

Proposition A.3 (Folklore). The sample complexity of
Scheffe’s test is at most O

(
1/d4

h(p, q)
)
. Furthermore, this is

tight in the following sense: for any ρ ∈ (0, 1), there exist
p and q such that n∗(p, q) = O(1/ρ2), whereas the sample
complexity of Scheffe’s test is Ω

(
1/ρ4

)
.

Proof. (Proof of Proposition A.3) Let p and q be the two
given distributions and let ρ2 = d2

h(p, q). Let T be the
channel corresponding to the Scheffe’s test. Since Scheffe’s
test preserves the total variation distance, we have that
dTV(p, q) = dTV(Tp,Tq). By using Fact A.1, we have that
dh(Tp,Tq) ≥ dTV(Tp,Tq) = dTV(p, q) ≥ 0.5d2

h(p, q) ≥
0.5ρ2. By Fact A.2, we have that the sample complexity is at
most O(1/d2

h(Tp,Tq)) = O(1/ρ4).

Without loss of generality, we consider the setting when
ρ ≤ 0.01. Consider the distributions p = (ρ, 1/2−2ρ, 1/2+ρ)
and q = (0, 1/2, 1/2). Let T be the channel corresponding
to the Scheffe’s test. Then we have Tp = (1/2 + 2ρ, 1/2 −
2ρ) and Tq = (1/2, 1/2). An elementary calculation shows
that d2

h(p, q) = Θ(ρ) and d2
h(Tp,Tq) = Θ(ρ2). Applying

Fact A.2, we get the desired conclusion.

APPENDIX B
REVERSE DATA PROCESSING

Fix the distributions p and q over [k]. For 0 ≤ l < u <∞,
we first define the following sets9:

Al,u =

{
i ∈ [k] :

pi
qi
∈ [l, u)

}
and

Al,∞ =

{
i ∈ [k] :

pi
qi
∈ [l,∞]

}
. (12)

We will use the notation defined in Definition II.8.

A. Reverse data processing: Proof of Theorem III.2

Theorem III.2. Let If be a well-behaved f -divergence. Let
p and q be two fixed distributions over [k] such that for all
i ∈ [k], qi ≥ νpi and pi ≥ νqi, for some ν ∈ [0, 1]. Then for
any D ≥ 2, there exists a channel T∗ ∈ T thresh

D (and thus in
TD) such that

1 ≤ If (p, q)

If (T∗p,T∗q)
≤ 4

f(ν)

f(1/(1 + κ))
+

52C2

C1
max

(
1,
R

D

)
,

(4)

where R = min(k, k′) and k′ = 1 + log
(

4C2κ
α

If (p,q)

)
. Further-

more, given f , p, and q, there is a poly(k,D)-time algorithm
that finds a T∗ achieving the rate in inequality (4).

Proof. (Proof of Theorem III.2)
Let κ > 0 be as defined in Definition III.1. By definition of

the f -divergence, we have the following:

If (p, q) =
∑

i∈A1+κ,∞

qif

(
pi
qi

)
+

∑
i∈A1,1+κ

qif

(
pi
qi

)
+

∑
i∈A1/(1+κ),1

qif

(
pi
qi

)
+

∑
i∈A0,1/(1+κ)

qif

(
pi
qi

)
,

(13)

where the sets Al,u are defined as in equation (8). Note that
the sets A1+κ,∞ and A0,1/(1+κ) contain the elements that have
a large ratio of probabilities under the two distributions. We
will now consider a case-by-case basis.

a) Case 1: Main contribution by large ratio
alphabets:: We first consider the case when∑
i∈A1+κ,∞∪A0,1/(1+κ)

qif
(
pi
qi

)
≥ If (p,q)

2 . As we will
show later, this is the simple case (D = 2 already achieves
the claim). By symmetry of the If -divergence for the well-
behaved f -divergence (I.2 in Definition III.1), it suffices to
consider the case when

∑
i∈A1+κ,∞

qif
(
pi
qi

)
≥ If (p,q)

4 . 10

9When q(x) = 0 for some x and p(x) 6= 0, then we think of p(x)/q(x) =
∞. Without loss of generality, we can assume that for each x ∈ [k], at least
one of p(x) and q(x) is non-zero.

10There is a slight asymmetry because of the corner cases but it suffices:
if
∑
i∈A0,1/(1+κ)

qif
(
pi
qi

)
≥ If (p, q)/4, then labeling p̃ := q and

q̃ := p, and defining Ã as in Equation (12) with p̃ and q̃, we have
that

∑
i∈Ã1+κ,∞

q̃if
(
p̃i
q̃i

)
≥
∑
i∈A0,1/(1+κ)

qif
(
pi
qi

)
≥ If (p, q)/4

because A0,1/(1+κ) ⊂ Ã1+κ,∞ since the interval in A0,l is left-open.



We will show that there exists a T ∈ T thresh
2 such that

If (Tp,Tq) ≥ 0.25(f(1/(1 + κ))/f(0))If (p, q). Let T be
the channel corresponding to the threshold 1 + κ, i.e., T
corresponds to the function i 7→ IA1+κ,∞(i). Note that Tp and
Tq are distribution on {0, 1} with (Tp)1 =

∑
i∈A1+κ,∞

pi
and (Tq)1 =

∑
i∈A1+κ,∞

qi, which we denote by p′ and q′

respectively. We have that p′ ≥ (1 + κ)q′. Using convexity
and non-negativity of f , and the fact that f(1) = 0 (see I.1),
we have that f(x) ≤ f(y) for 0 ≤ y ≤ x ≤ 1. Using the non-
negativity of f (I.1), symmetry of f (I.2), and monotonically
decreasing property of f on [0, 1], we obtain the following:

If (Tp,Tq) = p′f

(
q′

p′

)
+ (1− p′)f

(
1− q′

1− p′

)
≥ p′f

(
q′

p′

)
≥ p′f

(
1

1 + κ

)
. (14)

Moreover, by assumption that
∑
i∈A1+κ,∞

pif
(
pi
qi

)
is at least

0.25If (p, q), we have that

0.25If (p, q) ≤
∑

i∈A1+κ,∞

pif

(
qi
pi

)
≤

∑
i∈A1+κ,∞

pif(ν) = p′f(ν), (15)

where we use qi/pi ∈ [ν, 1] and f is decreasing on [ν, 1].
Combining (14) and (15), we get the following:

If (Tp,Tq) ≥ f(1/(1 + κ))

4f(ν)
If (p, q), (16)

which implies If (p, q)/If (Tp,Tq) ≤ 4f(ν)/f(1/(1 + κ)),
proving the desired result.

We now comment on the computational complexity of
finding a T∗ that achieves the rate in (16). Since the channel
T∗ only depends on κ, the algorithm only needs to check
whether the threshold should be 1 + κ or 1/(1 + κ), which
requires at most poly(k) operations.

b) Case 2: Main contribution by small ratio
alphabets:: We now consider the case when∑
i∈A1,1+κ∪A1/(1+κ),1

qif(pi/qi) ≥ If (p, q)/2. By
symmetry (I.2), it suffices to consider the case when∑
i∈A1,1+κ

qif(pi/qi) ≥ If (p, q)/411. This requires us to
handle the elements where pi and qi are close, and the
following arguments form the main technical core of this
section.

We first state a reverse Markov inequality below, proved in
Section B-C, whose objective will become clear later in the
proof:

11There is a slight asymmetry here as well, but similar to the previous
footnote, it suffices to consider this case

Lemma B.1. Let Y be a random variable over [0, β) with
expectation E[Y ] > 0. Let k′ = 1 + log(β/E[Y ]). Then we
have the following:

sup
β=νD≥...≥ν1≥0

D−1∑
j=1

νjP (Y ∈ [νj , νj+1))

≥ 1

13
E[Y ] min

(
1,
D

R

)
, (17)

where R = k′ := 1 + log(β/E[Y ]). Furthermore, the bound
in (17) can be achieved by νj’s such that νj = min(β, x2j)
for an x ∈ [0, β].

For the special setting when Y is supported on k points: we
may set R = min(k, k′), and there is a poly(k,D) algorithm
to find νj’s that achieve the right hand side of inequality (17).

For any i ∈ A1,1+κ, we have that both qi and pi are positive.
Let δi = (pi/qi) − 1, which lies in [0, κ) by definition. We
thus have that pi = qi(1 + δi). Let X be a random variable
over [0, κ) such that for i ∈ A1,1+κ, define P(X = δi) = qi,
and P(X = 0) = 1−

∑
i∈A1,1+κ

qi.
We now apply Lemma B.1 to the random variable Y = Xα.

Let β = κα and R2 = min(k, 1 + log(κα/E[Xα])). Let 0 ≤
ν′1 ≤ . . . , ν′D = β be thresholds obtaining the bound in (17).
Let νj = (ν′j)

1/α for all j ∈ [D]. We thus have that

D−1∑
j=1

ναj P(X ∈ [νj , νj+1)) ≥ 1

13
E[Xα] min

(
1,
D

R2

)
. (18)

We now define the thresholds Γ = (γ1, . . . , γD−1) such that
γj = 1 + νj for i ∈ [D − 1]. We set γ0 = 0 and γ∞ = 0.
Note that for j ∈ [D − 1], we have Aγj ,γj+1

= {i : pi/qi ∈
[γi, γi+1)}. Since 1 ≤ γ1 ≤ γD−1 ≤ 1 + κ, we have that for
j ∈ [D − 2], Aγj ,γj+1 = {i ∈ A1,1+κ : δi ∈ [νj , νj+1)}. Note
that for any j ∈ [D − 2] and any function g(·), we have the
following:∑

i∈Aγj,γj+1

g(δi)qi =
∑

i∈Aγj,γj+1

g(δi)P(X = δi)

=
∑

x∈[νj ,νj+1)

g(x)P(X = x) (19)

Using the growth of f(1+x) in [0, κ] (I.3) and the fact that
0 ≤ δi ≤ κ, we have the following:∑

i∈A1,1+κ

qif

(
pi
qi

)
=

∑
i∈A1,1+κ

qif(1 + δi)

≤
∑

i∈A1,1+κ

C2qiδ
α
i = C2E[Xα], (20)

where the last equality uses the same arguments as (19).
Finally we note that (20) and the assumption If (p, q) ≤
4
∑
i∈A1,1+κ

qif(pi/qi) implies the following:

If (p, q) ≤ 4C2E[Xα] and
R2 ≤ min(k, 1 + log(4C2κ

α/If (p, q))) = R. (21)



We use p′ and q′ to be denote the probability measures
Tp and Tq respectively when T corresponds to thresholds Γ.
Thus, we have that for j ∈ [0 : D−1], p′(j) =

∑
i∈Aγj,γj+1

pi;
q′(j) is defined similarly. We now define p′′ to be the following
positive measure: for j ∈ [0 : D−1], p′′j =

∑
i∈Aγi,γi+1

pi and
p′′D−1 =

∑
i∈AγD−1,1+κ

pi; q′′ is defined similarly. Recall that
γD−1 = 1 + νD−1 ≤ 1 +κ. Note that p′′ and q′′ might not be
probability measures as their sum might be smaller than 1, but
they are equal to p′ and q′ respectively on all elements except
the last. Moreover, we may define the “f -divergence” between
p′′ and q′′ by mechanically applying the standard expression
f -divergence but replacing the probability measures by p′′ and
q′′ instead. The f -divergence between p′′ and q′′ so obtained
is smaller than the f -divergence between p′ and q′ as follows:

q′D−1f

(
p′D−1

q′D−1

)
≥ q′′D−1f

(
p′′D−1

q′′D−1

)
,

which follows by noting that q′′D−1 ≤ q′D−1, p′D−1/q
′
D−1 ≥

p′′D−1/q
′′
D−1 ≥ 1, and f(x) ≥ f(y) ≥ 0 for any x ≥ y ≥ 1.

We thus get the following relation:

If (p′, q′) ≥
D−1∑
j=0

q′′j f

(
p′′j
q′′j

)
. (22)

Fix a j ∈ [D − 1]. Using the fact that 0 ≤ p′′j
q′′j
− 1 ≤ κ and

that f(1 + x) ≥ C1x
α for x ∈ [0, κ] (I.3), we have that for

any j such that q′′j > 0,

q′′j f

(
p′′j
q′′j

)
= q′′j f

(
1 +

p′′j − q′′j
q′′j

)

≥ C1q
′′
j

(
p′′j − q′′j
q′′j

)α

= C1q
′′
j

(∑
i∈Aγj,γj+1

qiδi∑
i∈Aγj,γj+1

qi

)α
≥ C1q

′′
j ν

α
j (using δi ≥ νj)

≥ C1ν
α
j P(X ∈ [νj , νj+1)) (23)

We note that this inequality is also true if q′′j = 0 because
q′′j = P (X ∈ [νj , νj+1)), and if the former is zero, then the
expression in (23) is also zero.

Overall, we get the following series of inequalities:

If (p′, q′) ≥
D−1∑
j=1

q′′j f

(
p′′j
q′′j

)
(using (22) and f ≥ 0)

≥ C1

D−1∑
j=1

ναj P(X ∈ [νj , νj+1)) (using (23))

≥ C1

13
E[Xα] min

(
1,
D

R2

)
(using (18))

≥ C1

52C2
If (p, q) min

(
1,
D

R

)
(using (21)) .

This shows that there exists a T ∈ T thresh
D such that

If (p, q)/If (Tp,Tq) ≤ 52C2

C1
max

(
1,
R

D

)
. (24)

We now comment on the computational complexity of
finding a T∗ that achieves the rate in (24). Finding the
thresholds Γ is equivalent to finding (ν′1, . . . , ν

′
D−1). As noted

in Lemma B.1 and its proof, the guarantee of (17) can be
achieved by choosing ν′j in one of the following ways:
• Setting ν′j = min(κα, x2j) for all j and optimizing over
x that matter. As the random variable Y has support of
at most k, this algorithm runs in poly(k,D)-time.

• Choosing the top D−1 elements that maximize δiqi and
defining ν′j appropriately.

B. Tightness of reverse data processing inequality: Proof of
Lemma III.5

Lemma III.5 (Reverse data processing is tight). There ex-
ist positive constants c1, c2, c3, and c such that for every
ρ ∈ (0, c1) and D ≥ 2, there exist (i) k ∈ N and (ii) two
distributions p and q on [k] such that the following hold:
d2
h(p, q) ∈ [c1ρ, c2ρ], k = Θ(log(1/ρ)), and

inf
T∈T thresh

D

d2
h(p, q)

d2
h(Tp,Tq)

≥ cR
D
, (6)

where R = max(k, k′) and k′ = log (1/ρ). Moreover, k =
R = Θ(log(1/ρ)).

Proof. We will design p and q such that pi/qi ∈ [0.5, 1.5].
Fix any set of thresholds Γ = {γ1, . . . , γD−1}, which without
loss of generality lie in [0.5, 1.5]. Let T be the corresponding
channel. Let p′ and q′ be the distributions after using the
channel T.

Note that k will depend on ρ, which will be decided later.
For now, let k be even, equal to 2m. Let q̃ be an arbitrary
distribution on [m] to be decided later. Let δ̃ ∈ [0, 0.5]m to be
decided later. Using this q̃, we define a distribution on q as
follows:

qi =

{
0.5q̃i, if i ∈ [m]

0.5q̃i−m if i ∈ [k] \ [m]
.

Using δ̃, we define δ as follows:

δi =

{
δ̃i, if i ∈ [m]

−δ̃i−m if i ∈ [k] \ [m]
.

We now define p as follows: for i ∈ [k], define pi = qi(1+δi).
Equivalently,

pi =

{
0.5q̃i(1 + δ̃i), if i ∈ [m]

0.5q̃i−m(1− δ̃i−m) if i ∈ [k] \ [m]
.

Thus, p is a valid distribution if q is a valid distribution. Let
X̃ be the random variable such that P{X̃ = δ̃i} = q̃i. We will
need the following results, whose proofs are given at the end
of this section:



Claim B.2. We have the following inequality:

0.02E[X̃2] ≤ d2
h(p, q) ≤ E[X̃2].

Claim B.3. Let T ∈ T thresh
D be a channel corresponding to

a threshold test. Then the following holds:

d2
h(Tp,Tq) ≤

sup
0<ν′1<···<ν′D=1

D−1∑
j=1

P
{
X̃ ≥ ν′j ]

}(
E
[
X̃|X̃ ≥ ν′j

])2

.

(25)

We will now show that there exists p and q (i.e., q̃ ∈ Rm
and δ̃ ∈ Rm), such that the desired conclusion holds. Defining
q̃ and δ̃ is equivalent to showing the existence of a random
variable X̃ satisfying the desired properties. This is given in
Claim B.4, showing that there exists a distribution X̃ such
that the following holds: (i) E[X̃2] = Θ(ρ), and (ii) the
expression on the right in (25), for any choice of thresholds
Γ, is upper bounded by a constant multiple of E[X̃2]D

R , (iii)
R = max(m, k′) = Θ(log(1/ρ)). See Claim B.4 for explicit
constants. Using Claims B.2 to B.4, we get the following for
any threshold channel T:

d2
h(Tp,Tq) . E[X̃2]

D

R
. d2

h(p, q)
D

R
,

completing the proof.

The omitted proofs of Claim B.2 and Claim B.3 are given
below.

Proof. (Proof of Claim B.2) We have the following:

d2
h(p, q) =

∑
i∈[m]

(√
qi (1 + δi)−

√
qi

)2

+
∑

i∈[k]\[m]

(√
qi −

√
qi (1 + δi)

)2

= 0.5
∑
i∈[m]

(√
q̃i

(
1 + δ̃i

)
−
√
q̃i

)2

+ 0.5
∑
i∈[m]

(√
q̃i −

√
q̃i

(
1− δ̃i

))2

= 0.5
∑
i∈[m]

q̃i

((√
1 + δ̃i − 1

)2

+

(
1−

√
1− δ̃i

)2
)

Using that for x ∈ [0, 1]:
√

1 + x−1 ≥ 0.1x, 1−
√

1− x ≥
0.1x,

√
1 + x ≤ 1+x, 1−x ≤

√
1− x, we have the following:

E[X̃2] ≥ d2
h(p, q) ≥ 0.02E[X̃2].

Proof. (Proof of Claim B.3) Suppose T corresponds to a
threshold test with thresholds Γ = {γ1, . . . , γD−1} such that
γj < γj+1. We define γ0 = mini pi/qi and γD = maxi pi/qi.
It suffices to consider the case when all γj ∈ [0.5, 1.5] for

j ∈ [0 : D]. Let p′ = Tp and q′ = Tq. Let j∗ ∈ [D − 1] be
such that γj∗−1 < 1 and γj∗ ≥ 1.

We now define νj’s as follows for j ∈ [0 : D − 1]:

νj =

{
γj − 1, if j ≥ j∗

1− γj , otherwise
.

Thus νj ∈ [0, 1).
For j ∈ [0 : D − 1], define Aj := {i ∈ [k] : (pi/qi) ∈

[γj , γj+1)} = {i : 1 + δi ∈ [γj , γj+1)}. For j ≥ j∗, we
have Aj = {i : δi ∈ [νj , νj+1)}. For j < j∗, we have Aj =

{i ∈ [k] : −δi ∈ (νj+1, νj ]} =
{
i ∈ [k] : δ̃i−m ∈ (νj+1, νj ]

}
.

For j ∈ [0 : D − 1], we have p′j =
∑
i∈Aj pi and q′j =∑

i∈Aj qi.
We have the following decomposition of the squared

Hellinger distance between p′ and q′:

d2
h(p′, q′) =

∑
j<j∗

(√
p′j −

√
q′j

)2

+
∑
j≥j∗

(√
p′j −

√
q′j

)2

(26)

We analyze these two terms separately:
a) Case 1: j ≥ j∗: Let j be such that q′j > 0. We have

that p′j ∈ [q′j , 1.5q
′
j ]. We have the following using

√
1 + x −

1 ≤ x for x ∈ [0, 0.5]:

(√
p′j −

√
q′j

)2

= q′j

(√
1 +

p′γ − q′j
q′j

− 1

)2

≤
(p′i − q′j)2

q′j
.

(27)

Since γj ≥ 1, we note that

q′j =
∑
i∈Aj

qi =
∑

i∈[m]:δ̃i∈[νj ,νj+1)

qi

=
∑

i∈[m]:δ̃i∈[νj ,νj+1)

0.5q̃i = 0.5P{X̃ ∈ [νj , νj+1)}.

Similarly, we have the following:

p′j − q′j =
∑
i∈Aj

δiqi =
∑

i∈[m]:δ̃i∈[νj ,νj+1)

δiqi

= 0.5
∑

i∈[m]:δ̃i∈[νj ,νj+1)

δ̃iq̃i = 0.5E
[
X̃IX̃∈[νj ,νj+1)

]
.

Combining the last two displayed equations with (27) and
using the definition of conditional expectation, we get the
following:∑
j≥j∗

(√
p′j −

√
q′j

)2

≤ 0.5
∑
j≥j∗

P
{
X̃ ∈ [νj , νj+1)

}(
E
[
X̃|X̃ ∈ [νj , νj+1)

])2

≤ 0.5
∑
j≥j∗

P
{
X̃ ≥ νj

}(
E
[
X̃|X̃ ≥ νj)

])2

. (28)



Case 2 : j < j∗: Let j < j∗ such that q′j > 0. We have
that p′j ∈ [q′j/2, q

′
j). Using 1−

√
1− x ≤ x for x ∈ [0, 1], we

have(√
q′j −

√
p′j

)2

= q′j

(
1−

√
1−

q′j − p′i
q′j

)2

≤
(q′j − p′i)2

q′j
.

(29)

Since γj < 1, we note that

q′j =
∑
i∈Aj

qi =
∑

i∈[k]\[m]:δ̃i−m∈(νj+1,νj ]

qi

=
∑

i∈[k]\[m]:δ̃i−m∈(νj+1,νj ]

0.5q̃i−m

= 0.5P{X̃ ∈ (νj+1, νj ]}.

Similarly, we have the following:

q′j − p′i =
∑
i∈Aj

(−δiqi) =
∑

i∈[k]\[m]:δ̃i−m∈(νj+1,νj ]

δ̃i(0.5q̃i−m)

= 0.5E
[
X̃IX̃∈(νj+1,νj ]

]
.

Combining the last two displayed equations with (29) and
using the definition of conditional expectation, we get the
following:∑
j<j∗

(√
p′j −

√
q′j

)2

≤ 0.5
∑
j<j∗

P
{
X̃ ∈ (νj+1, νj ]

}(
E
[
X̃|X̃ ∈ (νj+1, νj ]

])2

≤ 0.5
∑
j<j∗

P
{
X̃ > νj ]

}(
E
[
X̃|X̃ > νj ]

])2

(30)

Combining (28) and (30), we get the proof by noting that X̃
is a discrete random variable and thus the distinction between
X̃ ≥ νj (cf. (28)) and X̃ > νj (cf. (30)) does not matter when
taking the supremum.

C. Reverse Markov Inequality

Lemma B.1. Let Y be a random variable over [0, β) with
expectation E[Y ] > 0. Let k′ = 1 + log(β/E[Y ]). Then we
have the following:

sup
β=νD≥...≥ν1≥0

D−1∑
j=1

νjP (Y ∈ [νj , νj+1))

≥ 1

13
E[Y ] min

(
1,
D

R

)
, (17)

where R = k′ := 1 + log(β/E[Y ]). Furthermore, the bound
in (17) can be achieved by νj’s such that νj = min(β, x2j)
for an x ∈ [0, β].

For the special setting when Y is supported on k points: we
may set R = min(k, k′), and there is a poly(k,D) algorithm
to find νj’s that achieve the right hand side of inequality (17).

Proof. We can safely assume that D ≤ R. Under this
assumption on D, we will show the desired expression is lower
bounded by both of the following (up to constants): E[Y ]D

k and
E[Y ]D
k′ . We will also assume that β = 1; otherwise, it suffices

to apply the following argument to Y/β.
We first begin with dependence on k.

a) Dependence on k:: We have that Y has support size
k. Let the support elements be {δ′i}ki=1 such that δ′1 < δ′2 <
· · · < δ′k < 112. Let {pi}ki=1 be such that P[Y = δ′i] = pi and∑k
i=1 pi = 1.
It suffices to prove the following bound: there exists a label-

ing π : [D−1]→ [k] such that π(1) < π(2) < · · · < π(D−1)
and satisfies the following

D−1∑
j=1

δ′π(j)pπ(j) ≥ E[Y ]

(
D − 1

k

)
. (31)

This is true because for j ∈ [D − 1], we have pπ(j) =
P
{
Y ∈ [δπ(j), δπ(j)+1)

}
≤ P

{
Y ∈ [δπ(j), δπ(j+1))

}
, where

we define δk+1 := 1, and the desired conclusion follows by
setting νj = δπ(j). In the rest of the proof, we will show that
such a π(·) exists.

Let σ : [k]→ [k] be the permutation such that pσ(i)δσ(i) ≥
pσ(i+1)δσ(i+1). Then we have that

E[Y ]

k
=

∑k
i=1 piδi
k

=

∑k
i=1 pσ(i)δσ(i)

k
≤
∑D−1
i=1 pσ(i)δσ(i)

D − 1

=

∑D−1
i=1 pπ′(i)δπ′(i)

D − 1
,

for some π′ : [D − 1] → [k] such that π′(1) < π′(2) <
· · · < π′(D − 1). Thus we have established (31). Note that
the desired bound is achieved by choosing νj’s as follows: let
S be the set of top D − 1 elements among the support of Y
that maximize yP(Y = y) and νj’s have values in S such
that they are increasing and distinct. It is clear that it can be
implemented in poly(k,D) time.

b) Dependence on k′:: We begin by noting that the
desired expression can also be written as follows:

D−1∑
j=1

(νj − νj−1)P {Y ≥ νj} ,

where ν0 := 0. We need to obtain a lower bound on the
supremum of this expression over νj’s. In fact, we will show
a stronger claim, where we fix νj in a particular way. We will
take νj to be of the form x2j−1 for j ∈ [D− 1] and optimize
over x ∈ (0, 1). Note that we can allow νj ≥ 1 without loss of
generality because their contribution to the desired expression

12It is easy to see that if the support size is strictly smaller than k, then
we have a tighter bound.



is going to be 0. In the rest of the proof, we will show the
following claim for c = 1/13:

sup
x∈(0,1)

xP {Y ≥ x}+

D−1∑
j=2

(
x2j−1 − x2j−2

)
P
{
Y ≥ x2j−1

}
≥ cE[Y ]

D

k′
(32)

Suppose that the desired conclusion does not hold. We will
now derive a contradiction. Let x ∈ (0, 1) be arbitrary and set
νj = x2j−1 for j ∈ [D − 1]. Under the assumption that (32)
is false, we have the following for each x ∈ (0, 1):

cE[Y ]
D

k′
> xP {Y ≥ x}

+

D−1∑
j=2

x
(
x2j−1 − x2j−2

)
P
{
Y ≥ x2j−1

}
= x

P {Y ≥ x}+

D−2∑
j=1

2j−1P
{

2−jY ≥ x
} .

We thus get the following for all x ∈ (0, 1):

P {Y ≥ x}+

D−2∑
j=1

2j−1P
{

2−jY ≥ x
}
< cE[Y ]

D

k′
1

x
. (33)

Using that the probabilities are bounded by 1, we also have
the following bound on the expression on the left in (33):

P {Y ≥ x}+

D−2∑
j=1

2j−1P
{

2−jY ≥ x
}
≤ 1 +

D−2∑
j=1

2j−1 = 2D−1.

(34)

Combining the two bounds in (33) and (34), we have the
following for every x ∈ (0, 1):

P {Y ≥ x}+

D−2∑
j=1

2j−1P
{

2−jY ≥ x
}
≤ min

(
2D−1,

cDE[Y ]

k′x

)
.

(35)

Using that Y ∈ [0, 1], we also have the following for every
a > 1:

E[Y/a] =

∫ 1/a

0

P {Y/a ≥ t} dt =

∫ 1

0

P {Y/a ≥ t} dt.

This leads to the following equality:

∫ 1

0

P {Y ≥ t}+

D−2∑
j=1

2j−1P
{
Y 2−j ≥ t

} dt

= E[Y ] +

D−2∑
j=1

2j−1E[2−jY ] =
DE[Y ]

2
. (36)

Combining (36) and (35), we get the following for an arbitrary
x∗ ∈ (0, 1):

E[Y ] =
2

D

∫ 1

0

(
P {Y ≥ t}+

D−2∑
i=1

2i−1P
{
Y 2−i ≥ t

})
dt

≤ 2

D

∫ 1

0

min

(
2D−1,

cDE[Y ]

k′x

)
dt

≤ 2Dx∗
D

+
2cE[Y ]

k′
log

(
1

x∗

)
. (37)

Let x∗ = 2−D (E[Y ]/k′). Then log(1/x∗) = D +
log(1/E[Y ])+ log(1/k′) ≤ D+2k′ ≤ 3k′, where we use that
max(D, log(1/E[Y ])) ≤ k′. Using k′ ≥ 1 and D ≥ 2, the
expression on the right in (37) can be further upper bounded
to get the following inequality:

E[Y ] ≤
(
E[Y ]

k′D

)
+

2cE[Y ]

k′
(3k′) ≤ E[Y ]

2
+ 6cE[Y ],

which is a contradiction since E[Y ] > 0 and c < 1/12. Thus,
we have that (32) is true.

D. Tightness of Reverse Markov Inequality

Claim B.4. There exists constants c, c′, c1, c2 such for every
ρ ∈ (0, c′), there exists a k ∈ N, where k = Θ(log(1/ρ)),
and a probability distribution p, supported over k points in
(0, 0.5], such that the following holds:

1) E[X2] ∈ [c1ρ, c2ρ] and for every D ≤ 0.1k,

sup
1=δD>···>δ1>0

D−1∑
j=1

P {X ≥ δj} (E [X|X ≥ δj ])2

≤ cEX2D

R
, (38)

where R = max(k, k′) and k′ = log(3/E[X2])).
2) E[Y ] = [c1ρ, c2ρ] and

sup
1=δ′D>...>δ

′
1>0

D−1∑
j=1

δ′jP
(
Y ∈ [δ′j , δ

′
j+1)

)
≤ cE[Y ]

D

R
, (39)

where R = max(k, k′) and k′ = log(3/E[Y ])). More-
over, R = Θ((log(1/ρ))).

Proof. For now, let k ∈ N be arbitrary; we will choose k
so that E[X2] ∈ [c1ρ, c2ρ]. Consider the following discrete
random variable Y supported on {2−i : i ∈ [k]}:

P
{
Y = 2−i

}
= r2i,

where r is chosen so that it is a valid distribution, i.e., r
satisfies 1 =

∑k
i=1 r2

i = 2r(2k − 1). Let X =
√
Y . We

have the following:

E[X2] = E[Y ] =

k∑
i=1

2−i
(
r2i
)

= rk. (40)



Consider a δ′i ∈ (2−(j−1), 2−j ] for some j ∈ [k] and δi =√
δ′i. For any such choice, we get the following:

P(X ≥ δi) = P(Y ≥ δ′i) = P(Y ≥ 2−j) =
∑
i∈[j]

P
{
Y = 2−i

}
=
∑
i∈[j]

r2i = 2r
(
2j − 1

)
≤ 2r2j . (41)

Thus we get that for any δ′, δ′P {Y ≥ δ′} ≤ 2r, showing
that the expression in (39) is upper bounded by 2(D − 1)r,
which is equal to 2E[Y ](D−1)

k by (40). It remains to show that
R ≤ ck/2.

We first calculate bounds on k so that E[Y ] = Θ(ρ). Note
that by construction r = 1/

(
2(2k − 1)

)
, implying that r ∈

[2−k−1, 2−k+1]. Thus it suffices to choose a k so that f(k) :=
2−kk ∈ [2c1ρ, 0.5c2ρ]. As f(k+1)/f(k) ∈ (1/2, 1) for k > 1,
f(dln(1/ρ)e) ≥ ρ ln(1/ρ) and f(b2 ln(1/ρ)c) ≥ 0.1ρ, we
know that such a k exists in [ln(1/ρ), 2 ln(1/ρ)] for c1 = 0.5,
c2 = 10, c′ = 2−20.

We now calculate the quantity R. By definition of k′, we
have that

k′ = log

(
3

E[X2]

)
= log

(
3

rk

)
≥ log

(
32k−1

k

)
= k − log k ± log 2.

As k is large enough, we have that k′ ∈ [0.5k, 2k]. Since
R = max(k, k′), we have that R ∈ [0.5k, 2k]. This completes
the proof of the claim in (39) with c = 4.

We now prove the claim in (38). We begin with the
following:

E[XIX≥2−j/2 ] =
∑
i∈[j]

2−0.5i
(
r2i
)

=
∑
i∈[j]

r20.5i

= (r
√

2)

(
20.5j − 1√

2− 1

)
≤ 10r20.5j .

For δi ∈ (2−(j−1)/2, 2−j/2] for some j, we have the following

P {X ≥ δi}
(
E
[
X|X ≥ δi

])2

= P(X ≥ 2−j/2)
(
E[X|X ≥ 2−j/2]

)2

=

(
E[XIX≥2−j/2 ]

)2
P(X ≥ 2−j/2)

≤ 100r22j

2r2j
= 50r.

We thus get that the supremum over any arbitrary δi is
also upper bounded by 50r. Hence, we get upper bound the
expression on the left in (38) by 50(D − 1)r, which is equal
to 50E[X2](D − 1)/r. Using the same calculations as in the
first part of the proof, we prove (38) with c = 50.

APPENDIX C
HYPOTHESIS TESTING

Lemma C.1 (Equivalence between identical and non-identical
channels for simple hypothesis testing). Let T be a collection

of channels from X → Y . Let p and q be two distributions on
X . Then

n∗non-identical (p, q, T ) = Θ (n∗identical(p, q, T )) .

Proof. (Proof of Lemma C.1 Recall that we use βh(p, q) to
denote the Hellinger-affinity between p and q. It suffices to
consider the case that n∗identical(p, q,T) is larger than a fixed
constant. Define the following:

h∗ = sup
T∈T

dh(Tp,Tq), β∗ := inf
T∈T

βh(Tp,Tq)

and β∗ = 1 − 0.5h2
∗. Let n∗ = n∗identical(p, q,T). Let T∗

be any channel such that βh(T∗p,T∗q) ≤ β∗+ εβ∗, for some
ε > 0 satisfying (1 + ε)n∗ ≤ 2. Let p∗ = T∗p and q∗ = T∗q.

a) Identical channels: optimal T∗: If each channel is
identically T∗, we have that the joint distributions of n∗
samples would either be p⊗n∗∗ or q⊗n∗∗ .

Let f(n) = dTV(p⊗n∗ , q⊗n∗ ). Note that the probabil-
ity of error for p⊗n and q⊗n is equal to (1 − f(n))/2
(Fact A.2). Since the sample complexity of B(p∗, q∗) is
at least n∗, we must have that f(n∗ − 1) < 0.8. Using
Fact A.1, we have d2

h(p
⊗(n∗−1)
∗ , q

⊗(n∗−1)
∗ ) ≤ 1.6 and con-

sequently, βh(p
⊗(n∗−1)
∗ , q

⊗(n∗−1)
∗ ) ≥ 0.2. Using tensorization

of Hellinger affinity from Fact A.1 and relation between β∗
and βh(p∗, q∗), we have (β∗)

n∗−1 ≥ (βh(p∗,q∗)
1+ε )n∗−1 ≥ 0.1.

b) Non-identical Channels: We will now show that even
if n non-identical channels are allowed but n ≤ 0.1n∗, then the
probability of error is at least 0.2. For a choice of T1, . . . ,Tn,
let P ′n :=

∏n
i=1 Tip and Q′n :=

∏n
i=1 Tiq be the resulting

joint probability distributions under p and q respectively. As
the probability of error of the best test is (1−dTV (P ′n, Q

′
n) /2)

(Fact A.2), it suffices to show that if n ≤ 0.1n∗, then
dTV(P ′n, Q

′
n) < 0.8.

Using Fact A.1, it suffices to show that d2
h(P ′n, Q

′
n) ≤ 0.64.

Equivalently, it suffices to show that βh(P ′n, Q
′
n) ≥ 0.68.

Using tensorization of Hellinger affinity and optimality of β∗,
we have the following:

βh(P ′n, Q
′
n) =

n∏
i=1

βh(Tip,Tiq) ≥ βn∗

= (βn∗−1
∗ )

n
n∗−1 ≥

(
(0.1)

1
10

) 10n
n∗−1 ≥ 0.7

10n
n∗−1 .

Thus if n ≤ 0.1(n∗ − 1), then the Hellinger affinity is large,
and thus total variation is small, and hence the probability of
error is large.

Proof. (Proof of Theorem IV.2) We note that it suffices to
consider D ≤ log n0.

We will use the characterization of sample complexity
of simple hypothesis testing in terms of Hellinger distance
(Fact A.2). It thus suffices to show that there exists a constant



c > 0 such that for every ρ ∈ (0, 0.01), there exist two
distributions p and q on [k] such that d2

h(p, q) = ρ and

n∗non-identical(p, q, TD) ≥ c 1

d2
h(p, q)

min

(
1,

log
(
1/d2

h(p, q)
)

D

)
.

(42)

This follows by noting that given any n0, any two distributions
p and q such that d2

h(p, q) = ρ would satisfy n∗(p, q) ∈
[c1n0, c2no] for some absolute constants (see Fact A.2).

Fix any ρ ∈ (0, 1). Let p, q, and k = O(log(1/ρ)) be from
Lemma III.5 such that (i) d2

h(p, q) = ρ and (ii) inequality (6)
holds.

We will use Theorem II.9, Lemma C.1, and Lemma III.5.
For any p and q, we have the following:

n∗non-identical({p, q}, TD)

≥ c′n∗non-identical({p, q}, T thresh
D ) (using Theorem II.9)

≥ c′n∗identical({p, q}, T thresh
D ) (using Lemma C.1)

= c′ inf
T∈T thresh

D

n∗(p, q, {T})

≥ c′ inf
T∈T thresh

D

1

d2
h(Tp,Tq)

(using Fact A.2)

= c′
1

d2
h(p, q)

inf
T∈T thresh

D

d2
h(p, q)

d2
h(Tp,Tq)

≥ c′ 1

d2
h(p, q)

d2
h(p, q)

d2
h(Tp,Tq)

≥ c′ 1

d2
h(p, q)

log(1/d2
h(p, q))

D
, (using Lemma III.5)

which establishes the condition (42) and thus completes the
proof.

APPENDIX D
AUXILIARY DETAILS

Claim D.1. (Examples of well-behaved f -divergences) The
following divergences are valid examples of well-behaved f -
divergences, as defined in Definition III.1:

1) (Hellinger distance) f(x) = (
√
x−1)2 with κ = 1, C1 =

2−3.5, C2 = 1, and α = 2.
2) (Total variation distance) f(x) = 0.5|x− 1| with κ > 0,

C1 = 0.5, C2 = 0.5, α = 1.
3) (Symmetrized KL-divergence) f(x) = x log x−log x with

κ = 1, C1 = 0.5, C2 = 1, α = 2.
4) (Triangular Discrimination) f(x) = (x−1)2

1+x with κ = 1,
C1 = 1/3, C2 = 1/2, α = 2.

5) (Symmetrized χs divergence13) For s ≥ 1, f(x) = |x −
1|s + x1−s|x− 1|s with κ = 1, C1 = 1, C2 = 3, α = s.

Proof. It is easy to see that these functions are non-negative,
convex, and satisfy the symmetry property of Definition III.1.
In the remainder of the proof, we outline how they satisfy
Item I.3 property.

13The usual χs-divergence corresponds to f(x) = |x−1|s for s ≥ 1 [17].
We consider the symmeterized version with f̃(x) = f(x) + xf(1/x).

1) We will now show that we can take κ = 1, C1 = 2−3.5,
C2 = 1, and α = 2. The upper bound f(1 + x) =
(
√

1 + x − 1)2 ≤ x2 follows by noting that
√

1 + x ≤
1 + x for any x ≥ 0. For the lower bound, we define
g(x) := f(1 + x) − C1x

2. Note that g(0) = 0, g′(x) =
1−(1+x)−0.5−2C1x and g′′(x) = 0.5(1+x)−1.5−2C1.
We note that g′(0) = 0 and g′′(x) ≥ g′′(1) = 2−2.5−2C1

for all x ∈ [0, 1]. Thus g′′(x) ≥ 0 for x ∈ [0, 1], and
hence g(x) is also non-negative on x ∈ [0, 1].

2) The result follows by noting that for x ≥ 0, f(1+x) = x.
3) We have that f(1 + x) = x log(1 + x). We use the

following result: for x ≥ 0, x
1+x ≤ log(1 + x) ≤ x.

This directly gives us that f(1 +x) = x log(1 +x) ≤ x2.
The lower bound follows by noting that for x ∈ [0, 1],
log(1 + x) ≥ x

2 and thus f(1 + x) ≥ x2/2.
4) We have that f(1 +x) = x2/(2 +x), which lies between

x2/3 and x2/2 for x ∈ [0, 1].
5) We have that f(1 + x) = |x|s(1 + (1 + x)1−s), which is

larger than xs and less than 3xs for x ∈ [0, 1].

We now provide the proof of Corollary III.3.

Proof. (Proof of Corollary III.3) The desired bound follows
by noting that f(x) = (

√
x−1)2 and taking ν = 0. As shown

in Appendix D (Claim D.1), we can take κ = 1, C1 = 2−3.5,
C2 = 1, and α = 2. Note that f(0) = 1 and f(1/(1 + κ)) =
(
√

2 − 1)2/2 ≥ 0.04. This suffices to give a guarantee of
d2h(p,q)

d2h(T∗p,T∗q)
≤ 100 + 900

D (min (k′, k)).

Remark D.2. Lemma III.6 states that the truncation factor
(compared to the usual upper bound in Markov’s inequality)
is at most O(log(1/E[X])). It is instructive to compare the
guarantee of Lemma III.6 with existing results in the literature:

1) The Paley-Zygmund inequality (see, e.g., [26, Corollary
3.3.2]) states that for any δ ∈ (0,E[X]), we have
P(X ≥ δ) ≥

(
1− δ

EX
)2 (E[X])2

E[X2] . Multiplying both sides
by δ and optimizing the lower bound over δ (achieved at
δ = E[X]/3) yields

sup
δ≥0

δP(X ≥ δ) & E[X] · 1

E[X2]/(E[X])2
.

Note that the truncation factor is E[X2]/(E[X])2, which
is at most 1/E[X] but could be exponentially larger than
log(1/E[X]). (For example, consider a random variable
with P(X = 0) = 1 − p and P(X = 1/2) = p: We
have E[X2]/(E[X])2 = 1/p, whereas log(1/E[X]) =
log(2/p)).

2) A standard version of the reverse Markov inequality (see,
e.g., [27, Lemma B.1]) for a random variable bounded
in [0, 1] states the following for δ ∈ (0,E[X]): P(X ≥
δ) ≥ E[X]−δ

1−δ . Multiplying both sides by δ and optimizing
the bound over δ ∈ (0,E[X]), under the condition that
E[X] ≤ 0.1, gives us following:

sup
δ≥0

δP(X ≥ δ) & (E[X])2 = E[X] · 1

1/E[X]
,



i.e., the truncation factor is 1/E[X], which is exponen-
tially larger than log(1/E[X]).
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