Simple Binary Hypothesis Testing:
Locally Private and Communication-Efficient

Ankit Pensia

Algorithms Seminar,
Google WISCONSIN

IIIIIIIIIIIIIIIIIIIII -MADISON



— Joint Work With

Amir Asadi Varun Jog Po-Ling Loh



— Outline

» Motivation

» Problem Statement
» Our Results

» Proof Sketch

» Conclusion



— Simple Hypothesis Testing: Centralized

* Let p and g be two known distributions over {1, ..., k}

(Problem (Simple Hypothesis Testing):
Input: i.i.d. samples from either p or g

N

%) () -- &)



— Simple Hypothesis Testing: Centralized

* Let p and g be two known distributions over {1, ..., k}

-

(Problem (Simple Hypothesis Testing): A
Input: i.i.d. samples from either p or g
Output: whether they came fromp or g )




— Simple Hypothesis Testing: Centralized

* Let p and g be two known distributions over {1, ..., k}

\_

(Problem (Simple Hypothesis Testing): A
Input: i.i.d. samples from either p or g
Output: whether they came fromp or g )

* Arguably, the most fundamental statistical problem
* A natural building block
* Optimal test: Likelihood ratio test




— Simple Hypothesis Testing: Centralized

* Let p and g be two known distributions over {1, ..., k}

-

(Problem (Simple Hypothesis Testing): A
Input: i.i.d. samples from either p or g
Output: whether they came fromp or g )

* Arguably, the most fundamental statistical problem
* A natural building block

 Optimal test: Likelihood ratio test

Requires access to X;’s




— Simple Hypothesis Testing: Centralized

* Let p and g be two known distributions over {1, ..., k}

(Problem (Simple Hypothesis Testing):
Input: i.i.d. samples from either p or g
Output: whether they came fromp or g

~

* Arguably, the most fundamental statistical problem

* A natural building block
 Optimal test: Likelihood ratio test

Data is distributed these days
* Limited communication bandwidth
* Privacy concerns

Requires access to X;’s




— Simple Hypothesis Testing: Centralized

* Let p and g be two known distributions over {1, ..., k}

\_

(Problem (Simple Hypothesis Testing):
Input: i.i.d. samples from either p or g
Output: whether they came fromp or g

J
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Data is distributed these days
* Limited communication bandwidth
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* Let p and q be two known distributions over {1, ..., k} - @
" Problem (Decentralized Simple Hypothesis Testing): A X X X
Input: modified samples from either p or g
s Output: whether they came from p or g ) %) ﬁz) o @
« X: captures communication and/or privacy [ output }

[ How do we perform decentralized hypothesis testing? ]

[Tsi93] J. Tsitsiklis. Decentralized Detection. 1993
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NZonstraints ‘= Sample complexity with channels satisfying constraints

Questions:

* *

1. (Statistical) How much does sample complexity change? | Noriginal VS- Nconstraints

2. (Computational) How to find (near)-optimal channels fast? | polynomial in
support size
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, [o.s —Za] o= [0.5]
= D5 P=105+2a 0.5

Scheffe’s test needs 1/a? samples

Is this quadratic blowup necessary?
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Our Results: Statistical Cost Of Communication Constraints

n* = Sample complexity without constraints
Neomm (£) == Sample complexity with channels of £ messages

Theorem [JL22] (Statistical cost of communication constraints) For £ > 2,

log n™
Neomm(f) S |1+

4

Moreover, there exist cases where this is tight.

* The sample complexity increases by at most a logarithmic factor
» ‘“Effective” domainsizeislogn”

* Also holds under additional constraints: robustness, privacy,...

* C(Closelyrelated to preserving mutual information under quantization
[BNOP21] A. Bhatt, B. Nazer, O. Ordentlich, Y. Polyanskiy. Information-Distilling Quantizers. 2021.
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[Theorem[PAJL23] There exist ternary distributions p and q with larger sample complexities. ]

A
1 Ternary and beyond
/dTv(P q) (worst-case)
Sample |
complexity 1
binary ——— 5/ h
iohon ¢ € No pri
igh-privacy O privacy
1 e —_— 1

Theorem[”AJL23] There is an efficient algorithm with nearly-matching upper
bounds for all distributions.




—Exact Expressions and Simulations
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Are there efficient algorithms that adapt to the given instance?
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* Recall we need to map the original data X; — Y; - &
X X X
* Performance depends on the channel ¥
 Once the channel is fixed, perform likelihood ratio test %) %) - ()
* Prior work on finding the optimal channel [ output J

e € K 1:Well-understood

* € » 1: No existing polynomial-time algorithm @&
 Naive algorithm would be 2K

* [KOV14] gave an exponential-time algorithm

Can we efficiently find the (near)-optimal channel?

[KOV14] P. Kairouz, S. Oh, P. Viswanath. Extremal Mechanisms for Local Differential Privacy. 2014
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\ whose sample complexity is near-optimal for p, q, and €. y

* The channel uses only an output domain of size 2 (single bit)

* Extends to other privacy notions: approximate DP, Renyi-DP, zero-concentrated DP

* Can be generalized to have a smooth tradeoft:

c A poly{)(k‘)z)-time algorithm to an f-output channel with sample complexity

(i (02520




— Our Results: Computational Cost of Privacy, Generalized

* More broadly, consider the optimization problem

max ,
XeP(eb) g@ ¥ q)
P(e,£): All e-LDP channels} - g: a (quasi)-convex objective
of output size ¢ J

* Examples: f-divergences, Renyi Entropy, Wasserstein Norm
* Maximal separation between p and q after privatization



— Our Results: Computational Cost of Privacy, Generalized

* More broadly, consider the optimization problem

max ,
XeP(eb) g@ ¥ q)
P(e,£): All e-LDP channels} - g: a (quasi)-convex objective
of output size ¢ J

* Examples: f-divergences, Renyi Entropy, Wasserstein Norm
* Maximal separation between p and q after privatization

Recall: maximizing a convex objective is usually hard!




— Our Results: Computational Cost of Privacy, Generalized

* More broadly, consider the optimization problem

max ,
XeP(eb) g@ ¥ q)
P(e,£): All e-LDP channels| - g: a (quasi)-convex objective
of output size ¢ J

* Examples: f-divergences, Renyi Entropy, Wasserstein Norm
* Maximal separation between p and q after privatization

Recall: maximizing a convex objective is usually hard!

[Theorem[PAJL23] Thereis a poly{)(k{)2 )-time algorithm to find the optimum. ]
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* Suppose that every channel is fixed to be T :
* Then, each; is either distributed as Tp or as Tq %D

* We are effectively testing between Tp and Tq

* Thus, the sample complexity is

dj.(Tp, Tq)
* Leads to optimal choice of T min -
T € constraints dizl (T'p, Tq)

Computational cost: time to find an}

Statistical cost: Minimum value [ . .
approximate minimizer
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‘ Proof Sketch: Statistical Cost of Privacy

* Need to understand . max dj,(Tp, Tq)
:e—LDP

- Data processing inequality implies dj: (Tp, Tq) is smaller than d? (p, q)
* Privacy requires adding noise, which results in much smaller df (Tp, Tq)

* Leads to “Strong data processing inequality”

* Analyzing the maximum requires knowing the optimal T

* Non-trivial in general but the binary setting is much easier (randomized-response)

(Proposition [PAJL23] If p and q are Bernoulli distributions and € > 1, then

. _J/
* The decrease (or the contraction) depends also on the total variation distance
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A
* Suppose, we are interested in a binary private channel T Sample \[m [Ter?igri?_i :Szy)ond]
* Can be shown that optimal T is of the form complexty )
* First, a binary deterministic channel T’ D
* Then, the randomized-response to ensure privacy ighprae 1 g€ — 1 o vy

» Since the performance of randomized-response depends both on both dry and d
T’ must try to preserve both dry and d.
* Unfortunately, both can not be preserved always (see example)

0.5 05—a—-vy > Dominant contribution to dry
pP= 0.5 g=| 05—a+y

0 2a Dominant contribution to d}

» If T' preserves Hellinger divergence, then the total variation decreases, and vice versa
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— Extreme points lead to optimal performance

* Recall the original objective
max = g(Tp,Tq)

TEP(€,f)
[SD(E, £): All e-LDP channels]_/* L g: a (quasi)-convex objective

of output size ?

* Let the jointrangebe A = {(Tp,Tq): T € P(€,¥)}

* By convexity of g and A, the maximum value is attained at T only if
(Tp, Tq) is an extreme point of A

What type of channels T lead to the extreme points of A?
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e First, a deterministic channel from [k] to [2£7]

g  Then, a (randomized) e-LDP channel from [2£?] to [#] )

* The Good: Privacy step is independent of k
e The bad: The number of deterministic channels is £¥

Can we further reduce the search space in the first step?
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= {(Tp,Tq): T € P(e,¥)}

T P(€,£): All e-LDP channels of output size £

Theorem[PAJL23] If (I'p, T'q) is an extreme point of A, then T can be decomposed as

* First, a threshold deterministic channel from [k] to [2£?]

 Then, a (randomized) e-LDP channel from [2£?] to [#] Py

\_
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Likelihood Ratio

for p and q if T partitions the input domain by thresholding the I I
a
2 6 7

* The number of threshold channels is only polynomial, kP°y(£)
Threshold Channel: A deterministic channel T is a threshold channel
likelihood ratios of p and q. .
Domaln Elements
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Theorem[PAJL23] If (I'p, T'q) is an extreme point of A, then T can be decomposed as

* First, a threshold deterministic channel from [k] to [2£?]

 Then, a (randomized) e-LDP channel from [2£?] to [#] Py

* The number of threshold steps is only polynomial, kP°Y(®)

Corollary [FAJL23]: polyg(kp"l}’(f))—time algorithms to maximize convex functions over A.
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