Announcements/Reminders:

- Midterm solutions
- HW4 due today
- HW5 assigned
- Readings

Last class:

- Recursion (end)
- Search
- Trees (intro)

Today:

- (Last) Week in Review
- Trees (cont'd)
 - Binary Trees
(Last) Week in Review

- Recursion
 - What and Why
 - Key Questions
 - Examples
 - Analyzing Complexity of Recursive Functions
- Searching
- Trees
 - Intro
 - Implementing
 - Recursive height() method
Tree Data Structures
1. What is the root?

2. How many leaves are there?

3. What is the height of the tree?

4. How many children does G have?

5. How many descendants does B have?

6. What is the depth of J?

7. What are the ancestors of D?

8. What is the length of the path from B to D?
Implementing Trees (general)

(Tree) Nodes:

```java
class TreeNode<E> {
    private E data;
    private <__________<__________> children;
    ...
}
```

Tree:

```java
public class Tree<E> {
    private TreeNode<E> root;
    ...

    public Tree() {
        root = null;
        ...
    }
    ...
}
```
Working with Trees: Example

Write a method to determine the height of a general tree. (What is the recursive definition?)

 public int height() {

Binary Trees

BinaryTreeNode class:

class BinaryTreeNode<T> {
 private T data;
 private BinaryTreeNode<T> parent;
 private BinaryTreeNode<T> leftChild;
 private BinaryTreeNode<T> rightChild;

 public BinaryTreeNode(T info) {
 data = info;
 leftChild = null;
 rightChild = null;
 }
 ...
}

...
Types of binary trees

(A)
```
     20
    /  
   10   30
  / 
 5 14
/
4
```

(B)
```
   10
  /  
 8   12
/
4
```

(C)
```
   40
  /  
 10   49
  /
  8
```

(D)
```
   5
  /  
 8   20
  /
 15
```

(E)
```
    12
   /  
   6   16
  / 
 4 10
```

(F)
```
    36
   /  
  24   54
  / 
 18 41
```