Announcements/Reminders:

- HW5 due tonight
- Midterms graded, statistics'd, returned today
- HW3, HW4, P2 graded, feedback available
- Readings

Last class:

- Binary Search Trees
 - Operations: print, lookup, min/max, succ/pred, insert, delete

Today:

- (Last) Week in Review
- Associative Arrays/Maps
- Binary Search Trees
 - delete method (finish)
 - Complexities
- Balanced Search Trees (intro)
(Last) Week in Review

- Trees (general)
 - Terminology
 - Implementing trees
 - Traversals
- Binary Trees
 - Types and heights
- Priority Queues
- Heaps
 - Concept
 - Insert/Delete
 - Complexities
- Binary Search Trees (BSTs)
 - Concept, Examples
 - Implementation
 - Operations: print, lookup, min/max, succ/pred, insert, delete
Associative Arrays/Key-Value Maps/Dictionaries

Concept:

Examples:

Operations:

Possible implementations:
Lowest Common Ancestor (LCA) of two nodes

In a BST:

In a (regular) binary tree:

Using only constant additional storage:
Deleting from a BST

High-level algorithm:

Example
BST operations complexities

Assume the number of nodes is n, arranged in a tree of height h.

print():

lookup(E):

min/max:

succ(E)/pred(E):

insert(E):

delete(E):

Height of an “average” BST (with n nodes):
Final BST example

Starting with an empty BST, insert 7, 14, 18, 23, 1, 11, 20, 29, 25, 27.

Now delete 18 and 23:
Balanced Search Trees

Goal

How?

Rotations

Types