CS367 Lecture 21
Tuesday 22 July 2014

Announcements/Reminders:

• HW6 assigned

Last class:

• Associative Arrays/Maps

• Binary Search Trees
 • delete method (finish)
 • Complexities

• Balanced Search Trees (intro)

Today:

• Balanced Search Trees
 • Red-Black Trees
Balanced Search Trees

Goal

How?

Rotations

Types
Red-Black Trees (RBTs)

Idea

Properties:
- Every node is “colored” red or black
- Root property
- Red property
- Black property
- All leaves are null and black

Example:

Operations: print, lookup, insert, delete
Black-height of a node

Definition:

Immediate consequences of RBT properties:
Inserting into a red-black tree

Insert a value V into a red-black tree T WHILE _________________________________

Trivial case: T is empty.

General case:

– Travel down and insert V as a leaf (like in a regular BST)
– Color the new node red
– What else?

Which property might be violated?
RBT Insertion (cont'd): V's parent P is red

Case 1: P's sibling S is black. In this case, rotate:

Case 2: P's sibling S is red. In this case, recolor:
Cascading Fixes
RBT insertion example

Starting with an empty RBT, insert 7, 14, 18, 23, 1, 11, 20, 29, 25, 27 (same values as before)
Complexity of RBT operations

print:

lookup:

insert:

delete: