Announcements/Reminders:

- P4 due tonight

Last class:

- Graphs (cont'd)
 - Using Edge Representations
 - Searches/Traversals: Depth-First Search

Today:

- Graphs (cont'd)
 - Breadth-First Search
 - Dijkstra's Shortest Path Algorithm
Breadth-First Search (BFS)

What kind of questions can we answer?

Using a queue:
BFS Examples

BFS node visit order beginning at A:

Graph 1:

Graph 2:

BFS spanning tree starting at A:

Graph 1:

Graph 2:
Graph Algorithms

What kind of questions do we want to ask about graphs?

Cycle Detection

Path Detection
Finding Shortest Paths: Dijkstra's Algorithm

Problem:

Solution Strategy:

Example:

Priority Queue:
Costs and predecessors:
Dijkstra's Algorithm (cont'd)

Pseudocode:

Given: Start node s

foreach node u reachable from s:
 init u.dist to infinity
 init u.predecessor = null
 init u.visited = false

$PQ = \text{new priority queue}$
$PQ.insert(<0, s>)$

while PQ is not empty:

 $<u$.dist, $u> = PQ.removeMin()$

 foreach unvisited neighbor v of u:

 // if v.dist can be improved i.e.
 if v.dist $> u$.dist + cost(u, v):

 // update v.dist to be the path thru u
 v.dist = u.dist + cost(u, v)

 // set v's predecessor
 v.predecessor = u

 insert $<v$.dist, $v> \text{ into } PQ$
 OR update if v is already in PQ

 mark u as visited

A finished node will never be visited again!