
Implementing an Intrusion Detection System using a
Decision Tree

Anubhavnidhi Abhashkumar Roney Michael

Abstract—As the Internet becomes more and more accessible
to people the world over, the realm of network security faces
increasingly daunting problems. From the point of view of a
defender, we now have to thwart the attempts of an increased
number of malicious users; in the face of an attack, a larger
consumer base left unserved turns out to be a larger margin of
lost revenue. The value of being able to catch these attacks before
they actually happen is thus going up with each passing day. This
is where Intrusion Detection Systems (IDSs) come into play. This
report describes over work in designing a Network IDS based on
a canonical Decision Tree based approach. The system is trained
and evaluated on pseudo-random subsets of the KDD-99 data
set, which has been widely used to evaluate past and present day
research in the domain.

I. INTRODUCTION

As more and more computers get interconnected, the
system in which a particular machine performs becomes in-
creasingly chaotic. The combination of knowledge, time and
certain disdainful facets of human nature invariably results in
a situation where certain users of a computer system come
under attack by others.

An Intrusion Detection System (IDS) is a collection of soft-
ware and/or hardware components in any given system, whose
objective is to correctly identify and possibly isolate malignant
system activity. For the purposes of this report, the focus of
our consideration is going to be a system of interconnected
computer systems, for which the IDS specifically falls into the
category of Network Intrusion Detection Systems (NIDSs).

In the most generic of terms, a NIDS operates by scanning
input and/or output traffic for the network in which it operates
and outputs a one-hot result classifying it as either normal
traffic or any one of possibly many attacks. Several different
categories of NIDS exist, some hinged on different ideas than
others. Some of the more prominent ideas in developing these
systems are: (i) Anomaly/Signature based; (ii) Passive/Active
(iii)Stateful/Stateless.

Anomaly based NIDS operate based on the idea that the
ambient traffic in a network collected over a period of time
reflects the nature of the traffic that may be expected in
the immediate future. A signature based system on the other
hand works by identifying critical choke points in attacks and
attempting to classify traffic based on the nature of the data
at these points. An IDS may be classified as passive/active
based on the action it takes when some malignant activity has
been identified. Passive systems work by logging suspicious
activity as and when detected, which may later be reviewed by
a human operator to take the final call, while active systems
may take actions such as account deactivation or disabling
network access. Finally, the idea of stateful IDSs lend itself
to the notion that an attack may be spread out over multiple

possibly distributed sequences of data, while a stateless system
operates only on a small current window of information at
any given time. It is also important to note when the classifier
actually acts; i.e., whether it is on-the-fly or after certain fixed
intervals of time. The idea of a real-time classifier follows
directly from that of a stateless one.

The focus of this paper is a signature based, real-time,
passive and stateless NIDS based on based on Decision Trees.

II. RELATED WORK

Intrusion detection techniques has secured a space in the
network defense landscape alongside firewalls and virus pro-
tection systems. There are two primary methods of monitoring
these are signature based and anomaly based. In [1] different
approaches of IDS are analyzed. Some approach belongs to
supervised method and some approach belongs to unsuper-
vised method. Some of the approaches were Support Vector
Machines, Artificial Neural network, Self-Organizing Map etc

Many different algorithms have been used for this purpose.
For example [2] used support vector machine, [3] used naive
bayes and [4] used bayesian network for the purpose of
creating a good IDS.

Irrelevant and redundant features can often lead to models
with poor performance. To substantiate the performance of
machine learning based detectors that are trained on KDD 99
training data; [5] investigated the relevance of each feature in
KDD 99 intrusion detection data sets, using information gain
to determine the most discriminating features for each class.

[6] conducted a statistical analysis on this data set and
found some issues which highly affected the performance of
evaluated systems, and resulted in a very poor evaluation of
anomaly detection approaches. To solve those issues, they
proposed a new data set, NSL-KDD, which consists of selected
records of the complete KDD data set and does not suffer from
any of KDD’s shortcomings.

III. DATA SET

Evaluating the performance of a classification algorithm
is a critical choke-point in determining how useful it might
be. For the evaluation to be truly trustworthy, the data set has
to conform to certain minimum requirements: (i) Statistically
relevant, i.e., the data should mirror real world scenarios;
(ii)Variables of mixed type; (iii) Should allow modeling using
different perspectives for third party evaluation. For evaluating
our NIDS, we initially chose the KDD-99 data set, one made
popular through the 1999 SIGKDD intrusion detection contest.

The data set was based on that of a 1998 DARPA intrusion
detection evaluation program which was prepared and man-
aged by MIT Lincoln labs. It was collected over a period of

nine weeks through raw TCP dumps of a Local Area Network
which was intended to simulate a typical US Air Force LAN.
The training data consisted of nearly 5 million connection
record and the test data, of nearly 2 million records. Each
record indicated a connection, i.e, a sequence of TCP packets
identified as corresponding to a single operation. Each record
is labeled as either normal traffic or one specific type of a
number of varieties of attacks.

Overall, there were 24 attack types which could be buck-
eted into 4 high-level categories:

• DoS: Denial of Service

• R2L: Remote to Local

• U2R: User to Root

• Probing: Surveillance, Port Scans, etc.

The data set has the additional characteristic that the
test and training sets were drawn using different probability
distributions, which is what one may expect from a real-world
situation.

Each record consisted of 41 feature values and a label.
The meaning and nature of each of these features is shown in
Table I [5] .

For a uniformly sampled 10% of the data set, the different
labels were found to have the following counts ,Table II.

Table II: Category of Attacks

Attack #samples Category
smurf 280790 dos

neptune 107201 dos
back 2203 dos

teardrop 979 dos
pod 264 dos
land 21 dos

normal 97277 normal
satan 1589 probe

ipsweep 1247 probe
portsweep 1040 probe

nmap 231 probe
warezclient 1020 r2l

guess passwd 53 r2l
warezmaster 20 r2l

imap 12 r2l
ftp write 8 r2l
multihop 7 r2l

phf 4 r2l
spy 2 r2l

buffer overflow 30 u2r
rootkit 10 u2r

loadmodule 9 u2r
perl 3 u2r

The KDD 99 data set however notably suffered from a mat-
ter of redundancy. Though statistically viable, this drawback
severely affects the data set’s use as a measure of accurate
predictions since an overwhelming majority of the records fell
into one of just 3 classes out of a possible 25. In terms of
numbers, the attacks in the training and test sets suffered from
redundancies of 93.32% and 88.26% respectively. Taking into
account the redundant normal traffic records as well, overall
the training and test sets had redundancies of 78.05% and
75.15% . The total number of instances, redudndant instances
and the reduction rate for training and test sets have been
shown in Table III and Table IV respectively.

Table III: Statistics of redundancy in the KDD training set

Original Records Distinct Records Reduction Rate
Attacks 3,925,650 262,178 93.32%
Normal 972,781 812,814 16.44%

Total 4,898,431 1,074,992 78.05%

Table IV: Statistics of redundancy in the KDD test set

Original Records Distinct Records Reduction Rate
Attacks 250,436 29,378 88.26%
Normal 60,591 47,911 20.92%

Total 311,027 77,289 75.15%

For this reason, after careful consideration, we chose to go
instead with a more recently published subset of the original
data set, known as the NSL-KDD data set [6] . The elimination
of the redundant records ensure two characteristics:

The performance of the classifier will not be biased by
redundancy in the training set.

There will be no biased toward labels which possess a
statistically higher frequency; it is expected to be independent
of the distribution of the test set.

IV. DECISION TREES

In working with real world data, we are often faced with
quantities so huge that it becomes impractical to approach
it from a traditional perception-based classification approach.
Machine learning provides for a solution here through the
use of supervised learning (classification) techniques, at times
in conjunction with unsupervised learning (clustering) tech-
niques. These methods are ever more important today given
the fact that the size of data seems to be ever-increasing.
Classification techniques have been employed with a consid-
erable degree of success to aid authorities in the detection of
credit-card theft, by academics to detect plagiarism and even
in hostile aircraft detection on war-fronts.

A decision tree is a predictive classifier which makes a
labeling call by branching off into one of possibly many child
nodes (subtrees) at any of its internal nodes. A traversal of
such a tree from the root to the extremities (leaves) provides us
with the predicted label for that particular instance, associated
with that particular leaf node. The concept behind decision
trees are particularly alluring, given the fact that they lend
themselves to being easily comprehensible to a typical human’s
understanding.

An extremely simplistic, but common example of the use
of a decision tree is that of a guessing game as shown in
Figure 1. Starting from the root node, any non-leaf node
would pose a question about any particular feature of the
instance to be classified. Depending on the value received as
the answer (which may be considered as a boolean valued
feature), we transit to one of its child nodes. This classification
task iteratively continues until the point where we reach a leaf
node, which corresponds to either a prediction or denotes a
point of uncertainty. This algorithm may be further expounded
to include a self-improvement methodology, where post-fact,
when the classification result is actually known, if the predic-
tion were to be wrong or undetermined, one could utilize the
information to improve future predictions.

Table I: List of features with their descriptions and data types

Feature Description Type
duration Duration of the connection Continuous

protocol type Connection protocol (e.g. rcp, udp) Discrete
service Destination service (e.g. telnet, ftp) Discrete

flag Status flag of the connection Discrete
source bytes Bytes sent from source to destination Continuous

destination bytes Bytes sent from destination to source Continuous
land 1 if connection is from/to the same host/port; 0 otherwise Discrete

wrong fragment number of wrong fragments Continuous
urgent number of urgent packets Continuous

hot number of ḧotı̈ndicators Continuous
failed logins number of failed logins Continuous

logged in 1 if successfully logged in; 0 otherwise Discrete
compromised number of c̈ompromisedc̈onditions Continuous

root shell 1 if root shell is obtained; 0 otherwise Continuous
su attempted 1 if ”su root” command attempted;0 otherwise Continuous

root number of ”root” accesses Continuous
file creations number of file creation operations Continuous

shells number of shell prompts Continuous
access files number of operations on access control files Continuous

outbound cmds number of outbound commands in an ftp session Continuous
is hot login 1 if the login belongs to the ḧotl̈ist; 0 otherwise Discrete

is guest login 1 if the login is a g̈uestl̈ogin; 0 otherwise Discrete
Count number of connections to the same host as the current connection in the past two seconds Continuous

srv count number of connections to the same service as the current connection in the past two seconds Continuous
serror rate % of connections that have S̈YNërrors Continuous

srv serror rate % of connections that have S̈YNërrors Continuous
rerror rate % of connections that have R̈EJërrors Continuous

srv rerror rate % of connections that have R̈EJërrors Continuous
same srv rate % of connections to the same service Continuous
diff srv rate % of connections to different services Continuous

srv diff host rate % of connections to different hosts Continuous
dst host count count of connections having the same destination host Continuous

dst host srv count count of connections having the same destination host and using the same service Continuous
dst host same srv rate % of connections having the same destination host and using the same service Continuous
dst host diff srv rate % of different services on the current host Continuous

dst host same src port rate % of connections to the current host having the same src port Continuous
dst host srv diff host rate % of connections to the same service coming from different hosts Continuous

dst host serror rate % of connections to the current host that have an S0 error Continuous
dst host srv serror rate % of connections to the current host and specified service that have an S0 error Continuous

dst host rerror rate % of connections to the current host that have an RST error Continuous
dst host srv rerror rate % of connections to the current host and specified service that have an RST error Continuous

Figure 1: Sample Decision Tree

An important question which comes up in modeling a
decision tree based classifier for a deterministic computer is
which feature is to be tested at a particular level of nesting
within it. Testing all possible features in any given order should
of course yield the most accurate result (assuming the absence
of outliers), but this increases the per instance classification
cost by a considerable factor, which might turn out to be an
unacceptable overhead, particularly for real time prediction
requirements. Thus, identifying the most important question
to be posed to a given instance is paramount. If we consider

the classification of a large data set, then it is reasonable to say
that the better the classifier performs, the more “pure” the leaf
nodes will be in terms of the labels of the their instances. To
define this “purity” as a quantifiable metric, we make use of the
concept of entropy; the lower the entropy of the instance labels
are at any given node, the “purer” the collection is. Taking this
idea a step further, with each question posed, we expect the
resultant data to have a better sense of homogeneity; i.e., the
entropy of the parent set should be higher than that of the sum
of the entropies of the result sets, which consequently implies
that the greater this difference, the better our question. This
is, in a basic sense, what we call as the information gain of a
certain candidate feature over a particular subset of data, the
measure by which we pick the best question.

At this point, it is important to note that there exist nu-
merous variations of tree building algorithms in practice, each
with it’s own pros and cons and there is still a considerable
degree of debate in academia as to which is actually the
best, given a particular problem. Now given that the object
of our classification algorithm was to generate a tree which
would be trained over a substantial amount of data, the major
consideration (besides accuracy of course) was that of run time.
Additionally, considering the vast amount of data this would
have to start out with, updating the tree on a per instance level

Figure 2: Subset of our Decision Tree

is evidently excessive. These characteristics of the data led us
to choose Dr. Ross Quinlan’s Iterative Dichotomiser 3 as the
basis of our NIDS. The working of ID3 as mentioned in is
shown in the next paragraph.

ID3 learns a decision tree using the top-down approach,
starting with the question ”which attribute should be tested at
the root of the tree?”. For this, we have to do a statistical test
on each attribute to find how well it alone classifies the training
examples. The attribute which performs the best is chosen
here as the test at root node. Descendants are created for each
possible value of this attribute, and the training examples are
sorted to the appropriate descendant node (i.e. down the branch
corresponding to the example’s value for this attribute). The
pseudo code for a binary classification for ID3 from [7] is
shown in Figure 3

For the purpose of Information Gain, we used the following
formula,

InfoGain(D,S) = HD(Y)–HD(Y |S)
where HD(Y) represents entropy for class Y on data set

D, HD(Y |S) represents conditional entropy of class Y on
attribute S for data set D and InfoGain(D,S) represents the
Information Gain on data set D by splitting on feature S i.e.
the expected reduction in entropy caused by partitioning the
data set D according to this attribute S.

We also implemented the multi-class version of ID3 (We
had to keep track of multiple classes instead of just 2). The
main advantages of this algorithm is that it is computationally
relatively simple, with run time increasing in a near-linear
measure (O(n*log(n))); the disadvantage is that updation of the
tree requires in essence, a complete rebuilding of the classifier.

V. RESULTS AND DISCUSSION

A. Interpreting the Tree

As mentioned before, one of the major advantages of using
decision trees is that the resultant classifier may easily be
interpreted. Let us consider a subtree as shown in Figure 2
of the classifier obtained after running the algorithm on the
NSL-KDD data set:

Where, ‘ecr i’ and ‘pod’ stand for “echo reply ICMP” and
“ping of death” respectively. This means that a connection
instance of service type ecr i with a count (number of con-
nections to the same host as the current connection in the past
two seconds) less than or equal to 20 (as it will be an integer
value) and an src byte length greater than 1256 will be flagged
as a pod attack attempt.

B. Performance Metrics

For the purpose of this project we used Accuracy, Precision
and Recall as our main performance metrics and to calculate
them we had to calculate the values of True Positive(TP), False
Positive(FP),True Negative(TN) and False Negative(FN).

TP represents those instances which are actually an attack
and classified as an attack. FP represents those instances which
are actually normal but classified as an attack. FN represents
those instances which are actually an attack but classified as
an normal. TN represents those instances which are actually
normal and classified as an normal.

Accuracy = TP+TN
TP+FP+TN+FN

Precision = TP
TP+FP = TP

PredictedPositive

Recall = TP
TP+FN = TP

Actualpositive

In other words, Accuracy represents how many instances
were correctly classified, Precision represents out of all the
instances classified as an attack how many were actually an
attack and Recall represents how many attacks were correctly
classified (percentage of attacks caught). We got the following
values for the NSL-KDD data set

• TP = 9118

• FP = 882

• TN = 8827

• FN = 3488

• Accuracy (on multi-class classification)= 69.61%

• Accuracy (on binary classification)= 80.39%

• Precision = 91.88%

• Recall = 72.33%

We got the following values for the KDD data set

• Accuracy = 99.97%

• Precision = 99.99%

• Recall = 99.99%

VI. DISCUSSION

It is interesting to note that though we found a lot of
research work based on the original KDD data set which
boasted of accuracies of 99% and above, attributing them
to superior, novel approaches, the canonical ID3 classifier
gave the same (or even better) level of performance, which
casts a certain amount of doubt on the validity of the earlier
approaches. In addition to the reasonable level of accuracy,
we were also able to obtain very good levels of precision (out
of all the instances classified as an attack how many were
actually an attack) and recall (proportion of attacks detected)
in comparison to that advertised by some well regarded names
in the industry. On the NSL-KDD data set we achieved a
precision of 91.18% and a recall of 72.33%. With classification
over all 25 categories of attacks, an accuracy of 69.61% was
achieved, which was a bit lower that what we had expected, but
with binary labeling of traffic (malicious vs normal, where all
the attacks belong to malicious class), it went up to 80.39%. On

Figure 3: Pseudo code for ID3

the original KDD-99 data set, the results as expected were less
than meaningful due to the ridiculous amount of redundancy;
we were able to achieve 99.97% accuracy across all 25 labels,
near perfect (> 99.99%) precision and recall.

VII. CONCLUSION

We implemented an Intrusion detection system using an
ID3 decision tree classifier. By observing the decision tree we
found out what feature value or what set of feature values could
cause an attack and what set of feature values exist in a normal
traffic. We also showed why KDD99 data set is not reliable
in evaluating an IDS system as they are dominated with a few
class variables and have redundant instances. We evaluated our
performance on the NSL-KDD data set. We ended up with
a high precision value of 91.18%. Our recall was 72.33%,
accuracy on the binary classification(normal vs malicious) was
80.39% and on multi-class classification was 69.61%. Because
of our high precision value we can say that a very small amount
(8.82%) of normal traffic is flagged as an attack in our IDS
implementation.

REFERENCES

[1] M. K. Lahre, M. T. dhar Diwan, and S. K. K. P. Agrawal, “Analyze
different approaches for ids using kdd 99 data set,” International Journal
on Recent and Innovation Trends in Computing and Communication,
ISSN, pp. 2321–8169.

[2] Y. B. Bhavsar and K. C. Waghmare, “Intrusion detection system using
data mining technique: Support vector machine,” International Journal
of Emerging Technology and Advanced Engineering, vol. 3, no. 3, 2013.

[3] U. Subramanian and H. S. Ong, “Analysis of the effect of clustering
the training data in naive bayes classifier for anomaly network intrusion
detection,” Journal of Advances in Computer Networks, vol. 2, no. 1,
2014.

[4] H. Shirazi, A. Namadchian, and A. khalili Tehrani, “A combined
anomaly base intrusion detection using memetic algorithm and bayesian
networks,” differences, vol. 16, p. 17, 2012.

[5] H. G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood, “Selecting
features for intrusion detection: A feature relevance analysis on kdd
99 intrusion detection datasets,” in Proceedings of the third annual
conference on privacy, security and trust, 2005.

[6] M. Tavallaee, E. Bagheri, W. Lu, and A.-A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in Proceedings of the Second IEEE
Symposium on Computational Intelligence for Security and Defence
Applications 2009, 2009.

[7] T. M. Mitchell, “Machine learning. 1997,” Burr Ridge, IL: McGraw Hill,
vol. 45, 1997.

