Large Scale Empirical Comparison of Linear
Classifiers for Multi-class Problems

Ayon Sen

Abstract—Linear classifiers, even though very simple, are pop-
ular for classification tasks. By nature they can only differentiate
between two classes. But it is possible to extend their usage into
the domain of multi-class problems. These classifiers are known to
perfrom very well for many practical scenarios (both binary and
multi-class). In this paper, we examine and study the performance
of linear classifiers across different data sets for multi-class clas-
sification. Specifically, we compare the performance of Logistic
Regression, Naive Bayes, Linear SVM, Weighted Majority and
ECOC (Error Correcting Output Codes) constructed using Naive
Bayes across various data sets. In addition to that, we show how
these classifiers perform when the data sets have only numeric
attributes, only nominal attributes and mixed attributes. We also
study about the performance of these linear classifiers on large
data sets and class imbalance problems. Our study shows that
different linear classifiers perform better in different situations.

I. INTRODUCTION

Linear classifiers predict the class value based on the linear
combination of the features of an instance. If & is a feature
vector, then the linear classifier predicts the class value as
¥ = f(W,Z) where @ is a weight vector that is learned by
the classifier when it is trained. Linear classifiers have an
advantage over other classifiers in terms of the time taken
to classify as it calculates the output as a linear combination
of input features. For a binary classification task with 2
dimensional feature space, a linear classifier tries to find a
line that separates the two classes in the feature space.

Linear classifiers like Naive Bayes, Logistic Regression,
Linear SVM and Weighted Majority are used in a plethora of
classification tasks. In this study, we have tried to answer the
following questions. If we have a data set in which the type of
features are well known, which of these linear classifiers would
provide the best accuracy? How do such classifiers perform for
data sets with a large number of instances? If we use linear
classifiers and scale it to multi-class classification, how does
the model perform?

There are mainly two family of approaches to handle multi-
class problems using linear classifiers like one-vs-one (OVO)
and one-vs-all(OVA) [1]. The OVO approach divides a multi-
class problem into as many binary problems as possible. It
builds " Cy base classifiers for solving the problem having m
classes. Each classifier in OVO discriminates between a pair
of classes. In contrast, the OVA approach builds one classifier
for each class, the so called farget class and thus only requires
m classifiers. Here the classifier discriminates the target class
from the default class i.e., all the other (m — 1) classes. For
our study we use OVA since it is less resource hungry and
some of our data sets are very large. We analyze the accuracy
of the classifiers over 25 different data sets. Cohen’s Kappa
and GMean are taken as the metrics of performance.

Ashwin Karthi Narayanaswamy

Anubhavnidhi Abhashkumar

The rest of the paper is organized as follows. Section II
highlights the different research work that has been done on
the classifiers that we use for the study along with a brief
discussion about OVO and OVA approaches. In Section III, we
discuss how we have implemented the classifiers for our study.
Section IV presents our findings while Section V discusses
upon those findings. Then we briefly conclude in Section VI.

II. RELATED WORK

This section presents the previous research works asso-
ciated with the linear classifiers that we have used for this
study. Since we use these classifiers in the multi-class problem
domain, we discuss the research works that show how linear
classifiers can be used for such domains.

Naive Bayes is a simple probabilistic classifier that applies
Bayes’ theorem with strong independence assumption between
the features. Even though the independence assumption made
by this classifier can be incorrect, in practice it performs really
well compared with other classifiers. It has been modified
over the years to suit particular application domains. Lewis [2]
provided a modified version of this classifier which is specially
useful for text classification. He also showed how integer-
valued features can be handled in such a setting. In [3], the
author showed that Naive Bayes does not always scale well
with larger databases. He then proposed a decision tree hybrid
called NBTRee to improve performance for such cases. The
authors of [4] also do an empirical study of such classifiers.
They found that the accuracy of such classifiers is not directly
correlated with the degree of feature dependencies.

Logistic regression is a probabilistic statistical classifica-
tion model. It uses a discriminative approach and generally
takes lesser number of training instances to converge than
Naive Bayes [5]. The authors of [6] also showed that for
binary classification, boosting can also be explained in terms
of logistic regression.

Support Vector Machines [7] are based on the concept of
decision planes that define decision boundaries. In a linear
SVM, the decision planes define a boundary that separates
two set of classes. The distance from the decision surface
to the closest data point defines the margin of the classifier.
The decision boundary is selected such that this margin is
maximized. A single Support Vector Machine(SVM) can rep-
resent only a binary classification task. Multi-class SVMs are
usually implemented by combining several two-class SVMs.
Some of the famous methods as mentioned in [8] are OVO,
OVA, Directed Acyclic Graph (DAG), and Error Corrected
Output Coding (ECOC). For this study, we have used the OVA
approach.

The weighted majority algorithm predicts the output by
evaluating the predictions of a pool of experts. This paper
[9] shows how weighted majority can be used for linear
classification. It initially assigns a positive weight to each
expert in the pool of algorithms. The algorithm forms its
prediction by comparing the total weight go of the experts
in the pool that predict the class O to the total weight g; of the
algorithms predicting 1. When the WM makes a mistake, the
weights of those experts of the pool that disagreed with the
label are each multiplied with a fixed ’3’ such that 0< 3 <1.

Error Correcting Output Codes (ECOC) is an ensemble
approach where the class representation is changed in order to
get better results. It was first proposed by the authors of [10].
They showed how classes represented by multi-bit code words
can help to improve the performance. They also came up
with code words for different number of classes. In [11],
the authors present a heuristic method for learning the code
words based on a hierarchical partition of the class space that
maximizes a discriminative criterion. They make a trade off
between optimal code word separation with maximum class
discrimination in partitions.

OVO and OVA are the two main approaches that are used
to solve multi-class problems using linear (binary) classifiers.
OVO has the advantage of handling easier decision boundaries
since it only deals with data items of two particular classes.
But this comes at the cost of added resources (more classifiers
required in comparison to OVA). When predicting the output
classes both OVO and OVA has to combine the outputs of
the classifiers that they use. OVO has another disadvantage
here. There are multiple aggregations strategies for OVO like
voting [12], weighted voting [13] and others [14], [15], [16].
Different strategies perform better in different situations. So,
there is no clear winner. OVA, on the other hand, has mainly
one aggregation strategy. Here, each classifier gives as output
a probability of the data item belonging to the class that it
was discriminating. The class with the highest probability is
declared as the output class.

III. METHODOLOGY

In this section, we show how we have implemented the
classifiers. There are two approaches of using binary classifiers
to solve multi-class problems namely OVA and OVO. OVA
uses less resources while OVO has the advantage of dealing
with simpler decision boundary at the cost of using more
resources. For this study we performed OVA classifiers with
our linear classifiers. The implementations are described as
follows.

A. Naive Bayes

As mentioned in Section II, Naive Bayes is one of the
most popular linear classifiers. It has been used in a large
number of real life problems. We used Wakaito Environment of
Knowledge Analysis (WEKA) [17] to implement Naive Bayes.
Unlike other implementations of Naive Bayes, in WEKA it can
be directly used as both a binary or multi-class classifier. They
use a OVA approach for this. To handle a numeric attribute,
this class tries to estimate the distribution of that attribute [18].
From now on we will mention this classifier as NB.

B. Logistic Regression

For our experimental study of logistic regression, we again
use Weka. Weka has multiple versions of logistic regression
including SimpleLogistic [19], Logistic [20] and others. For
our implementations we have used SimpleLogistic. It does
not use a regularization parameter and is linear in nature.
Some of the other logistic regression classifiers in Weka either
use a ridge regularization parameter or is an extension of the
linear version (multi-class classifier). Just like Naive Bayes in
Weka the SimpleLogistic can handle multi-class classification
automatically by using the OVA approach. Also, we changed
the number of iterations for SimpleLogistic and implemented
two versions. From now on we will call them LR1 and LR2.
The parameters are shown in Table I.

Table I: Parameters for Logistic Regression

Name of Classifier Iterations
LR1 100
LR2 500

C. SVM

For our experimental study of SVM, we again use Weka.
For the purpose of multi-class classification weka have used
the OVA version of SVM. In this project we have used 4 SVMs
with different C' values as mentioned in Table II.

Table II: Value of parameter C' for various SVMs

Name of Classifier C

SVM1 1
SVM2 10
SVM3 100
SVM4 1000

D. Weighted Majority

The weighted majority we implemented extends the
idea [9] to multiple classes. The total weight ¢; predicted
for class ¢ by the experts in the pool are compared and
the prediction that has the maximum weight is taken as the
prediction of the Weighted Majority Algorithm. The system
under discussion uses the attributes of the dataset as the pool
of experts. The experts are trained like a single level tree. Each
attribute predicts all the classes for different nominal values
and for different ranges in case of numeric type. Initially all
the predictors are given equal weight of value 1. In the course
of training, the weights of the predictors which predicted the
wrong values are penalized by a factor of 5 which is given
a value 0.95 . The value of 3 is a little high as the number
of mistakes increases with the size of the training set and the
weights of the predictors would decrease faster in case of large
data sets.

E. ECOC

It was mentioned in Section II that ECOC changes the
representation of the classes. It uses an ensemble of classifiers
to decide individual bits of the code word for the output class.
Since each bit can be either a ‘0’ or ‘1°, a linear classifier can
be used. For our experimental studies, we chose Naive Bayes
for this purpose. ECOC also does not perform very well when

the number of classes is small. Usually the number of classes
have to be greater than 11. Among the data sets that we chose
for the study, three (arrhythmia, audiology and letter) fulfill
that criteria. So, these were the only data sets that we tested
with ECOC. One of the most important aspect of using ECOC
is to have good code words. Such code words must have high
Hamming Distance separation between them. For our study
we chose the code words found in [21]. The code words could
also have different lengths (15, 31 or 63) for the same number
of classes. We used all three length code words for each data
set except for arrhythmia. That data set only had 12 classes
for which code words of only length 15 was provided. The
implementation was made in Java programming language.

IV. EMPIRICAL EVALUATION

In this section, we show our experimental results. Also, we
discuss the data sets that were used along with the performance
measures.

A. The Data Set

We select 25 data sets for simulation. Most of them
belong to the UCI machine learning repository [22].
These data sets represent 25 different multi-class problems
and can be obtained from http://sci2s.ugr.es/ovo-ova and
http://repository.seasr.org/Datasets/UCl/arff/. We present brief
characteristics of the data sets in Table III. The table shows
the number of examples, number of attributes, the number of
numerical and nominal attributes and the number of classes.
As can be seen from the table, some of the data sets had a large
number of instances (e.g. kdd_ipums_la_97-small, waveform-
500). At the same time some data sets only had numeric
attributes while other only nominal attributes. Others had a mix
of both. Thus we can test the effectiveness of linear classifiers
on data sets with different characteristics. This will help us gain
insightful knowledge about how well these classifiers actually
perform. Also, for our experiments we used stratified 10-fold
cross validation.

Table III: Summary description of data sets.

Data set #Example | #Attributes | #Numeric | #Nominal | #Classes
arrhythmia 452 279 197 82 12
audiology 226 69 0 69 24
autos 159 25 15 10 6
car 1728 6 6 0 4
cleveland 297 13 5 8 5
dermatology 366 33 1 32 6
ecoli 336 7 7 0 8
flare 1389 10 0 10 6
glass 214 9 9 0 6
kdd_ipums_la_97-small 7019 60 0 60 9
kdd_ipums_la_98-small 7485 60 0 60 10
kdd_ipums_la_99-small 8844 60 0 60 9
led7digit 500 7 0 7 10
letter 20000 16 16 0 26
lymphography 148 18 3 15 4
nursery 1296 8 0 8 5
pageblocks 548 10 10 0 5
penbased 1099 16 16 0 10
satimage 643 36 36 0 7
segment 2310 19 19 0 7
shuttle 2175 9 9 0 7
vehicle 846 18 18 0 4
vowel 990 13 13 0 11
waveform-5000 5000 40 40 0 3
200 101 16 0 16 7

B. Performance Metrics

Several measures exist in the literature for evaluating the
performance of a classification framework. In this work, we
use classification accuracy or simple accuracy, Cohen’s Kappa
and G-mean as performance measures.

e Accuracy also called the classification rate, is the
number of correctly classified instances compared to
the total number of instances. It is the most commonly
used metric for assessing performance of classifiers.

e Cohen’s Kappa is an alternative measure to clas-
sification rate. It compensates for random correct
classifications. Cohen’s Kappa evaluates the portion of
hits that can be attributed to the classifier itself relative
to all the classifications that cannot be attributed to
chance alone. It can be calculated by making use
of the resulting confusion matrix (Table IV) in a
classification task.

Cohen’s Kappa is calculated as follows:

ny i hig— Yo TriTe
n2 - Z?ll TriTci

where h;; is the number of true positives for each
class, n is the total number of examples, m is the
number of class labels and 7); and T,; are the row’s
count and column’s count respectively. Cohen’s Kappa
ranges from -1 through O to 1. These values indicate
total disagreement, random classification and perfect
agreement respectively.

Kappa = (H

e G-mean is a measure of classification performance
where each class is equally represented in the evalu-
ation measure. It has been known to be an effective
measure to evaluate the impact of imbalanced data. G-
mean can be defined as follows for multiple classes:

1/m
m
hii
G-mean = H — (2)
i=1 > hyji
j=1
Table IV: Confusion Matrix.
Cy Co .. Cm Total
Ch hi1 hi2 e him Tr1
Ca ha1 ha2 e hom Tro
Coi bt hmz oo hm Tom
Total Ter Teo . Tem T

C. Results

Here, we present our experimental results. Table V shows
the average results for each of the classifiers. Each cell in
the table represents the average value of that performance
measure over all the data sets for each of the 10 folds. The
best results are shown in bold. This shows that LR2 has the
highest accuracy and Cohen’s Kappa value while SVM2 has
the highest G-mean value. Also, the accuracy and Cohen’s
Kappa values for LR1, LR2, SVMI1, SVM2 and SVM3 are
pretty close to each other. For G-mean values, LR2, SVMI,

SVM2, SVM3 and SVM4 are closer. In both cases, the other
classifiers perform significantly worse.

Table V: Comparison between different linear classifiers for
multi-class classification. The best results are shown in bold.

Average Average Average
Classifier Accuracy (%) Cohen’s Kappa (%) G-mean (%)
NB 75.42 59.85 68.96
LR1 78.14 60.27 68.19
LR2 80.44 63.69 73.53
SVM1 77.93 62.27 73.46
SVM2 78.05 63.33 74.31
SVM3 75.80 61.51 73.86
SVM4 73.96 58.66 73.25
WM 53.96 26.35 80.58

Since we tested ECOC only on three data sets, those results
are shown separately (Table VI). The table shows the average
accuracy for each of the data sets over the 10 folds. Also,
we show the length of the code words used beside the name
of the data set. For both audiology and letter this length
varies between 15, 31 and 63. But for arrhythmia code word
length was fixed at 15. The reason behind this is mentioned
in Section III.

Table VI: Results for ECOC. The length of the code words
used is shown in parenthesis after the name of the data set.

Data Set Accuracy (%) Cohen’s Kappa (%) G-mean (%)
arrhythmia (15) 73.34 S51.12 73.21
audiology (15) 61.63 53.72 88.87
audiology (31) 76.78 70.18 88.58
audiology (63) 76.78 70.35 88.31
letter (15) 56.92 53.96 53.73
letter (31) 63.11 60.38 61.82
letter (63) 63.22 60.94 63.66

V. DISCUSSION

This section discusses our experimental findings. At first
we look at the overall results. Then we look at data sets with
only nominal attributes, only numerical attributes, and both
nominal and numerical attributes. Finally we discuss the results
gained from ECOC.

A. Overall Comparison

As mentioned earlier, we used two different sets of param-
eters for Logistic Regression. The comparison between these
two versions for all the data sets are shown in Figure 1. It can
be seen from the figure that for most of the data sets, LR1 has
higher error rate that LR2. Similarly, for most of them LR1 has
a higher G-mean than LR2. This shows that the performance
of LR2 is much better in terms of both error rate and G-mean.
It is well known that logistic regression performs better than
Naive Bayes if we have limited amount of training instances.
Since, a lot of our data sets had limited number of instances,
it is no surprise that logistic regression performs better than
Naive Bayes.

Like mentioned earlier for the SVM part we used 4
SVMs with different values of C. We found out that the first
two SVMs, SVM1(C=1) and SVM2 (C=10) gave the best
results. The comparison of error rate and G-mean of these
two classifiers are shown in Figure 2. From the graph it can

be seen that the difference in performance in terms of error
rate is more compared to difference in performance in terms of
G-mean. This is most likely due to the fact that models with
higher value of C' are overfitting. In the subsequent section
we will see the reason behind why SVM performs worse than
Logistic Regression.

The error rate of weighted majority was greater than other
classifiers and also the performance was lower than expected.
This is because most implementations of weighted majority
use different classifiers as the predictors. We used only the
attributes as the predictors as the study focused on linear classi-
fiers. It turns out that attributes are poor predictors individually.
Most of the attributes could not predict with high accuracy as
this implementation of weighted majority could never take into
account the dependency between attributes. Class imbalance
affected the performance of weighted majority. For a given
attribute value, the weight associated with the class that has
maximum number of instances is penalized less and the weight
of the class that has the minimum number of instances is
penalized more. These reasons contribute to the high error rate
of Weighted Majority.

B. Comparison for Nominal Only Attributes

Now we discuss our findings for data sets with only
nominal attributes. There were eight such data sets. The
average accuracy and average G-mean for all the classifiers
over these data sets is shown in Figure 3. It can be seen from
the figure that LR2 still outperforms all other classifier in terms
of accuracy. But for G-mean NB has the best result. So, we
can conclude that when all the attributes are nominal Naive
Bayes usually performs better for data sets which have class
imbalance problem but higher accuracy can be gained by using
logistic regression. Another interesting observation was that
only in the case of nominal attribute SVM1 performed better
than all the other SVMs in terms of accuracy.

The accuracy of Weighted Majority was comparable with
the other classifiers when the data sets did not have class
imbalance and all the values were defined. The error rate was
high for kdd data sets as these data sets have missing class and
attribute values. Because of this, those instances in which an
attribute value was missing could not be considered for training
and those values which had class values missing could not be
used. The error rate for the flare data set was high because the
number of class imbalance.

From the Figure 3 we see that SVMs perform worse than
LR2 and this can be attributed to the fact that the nominal
attributes had to be converted into real valued features. This
conversion might not have been done appropriately by Weka
and this may cause degradation in performance of SVMs.

C. Comparison for Numeric Only Attributes

We present our findings for data sets with only numeric
attributes here. The results are shown in Figure 4. For these
data sets most of the classifiers except WM perform similarly.
But overall SVM2 has the highest accuracy and G-mean
suggesting that for numeric attributes SVM performs the best.

Contrary to the previous Figure 3, here SVM does perform
better than both LR1 and LR2. This can again be shown as

50

45+ +
40+
35 *
+
o
T 30+
ks
+
80 + +
S 5! .
] + +
151 i +
10
+
5t - 7
+ N *
0)
0 10 20 30 40 50
Error rate of LR1

(a) Error Rate

1001

s
90t N N k!
el #++
+ L 4T
70+ n
o
L +
T 60
5
S s0f
Q
Ty
& 40
301
201
10t
0 ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100

G-mean of LR1

(b) G-mean

Figure 1: Comparison of error rate and G-mean for all data sets for LR1 and LR2.

50

45+

40F

351

30

251

20

Error rate of SVM2
<+

0 I I I I I I I I I]
0 5 10 15 20 25 30 35 40 45 50

Error rate of SVM1

(a) Error Rate

100

90

80

701

60

501

40 +

GMean of SVM2

30

20

.)
0 10 20 30 40 50 60 70 80 90 100
GMean of SVM1

(b) G-mean

Figure 2: Comparison of error rate and G-mean for all data sets for SVM1 and SVM2.

proof that conversion from nominal to real value caused the
performance to be poorer for SVMs on data sets with nominal
only attributes.

D. Comparison for Both Nominal and Numeric Attributes

Now we look at data sets with both nominal and numerical
attributes. The results shown in Figure 5 show that again
Logistic Regression performs the best. But this time LRI
has higher accuracy while LR2 has better G-mean value. As
mentioned in previous two subsections the conversion from
nominal to real value caused degradation in performance for
SVMs.

E. Comparison for Large Data Sets

Finally we look at large data sets. The results are shown in
Figure 6. An interesting observation over here is how different
both the graphs are. In terms of accuracy the classifiers which

did well are NB, LR1 and LR2 but in terms of G-mean we
have SVM2, SVM3 and SVM4 as the better classifiers along
with NB. This suggests that these data sets suffered from
class imbalance. While the SVM classifiers were better at
identifying classes that had less instances, it failed to get better
accuracy for the classes which had more instances. This led
to the mismatch in the figures.

F. ECOC

Now we discuss our findings regarding ECOC. While
testing ECOC, we used Naive Bayes as our baseline classifier.
From the results presented from Table VI, it can be seen
that with the increase of code word length the performance
of ECOC improves. But from code word length 31 to 63,
the improvement is not that significant. This shows that for a
particular number of classes the gain from using higher length
code words after a specific length is not that helpful.

90

801 1

60 B

50 1

40t]

Accuracy (%)

301 B

NB LR1 LR2 SVM1 SVM2 SVM3 SVM4 WM
Classifiers

(a) Average Accuracy

70

NB LR1 LR2

SVM1 SVM2 SVM3 SVM4 WM
Classifiers

(b) Average G-mean

Figure 3: Results for data sets with only nominal attributes.

90

80 1

601 1

50 1

40t g

Accuracy (%)

NB LR1 LR2 SVM1 SVM2 SVM3 SVM4 WM
Classifiers

(a) Average Accuracy

920

80

G-mean (%)

NB LR1 LR2

SVM1 SVM2 SVM3 SVM4 WM
Classifiers

(b) Average G-mean

Figure 4: Results for data sets with only numerical attributes.

We also wanted to see if ECOC performed better than
Naive Bayes. We found that ECOC performed better than NB
for two of the three data sets. Since, the number of data sets
for comparison was small, no significant conclusion could be
drawn from this comparison.

VI. CONCLUSION

In this paper, we have studied the results of the linear
classifiers across different types of data sets. We found that
Logistic Regression performs well across all types of data set.
An interesting result is that SVMs are better than Logistic Re-
gression for data sets with only numeric attributes. Also, SVMs
could perform badly if the C' value is not proper. Naive Bayes
also performs well across different data sets and though it is
not as good as Logistic Regression, its accuracy is comparable
to Logistic Regression. Weighted Majority performed poorly
across different data sets. We found that the performance

of Weighted Majority is highly dependent on the pool of
predictors. Also, class imbalance affects the performance of
WM if its predictors are affected by it. Unfortunately, the
number of data sets we used for ECOC was not very large. In
the future, we would like to use more data sets to understand
the effectiveness of using ECOC. Also, we would like to do
study on data sets which are larger than those that were used
here. Finally, we would like to include more linear classifiers
for our study.

REFERENCES

[11 M. Galar, A. Fernandez, E. B. Tartas, H. B. Sola, and F. Herrera,
“An overview of ensemble methods for binary classifiers in multi-class
problems: Experimental study on one-vs-one and one-vs-all schemes,”
Pattern Recognition, vol. 44, no. 8, pp. 1761-1776, 2011.

[2] D. D. Lewis, “Naive (bayes) at forty: The independence assumption
in information retrieval,” in Machine learning: ECML-98. Springer,
1998, pp. 4-15.

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

@
=]

Accuracy (%)
B al (o2} ~
o o o o
T T T T
. . . .

w
S
T
L

201 1

NB LR1

LR2 SVM1 SVM2 SVM3 SVM4 WM

Classifiers

(a) Average Accuracy

G-mean (%)

80 T T T T T T T T

60 1

50 1

30 1

20 1

NB LR1

LR2 SVM1 SVM2 SVM3 SVM4 WM

Classifiers

(b) Average G-mean

Figure 5: Results for data sets with both nominal and numerical attributes.

©
=]

» o D ~ o3
o =} =] o S
T T T T T
L L L L L

Accuracy (%)

w
S
T
L

201 J

NB LR1

LR2 SVM1 SVM2 SVM3 SVM4 WM

Classifiers

(a) Average Accuracy

Figure 6: Results for data sets with a

R. Kohavi, “Scaling up the accuracy of naive-bayes classifiers: A
decision-tree hybrid.” in KDD, 1996, pp. 202-207.

I. Rish, “An empirical study of the naive bayes classifier,” in IJCAI
2001 workshop on empirical methods in artificial intelligence, vol. 3,
no. 22, 2001, pp. 41-46.

A. Jordan, “On discriminative vs. generative classifiers: A comparison
of logistic regression and naive bayes,” Advances in neural information
processing systems, vol. 14, p. 841, 2002.

J. Friedman, T. Hastie, R. Tibshirani et al., “Additive logistic regression:
a statistical view of boosting (with discussion and a rejoinder by the
authors),” The annals of statistics, vol. 28, no. 2, pp. 337-407, 2000.

A. Ben-Hur and J. Weston, “A user’s guide to support vector machines,”
in Data mining techniques for the life sciences. Springer, 2010, pp.
223-239.

M. Pal, “Multiclass approaches for support vector machine based land
cover classification,” arXiv preprint arXiv:0802.2411, 2008.

N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,”
Information and computation, vol. 108, no. 2, pp. 212-261, 1994.

T. G. Dietterich and G. Bakiri, “Solving multiclass learning problems

[11]

[12]

[13]

[14]

[15]

[16]

[17]

NB LR1

LR2 SVM1 SVM2 SVM3 SVM4 WM

Classifiers

(b) Average G-mean

large number of instances.

via error-correcting output codes,” arXiv preprint ¢s/9501101, 1995.

O. Pujol, P. Radeva, and J. Vitria, “Discriminant ecoc: A heuristic
method for application dependent design of error correcting output
codes,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 28, no. 6, pp. 1007-1012, 2006.

J. Friedman, “Another approach to polychotomous classification,” Tech-
nical report, Stanford University, Department of Statistics, Tech. Rep.,
1996.

J. Fiirnkranz and E. Hiillermeier, “Pairwise preference learning and
ranking,” in ECML, 2003, pp. 145-156.

T. Hastie and R. Tibshirani, “Classification by pairwise coupling,” in
NIPS, 1997.

J. C. Platt, N. Cristianini, and J. Shawe-Taylor, “Large margin dags for
multiclass classification,” in NIPS, 1999, pp. 547-553.

J. C. Huhn and E. Hiillermeier, “Fr3: A fuzzy rule learner for inducing
reliable classifiers,” IEEE T. Fuzzy Systems, vol. 17, no. 1, pp. 138-149,
20009.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
1. H. Witten, “The weka data mining software: an update,” SIGKDD

(18]

[19]

[20]

[21]
[22]

Explorations, vol. 11, no. 1, pp. 10-18, 2009.

G. H. John and P. Langley, “Estimating continuous distributions in
bayesian classifiers,” in Eleventh Conference on Uncertainty in Artificial
Intelligence. San Mateo: Morgan Kaufmann, 1995, pp. 338-345.

M. Sumner, E. Frank, and M. Hall, “Speeding up logistic model tree
induction,” in 9th European Conference on Principles and Practice of
Knowledge Discovery in Databases. Springer, 2005, pp. 675-683.

S. le Cessie and J. van Houwelingen, “Ridge estimators in logistic
regression,” Applied Statistics, vol. 41, no. 1, pp. 191-201, 1992.
http://web.engr.oregonstate.edu/ tgd/, last seen: 2014-12-16.

A. Asuncion and D. J. Newman, “Uci machine learning repository,”
2007.

