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ABSTRACT
Existing network policy abstractions handle basic group
based reachability and access control list based security poli-
cies. However, QoS policies as well as dynamic policies are
also important and not representing them in the high level
policy abstraction poses serious limitations. At the same
time, efficiently configuring and composing group based QoS
and dynamic policies present significant technical challenges,
such as (a) maintaining group granularity during configura-
tion, (b) dealing with network-bandwidth contention among
policies from distinct writers and (c) dealing with multiple
path changes corresponding to dynamically changing policies,
group membership and end-point mobility. In this paper we
propose Janus, a system which makes two major contribu-
tions. First, we extend the prior policy graph abstraction
model to represent complex QoS and dynamic stateful/tem-
poral policies. Second, we convert the policy configuration
problem into an optimization problem with the goal of maxi-

mizing the number of satisfied and configured policies, and
minimizing the number of path changes under dynamic envi-

ronments. To solve this, Janus presents several novel heuristic
algorithms. We evaluate our system using a diverse set of
bandwidth policies and network topologies. Our experiments
demonstrate that Janus can achieve near-optimal solutions
in a reasonable amount of time.
CCS CONCEPTS
• Networks → Network management;
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Network Control and Management, SDN

1 INTRODUCTION
Today network policy specification is at a low infrastructure-
specific level and conflict detection and resolution across
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multiple policy writers is typically done manually. This may
have been acceptable when policy changes were infrequent
and applications running on typical networks were not as
diverse or as large in number. Networks are highly dynamic
today with applications requiring security, performance and
support for mobility in addition to reachability. In addition,
increasing adoption of Software Defined Networking (SDN)
and Network Functions Virtualization (NFV) technologies
will further accelerate the dynamic nature of policy definition
and deployment as these processes will move from humans
to application programs running on network controllers.

Considerable amount of work has been done by academia
and industry in the past few years to create new intent-based
policy frameworks and implementations [2, 6, 9, 14, 30, 41,
44, 50, 51, 60]. New policy intent languages as well as policy
compilers have been designed that efficiently convert the
infrastructure-agnostic policy input to low level policy con-
figurations on network devices and middleboxes. However,
most of these early efforts have focused on static security
Access Control List (ACL) policies and network function
traversal [6, 9, 44]. Merlin [47] considered bandwidth polices
and Kinetic [34] considered dynamic network events that
could trigger different policies to be applied. To the best of
our knowledge, none of them consider both dynamic and
performance/Quality of Service (QoS) policies. Dynamic poli-
cies can be of two main types - (1) temporal policies that
deploy specific policies depending on time of day or elapsed
time since a particular event, and (2) stateful policies that
take into account current network and application state - for
instance, diverting traffic to a fine grained intrusion detection
system if a suspicious traffic signature has been detected.
QoS policies set performance requirements (like bandwidth)
for specific types of traffic and sets of users. For instance, a
QoS policy may dictate that all executives in an organiza-
tion using a video conferencing application receive a higher
priority and a minimum end-to-end bandwidth of 20 Mbps.

A natural question is how to express such policies alongside
ACL policies, and compose them in the presence of multi-
ple writers. Realizing dynamic and QoS policies presents
some new technical challenges compared to ACL policies:
(1) Group-centric policies: A central aspect of intent-based
frameworks is the notion of end point groups (EPGs); all
policies are specified at the group-level. In our context, we
must ensure that any policy we enforce applies to a group in
an all-or-nothing manner; in the above example, the policy
that executives receive 20 Mbps must be configured for all
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or none of the executives. This significantly constrains our
setting: if care is not taken about how policies are realized, it
is easy to cause fragmentation of network resources, leaving
many groups’ policies unsatisfied yet causing significant net-
work resources to remain unused. There is no existing system
that ensures such group atomicity. (2) Mobility and temporal

dynamics: An additional complication is that end-points in
a logical group may not be at fixed locations - consider the
executive who at the start of a video conference decides to
use her laptop at a customer site instead of her office. Ad-
ditionally, policies may be added, removed or modified over
time. Pre-computing path configurations for all possible pol-
icy changes, all possible end-point locations and user devices
to satisfy the group QoS policy would be wasteful; for new
policies, pre-computation is not possible. At the same time,
recomputing and provisioning a group policy in real time may
cause significant disruption – currently configured policies
may no longer be satisfied, and even those that continue
to be satisfied may experience path changes. This is highly
disruptive to users and can interact poorly with policies that
rely on stateful network functions (§2).

Although works like Kinetic [34] also handle network dy-
namics, they do not support configuring dynamic group-based
policies in an efficient and low-disruption manner. Mobility
and temporal dynamics further complicate the configuration
process. We propose Janus, a unified system that addresses
the above issues and presents a tractable solution for realizing
a diverse set of dynamic group-based policies near-optimally.

Our approach relies on three key ideas. First, we create a
new Integer Linear Program (ILP) representation of the policy
configuration problem that enforces group-based atomicity.
Second, we accommodate mobility and temporal dynamics
via a novel greedy heuristic that uses policy information to
tightly control the number of path changes due to dynamic
events. Third, to improve the number of groups whose band-
width policies are satisfied, we develop a bandwidth (bw)
negotiation approach that systematically weakens certain
policies’ requested bw guarantees in high-contention time
intervals (where there is significant resource crunch) and
compensates such policies by increasing bw allocations at less
contended time instances, and presents these altered policies
for policy writers to approve.

In this paper, we present the following contributions:

• We extend an existing intent specification called the Pol-
icy Graph Abstraction (PGA) [44] to represent QoS and
dynamic policies. Our choice is motivated by the intuitive
graph representation of network policies, support of net-
work middleboxes, and the fact that PGA ideas have been
included in the OpenDaylight (ODL) Network Intent Com-
position (NIC) project [7]. We leverage a PGA concept
to express and compose intents, but our system Janus
further provides how to optimally deploy the policies
based on the target network’s resources.

• We develop an optimization formulation and a heuristic
algorithm that finds a solution with the objective of max-
imizing the number of QoS and dynamic policy

configurations for a set of group based policies. Our sec-
ondary objective is to minimize the number of path
changes that occur because of environment dynamics such
as end-point mobility, group membership changes, network
state changes, etc. This heuristic is aimed at bandwidth
policies, with extensions to support latency and jitter.

• We present bandwidth negotiation options that achieve
low disruption and low bandwidth overhead.

• We provide a comprehensive evaluation of the quality of our
system for bandwidth QoS policies in several network
topologies and scenarios. In many topologies, Janus was
able to find the satisfying policy configuration for 20,000
endpoints in under 2 minutes. It was also able to avoid
90% path changes when configuring 800 policies across
5 time periods. The bandwidth negotiation protocol also
assisted in satisfying additional 5.5% more policies under
very congested conditions. In our experiments, each group
policy typically impacts 50 end-points. Here the benefits
of negotiation are amplified.
In the next section, we articulate the specific challenges

in detail and further motivate this work using simple policy
examples. In §3, we present a brief background of PGA and
Janus system overview. Then, we provide our policy model
in §4, our algorithm in §5 and a prototype implementation
in §6, followed by a detailed evaluation in §7.

2 MOTIVATION AND CHALLENGES
Our research is motivated by the fact that emerging SDN and
NFV applications require QoS and dynamic policies to be set
in addition to basic access control policies, and the rate of
policy changes is on the rise. In addition, with increasing use
of bandwidth hungry and real-time enterprise applications,
as well as mobile users with multiple devices, the need for
efficient usage of existing capacity is also growing. Finally,
the pace of business is increasing leading to rapid and often
unpredictable changes/surges in workloads, and the slow
paced model of over-provisioning capacity is no longer an
option. All of the above facts produce some hard technical
challenges that we describe in the rest of this section.

First, we briefly provide examples of QoS and dynamic
stateful and temporal policies. We use an intuitive graphical
representation of communication policies, in which nodes
represent end-point groups (EPGs) and the directed edge
between any two nodes indicates that the groups are allowed
to communicate with the flow attributes annotated on the
edge. Consider the examples of policies depicted in Figure 1.
The two QoS policies allow a group of Marketing users to
access a group of Web servers via the tcp protocol on port 80;
further the web traffic is required to be load balanced by a
load-balancer middlebox. Finally, this policy states that any
communication between an end-point in the Marketing and a
web server should be at least 100 Mbps. There could be other
QoS metrics specified such as latency, hop-count, jitter, etc.
The second QoS policy between end clients and the Skype
server specifies that the latency should not exceed 150 msec.
These high level QoS policies will need to get translated into
QoS configurations such as rate-limits, priority, etc, when
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actually deployed on the network. Figure 1(b) and (c) depict
a stateful and temporal policy respectively. Two examples
of stateful policies are shown: the first is a stateful firewall
that uses connection state to allow/disallow traffic between
the Internet and campus users. The second stateful policy
maintains state of the number of failed connections and then
decides to invoke the heavy intrusion protection system. The
temporal policy changes depending on the time of day to
enforce the middleboxes in the path as well as the bandwidth.

WebMarketing min b/w: 
100 Mbps

tcp/80 LB

(a) QoS policy

Campus

Marketing Light 
IPS

(b) Stateful policy

Heavy IPS
SkypeClients latency: 150ms 

tcp/80,tcp/443

Internet
Stateful

FW
solicited

tcp

Web

failed 
connections

>=4

otherwise

no bad 
signature

Marketing Web

(c) Temporal policy

FW

FW

9am – 6pm
min b/w: 500 Mbps

BC

~(9am – 6pm)
min b/w: 100 Mbps

Figure 1: Examples of diverse policies

Note that any intent-based policy framework will need
the capability to express a diverse set of policies like the
ones above, in addition to ACL policies. While this is an
important task, extending existing systems to express QoS
and dynamic policies is mostly straightforward though each
system will come with its own issues. We decided to extend
the PGA approach to express QoS and dynamic policies and
these extensions to the policy specification are described in
§4.

Our goal is to support dynamic group-based policies in
an efficient manner. Implementing the composed policies is
challenging because of the following requirements:
• Maintain group-based policy atomicity: Although policies

are specified at group granularity, configuring them into
switch rules happen at endpoint or flow granularity. We
consider an EPG as an equivalent class. This allows policy
writers to treat all endpoints of an EPG equally. We want
to avoid partially configuring policies, i.e. it does not satisfy
policies for a subset of group.

• Efficient resource provisioning: Resource requirements should
be minimized to satisfy group policies. If sufficient resources
are not available to satisfy all group policies, a choice needs
to be made as to which policies can be rejected, which can
be negotiated down (unlike ACL policies, QoS policies may
have some room for negotiation) and what the protocols
are to engage with the policy writers to inform and/or
negotiate policy changes.

• Handling system dynamics: There are a number of sys-
tem dynamics that need to be accommodated, such as
state and time-dependent policy changes, end-point group
membership changes, and end-point mobility. Reactively
computing an optimal configuration triggered by frequent
changes can incur high system overheads. At the same time,
planning ahead and provisioning resources proactively may
overbook resources unnecessarily.

WebMktg FW
min b/w: 50 Mbps

DBIT FW
min b/w: 50 Mbps

a) QoS Policies

b) Target network topology

FW

FW

m1

m2

w1

db1

it1

s1 s2

s6 s4

s3

s5

100 Mbps

100 Mbps

100 Mbps100 Mbps

50 Mbps

Figure 2: Example of policies contending for network
resources. Endpoints m1 & m2 belong to Marketing
group, it1 to IT, db1 to DB and w1 to Web

• Low disruption incremental configuration: When policy
configuration has to be changed incrementally, the goal
should be to disrupt as few users as possible by minimizing
path changes and re-negotiations.

We provide three examples below to demonstrate the above
challenges.

2.1 Example 1: QoS policy configuration
QoS policies with bandwidth requirements depend on the
network topology and link resources. Different policy writers
can create policies that either conflict with each other or
contend for more resources (e.g. network bandwidth) than
available ones in the network.

For example, one policy requires the minimum bandwidth

guarantee to be 100 Mbps and the other requires maximum

allowed bandwidth to be 50 Mbps. Clearly one of these policies
needs to be rewritten and the system needs to have conflict
checking rules implemented.

Figure 2 shows an example of different policies contending
for network bandwidth. Both policies require the traffic to
go through a FW with a minimum bandwidth guarantee
of 50 Mbps. There is only 1 valid path to satisfy traffic
policies for “m1 to w1” (s1 ! s2 ! s3) and “it1 to db1”
(s1 ! s2 ! s3 ! s5). The link s2 ! s3 has a bandwidth
capacity of only 50 Mbps, hence it can be used to configure
only 1 policy. Existing systems like Merlin [47] convert policy
configuration into a flow constraint problem and inform the
policy writers whether the constraint problem has a feasible
solution or not, i.e. whether the current set of policies can
be enforced in the current network or not. We on the other
hand want to satisfy as many group policies as possible, and
inform those policy writers whose policies have been violated
to make small changes to their policies.

In Figure 2, the first policy can be satisfied only if we can
configure flow rules for both “m1 to w1” and “m2 to w1”.
Maintaining group granularity during configuration (flow rule
installation) is missing in the existing solution and presents
additional constraints as mentioned earlier.
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2.2 Example 2: System Dynamics
There are two types of changes that can happen at runtime
after configuration of network policies.
Endpoint changes. These include changing the location of
endpoints in the network (VM migration, endpoint mobility),
adding new endpoints to the group, and changing the group
and hence the policy associated with an endpoint.
Graph changes. These include modifying, adding and re-
moving input policy graphs. All of these actions will change
the composed policy graph. This will modify the policy edges
between many endpoint groups, and hence the configuration
for many endpoints.

L-IDSMktg Web

IT DB

Nml
High min b/w (100 
Mbps)

Policy 1 Policy 2

Policy 3 Label Mapping
Nml: Mktg, IT, Web, DB

L-IDSNml&
Mktg

Nml&
Web

High min b/w 

Nml&
IT

Nml&
DB

High min b/w 

a) Input graphs

b) Composed graph
Figure 3: QoS composed policy graph

100 Mbps

m1

it1

db1

L-IDSBC

FW

L-IDS

100 Mbps

100 Mbps

100 Mbps

100 Mbps

100 Mbps

100 Mbps

100 Mbpss1 s3 s4

s5s6s2

s7100 Mbps

w1

Figure 4: Example Topology. m1 belongs to
Nml&Mktg, it1 to Nml&IT, w1 to Nml&Web, db1
to Nml&DB

For example consider configuration of the policies men-
tioned in Figure 3 in the topology given in Figure 4. Traf-
fic from m1 to w1 should go through an L � IDS and it
can be satisfied by 2 paths: path1 (s1 ! s3 ! s4 ! s5),
path2 (s1 ! s7 ! s2 ! s6 ! s5), and traffic from it1
to db1 can be satisfied by the following 2 paths: path3

(s2 ! s7 ! s1 ! s3), path4 (s2 ! s6 ! s3). Assume
the paths chosen for m1 to w1 is path1 and for it1 to db1 is
path4.

IT DB

Policy 3
Nml&

IT
Nml&

DB

High min b/w 

a) Modified policy b) Modified composed graph

BCBC

Figure 5: Policy 3 gets modified which changes the
composed policy graph

Assume policy graph 3 changes as shown in Figure 5. The
new path which can satisfy traffic from it1 to db1 must go
through a Byte Counter(BC), which is path5 (s2 ! s1 ! s3).
But path assigned for m1 to w1, path1, is already using
s1 ! s3. So now we’ll have to modify the path assigned for
m1 to w1 to path2. This will also require us to transfer the
state of L-IDS corresponding to m1-w1 traffic seen thus far
from the L-IDS between s3 ! s4 to L-IDS between s7 ! s2,
which is non-trivial.

As seen above, modifying a policy can also change the paths
configured for other unchanged policies. Changing paths
requires updating rules in multiple switches. The latency
involved in updating switch rules is high [24] in all OpenFlow
switches. There has been a lot of work focused on doing
fast, consistent rule updates [28, 39] in a set of switches but
they still incur a significant overhead. Changing paths may
also require transferring states of multiple Network Function
boxes (NFs) which will also result in significant downtime [22].
We want to mitigate these issues by minimizing the number
of path changes.

a) Input graphs for temporal policies

b) Composed graph changing across time

L-IDS

Mktg Web

Policy 1

FW

BC

Time: 1 to 9

Time: 9 to 14

Time: 14 to 1

IT DB

Policy 3

BC

Time: 1 to 9

Time: 9 to 1

Nml

min b/w: high 
(100 Mbps)

Policy 2

Time: 1 to 9

min b/w: med 
(50 Mbps)
Time: 9 to 1

Time: 1 to 9 Time: 9 to 14 Time: 14 to 1
High min b/w 

L-IDSNml& 
Mktg

Nml&
Web

Nml& 
IT

Nml&
DB

High
min b/w 

Nml& 
IT

Nml&
DB

med min b/w 

BCNml& 
Mktg

Nml&
Web

Nml& 
IT

Nml&
DB

med min b/w 

BC
med min b/w 

med min b/w 

BC

FWNml& 
Mktg

Nml&
Web

Nml

Figure 6: Time based composed policy graph

2.3 Example 3: Temporal Policy
By associating time with policies, the composed policy graph
will change periodically across time. Similarly the paths, NFs
and network resources used by policies will also vary across
time. Consider the modified input policies in Figure 6. This
creates a composed policy graph that periodically changes 3
times every day. Similar to the argument in §2.2, modifying
a single policy graph may change paths for other unmodified
policy graphs and the frequency of these changes increases
with temporal policies.

3 JANUS SYSTEM OVERVIEW
We build our Janus system on top of the PGA [44] pol-
icy management architecture, which currently only supports
static ACL policies. Thus it is expected that there will be
architectural similarities between the two systems. PGA is a
graph-based approach to represent high-level and application-
level policies, and proactively compose multiple policies by
resolving possible conflicts [44]. Users (or SDN applications)
naturally express their network policies using a graph through
a PGA API or PGA GUI like drawing diagrams on a white-
board [29, 37] as the examples depicted in the prior section.
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User1/App1

Janus

Control Platforms (ex. POX, ONOS, etc.)

Graph Composer

Policy Configurator

QoS and dynamic
intent-based policies

Best datapath configurationsNetwork info (ex. state, topology)

Composed policy graph

Install rules

UI/Client

Input policy graphs

Usern/Appn

Figure 7: Janus architecture overview
Figure 7 illustrates an overview of Janus architecture with

key components. Like other intent-based management frame-
works such as PGA, Janus conceptually resides between
users/SDN applications who specify their intents via the UI
and the underlying control platforms which implement the
intents in the target network. In addition to security ACL
policies handled by PGA, Janus allows the users/SDN ap-
plications to express QoS and dynamic intent-based policies

based on the extended policy graph model (see §4) and con-
structs a composed graph from multiple input graphs based
on the composition method presented in §4.

PGA [44] does not consider physical resource constraints
while deploying static security policies. The implicit assump-
tion made is that there are always enough resources to install
the rules for policies. QoS policies are restricted by the target
network topology and its link capacities. We introduce a
new component, Policy Configurator, which is responsible
for finding the dataplane configuration for all endpoints be-
longing to all policies. The policy configurator uses both the
composed policy graph and the network topology information
to generate the best dataplane configuration. This should
maximize the number of policies configured in the network
and minimize the number of path changes that occur when
a new policy is added or modified. It uses novel heuristic
algorithms to create this configuration. Janus then uses the
underlying controller platform to install rules into switches
based on this configuration. We will present more details
about policy configurator in §5.

4 POLICY GRAPH MODEL
In this section, we present the policy graph model extensions,
followed by the policy composition mechanism for QoS and
dynamic policies respectively. Janus follows a similar graph
composition model as PGA [44] with the additional support
of dealing with QoS and dynamic policies.

4.1 QoS Policies
QoS policy definition. We represent and compose policies
independent of the network-specific QoS values (e.g., specify
bandwidth as 50 Mbps). We use logical labels to represent QoS
levels in the QoS policies. For example, three logical labels to
represent bandwidth QoS metrics could be low (< 100 Mbps),
medium (> 100 Mbps and < 500 Mbps) & high (> 500 Mbps).
The labeling system could be specific to each deployment

and based on application requirements. Further, the mapping
from the network independent label to the network specific
value is done separately at run-time, depending on the target
network environment and application requirements. Using
abstract logical labels to specify policy intents makes our
proposed system more flexible and extensible. Figure 1(a)
provided examples of QoS policies, where the edge attributes
can now have QoS metrics specified, either using logical labels
or the actual desired value of the metric.
QoS policy composition. When combining QoS policies,
there are two types of compositions that we need to handle:
the edges being composed either have (a) the same QoS metric
or (b) different QoS metrics that may or may not be related.
Unlike security ACL policies, where it is somewhat easier
to define policy conflicts (“deny” and “allow” are obvious
conflicts), for QoS policies, the definition of conflict is more
subtle and may need administrator input. For example, if
there are two policies specifying the same metric - “min
b/w”, as in Figure 8(a), the labels medium and low are not
necessarily conflicting. The administrator could institute the
rule that for such policies, the composed edge should pick
the label that provides better performance - medium for this
example. In the rest of the paper, we assume this principle.
To compose edges that have different QoS metrics, the same
principle of picking the label representing a higher QoS level
could be used. The composed edge will need to specify labels
for the set of metrics from individual policies being composed.
For this, we leverage prior work [5, 58] on QoS to understand
the dependency relationship between different metrics (e.g.,
higher bandwidth also provides lower latency) and pick the
labels for the individual metrics such that the composed
policy does not cause the overall performance to degrade.
One such simplified example with “min b/w” and “max b/w”
is shown in Figure 8(b). If the metrics cannot co-exist with
each other, then the conflict resolution could be to either
reject one of the policies, or negotiate an acceptable QoS
level .

SkypeClient FW
min b/w: medium

SkypeClient LB
min b/w: low

SkypeClient LB
min b/w: medium

FW

compose

(a) Same QoS metrics

SkypeClient FW
min b/w: medium

SkypeClient LB
max b/w: low

SkypeClient LB
min b/w: medium
max b/w: medium

FW

compose

(b) Different QoS metrics

Figure 8: Composition of QoS policy graph

4.2 Dynamic Policies
Some network policies depend on the state of network flows
[10, 16] and may only be valid for a specific period of time [1, 3,
33]. Janus handles dynamic policies by adding conditions in
the policy graph model as shown in Figure 9a. In this example,
if condition A is satisfied, traffic from the EPG SRC is allowed
to the EPG DST by matching ACL1 and guaranteeing QoS1
via NF1. Whereas, if condition B is satisfied, traffic from the
EPG SRC is allowed to the EPG DST by matching ACL2
and guaranteeing QoS2 via NF2 and NF3. Janus handles
two types of dynamic policies: stateful and temporal.
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DSTSRC NF1

Condition A

Condition B
NF3NF2

QoS1, ACL1

QoS2, ACL2

(a) Dynamic policy

WebClients L-IDS

> 4 failed 
connections H-IDS

Normal

(b) Stateful policy

WebClients

time: 9 – 18
min b/w: high

min b/w: low

(c) Temporal policy

Figure 9: Dynamic policy graph examples

Stateful policies. A stateful policy has conditions/events
associated with NF boxes (i.e. middleboxes) and the network
traffic as shown in Figure 9b. The conditions on each edge are
events that can be detected in the function box based on the
traffic that passes through it, or these could be external events
as well. In this example, if the Light-Intrusion Detection
System (L-IDS) detects 4 failed connections from the EPG
Clients to the EPG Web, it reroutes the network flow to the
Heavy-IDS (H-IDS). The policy writer can also represent
policies that require a sequence of events to occur.
Temporal policies. Temporal policies are only valid for a
certain period of time. The time-period will be represented in
the edge of policy graphs shown in Figure 9c. This example
shows that a minimum bandwidth guarantee from the Clients
to the Web is “high” from 9 to 18, otherwise, “low”.

Webclient L-IDS

> 4 failed connections

compose

H-IDS

Normal

Webclient L-IDS

> 8 failed connections DPI

Normal

Webclient L-IDS

> 8 failed connections

H-IDS

H-IDS DPI
>4 and < 8 failed connections

Normal

(a) Stateful policy

Webclient FW

compose

Time: 9 to 18

Webclient LB
Time: 12 to 20

Webclient FW
Time: 9 to 12

FW LB

LB

Time: 12 to 18

Time: 18 to 20

(b) Temporal policy

Figure 10: Dynamic policy graph composition

Composing Dynamic Policies. When no input graph has
a dynamic policy, this reduces to the problem of policy com-
position for QoS and ACL policies that has been discussed
earlier. Given two input policies A and B, if only one of
them is a dynamic policy, (say A), then traffic goes through
composed policy only when dynamic policy A is satisfied.
Traffic that does not satisfy policy A goes through policy B.
When both the input policies A and B have dynamic policies
associated with them, traffic goes through the composed pol-
icy only when both policies are satisfied. Traffic that satisfies
only policy A goes through policy A, and vice versa.

After composition, some policies may always be unsatis-
fiable and hence cannot exist together. In Figure 10a, > 8
and < 4 failed connections cannot be satisfied simultaneously.
Such policies should be removed from the graph. Figure 10b
shows an example of composing temporal policies. Network
traffic from the Clients to the Web is only allowed via FW
and LB during the overlapped time period (12-18).

5 POLICY CONFIGURATOR
The policy configurator is responsible for synthesizing the
policy configuration specified by the composed policy graph
in the dataplane of the network. The primary goal of the
policy configurator is to maximize the number of satisfied

policy configurations and its secondary goal is to minimize

the number of path changes. In this section, we explain the
optimization problem and the heuristic algorithm to achieve
the primary goal, and how it can be modified to achieve the
secondary goal. We mainly focus on bandwidth QoS and then
propose extensions for jitter and latency metrics §5.7. We
first satisfy the bandwidth requirements and then express
jitter and latency as additional constraints.

5.1 Preliminaries
Input data. The main inputs required to create the opti-
mization problem are the network topology, the composed
policy graph along with the endpoint to EPG mapping, and
the set of <src,dst> endpoint pairs whose policies Janus
needs to configure. The network topology is a graph of nodes
and links. The nodes can be a “switch” or an “NF”. The topol-
ogy should also have information about the link bandwidth.
Paths are a natural abstraction to express these policies [25]
as certain properties like the service chain ordering of NFs
(waypoint constraint) are path based properties. We use sim-
ilar methods as [25, 47] to generate all valid paths between
endpoints. The valid path must satisfy the waypoint con-
straint of the policy. These paths can be pre-computed offline.
The composed policy graph gives us information about the
QoS requirement and the waypoint constraint of each policy,
and the endpoint to EPG mapping can be used to infer the
policy associated with each <src,dst> endpoint pair.
Symbols and functions. Table 1 and 2 lists the symbols
and functions used in our optimization problem, along with
their meaning. All the variables used in our optimization prob-
lem are indicator variables. Indicator variables, also known
as binary variables, are variables which can take the value of
‘0’ or ‘1’. We associate policies and paths used to configure
those policies with indicator variables. For example, I

i

is an
indicator variable for policy i. It will take the value 1 if i gets
configured in the network, and 0 if violated.

5.2 Maximize Policy Configurations
QoS policies depend on both the network traffic flow and the
link bandwidth/capacity. Different policies could contend for
more resources than available in the network and it may not
be possible to satisfy all policies. The primary goal of Janus
is to maximize the number of policy configurations. It uses
weights to represent priority of policies.

Objective: maximize

X

i2pols

W

i

⇥ I

i

(1)

There are two basic constraints that needs to be considered
in formulating the optimization problem.
Policy constraints. To satisfy policy i between two end-
points (x, y), Janus needs to reserve exactly 1 valid path
in the network. Since Janus is satisfying policies at group
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Type Symbol Meaning

V
ar

ia
bl

e I

i

indicator variable set as 1 if policy i is satisfied
P

i,p

indicator variable set as 1 if path p is chosen
to satisfy policy i

⇠

i

slack variable for policy i

↵

i,p

penalty to represent change of path assignment
for policy i

C
on

st
an

t W

i

weight assigned to policy i based on importance
BW

i

bandwidth required to satisfy policy i

CAP

l

capacity of link l

� weight of penalty for violating soft constraints
⇢ weight assigned to the secondary objective of

minimizing path changes
J

i

jitter level required to satisfy policy i

PR

s,t

number of policies allowed at priority queue
level t for switch s

Table 1: Symbols and notions. All variables used here
are indicator variables

Function Meaning

pols returns the set of all policies
dpols(i) returns the default edge policy of policy i

ndpols(i) returns the set of non-default edge policies of policy i

vp(i, x, y) returns the set of all valid paths between endpoints
x and y to satisfy policy i

paths(l) returns the set of all paths that go through link l

spaths(s) returns the set of all paths that go through switch s

links returns the set of all links in the network
switches returns the set of all switches in the network
eps(i) returns the set of all endpoint pair in policy i

satp returns the set of all policies satisfied in the current
network

selp(i) returns the set of all path selected to satisfy policy i

in the current network

Table 2: Functions and notions
granularity, the policy can be satisfied, i.e. I

i

= 1, only if
Janus can reserve 1 path for all the endpoint pairs eps(i)
associated with that policy.

8i 2 pols,8(x, y) 2 eps(i) :
X

p2vp(i,x,y)

P

i,p

= I

i

(2)

Resource constraints. The paths selected to configure all
policies should not oversaturate any network link. The total
bandwidth of paths traversing the link should be less than
the link bandwidth.

8l 2 links :
X

i2pols

X

p2paths(l)

(P
i,p

⇥BW

i

)  CAP

l

(3)

One obvious problem with using indicator variables for
paths is that there could be a variable explosion. An ILP
that considers all valid paths vp(i, x, y) will be inefficient
since the number of paths grows exponentially with the size
of the network, and the ILP will become too large to solve
in reasonable time. We use a heuristic algorithm which uses
a random subset [25] of valid paths as the candidate paths.
Similar to SOL [25], we believe choosing paths randomly can

provide a high degree of edge-disjointedness among selected
paths.

In §7, we show that our heuristic algorithm can give near-
optimal results in a reasonable amount of time.

5.3 Configuring Stateful Policy
By not representing stateful policies, policy graphs will change
with change in traffic/NF state. This may require changing
the paths assigned to configure these policies. As presented
in §2, this can change paths assigned for other policies too.
By representing these policies, Janus knows exactly how
policies can change and hence also how paths can change. It
could reserve paths for changed policy (say i) beforehand, so
that no other policy is using these paths and hence no other
policy will have to change its path when policy i changes. The
problem is that this could reduce the total number of policies
configured in the system, as we have increased the number of
paths to be reserved for each policy. We also know that only
one of the edge conditions of policy i will be satisfied for a
particular <src,dst> endpoint pair at a particular instance
of time, and hence only one path would actually be used.
Most of our reserved paths may be unused, which could have
configured other policies.

Each stateful policy has a default edge that represents
policy for normal traffic, and a set of non-default edges that
represent different policies for different conditions. We aim
to reserve paths for as many non-default policy edges as
possible (secondary goal) while still maximizing the number
of configured default edge policies (primary goal).
Soft constraints. Typically in constrained optimization
problems, there are 2 types of constraints: a) hard constraints
that must be satisfied, and b) soft constraints that we would
like to satisfy but not at the expense of other constraints.
Such optimization problems penalize the objective function
for violating soft constraints. To achieve our objective, we
require that to satisfy a policy i, configuring the default edge
policy is a hard constraint and configuring the non-default
policy edge is a soft constraint.

5.3.1 Modifying optimization problem. We introduce soft
constraints using slack variables [32] in both the objective
and the constraint equations. We divide policy i into dpols(i)
and ndpols(i). The first change is that Eqn 2 will become a
soft-constraint for the non-default edges and stay as hard-
constraint for the default edge of a policy. This is done using
slack variable ⇠

i

(Eqn 4). If ⇠
i

is 1, policy i can be satisfied
even if no path is assigned for non-default edge of policy i.

8i 2 pols,8ndp 2 ndpols(i), 8(x, y) 2 eps(ndp) :
X

p2vp(ndp,x,y)

P

ndp,p

= I

i

� ⇠

i

(4)

8i 2 pols,8(x, y) 2 eps(dpols(i)) :
X

p2vp(dpols(i),x,y)

P

dpols(i),p = I

i

(5)

The second change is incorporating slack variables as
penalty in the objective function (Eqn 6). We use variable �
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to control the weight of the penalty associated with violating
a soft constraint. By assigning � a low value, we can ensure
maximizing policy configurations is the main objective.

Objective: maximize

X

i2pols

W

i

⇥ (I
i

� �⇥ ⇠

i

) (6)

5.4 Minimizing Path Changes at Runtime
As mentioned in §2.2, path changes can be tedious, as it
requires changing rules in multiple switches and also transfer-
ring states of many NFs. Our secondary goal is to minimize

the number of path changes. There are two types of runtime
events that lead to path changes: endpoint and graph-based.
Endpoint related changes. These include endpoints be-
ing added/moved and changing EPG of endpoints. All these
events will change the constraints in Eqn 2, 3 and we will
have to re-run our heuristic algorithm. LP solvers like Gurobi
uses “warm start”, which allows them to start from the exist-
ing solution. For minor changes in constraints or objective
functions, “warm start” can be significantly faster [59], and
can produce a solution closer to the already existing solution.
We show this empirically in §7.2. Hence for small endpoint
related changes, we can achieve our secondary goal without
modifying or re-running the heuristic algorithm from start.
Graph related changes. Graph related changes will mod-
ify the policies for all the endpoints associated with that
graph. This will significantly change the constraints (Eqn 3)
of the optimization problem. Here warm start can incur many
path changes. In this scenario we will have to modify our
heuristic algorithm to incorporate our secondary goal.
Modifying optimization problem. Indicator variables as-
sociated with paths can be used as a signal to represent path
changes. The value of P

i,p

for path p and policy i can change
from 1 in the initial solution to 0 in the new solution in two
scenarios: a) policy i is satisfied by some other paths, and,
b) no path is configured for policy i and it is violated. Both
involve path changes and require modifying switch rules. We
minimize such changes using variables ↵

i,p

in Eqn 7 and 8.
Eqn 7 considers only those paths (selp(i)) which were config-
ured in the initial solution. Changing the value of P

i,p

from
1 to 0 in the new solution will set ↵

i,p

to 1. These variables
represent path changes and are used to create the penalty
function in Eqn 8.

8i 2 satp, 8p 2 selp(i) :

P

i,p

= 1� ↵

i,p

(7)

The indicator variable I

i

represents the primary goal of
policy i and ↵

i,p

represents its secondary goal. Since the
number of paths (selp(i)) required to satisfy policy i can be
more than 1, we have to normalize the summation of both
these indicator variables in our objective function.

Objective: maximize

X

i2ps

W

i

⇥ I

i

X

i2ps

W

i

� ⇢⇥

X

i2satp

X

p2selp(i)

↵

i,p

X

i2satp

X

p2selp(i)

1
(8)

Similar to Eqn 6, Janus uses another variable ⇢ to control
the penalty associated with path changes. The main objective
is still maximizing policy configurations. This can be achieved
by assigning ⇢ a low value.

5.5 Configuring Temporal Policy
Similar to stateful policies, temporal policies can also specify
how policies can change and hence how paths can change.
But for temporal policies we cannot categorize any edge as
default/normal traffic edge.

We propose to convert our optimization problem into a
time-based optimization problem. Janus already knows the
various time periods, TP , at which the composed policy graph
will change. Each time-period t has a separate LP/heuristic
algorithm, say LP

t

. And each LP

t

’s main goal is to configure
all non-temporal policies and temporal policies which are
valid for time period t. Each LP

t

would also want to reduce
the number of path changes that will need to happen across
all time periods.
Joint optimization. One way to solve this problem is using
joint optimization, where all the LP

t

s will be combined into
a single LP as shown in Eqn 9.

Objective: maximize

X

t2TP

0

BBB@

X

i2ps(t)

W

i

⇥ I

i

X

i2ps(t)

W

i

� ⇢⇥

X

i2satp(t)

X

p2selp(i,t)

↵

i,p

X

i2satp(t)

X

p2selp(i,t)

1

1

CCCA
(9)

All the functions specified in Table 2 will become time-
based functions, where the values/sets returned depends on
time period t. This does not scale well with increase in number
of time periods, so we propose a greedy approach which can
give us near-optimal results in reasonable time.
Greedy approach. For the initial LP, LP

t0, Janus will
try to configure all the non-temporal policies and temporal
policies that are valid during t0. During time-period t0, the
temporal policies for remaining time period (TP � {t0}) are
analogous to the non-default policies in §5.3 as they can tell
us exactly how paths can change. For time period t0, Janus
will try to avoid using paths which may be used to configure
temporal policies of other time periods as much as possible
while still maximizing the number of configured policies for
time period t0. The remaining LPs (LP

t1, LPt2, LPt3, ...)
will also do the same with the additional goal of “minimizing
the path changes from the previous LP solution”.
Dealing with runtime changes. Earlier, when a new
graph was added/changed, Janus tried to reduce the number
of path changes in a single LP. With temporal policies, we will
have to reduce the number of paths changes across all time
periods. To incorporate this, we have to re-solve the greedy
approach with the additional constraint of minimizing the
number of path changes between all LP

t_old

and LP

t_new

.

5.6 Negotiation strategy
The greedy algorithm that we propose in §5.5 may leave out
some policies (i.e., will not enforce them) in each time period.
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This happens because the network does not have sufficient
bandwidth to accommodate the bandwidth requirement of all
policies. Recall that our formulation makes a binary decision
with regard to each policy; i.e., a policy either gets its full
bandwidth requirement or is not configured at all. As a result,
not all links in the network will be fully utilized. Further,
for any given time period, t, if we reduce the bandwidth
requirements of policies, we can accommodate more policies
in each time period. To compensate for the reduction in
bandwidth, we can also allocate more bandwidth in future
time periods whenever possible. We think our negotiation
method is useful for long-lived applications which are not
time-sensitivity such as backup.

Let bpols(t) be the set of policies configured at time t. The
policies in bpols(t) are ranked (in descending order) based
on the number of bottleneck links they utilize. For each time
period t starting from t0, we select the top K% of policies
in bpols(t). For each policy p, we find if there exists a time
period in future, say ft, where we can increase the bandwidth
requirement of p by N% without violating the bandwidth
resource constraint of any link at time ft. If such time period
exists, we decrease the bandwidth requirement of p at time
t by N% and increase it’s bandwidth requirement at time
ft by N%. This is repeated for top K% policies for all time
periods. The bottleneck links represent the constrained links
in the network. We employ sensitivity analysis [56] on the ILP
formulation(§5.2) to identify bottleneck links. By selecting
policies that occupy more bottleneck links, we increase the
effective available bandwidth. In §7.6, we discuss the trade-
offs involved with different values of K and N. Janus notifies
the policy writers about the proposed changes.

5.7 Extension to other QoS Metrics
We cannot guarantee jitter and latency to specific values.
Hence we configure them at the label abstraction.
Jitter. Using multi-level priority queues and restricting the
number of policies that can be assigned to each level, we
can control jitter. Eqn 10 constraints the number of policies
assigned to each level of priority queue per switch. Jitter
will be the lowest if traffic is assigned to the highest priority
queue.

8s 2 switches :
X

i2pols

X

p2spaths(s)

(P
i,p

⇥ J

i

)  Pr

s,Ji (10)

Latency. We use number of hops as a proxy for latency. The
candidate paths selected by Janus for these policies is based
on its hop-count.

A more detailed treatment of these and other QoS metrics
is left to future work.

6 PROTOTYPE
Our prototype is implemented in Python and Pyretic [42],
and it uses the POX Openflow controller to install rules in the
network. Users create EPGs and specify the set of endpoints
that belong to an EPG. The function boxes are created using

the extended Pyretic language that was proposed in PGA. It
supports both static and dynamic function boxes. It allows
input policies to be expressed in form of EPG. Openflow
switches use queues for QoS implementation by rate-limiting
packets destined for different queues [21]. Although Pyretic
supports dynamic policies, it cannot handle QoS policies. We
extended both Pyretic and POX to install queue based rules,
which enforces QoS policies.

We use Gurobi [4] to solve ILPs used in our heuristic
algorithm. The input to the heuristic algorithm is a network
topology and the composed policy graph created by graph
composer §4. The composed policy graph [44] is stored as a
hash table with source EPG, destination EPG and state as
keys. Our prototype is reactive. The first packet of the new
flow is matched against the composed policy graph, and the
pyretic-compiled version of the rule is then installed into the
underlying network topology. The configuration specified by
the Policy Configurator §5 is used to select the switches in
the underlying topology to install these rules in.

7 EVALUATION
In this section, we evaluate the quality and runtime of Janus’s
heuristic algorithm using a diverse set of bandwidth policies
and network topologies. We use topologies of various sizes
from the Topology Zoo dataset [35]1. We synthetically cre-
ate our policy dataset, where each policy can be randomly
assigned 0 to 2 NFs and a QoS bandwidth requirement be-
tween 10 to 30 Mbps. In all our experiments, we randomly
attach different endpoints and NFs to different nodes in the
network. We also randomly assign different NFs to 10-30%
of nodes in the network. Optimality gap is the percentage
difference between the number of policies satisfied by the
original ILP (which considers all paths as candidates) and
our heuristic algorithm (which considers a random subset
of paths). We used this to evaluate our heuristic algorithm.
Unless specified otherwise, the number of candidate paths
considered by Janus is 5, the topology is Internode, the
number of endpoints belonging to each policy is 50 and the
number of policies to be configured in the network is 1000.
All our experiments were done on machines with 32 cores,
2.4 GHz Intel Xeon Processor and 128 GB RAM. The values
shown in all our experiments are the averages taken over 10
runs. None of the existing systems tackle group based QoS
and dynamic policies, hence we did not compare it with other
systems.

7.1 Optimality and Scalability
We first show that our heuristic algorithm can provide a near-
optimal solution in reasonable time across different network
topologies. In our first experiment, we keep the number of
endpoints belonging to each policy fixed as 20 and increase
the number of policies in 4 different networks. We were able to
achieve an optimality gap of 0% throughout this experiment.

1The number in parenthesis represent the number of nodes in the
topology, e.g. Internode(66) is a 66-node topology. The topology also
has bandwidth capacity of its links
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As shown in Figure 11, Janus is significantly faster across
all topologies and the difference increases with increase in
number of policies. In some cases, the difference is 2x in
magnitude. This trend continues in Figure 12, where we keep
the number of policies fixed to 1000 and vary the number of
endpoints. Here we perform worse than ILP (Figure 13) but
the optimality gap is still under 20%. Finally we evaluated
the optimality gap and time gap (% reduction in runtime
compared to ILP) for various topologies as a function of
number of candidate paths. We fixed the number of policies
as 1000 with 40 endpoints assigned for each policy. As shown
in Table 3 and 4, Janus with 5 paths achieves the right
balance of (a) generating near-optimal solution and (b) being
significantly faster than the ILP, even when dealing with
40,000 endpoints.
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Figure 11: Janus VS ILP with varying the number of
policies in the network. Each policy has 20 endpoints
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Figure 12: Janus VS ILP with varying the number
of endpoints belonging to each policy. The number of
policies to be configured is 1000.

7.2 Warm Start for Small Changes
We claimed in §5.4 that for small endpoint related changes,
“warm start” will be significantly faster with minimal number
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Figure 13: Number of endpoints VS Optimality
gap(%)

Topology Optimality Gap(%)
20

paths

10

paths

5

paths

2

paths

1 path

Ans(18) 0 0.6 10.3 23.2 33.5
Agis(25) 0 0 0 14.6 28.9
CrlNetServ(33) 0 0.9 10.7 25.8 36.9
Cwix(36) 0 0 4 19.8 32.8
Garr201008(55) 0 0 3.3 12.4 24.8

Table 3: No. of paths considered VS Optimality
gap(%)

Topology Percentage reduction in time (%)
20

paths

10

paths

5

paths

2

paths

1 path

Ans(18) 74 77.4 93.8 97.3 98.9
Agis(25) 11.6 49 61 88.9 95.3
CrlNetServ(33) 6.9 37.8 66.8 87.9 94.9
Cwix(36) 16.4 42 58.5 87.4 94.3
Garr201008(55) 95 97 99 99 99

Table 4: No. of paths considered VS % reduction in
time
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Figure 14: Performance of Warm start

of path changes. In this experiment, we configure 600 policies
and calculate the number of path changes that happen with
warm-start, and the % decrease in time compared to solving
from start. We randomly change the location of endpoints
(endpoint changes) after deploying the initial configuration.
As shown in Figure 14, when the number of endpoint related
changes are less than 200, warm start will have 0 path change.
For small endpoint related changes (<10), warm start is faster
by over 40%. But when the number of changes are greater
than 350, warm start is actually slower than solving from
start. When the number of endpoint changes are large, the
number of constraint changes become significant. Here warm
start may require lot of backtracking to find a new solution.
This increases the runtime of the solver.
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Figure 15: The percentage of default/non-default
policies configured with different penalty weight

7.3 Configuring Stateful Policies
Here we show that having a low penalty weight (�) associated
with violating soft constraints allows us to reserve paths for
many non-default policy edges while still maximizing the
number of configured default edge policies. In this exper-
iment, each policy has 1 default and 2 non-default policy
edges. We vary the number of policies to be configured in the
topology. As shown in Figure 15, the number of configured
default policies is inversely proportional to � and number of
configured non-default policies is directly proportional to �.
Setting � to 0.2, allows Janus to configure all default policies
while still enabling it to reserve paths for 35% to 75% of
non-default policies.

7.4 Configuring Temporal Policies
Here we evaluate the performance of our greedy heuristic
algorithm §5.5 for configuring temporal policies. We increase
the number of policies from 500 to 800 and spread them across
5 time periods. We measure the runtime and the percentage
decrease in total number of path changes compared to re-
running our original heuristic algorithm §5.2 for each time
period. We set ⇢ as 0.2 in all our experiments. As shown in
Table 5, our greedy approach reduces the number of path
changes by over 90%. The joint optimization algorithm did
not complete even after running for over 20 hours.

No. of Poli-
cies

No. of Configured
Policies

Reduction
in path
changes(%)

Time(s)

500 500 98.2 492
600 600 94.7 675
700 691 92.6 1438
800 741 91.3 4157

Table 5: Performance of greedy heuristic algorithm

7.5 Weights represent priority
In this experiment, we show that weights can be translated
directly into priorities. We increase the number of policies
from 600 to 1300 and split them evenly across 3 priority
classes high, med and low. The weights assigned to high, med

and low priority class are 8, 4 and 2. As shown in Figure 16,
most of the unconfigured policies belong to low priority class.
We did not see any unconfigured high priority policy until
the number of unconfigured med and low priority policies
became greater than 100 and 200 respectively.
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Figure 16: Distribution of number of unconfigured
policies based on priority class/weights
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Figure 17: Negotiation strategy over increasing N, K

7.6 Negotiation strategies
In §5.6, we proposed a negotiation strategy for temporal
policies. In this section, we evaluate it by varying the value
of N (% of bandwidth to be shifted) and K (% of policies con-
sidered). In this experiment we tried to configure 600 policies
across 4 time periods. Without our negotiation strategy we
were able to configure 536 policies. We make two interesting
observation from Figure 17: (a) with K = 100%, we can con-
figure a maximum of 30 extra policies when N = 5%. When
N > 5%, the number of policies that can be shifted to other
time periods decreases due to lack of network bandwidth. (b)
After K = 60%, the increase in the number of extra policies
configured is not significant.

8 DISCUSSION
Dealing with topology changes. In this paper, we do not
focus on handling reconfiguration of policies due to topology
changes/failures. We could extend our system to handle this
in a manner similar to §5.4 (using similar constraints and
objective function), where we aim to minimize reconfiguration
due to endpoint/policy graph related changes. Also there are
works [49] that either pre-install backup paths to handle a
certain number of link failures or do minimal repair where
they find new paths but with the aim of minimizing the
number of switches whose rule have to be modified.
Work Conservation. Janus is a reservation system that
maximally allocates bandwidth, i.e. after allocation there is
no policy that can be atomically allocated. Our bandwidth
allocations are rigid. We do not focus on ensuring work
conservation.
Fast/consistent bulk rule update. Installing large num-
ber of rules in a network topology is not trivial. Some of
the main challenges include (a) maintaining consistency and
correctness by avoiding ACL violations, blackholes and tran-
sient forwarding loops, and (b) doing fast rule update to
avoid low network utilization (He et al [24] have shown that
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path changes caused by policy reconfiguration can result in
significant downtime). This is an important research prob-
lem and outside the scope of this paper. Hence we did not
evaluate the runtime impact of reconfiguration. Both Diony-
sus [28] and McClurg et al [39] ensure consistency during the
transition between old and new configuration by carefully
selecting the order of rule updates in each individual switch.
Dionysus also makes reconfiguration faster by considering
runtime differences in update speeds of different switches.
Practicality. Our main idea of Janus has been started by
adding real values from existing network management solu-
tions to existing intent-based approaches. As a survey stage,
we have reviewed major commercial network management
systems [1, 3] and have obtained many feedback from real
network administrators. As a result, QoS, stateful network
functions, and temporal policies handled by Janus in this
paper are the major and important factors. Using Janus,
administrators can express their performance and dynamic
policies easily, deploy them to the target network with opti-
mization, and receive a feedback for negotiation. We believe
Janus will be easily integrated with any intent-based system.

9 RELATED WORK
Intent-based management. Policy-based management helps
network administrators to simplify management tasks by sep-
arating the rules governing the behavior of a system from its
functionality, and it has been well-adapted in the field [48, 53].
However, it has some limitations of scalability and flexibility
for managing complex heterogeneous network systems. In
order to overcome the limitations, many latest work have
proposed to create new intent-based policy frameworks by
designing new intent (or high-level) languages and compil-
ers/interpreters [8, 20, 26, 42, 47, 51, 54], application-level
abstractions [11, 14, 18, 30, 44, 50, 55, 60], group-based
approaches [6, 9, 31, 44] and specifying new northbound
interfaces [2, 19, 41]. However, most of those approaches
have focused on security-related ACL or reachability policies
without considering resource limitations.
QoS/SLA management. There is a huge body of work on
network QoS. However, none of them have addressed dynamic
group-based policies at an intent level. QoS frameworks such
as IntServ/DiffServ have been proposed to support QoS in the
Internet. Other frameworks support QoS/SLA provisioning
for SDN/Cloud/NFV [12, 13, 23, 27, 36, 38, 43, 45, 46].
Our approach can leverage and be deployed through these
frameworks. Openflow [21, 40] also supports QoS by mapping
a flow to a pre-configured queue and we have used it for our
prototype implementation.
Dynamic policies. Some works have discussed dynamic
policies in terms of modeling, verification, and testing [10, 15–
17, 52, 57, 61] of network function middleboxes. In order
to specify, test, and verify the stateful policies, we can use
the previous approaches. Procera [33] has proposed to help
operators express event-driven network policies that react to
various types of events such as time, data usage, and flow but
it was still limited to supporting simple allow/drop actions.

Configuring policies. There are some works [25, 34, 47,
49] on configuring policies or synthesizing data planes. But
none of them maintain group-based policy atomicity during
configuration. For example, SOL [25] provides a near-optimal
solutions and device configurations to implement path-based

optimization. However, Janus is located on a higher level
than them using logical label-defined groups and can use
them to deploy polices to the target infrastructure.

10 CONCLUSION
There is a growing demand for networks to support a variety
of rich performance/QoS and security requirements. However,
existing intent based management frameworks only support
security policies. In this paper we proposed Janus, a system
to configure QoS (mainly bandwidth policies with an exten-
sion to support latency, jitter) and dynamic intent-based
policies at group granularity. We show how to extend an ex-
isting policy graph abstraction to express these policies and
to compose them when they conflict. We develop a variety
of novel heuristic algorithms which maximize the number of
configured policies and minimize the number of path changes
caused by either intrinsic dynamics in policies or due to policy
churn. Our evaluation has shown that Janus can offer near-
optimal solutions in a reasonable amount of time for several
network topologies and scenarios. Further, Janus’s negotia-
tion feature can increase the number of configured policies.
Future directions include integrating Janus’s features into
existing intent-based systems such as OpenDaylight/NIC,
extending it to support other QoS policies and evaluation
on real diverse policy datasets from production enterprise
environments.
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